
LLM at Network Edge: A Layer-wise Efficient
Federated Fine-tuning Approach

Jinglong Shen1, Nan Cheng1∗, Wenchao Xu2, Haozhao Wang3, Yifan Guo1, Jiajie Xu1

1School of Telecommunications Engineering, Xidian University
2Department of Computing, The Hong Kong Polytechnic University

3School of Computer Science and Technology, Huazhong University of Science and Technology
jlshen@stu.xidian.edu.cn, dr.nan.cheng@ieee.org, wenchao.xu@polyu.edu.hk,

hz_wang@hust.edu.cn, {guoyifan, xujiajie}@stu.xidian.edu.cn

Abstract

Fine-tuning large language models (LLMs) poses significant computational bur-
dens, especially in federated learning (FL) settings. We introduce Layer-wise
Efficient Federated Fine-tuning (LEFF), a novel method designed to enhance the
efficiency of FL fine-tuning while preserving model performance and minimizing
client-side computational overhead. LEFF strategically selects layers for fine-
tuning based on client computational capacity, thereby mitigating the straggler
effect prevalent in heterogeneous environments. Furthermore, LEFF incorpo-
rates an importance-driven layer sampling mechanism, prioritizing layers with
greater influence on model performance. Theoretical analysis demonstrates that
LEFF achieves a convergence rate of O(1/

√
T ). Extensive experiments on diverse

datasets demonstrate that LEFF attains superior computational efficiency and model
performance compared to existing federated fine-tuning methods, particularly under
heterogeneous conditions.

1 Introduction

Large Language Models (LLMs)2 have exhibited remarkable capabilities in various downstream
tasks, including text generation Li et al. (2024), language translation Ranathunga et al. (2023), and
question answering Yu et al. (2024). Their success is primarily attributed to their increasing model
scale Bahri et al. (2024), with contemporary models scaling from billions of parameters (e.g., GPT-2)
to hundreds of billions (e.g., GPT-4). While fine-tuning pre-trained LLMs on task-specific data
is the de facto approach for adaptation, the privacy-sensitive nature of user-generated data poses
challenges to centralized collection. Federated learning (FL) offers a solution by enabling distributed
model training without requiring data centralization McMahan et al. (2017); Huang et al. (2024). In
FL, models are fine-tuned directly on user devices, thereby preserving data privacy. However, the
computational demands of fine-tuning such large models often surpass the capabilities of typical
consumer devices. For instance, while typical consumer GPUs are often limited to 24GB of graphics
memory, fine-tuning a GPT-3 model even with 16-bit precision requires approximately 326GB of
memory.

Addressing the significant computational demands of LLMs, researchers have explored various
mitigation strategies Han et al. (2024). parameter-efficient fine-tuning (PEFT) methods, including
Adapter Houlsby et al. (2019), LoRA Hu et al. (2022), and prompt tuning Lester et al. (2021), have

∗Corresponding Author.
2In this paper, we focus on transformer-based language models. For simplicity, we refer to transformer

blocks as layers.
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emerged as promising approaches. These methods fine-tune a small number of additional or selected
parameters while keeping the bulk of the pre-trained model frozen, thereby substantially reducing
computational overhead. However, applying PEFT methods within FL settings encounters several
critical challenges. First, the non-independent and identically distributed (non-IID) nature of client
data is a primary concern Qi et al. (2023), often leading to substantial performance degradation Huang
et al. (2023, 2022). This degradation can be particularly pronounced in federated PEFT compared
to full fine-tuning paradigms Babakniya et al. (2023). Additionally, computational heterogeneity
across participating devices impairs resource utilization efficiency due to the straggler effect, where
overall training progress is constrained by the slowest clients Shen et al. (2024). While recent
approaches, such as FedDSE, explore sub-model extraction based on neuron activation patterns for
resource-constrained FL Wang et al. (2024a), maintaining model performance under non-IID data
distributions remains a significant hurdle.

To address these challenges, we propose Layer-wise Efficient Federated Fine-tuning (LEFF), a
method that aims to preserve the efficacy of full-parameter fine-tuning while significantly reducing
computational overhead. LEFF enables clients to selectively fine-tune specific layers according to
their computational capacity, while other layers remain frozen during local training. This flexibility
allows resource-constrained clients to fine-tune a reduced set of layers, thereby mitigating the straggler
effect. Following local training, clients transmit only the updated parameters of their selected layers
to the server. The server then performs layer-wise aggregation to reconstruct the global model for the
subsequent round. To further optimize the fine-tuning process, we introduce an importance-based
layer sampling strategy. This strategy dynamically adjusts the selection probability of each layer based
on its contribution to overall fine-tuning performance. This approach ensures that more impactful
layers are prioritized for updates. Our key contributions are:

• Novel Architecture: We introduce LEFF, a federated fine-tuning framework designed
to preserve full-parameter fine-tuning efficacy while substantially mitigating client-side
computational overhead.

• Robustness to Data Heterogeneity: LEFF leverages full-parameter fine-tuning, enabling
superior adaptation to non-IID data distributions across clients, outperforming conventional
PEFT methods like LoRA.

