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Abstract

In the era of large pretrained models, a key challenge in deep learning is the1

underutilization of fine-grained raw data, often replaced by information-lossy2

normalized data. To bridge this gap, we introduce the Raw Data Aggregation3

System for Machine Learning (RDAS). RDAS offers a seamless data interface,4

enabling machine learning systems to directly access unstructured, high-resolution5

raw event data with minimal latency. At the heart of RDAS lies the Message6

Book Model, an innovative data representation framework that underpins the7

system’s ability to handle event data at nanosecond precision. RDAS is structured8

around three conceptual layers: (i) the Message Layer, featuring dual message9

aggregators for sequential and random access, which compile raw messages into10

timestamp-specific message book snapshots; (ii) the Feature Layer, which derives11

user-specified data features from the message book for any given moment; and12

(iii) the Verification Layer, tasked with real-time error monitoring and integrity13

assurance of the message book. A C++ implementation of these layers ensures14

RDAS’s exceptional performance. To validate its effectiveness, we applied RDAS15

in an Internet of Things (IoT) scenario, demonstrating significant performance16

enhancements over existing methods in terms of data throughput and latency. Our17

results underscore RDAS’s potential to revolutionize data processing in machine18

learning, offering a pathway to leverage the full spectrum of raw data’s granularity19

and richness.20

1 Introduction21

Recent advancements in machine learning (ML) have seen large pretrained models, such as those22

used in natural language processing (NLP), computer vision (CV), and multi-modality fields, achieve23

unparalleled performance. A key characteristic of these models is their substantial data requirements.24

For example, ChatGPT, a model renowned for its capabilities, was trained on an extensive dataset25

comprising 570GB of text data from the Internet. The effectiveness of these models is further26

enhanced by Transformer-based architectures, which are known for scaling efficiently with increased27

data size [6]. Given the ongoing trend towards larger models, it is reasonable to anticipate that current28

data scales will continue to grow to meet these evolving requirements.29

While the success of large pretrained models in NLP and CV is noteworthy, their expansion into other30

domains like time series prediction [9] and DNA understanding [5, 28] presents new challenges. The31

key issue lies in the limited quantity and granularity of training data available in these fields. For32

example, popular datasets in time series prediction, such as ETTh1, ETTh2, ETTm1, ETTm2, ILI,33

Traffic, and ECL, are relatively small, typically under 500MB, with only a few reaching between 1 to34

10GB. These datasets, predominantly normalized and simplified from their original, more complex35

forms, result in significant information loss. ETTh1, for instance, is an hourly electricity dataset36
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derived from higher-frequency sensor data. This loss is a major drawback, as raw datasets, often37

unstructured like event messages, contain richer details than their normalized counterparts.38

To address this, we propose an integrated approach encompassing end-to-end data acquisition and39

processing. This method differs from traditional practices by processing raw data into structured40

form dynamically during model training. Unlike the static nature of preprocessed, normalized data,41

this dynamic approach allows for flexible and adaptive data transformation. This could include batch-42

specific normalization adjustments based on prior training results or on-the-fly data augmentations.43

Ultimately, this end-to-end process aims to harness the full potential of raw data, preserving its44

fine-grained nature for more effective model training.45

However, the advantage of raw data’s granularity comes with its own set of challenges, notably its46

unstructured nature and inherent heterogeneity. This heterogeneity significantly complicates the data47

acquisition and processing. Take autonomous driving systems as an example: they rely on a diverse48

array of sensors, including laser, image, inertial measurement units (IMUs), and odometry sensors49

[14]. Each sensor type generates data streams that vary in format, type, and resolution, adding layers50

of complexity [7] [8] [17] [10] [26].51

To effectively manage the complexities of raw data acquisition and processing, thereby enabling52

ML systems to access the most detailed information in raw data, we propose abstracting diverse53

systems into a unified framework. This model conceptualizes the process as a competition among54

heterogeneous entities for a variety of resources, governed by multiple constraints like time of arrival,55

importance, ranking, cost, and gain. An entity could be, for example, a robot awaiting a task or a56

request for computational resources in a cluster. We envision this as N connected queues, where N57

represents the number of constraints, and refer to it as a ’message book’ for clarity.58

The message book abstraction offers several advantages for complex systems management. First,59

its intuitive nature facilitates easy understanding and implementation. Second, it is a versatile60

abstraction, applicable across various data types and systems in different domains. For example,61

in cloud computing, the message book can represent tasks awaiting execution, with computational62

power and time as the contested resources and submission time and task priority as constraints. The63

primary goal in such a system is maximizing the allocation of computational resources over time.64

This concept extends beyond cloud computing to encompass IoT systems, single-robot systems, and65

large-scale decentralized robotics systems. Third, the message book’s construction is driven purely by66

data, relying on the most fundamental and unprocessed message data, thereby eliminating the need67

for complex data preprocessing. These attributes render the message book abstraction particularly68

well-suited for creating efficient, low-latency data visualization tools and data access interfaces in69

ML systems.70

The implementation of a message book data structure is crucial for efficiently managing complex71

systems. Firstly, without such a model, it becomes challenging to determine the order in which72

participants access resources, as this decision relies heavily on various constraint functions. Secondly,73

given the heterogeneity, volume, and dispersed nature of the data, directly analyzing every minute74

activity of each participant is impractical. The message book addresses this by offering a unified75

representation that consolidates this diverse, granular data in real-time. This occurs concurrently with76

the data loading and model training processes in a ML system. As a result, the message book not77

only simplifies the understanding of the system’s real-time dynamics but also serves as an effective78

intermediary for subsequent tasks. These tasks can range from visualizing system statistics to aiding79

in model training, thereby providing a foundational tool for various downstream applications.80