• Computational Heterogeneity Mitigation: Our framework accommodates computational
heterogeneity by allowing clients to dynamically adjust their local training workload accord-
ing to their available resources, thereby mitigating the straggler problem.

• Adaptive Layer Prioritization: We develop an adaptive layer selection mechanism em-
ploying an importance-based sampling algorithm. This prioritizes updates for performance-
critical layers, enhancing both training efficiency and model effectiveness.

• Theoretical Guarantees: We provide a rigorous convergence analysis, demonstrating that
LEFF achieves a convergence rate of O(1/

√
T ).

• Empirical Validation: Extensive experiments demonstrate LEFF’s capability to signifi-
cantly reduce client-side computational burden while achieving superior fine-tuning perfor-
mance under heterogeneous data and system conditions, outperforming existing state-of-the-
art methods.

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature on
FL and PEFT. Section 3 details our proposed LEFF framework and its key components. Section 4
provides a convergence analysis. Section 5 presents comprehensive experimental results and analyses.
Finally, Section 6 summarizes our findings and discusses future work.

2 Related Work

PEFT methods are essential for adapting LLMs by alleviating the prohibitive computational costs
of full fine-tuning. Techniques have evolved from updating parameter subsets Zaken et al. (2021)
and injecting trainable modules Houlsby et al. (2019) to latency-free approaches like LoRA Hu et al.
(2022); Fu et al. (2022), which merges learned low-rank matrices into the original model. Further
refinements, such as dynamically updating important layers as demonstrated by LISA Pan et al. (2024),
optimize efficiency by targeting model capacity more effectively. While established in centralized
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settings, PEFT’s application to FL is an emerging research area Zhuang et al. (2023); Yu et al. (2023);
Woisetschläger et al. (2024). Various PEFT strategies, including LoRA-based instruction tuning
Zhang et al. (2024), federated prompt optimization Guo et al. (2023, 2024), and backpropagation-free
client fine-tuning Xu et al. (2023), have shown viability in FL Chen et al. (2022, 2023); Sun et al.
(2022); Zhang et al. (2023); Fang et al. (2024); Legate et al. (2023); Wang et al. (2024b). However, a
critical challenge is data heterogeneity across clients, which analyses confirm significantly degrades
PEFT performance compared to full fine-tuning Babakniya et al. (2023); Bai et al. (2024); Cho et al.
(2023), a limitation even for specialized approaches like FedDAT in multimodal tasks Chen et al.
(2024). Concurrently, federated full-parameter tuning methods present their own trade-offs, including
high client computation in gradient approximation Qin et al. (2024), unreduced peak memory load in
update-compression schemes Shu et al. (2025), and a lack of adaptability in static cyclical updates
Wang et al. (2024c). To address this performance degradation, we propose LEFF. Unlike prior work,
LEFF facilitates decentralized, layer-wise adaptation of backbone models by enabling client-specific
full-parameter updates to a selected subset of layers, aiming to effectively mitigate the adverse
impacts of data heterogeneity while preserving computational efficiency.
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Figure 1: Overview of the LEFF framework. Each communication round comprises four key stages.

3 Methodology

3.1 System Architecture

FL clients in edge computing (e.g., mobile phones, personal computers) often possess limited
computational resources. The increasing scale of LLMs intensifies this constraint, making their
fine-tuning computationally burdensome. To mitigate this, we introduce LEFF, a framework to reduce
client-side training overhead while striving to maintain the benefits of full-parameter fine-tuning.

The LEFF framework (Figure 1) involves four steps per communication round. First, clients report
their local fine-tuning capacity (number of layers Li). Based on these reports, the server calculates
sampling probabilities and selects a layer subset Li (of size Li) for each client Ci to fine-tune. Second,
to reduce client burden, the server compresses unselected layers L−

i via knowledge distillation,
creating a customized local model. This model comprises client-specific fine-tunable layers (from Li)
and frozen compressed layers (derived from L−

i ). Third, clients fine-tune only their assigned layers;
other compressed layers remain frozen. Finally, clients upload their fine-tuned layer parameters, and
the server performs layer-wise aggregation to update the global model.

We consider a standard FL setup: a central server aggregates parameters from N clients (Ci, i =
1, . . . , N ) performing local training on their datasets Di (size Di = |Di|). The global model Θg

has L layers. For each client Ci, the server samples a block of Li consecutive layers for fine-tuning,
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denoted Li:
Li = {lstart, . . . , lend}, s.t. lend − lstart + 1 = Li. (1)

The unselected layers L−
i = {lk | 1 ≤ lk ≤ L, lk /∈ Li} are compressed by the server into Θ̌

L−
i

g . The

resulting client-specific model Θi = {ΘLi
g , Θ̌

L−
i

g } supports forward propagation. Client Ci receives

Θi, fine-tunes only ΘLi
g on Di to obtain updated parameters ΘLi

i (while Θ̌
L−

i
g remain frozen), and

uploads ΘLi
i . The server aggregates these layer-specific parameters from all clients to update Θg .