Constructing the message book requires the system to adeptly route, filter, process, and aggregate all81

the activity information generated during its operation. We conceptualize each activity within the82

system as an event, with each occurring event represented as a message initiation and transmission83

process. Given that the message book’s state is continuously evolving with the system’s operation,84

it is crucial to model both the message book and the event message manipulations in a streaming85

fashion. The core research challenge we address involves developing an event-based data engine.86

This engine is designed to intelligently aggregate the most detailed event messages into a dynamic,87

general-purpose message book data structure, operating in a streaming manner. The proposed data88

engine is tailored to facilitate both real-time and historical data retrieval, offering efficient space and89

time complexity.90
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We organize the rest of the paper as follows. Section 2 mentioned prior work related to data91

processing systems, event processing systems, etc. Section 3 demonstrates the system architecture92

and implementation of RDAS. Section 4 shows experiments and results. Section 5 is the conclusion.93

2 Related Work94

Data loading frameworks Common data loading frameworks such as PyTorch Datasets & DataLoad-95

ers 1 and Tensorflow tf.data 2 are in a different position in the ML pipeline. They are for loading96

structured data from permanent storage such as local disk and remote storage such as S3. RDAS is97

to address the first-mile problem of how to acquire and aggregate raw data from data sources into a98

structured representation. These data loading frameworks can be naturally the next component that99

connects to RDAS in the ML pipeline.100

Data processing system. General-purpose data processing systems include Pandas [11], Dask101

[20], Numpy [15]. However, they are for structured data that is generated by processing the raw102

unstructured data. There are also some big data frameworks that can process raw data such as Hadoop103

[24], Flink [1], Spark [27], Storm [2] and Hive [23]. But, they all serve as basic infrastructures104

and building blocks to construct data processing pipelines. They lack the higher level design to105

meaningfully process the raw data. This is where RDAS steps in.106

Event processing system. In an IoT system, information sharing and communication are often107

modeled as the distribution of real-time event messages. [19] proposes an event processing solution108

to detect vehicle speed violations. [12] proposes an event processing engine to process events from109

data streams for supply chain management purposes. [22] proposes an event processing architecture110

to monitor the automotive manufacturing process. However, all these solutions are domain-specific.111

They are not a generic framework that is suitable for various kinds of domains in ML.112

3 Methodology113

3.1 Message Book114

To maintain a simple and efficient data structure, we use queues to implement the message book data115

structure. If there are N constraints, there are N different queues. Each constraint corresponds to one116

queue and we store the specific entity objects in the queue whose constraint has the lowest priority.117

The entire message book data structure is a hierarchical structure. Each element of a queue with a118

specific constraint is a queue whose constraint is of a lower priority. For example, Figure 1 shows119

a minimal example of the message book. In this example, there are two constraints and constraint120

1 has a higher priority than constraint 2, meaning that constraint 1 has to be met first. To be more121

intuitive, taking game matching as an example, constraint 1 could be the players’ skill levels and122

constraint 2 could be the players’ geographical distance. Each entity object stored in the message123

book represents a player in this case. Game matching for a player needs to first find other players124

with the same skill levels then among which find the player with the smallest distance. In this case,125

each element of the constraint 1 queue is a Struct that includes some basic information for that level126

such as the total number of players that are in that level, and a pointer to the queue of players in127

that level. In the queue of players, each element is a Struct representing a player and they are sorted128

according to constraint 2, which is the geographical distance that is of a lower priority. We use C++129

standard library to implement the message book. The details are in ??.130

Traverse The traversing of all entities (players) follows the priority of the constraints that are level131

first and entity second. This process starts from the index of the first level. For each level, it starts132

from the first entity and traverses all entities following the pointer to the next entity in each entity’s133

entry. Then, it follows the pointer to the next level in the current level’s entry and traverses all entities134

of the next level. This process goes on until it traverses all levels’ entities. The traversing has O(n)135

time complexity.136

Random access to existing entities Each time a new level or a new entity is added to the message137

book, their id-to-index mapping is saved in the hash map. Thus, for the random access to any specific138

entity or level, it is O(1) time complexity using the hash map.139

1https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
2https://www.tensorflow.org/guide/data
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Figure 1: A Minimal example of the message book implementation. Left: a visualization of the
message book with two constraints. Constraint 1 has a higher priority than constraint 2. Right: the
implementation of the message book using two queues. The top corresponds to constraint 1 and the
bottom corresponds to constraint 2. Only the queue of the least prioritized constraint(bottom queue)
stores the entity objects. The top queue only stores level information.

Add entities or levels To add a new entity to the queue of Constraint 1 or add a new level to the140

queue of Constraint 2, the algorithm first gets the index of free entry in the queue by popping an141

element from the corresponding FreeVector. Then, it creates a Struct representing the new entity142

or new level in the location indicated by the index in the corresponding queue. This is O(1) time143

complexity.144

Delete entities or levels To delete an entity or a level, RDAS gets its index in the corresponding145

queue using the corresponding hash map. Then, it pushes that index into the corresponding FreeVector.146

This is O(1) time complexity.147

3.2 Data Transmission Format and Channels148

The domains of machine learning systems that our system is for are those whose raw data are event149

data. For instance, in transportation systems, all raw data are event data that depict vehicles’, road150

sensors’, and traffic lights’ status at each time point. In cloud systems, all the raw data are event151

data about different machines, different components, or different software of the system. In IoT or152

robotics, all the raw data are the events generated by different sensors, devices, or robots. Because of153

the blooming of edge device computation power and high-speed, low-latency communication tech-154

nologies, highly decentralized IoT systems and robotics systems are becoming a reality. We choose a155

data format that is suitable to the current and future trends of heterogeneous event data transmission156

scenarios in various domains. In this case, we need a suitable data storage and transmission format157

that is capable of providing the properties of large volume, high frequency, low latency and high158

compatibility with network transmission of the event messages data because all the sensors and other159

system participants transmit data over the network [4] [16] [25] [13]. In RDAS, we store all the raw160

event messages in pcap (Packet Capture) format. Pcap is a direct capture of the data packet (event161

messages) that the senders send over the network [21]. It provides a single truth of source and an162

unbeatable granularity of up to nanosecond regarding the timestamp [3]. These features ensure that163

it has high credibility and enough capacity for any highly heterogeneous raw data source requiring164

various degrees of transmission latency, transmission frequency, and communication credibility.165

Besides the foundational data storage format for the raw event message data, we also define a concept166

called data transmission channel in RDAS. There are four different channels as shown by Figure 2,167

which are actually four parallel data feeds when the system is operating. They are Alpha channel168

1, Alpha channel 2, Beta channel 1 and Beta channel 2. Alpha channel only includes incremental169

information so that the transmission can have extreme compactness and high frequency. The Alpha170

channel is necessary when the frequency of new updates is very high because it is impossible to171

store the snapshot of the entire message book’s status for every new update regarding the scale of the172

storage that is needed and the large percentage of redundant data in each snapshot. Beta channel only173

includes snapshot information the sender sends at a slightly lower frequency so that the transmission174

data volume is not too large. In the meantime, any device listening to this feed at any time can get175

a relatively new snapshot of the sender’s state and start evolving the state from this snapshot using176

information from the Alpha channel. To ensure a high degree of robustness of the data transmission,177
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both Alpha channel and Beta channel is a set of two parallel channels. Senders send the same packets178

simultaneously on channel 1 and channel 2. Receivers can use channel 1 and channel 2 to do cross179

verification or if some packets are corrupted on one channel, the system can recover them from the180

other channel. It is also noteworthy that the use of Alpha channel and Beta channel is flexible. For181

senders that only need to send stateless information, the use of Beta channel is optional. For senders182

that have a very limited amount of state data and have no requirement on high-frequency transmission,183

they can choose to only use the Beta channel to broadcast their full state periodically or whenever184

there is an update. Such a high degree of flexibility is an essential property that makes RDAS suitable185

to highly heterogeneous systems.186

3.3 Core Data Processing Pipeline187

Figure 2: Two types of data channels: Alpha for
high-frequency incremental information; Beta for low-
frequency snapshot information. Each channel has a
backup channel for robustness.

The data processing pipeline of RDAS con-188

sists of four phases: channel merging, chan-189

nel routing, channel decoding, knowledge190

distilling, and verification. The first three191

phases support the message layer. The last192

phase supports the feature layer and the ver-193

ification layer. All these phases are piped194

to each other in a streaming manner, which195

means that it is not the case where a phase196

first processes all the data and then hands197

them over all at once to the next phase. It is198

the alternative case where when each phase199

processes a very small piece of the data, it200

immediately hands it over to the next phase201

and then starts processing the next piece. It is easy to see that in this streaming manner, all the events202

can be processed in the same chronological order as in that they took place and the large data size203

induced along the temporal dimension does not impair the processing speed.204

In the first phase, channel merging, the system merges all channels from all senders together into one205

monolithic stream. This process makes sure all the network packets in this stream are in chronological206

order using their timestamp of nanosecond granularity. In the second phase, channel routing, the207

system routes each packet to a specialized channel decoder that is responsible for decoding the data208

of a specific channel. The routing is based on the unique IP address of the sender. The third phase,209

channel decoding, as shown by Figure 3 is a major part of the pipeline and handled by a channel210

decoder. There is a recovery mode and an incremental mode of the channel decoder and these two211

modes can switch back and forth into each other. It is usually in the recovery mode when the decoder212

is at the start of the decoding process or the decoded stream has corruptions for some reason in the213

middle of the decoding process and the decoder needs to be re-calibrate it to a correct checkpoint of214

the states of the sender. The incremental mode is to apply incremental changes to a base snapshot215

of states so that the system can maintain an evolving and always on-sync message book. There216

are two sub-phases in the decoder. We call the one before the decoder starts processing the packet217

on-packet-start, which is an API allowing the user to define and conduct any task before the decoder218

processes the packet. RDAS generates message book snapshots through this API. We call another219

one after the decoder processes the packet on-packet-end. It is also an API to allow users to define220

and conduct any task before the channel decoding phase ends for this specific packet.221

When the channel decoder is in recovery mode and a packet comes in, after the on-packet-start phase,222

the decoder checks the packet if it is from an Alpha channel or a Beta channel. If it is from an223

Alpha channel, the decoder would push it into the buffer queue without processing it. If it is from224

a Beta channel, the decoder hands it to a message parser that parses the content of the packet and225

produces a set of atomic operations. An atomic operation is a standardized and generic operation226

whose definition is a function. For example, some of the atomic operations are Add Event, Modify227

Event, and Cancel Event. The data engine uses a single set of available atomic operations of228

limited size for all kinds of data. Then, the decoder applies the set of atomic operations to the message229

book data structure so that the state of the message book incorporates the new information from the230

newcomer packet. Usually, in the recovery mode, because the message book is either in an empty231

state or corrupted state, the atomic operations are just Add Events to fill the empty message book or232

overwrite the existing message book.233
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Figure 3: The feed decoding process: (1) two modes, recovery mode, and incremental mode. In
recovery mode, the system uses the messages from the Beta channel to recover a snapshot of the
message book from scratch. In the incremental model, the system applies incremental messages to
the snapshot to evolve the message book. (2) The system preserves two user APIs on-packet-begin
and on-packet-end, to generate useful information on the fly such as snapshots and features and do
verification at any timestamp.
When the channel decoder is in incremental mode, the process is almost the same as the recovery234

mode. The decoder first checks the buffer queue. If it is not empty, the decoder processes packets in235

the queue one by one until the queue is empty. After emptying the buffer queue, the decoder starts to236

handle the input packet. If the input packet is from a Beta channel, the decoder discards it. If it is237

from an Alpha channel, the message parser parses it to a set of atomic operations then the decoder238

applies them to the message book to incorporate new information from the packet.239

The last phase in the pipeline is knowledge distillation and verification. It supports both the feature240

layer and the verification layer. This phase usually does not happen at the end of decoding the current241

packet. It happens at the start of decoding the next packet to guarantee the captured snapshot is the242

closest timestamp to the boundary timestamp. The feature generation and message book verification243

happen through the on-packet-begin API so that users have the flexibility to tailor these two processes.244

This phase is an essential bridge users can use to connect the message book to various sorts of245

downstream tasks such as data visualization terminals, analytical models, logging devices, etc.246

3.4 Time Traveling247

The time-traveling feature is a representative feature of RDAS based on its core data processing248

pipeline. It allows the query of a snapshot of the data stream at any timestamp with a constant249

maximum loading time no matter how far the snapshot’s timestamp is from the start of the stream.250

The mechanism behind the time traveler is that the system first generates and caches a bunch of251

snapshots in the permanent storage at a frequency much lower than the original raw data granularity,252

for instance, every 10 minutes. Then, when the user jumps to any specific timestamp, RDAS first253

loads the snapshot from the cache that is the closest to that timestamp and then applies all incremental254

messages between the snapshot timestamp and the target timestamp to the message book to generate255

the target snapshot the query requests for.256

4 Experiment257

4.1 Case Study258

We demonstrate the efficacy of RDAS by building a simulated high-frequency robotics logistics259

system and using it to acquire and parse the unstructured raw event data into the message book260

representation that is ready to be connected with the later data loading and model training pipeline.261

The reason that we choose to simulate a scenario in such a domain is that its raw data has high262

heterogeneity and high granularity, which provides enough complexities to test our system. Besides,263

the logistics industry is one of the kinds of complex systems that foresees to eventually transition264

from a labor-intensive industry into an automation industry. In 2021, there are about 1.3 million265
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delivery drivers and about 40 million packages are in delivery every day in the US. In China, those266

numbers are about 4 million and 3 billion. However, this industry receives many critiques from267

both workers about its intense working schedule and clients about its far-from-satisfaction efficiency.268

Many delivery companies are considering or attempting to automate the delivery process by adopting269

delivery robots.270

In an efficient logistics system with all delivery drivers as delivery robots, millions of robots should271

be accurately and optimally dispatched to deliver tens of millions of packages based on their capacity272

and package pick-up distance and deliver them to the client. It is essentially a message book model273

with very high precision in timestamps and large enough capacity to handle millions of events sent274

from different robots in both real-time and offline analysis.275

In this scenario, there are two types of participants in the system. The first one is the local package276

dispatch centers that receive packages from higher-level dispatch centers from time to time. Whenever277

a batch of packages arrives at a local dispatch center, it sends out a Ready-to-Give (RtG) request to278

the system. The second one is the delivery robots that send a Ready-to-Take (RtT) request associated279

with the local dispatch center that is the nearest to them anytime they have capacity and are ready280

to fetch and deliver some new packages from the local dispatch center. During the operation, the281

system maintains a message book for each local dispatch center in parallel. In the message book, the282

constraints that decide the order of events are the distance and the time of arrival (ToA) of the request.283

The distance is discrete and represents the straight line distance to that specific dispatch center. Thus,284

there will be two types of distances. The first type is the distance between the destination of the285

delivery and the dispatch center. The second is the distance between the delivery robot and the286

dispatch center. There are different zones for different distance ranges. For instance, Zone 1 is287

within [0km, 3km), Zone 2 is within [3km, 6km), Zone 3 is within [6km, 9km), etc.288

During the operation of the system, all the delivery robots keep sending location/distance information289

periodically (for example, every 10 min) to the local dispatch center that they belong to. They290

are all in the message book no matter whether they are on their way to deliver packages or to the291

dispatch center to fetch new packages. Besides, all the packages are in the message book until the292

delivery is complete. They also have two states in the message book, either being-delivered or293

to-be-delivered. Once the dispatch center assigns a package to a delivery robot, the package’s294

state changes from to-be-delivered to being-delivered and it leaves the message book once295

the delivery is complete.296

4.2 Experiment Setup297

The experiment is twofold. One is to demonstrate RDAS’s large throughput, the other is to show the298

low latency and the low space cost of RDAS’s time-traveling feature. We use ROS to simulate the299

dynamics of the aforementioned logistics system and generate the event message data. We assume300

there are always 2000 delivery robots and 20000 packages on the message book and the robots and301

the dispatch center send messages at some preset frequency. We built a separate ROS program to302

uniformly sample and generate these messages from all the possible message types to simulate reality.303

There are in total six types of event messages that affect the message book status. Three are for304

delivery robots and the other three are for packages. For each data stream, the system generates a305

snapshot every 10 minutes and caches it to the disk.306

For delivery robots, the first type of message is AddRobot. When a new robot becomes online, the307

robot sends this message. Its fields include distance, capacity, state, last_update_time. The308

second type is ModifyRobot. When a robot’s status changes between Occupied and Empty, it sends309

out this message. The third type of message is RemoveRobot, when a robot becomes offline, it sends310

this message. For packages, when a new package arrives at the dispatch center and waits for delivery,311

the dispatch center sends out an AddPackage message. When a package’s status changes from312

to-be-delivered to being-delivered, the dispatch center sends an ModifyPackage message.313

Lastly, when a package delivery is complete, the dispatch center sends a RemovePackage message314

to remove the delivered package from the queue.315

For the throughput experiment, the baseline system is the same as RDAS except that the baseline316

system does not have the incremental message aggregating mechanism and message book representa-317

tion. Instead, it assumes each message includes the full picture. We assume there are two message318

data streams for RDAS and the baseline system respectively. In each time unit, two streams have the319

same number of messages and the same amount of information such as the number of robots and320
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packages and their status. The only difference is that one stream uses incremental messages and the321

other uses full-picture messages. We measure the total size of the messages each system processes322

within one second. Under the same network bandwidth, a system processes more information (higher323

throughput) at each time unit if it requires a smaller total message size to recover the same amount of324

information. Thus, we represent the throughput by taking the inverse of the total message size per325

second with a scale.326

The time-traveling feature is a representative feature that can demonstrate the superb performance327

of RDAS. We conduct experiments to measure the latency and the space cost of the time-traveling328

mechanism. To have a low latency for this mechanism, there are two types of overhead to consider.329

The first is the time cost to generate the snapshot cache. The second is the latency to apply the330

incremental messages between the loaded snapshot time and the target timestamp to generate a new331

snapshot on the fly. We measure both of them. Furthermore, we also measure the size of disk space to332

store the snapshot cache. The experiment demonstrates that the random access time traveler enables333

an O(1) latency with respect to the number of minutes away from the initialization point of the data334

stream and the size of the disk space to save the snapshot cache is within a reasonable range.335

4.3 Results336

We can see from Table 1 and Figure 4 that with the incremental message aggregation and the message337

book representation, RDAS’s throughput is several magnitudes higher than the baseline system. When338

the data stream’s frequency is at 103hz, RDAS’s throughput is about 6 times larger than the baseline.339

The discrepancy keeps increasing when the stream frequency increases. When the frequency is 107hz,340

RDAS’s throughput is about 400 times higher than the baseline.341

Table 1: Throughput of RDAS and the baseline system for data stream of different frequencies. It is a
scaled value of the inverse of the total message size per second.

Data stream frequency

System 103hz 104hz 105hz 106hz 107hz
RDAS 1 163.68 1850.35 5989.47 10366.29
Baseline 0.15 1.47 14.87 23.66 26.18
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Figure 4: Throughput (the larger the better): starting from the
stream frequency of 103hz, the throughput of RDAS is about 6
times larger than that of the baseline system. When the frequency
increases to 107hz, the RDAS is about 400 times larger than
the baseline. RDAS’s throughput increases much faster than the
baseline’s when the frequency increases.

To demonstrate RDAS’s low la-342

tency, we first run the system343

several times to repeatedly mea-344

sure the time it takes to process345

10000 packets and take an aver-346

age. The final result is that it347

takes about 0.01 seconds to pro-348

cess 10000 network packets. If349

the data simulation program gen-350

erates the data stream at a 100hz351

frequency, a day(24 hours) of the352

streamed Pcap data has 8.64 mil-353

lion messages and the whole snap-354

shot cache generation for them355

only takes 8.64 seconds. Even the356

stream is of 100000hz frequency,357

meaning on average, there are358

100000 messages every second,359

which is already very unlikely in360

real-world robotics and IoT sys-361

tems or systems in other domains,362

RDAS only takes 2.4 hours to cache a day of snapshot data. Considering the snapshot cache genera-363

tion is an offline task, such a level of time complexity is already sufficient. It is also noteworthy that364

in these settings, the latency for the time traveler to generate a requested snapshot on the fly has a365

reasonably short upper limit which is 1 second.366
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We also measure the random access waiting time in querying snapshots of the data stream at any367

timestamp to demonstrate RDAS’s low latency. We construct a baseline system using the same368

codebase as RDAS except that the baseline does not have the random access message aggregating369

feature and it can only start building the target snapshot from the initialization point of the data stream.370

By comparing their random access waiting time, we can clearly see from Table 2 and Figure 5 that371

RDAS has a constant bound but the baseline keeps increasing, causing long latency when the target372

timestamp is far away from the initialization point.373

Table 2: Random access waiting time (milliseconds) for RDAS is a piece-wise linear function with
the peaks always at a similar constant number. However, it is an increasing linear function for baseline
with no bounds, which indicates a much higher and eventually unacceptably long latency for the user
to obtain a snapshot.

Time distance range (min)
System 0 5 10 15 20 25

RDAS 22.0 2886.7 23.6 2983.5 22.4 3011.8
Baseline 23.4 2874.3 6023.7 8800.9 12084.4 14858.9

0 5 10 15 20 25 30
Time distance from initialization (min)
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Figure 5: Random access waiting time: On the data stream of
10000hz frequency, RDAS’s random access waiting time always
has a nearly constant bound at around 6000ms. However, the
baseline model has a linearly increasing waiting time with respect
to the further and further timestamps.

Lastly, we examine the disk374

space consumption of the snap-375

shot cache. Although the snap-376

shot size varies in different sys-377

tems in different domains, our378

logistics robotics system exam-379

ple, with 2000 delivery robots380

and 20000 packages on the mes-381

sage book for each dispatch cen-382

ter at any time, is already am-383

bitious and thus, representative384

enough. We assume that with-385

out compromising the user experi-386

ence, a 1-second latency (waiting387

time) is a reasonable upper limit388

when the user jumps around to389

query snapshots at random times-390

tamps. It means we need to at391

least cache 1 snapshot for every392

1 million messages because the393

processing speed is 1 million messages per second. Hence, disk consumption is a meaningful and394

critical metric. We generate a day of snapshot cache by generating one snapshot for every 1 million395

messages. The average size of each snapshot file is 100KB. Following the same deduction as above, if396

the simulated data stream is of 100hz frequency, the snapshot cache of one day is only about 860KB397

and it is about 860MB if the frequency is 100000hz. This shows that the space cost of RDAS is very398

low.399

5 Conclusion400

We propose RDAS, a general-purpose raw data acquisition and processing system for machine401

learning systems in various domains. It provides a unified data interface to bridge the unstructured,402

high-resolution and heterogeneous raw data of up to nanosecond granularity to common data loading403

and model training pipeline. It features a novel data representation mechanism, the message book,404

with the incremental message aggregation mechanism and a low-latency random access time traveler.405

RDAS allows users to quickly query a snapshot of the message book at an arbitrary timestamp.406

The experiments demonstrate RDAS has a high throughput, low latency, and consumes reasonably407

small disk space with full support to high-resolution raw event data. Future works could provide a408

programming language agnostic interface that enables quick integration into any existing machine409

learning frameworks.410
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A Additional Background482

Robotics system. ROS (Robotics Operating System) [18] is a system providing communication483

layers on top of machine operating systems to a computation cluster. Heterogeneous robots can484

use it to communicate with each other or a centralized cloud system. However, ROS only provides485

an underlying communication infrastructure and it does not deal with a higher level regarding data486

processing, which is where RDAS can step in.487

Data format. Some other file formats are popular in data-logging scenarios. For instance, Ros Bag488

file format 3 is the format that Ros uses to store Ros messages in files. However, it is bound to Ros’s489

ecosystem. Another general-purpose message recording data format is the MCAP format 4. However,490

both Bag and MCAP’s disadvantage compared the PCAP format our data engine uses is that they491

capture data from the application layer while PCAP captures data from the lower network layer492

according to the 7-layer OSI model [29]. Capturing from the network layer is much faster. Besides,493

network layer has the additional network information that helps network monitor and analysis. It is494

crucial for the scenarios that put the requirement for low latency, high throughput and high robustness495

to extreme.496

3https://wiki.ros.org/Bags/Format/2.0
4https://foxglove.dev/blog/introducing-the-mcap-file-format
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NeurIPS Paper Checklist497

The checklist is designed to encourage best practices for responsible machine learning research,498

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove499

the checklist: The papers not including the checklist will be desk rejected. The checklist should500

follow the references and follow the (optional) supplemental material. The checklist does NOT count501

towards the page limit.502

Please read the checklist guidelines carefully for information on how to answer these questions. For503

each question in the checklist:504

• You should answer [Yes] , [No] , or [NA] .505

• [NA] means either that the question is Not Applicable for that particular paper or the506

relevant information is Not Available.507

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).508

The checklist answers are an integral part of your paper submission. They are visible to the509

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it510

(after eventual revisions) with the final version of your paper, and its final version will be published511

with the paper.512

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.513

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a514

proper justification is given (e.g., "error bars are not reported because it would be too computationally515

expensive" or "we were unable to find the license for the dataset we used"). In general, answering516

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we517

acknowledge that the true answer is often more nuanced, so please just use your best judgment and518

write a justification to elaborate. All supporting evidence can appear either in the main paper or the519

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification520

please point to the section(s) where related material for the question can be found.521

IMPORTANT, please:522

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",523

• Keep the checklist subsection headings, questions/answers and guidelines below.524

• Do not modify the questions and only use the provided macros for your answers.525

1. Claims526

Question: Do the main claims made in the abstract and introduction accurately reflect the527

paper’s contributions and scope?528

Answer: [Yes]529

Justification: Contributions and scope are stated clearly in the abstract and introduction.530

Guidelines:531

• The answer NA means that the abstract and introduction do not include the claims532

made in the paper.533

• The abstract and/or introduction should clearly state the claims made, including the534

contributions made in the paper and important assumptions and limitations. A No or535

NA answer to this question will not be perceived well by the reviewers.536

• The claims made should match theoretical and experimental results, and reflect how537

much the results can be expected to generalize to other settings.538

• It is fine to include aspirational goals as motivation as long as it is clear that these goals539

are not attained by the paper.540

2. Limitations541

Question: Does the paper discuss the limitations of the work performed by the authors?542

Answer: [Yes]543

Justification: Limitations on the theoretical and empirical results are discussed in their544

respective sections, as well as Section ??.545
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Guidelines:546

• The answer NA means that the paper has no limitation while the answer No means that547

the paper has limitations, but those are not discussed in the paper.548

• The authors are encouraged to create a separate "Limitations" section in their paper.549

• The paper should point out any strong assumptions and how robust the results are to550

violations of these assumptions (e.g., independence assumptions, noiseless settings,551

model well-specification, asymptotic approximations only holding locally). The authors552

should reflect on how these assumptions might be violated in practice and what the553

implications would be.554

• The authors should reflect on the scope of the claims made, e.g., if the approach was555

only tested on a few datasets or with a few runs. In general, empirical results often556

depend on implicit assumptions, which should be articulated.557

• The authors should reflect on the factors that influence the performance of the approach.558

For example, a facial recognition algorithm may perform poorly when image resolution559

is low or images are taken in low lighting. Or a speech-to-text system might not be560

used reliably to provide closed captions for online lectures because it fails to handle561

technical jargon.562

• The authors should discuss the computational efficiency of the proposed algorithms563

and how they scale with dataset size.564

• If applicable, the authors should discuss possible limitations of their approach to565

address problems of privacy and fairness.566

• While the authors might fear that complete honesty about limitations might be used by567

reviewers as grounds for rejection, a worse outcome might be that reviewers discover568

limitations that aren’t acknowledged in the paper. The authors should use their best569

judgment and recognize that individual actions in favor of transparency play an impor-570

tant role in developing norms that preserve the integrity of the community. Reviewers571

will be specifically instructed to not penalize honesty concerning limitations.572

3. Theory Assumptions and Proofs573

Question: For each theoretical result, does the paper provide the full set of assumptions and574

a complete (and correct) proof?575

Answer: [NA]576

Justification: The paper does not include theoretical results.577

Guidelines:578

• The answer NA means that the paper does not include theoretical results.579

• All the theorems, formulas, and proofs in the paper should be numbered and cross-580

referenced.581

• All assumptions should be clearly stated or referenced in the statement of any theorems.582

• The proofs can either appear in the main paper or the supplemental material, but if583

they appear in the supplemental material, the authors are encouraged to provide a short584

proof sketch to provide intuition.585

• Inversely, any informal proof provided in the core of the paper should be complemented586

by formal proofs provided in appendix or supplemental material.587

• Theorems and Lemmas that the proof relies upon should be properly referenced.588

4. Experimental Result Reproducibility589

Question: Does the paper fully disclose all the information needed to reproduce the main ex-590

perimental results of the paper to the extent that it affects the main claims and/or conclusions591

of the paper (regardless of whether the code and data are provided or not)?592

Answer: [Yes]593

Justification: The experiment information needed to reproduce the main experimental results594

are in Section ?? and Appendix.595

Guidelines:596

• The answer NA means that the paper does not include experiments.597
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• If the paper includes experiments, a No answer to this question will not be perceived598

well by the reviewers: Making the paper reproducible is important, regardless of599

whether the code and data are provided or not.600

• If the contribution is a dataset and/or model, the authors should describe the steps taken601

to make their results reproducible or verifiable.602

• Depending on the contribution, reproducibility can be accomplished in various ways.603

For example, if the contribution is a novel architecture, describing the architecture fully604

might suffice, or if the contribution is a specific model and empirical evaluation, it may605

be necessary to either make it possible for others to replicate the model with the same606

dataset, or provide access to the model. In general. releasing code and data is often607

one good way to accomplish this, but reproducibility can also be provided via detailed608

instructions for how to replicate the results, access to a hosted model (e.g., in the case609

of a large language model), releasing of a model checkpoint, or other means that are610

appropriate to the research performed.611

• While NeurIPS does not require releasing code, the conference does require all submis-612

sions to provide some reasonable avenue for reproducibility, which may depend on the613

nature of the contribution. For example614

(a) If the contribution is primarily a new algorithm, the paper should make it clear how615

to reproduce that algorithm.616

(b) If the contribution is primarily a new model architecture, the paper should describe617

the architecture clearly and fully.618

(c) If the contribution is a new model (e.g., a large language model), then there should619

either be a way to access this model for reproducing the results or a way to reproduce620

the model (e.g., with an open-source dataset or instructions for how to construct621

the dataset).622

(d) We recognize that reproducibility may be tricky in some cases, in which case623

authors are welcome to describe the particular way they provide for reproducibility.624

In the case of closed-source models, it may be that access to the model is limited in625

some way (e.g., to registered users), but it should be possible for other researchers626

to have some path to reproducing or verifying the results.627

5. Open access to data and code628

Question: Does the paper provide open access to the data and code, with sufficient instruc-629

tions to faithfully reproduce the main experimental results, as described in supplemental630

material?631

Answer: [No]632

Justification: Code is not available at the time of submission but will be available as an633

open-source repository upon acceptance.634

Guidelines:635

• The answer NA means that paper does not include experiments requiring code.636

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/637

public/guides/CodeSubmissionPolicy) for more details.638

• While we encourage the release of code and data, we understand that this might not be639

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not640

including code, unless this is central to the contribution (e.g., for a new open-source641

benchmark).642

• The instructions should contain the exact command and environment needed to run to643

reproduce the results. See the NeurIPS code and data submission guidelines (https:644

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.645

• The authors should provide instructions on data access and preparation, including how646

to access the raw data, preprocessed data, intermediate data, and generated data, etc.647

• The authors should provide scripts to reproduce all experimental results for the new648

proposed method and baselines. If only a subset of experiments are reproducible, they649

should state which ones are omitted from the script and why.650

• At submission time, to preserve anonymity, the authors should release anonymized651

versions (if applicable).652
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• Providing as much information as possible in supplemental material (appended to the653

paper) is recommended, but including URLs to data and code is permitted.654

6. Experimental Setting/Details655

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-656

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the657

results?658

Answer: [Yes]659

Justification: They are specified in Section ?? and Appendix.660

Guidelines:661

• The answer NA means that the paper does not include experiments.662

• The experimental setting should be presented in the core of the paper to a level of detail663

that is necessary to appreciate the results and make sense of them.664

• The full details can be provided either with the code, in appendix, or as supplemental665

material.666

7. Experiment Statistical Significance667

Question: Does the paper report error bars suitably and correctly defined or other appropriate668

information about the statistical significance of the experiments?669

Answer: [Yes]670

Justification: See Section ??671

Guidelines:672

• The answer NA means that the paper does not include experiments.673

• The authors should answer "Yes" if the results are accompanied by error bars, confi-674

dence intervals, or statistical significance tests, at least for the experiments that support675

the main claims of the paper.676

• The factors of variability that the error bars are capturing should be clearly stated (for677

example, train/test split, initialization, random drawing of some parameter, or overall678

run with given experimental conditions).679

• The method for calculating the error bars should be explained (closed form formula,680

call to a library function, bootstrap, etc.)681

• The assumptions made should be given (e.g., Normally distributed errors).682

• It should be clear whether the error bar is the standard deviation or the standard error683

of the mean.684

• It is OK to report 1-sigma error bars, but one should state it. The authors should685

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis686

of Normality of errors is not verified.687

• For asymmetric distributions, the authors should be careful not to show in tables or688

figures symmetric error bars that would yield results that are out of range (e.g. negative689

error rates).690

• If error bars are reported in tables or plots, The authors should explain in the text how691

they were calculated and reference the corresponding figures or tables in the text.692

8. Experiments Compute Resources693

Question: For each experiment, does the paper provide sufficient information on the com-694

puter resources (type of compute workers, memory, time of execution) needed to reproduce695

the experiments?696

Answer: [Yes]697

Justification: They are in Section ?? and Appendix.698

Guidelines:699

• The answer NA means that the paper does not include experiments.700

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,701

or cloud provider, including relevant memory and storage.702
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• The paper should provide the amount of compute required for each of the individual703

experimental runs as well as estimate the total compute.704

• The paper should disclose whether the full research project required more compute705

than the experiments reported in the paper (e.g., preliminary or failed experiments that706

didn’t make it into the paper).707

9. Code Of Ethics708

Question: Does the research conducted in the paper conform, in every respect, with the709

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?710

Answer: [Yes]711

Justification: We have reviewed and followed the NeurIPS Code of Ethics.712

Guidelines:713

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.714

• If the authors answer No, they should explain the special circumstances that require a715

deviation from the Code of Ethics.716

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-717

eration due to laws or regulations in their jurisdiction).718

10. Broader Impacts719

Question: Does the paper discuss both potential positive societal impacts and negative720

societal impacts of the work performed?721

Answer: [NA]722

Justification: This work is about methodological and foundational development, which we723

do not see any societal impacts.724

Guidelines:725

• The answer NA means that there is no societal impact of the work performed.726

• If the authors answer NA or No, they should explain why their work has no societal727

impact or why the paper does not address societal impact.728

• Examples of negative societal impacts include potential malicious or unintended uses729

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations730

(e.g., deployment of technologies that could make decisions that unfairly impact specific731

groups), privacy considerations, and security considerations.732

• The conference expects that many papers will be foundational research and not tied733

to particular applications, let alone deployments. However, if there is a direct path to734

any negative applications, the authors should point it out. For example, it is legitimate735

to point out that an improvement in the quality of generative models could be used to736

generate deepfakes for disinformation. On the other hand, it is not needed to point out737

that a generic algorithm for optimizing neural networks could enable people to train738

models that generate Deepfakes faster.739

• The authors should consider possible harms that could arise when the technology is740

being used as intended and functioning correctly, harms that could arise when the741

technology is being used as intended but gives incorrect results, and harms following742

from (intentional or unintentional) misuse of the technology.743

• If there are negative societal impacts, the authors could also discuss possible mitigation744

strategies (e.g., gated release of models, providing defenses in addition to attacks,745

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from746

feedback over time, improving the efficiency and accessibility of ML).747

11. Safeguards748

Question: Does the paper describe safeguards that have been put in place for responsible749

release of data or models that have a high risk for misuse (e.g., pretrained language models,750

image generators, or scraped datasets)?751

Answer: [NA]752

Justification: The paper poses no such risks.753

Guidelines:754
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• The answer NA means that the paper poses no such risks.755

• Released models that have a high risk for misuse or dual-use should be released with756

necessary safeguards to allow for controlled use of the model, for example by requiring757

that users adhere to usage guidelines or restrictions to access the model or implementing758

safety filters.759

• Datasets that have been scraped from the Internet could pose safety risks. The authors760

should describe how they avoided releasing unsafe images.761

• We recognize that providing effective safeguards is challenging, and many papers do762

not require this, but we encourage authors to take this into account and make a best763

faith effort.764

12. Licenses for existing assets765

Question: Are the creators or original owners of assets (e.g., code, data, models), used in766

the paper, properly credited and are the license and terms of use explicitly mentioned and767

properly respected?768

Answer: [Yes]769

Justification: Data and models used are all cited.770

Guidelines:771

• The answer NA means that the paper does not use existing assets.772

• The authors should cite the original paper that produced the code package or dataset.773

• The authors should state which version of the asset is used and, if possible, include a774

URL.775

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.776

• For scraped data from a particular source (e.g., website), the copyright and terms of777

service of that source should be provided.778

• If assets are released, the license, copyright information, and terms of use in the779

package should be provided. For popular datasets, paperswithcode.com/datasets780

has curated licenses for some datasets. Their licensing guide can help determine the781

license of a dataset.782

• For existing datasets that are re-packaged, both the original license and the license of783

the derived asset (if it has changed) should be provided.784

• If this information is not available online, the authors are encouraged to reach out to785

the asset’s creators.786

13. New Assets787

Question: Are new assets introduced in the paper well documented and is the documentation788

provided alongside the assets?789

Answer: [NA]790

Justification: Code is not available at the time of submission but will be available as an791

open-source repository upon acceptance.792

Guidelines:793

• The answer NA means that the paper does not release new assets.794

• Researchers should communicate the details of the dataset/code/model as part of their795

submissions via structured templates. This includes details about training, license,796

limitations, etc.797

• The paper should discuss whether and how consent was obtained from people whose798

asset is used.799

• At submission time, remember to anonymize your assets (if applicable). You can either800

create an anonymized URL or include an anonymized zip file.801

14. Crowdsourcing and Research with Human Subjects802

Question: For crowdsourcing experiments and research with human subjects, does the paper803

include the full text of instructions given to participants and screenshots, if applicable, as804

well as details about compensation (if any)?805

Answer: [NA]806
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Justification: The paper does not involve crowdsourcing nor research with human subjects.807

Guidelines:808

• The answer NA means that the paper does not involve crowdsourcing nor research with809

human subjects.810

• Including this information in the supplemental material is fine, but if the main contribu-811

tion of the paper involves human subjects, then as much detail as possible should be812

included in the main paper.813

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,814

or other labor should be paid at least the minimum wage in the country of the data815

collector.816

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human817

Subjects818

Question: Does the paper describe potential risks incurred by study participants, whether819

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)820

approvals (or an equivalent approval/review based on the requirements of your country or821

institution) were obtained?822

Answer: [NA]823

Justification: The paper does not involve crowdsourcing nor research with human subjects.824

Guidelines:825

• The answer NA means that the paper does not involve crowdsourcing nor research with826

human subjects.827

• Depending on the country in which research is conducted, IRB approval (or equivalent)828

may be required for any human subjects research. If you obtained IRB approval, you829

should clearly state this in the paper.830

• We recognize that the procedures for this may vary significantly between institutions831

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the832

guidelines for their institution.833

• For initial submissions, do not include any information that would break anonymity (if834

applicable), such as the institution conducting the review.835
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