3.2 Layer Sampling

Sum

Sampling
Probability

Block
Importance

Layer
Importance

Softmax

Figure 2: Sampling probability for each
block. Model layers are organized into
blocks, and clients sample only one
block per communication round for fine-
tuning.

At the start of each communication round, the server
selects the layers for each client to fine-tune based on
Li. Considering that layers contribute differently to fine-
tuning performance, we propose an importance-based
layer sampling method. This approach prioritizes lay-
ers considered more crucial for model fine-tuning, thereby
optimizing the fine-tuning process by concentrating com-
putational resources on the most impactful model parts.

As discussed in Molchanov et al. (2019), the importance of
a neural parameter can be quantified by the change in the
loss value when the parameter is introduced or removed:

Im = (F(D,Θ)−F(D,Θ |θm=0))
2
, (2)

where F denotes the loss function, D represents the
dataset, and θm is the m-th parameter of the model Θ. We further adopt its first-order Taylor
expansion form:

I(1)
m (Θ) = (gmθm)2, (3)

where gm is the gradient of the m-th parameter. This approximation allows for estimating each param-
eter’s importance with only a single forward and backward pass, significantly reducing computational
complexity.

As illustrated in Figure 2. Based on the importance scores of individual parameters, the importance
score for each layer can be derived by summing the importance scores of all parameters within that
layer:

IΘl ≈ I(1)

Θl (Θ) =
∑

m∈Θl

I(1)
m (Θ) =

∑
m∈Θl

(gmθm)2 (4)

We define consecutive Li layers as a block, denoted as Θ̄k = {Θk, · · · ,Θk+Li−1}, with its impor-
tance given by:

IΘ̄k =

k+Li−1∑
l=k

IΘl (5)

To determine the sampling probability, these importance scores are normalized using the Softmax
function. Thus, the sampling probability for each block during layer sampling for client Ci is
expressed as:

pi = Softmax ({IΘ̄k | k = 1, · · · , L− Li + 1}) (6)

The server utilizes pi to sample a block for client Ci, determining the set of layers Li that the client
will fine-tune in the current communication round.

3.3 Model Compression

4
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Figure 3: Distillation process in LEFF.
The distillation loss comprises two com-
ponents: the mean square loss of the hid-
den state and the KL divergence of the
attention matrix.

As illustrated in Figure 3, in each communication round,
prior to client-side fine-tuning, the server compresses the
layers not selected for client fine-tuning, denoted by L−

i ,
to reduce computational overhead. Specifically, the server
employs a proxy dataset Dproxy, sourced from publicly
available data, for this knowledge distillation process. The

student model Θ̌L−
i

g maintains a multi-layer attention ar-
chitecture identical to that of the corresponding layers in
the pre-trained global model. The number of layers in the
student model is determined by a compression rate r. If

the teacher model segment ΘL−
i

g comprises
∣∣∣ΘL−

i
g

∣∣∣ layers,

the student model’s layer count is
∣∣∣Θ̌L−

i
g

∣∣∣ = ⌈∣∣∣ΘL−
i

g

∣∣∣ · r⌉.

Once the student model’s architecture is defined, the server
initiates compression via knowledge distillation. This
distillation leverages two objectives: a Mean Squared Error (MSE) loss between the hidden states
of the teacher and student models, and a Kullback-Leibler (KL) divergence between their attention
matrices. Crucially, to prevent the student model from learning task-irrelevant information from
Dproxy, only the intermediate representations (hidden states and attention matrices) are used for
distillation, not the task-specific output labels from Dproxy. Specifically, for an input hidden state

sequence Hi, the teacher model segment ΘL−
i

g produces outputs (Ht, At) = Θ
L−

i
g (Hi), while the

student model Θ̌L−
i

g produces (Hs, As) = Θ̌
L−

i
g (Hi). The distillation loss Edistill is then formulated

as:

Edistill = (1− α)Ehidden_state + αEattention_matrix = (1− α)MSE(Ht, Hs) + αKL(At, As), (7)

where α is a hyperparameter balancing the two loss components. Following compression, the

server integrates the student model Θ̌L−
i

g with the layers selected for fine-tuning, ΘLi
g , to form the

client-specific model Θi = {ΘLi
g , Θ̌

L−
i

g }. This model Θi is then dispatched to the i-th client.

3.4 Local Training

Upon receiving the model Θi from the server, client Ci fine-tunes the selected layers ΘLi
g , while the

unselected layers Θ̌L−
i

g remain frozen to maintain the correct training context. This strategy enables
clients to update only a subset of parameters, with the compressed unselected parameters requiring
minimal resources. As a result, LEFF significantly reduces computational overhead on the client side,
and adapts to the client’s computational capabilities, thereby enhancing efficiency. After completing
local training, client Ci sends the updated model parameters ΘLi

i back to the server for aggregation.

3.5 Model Aggregation

After receiving model parameters from all clients, the server aggregates them to construct a compre-
hensive global model. Since each client fine-tunes different components of the model, we utilize a
layer-wise aggregation approach, performing weighted averaging for each layer individually. Specif-
ically, for a global model Θg = {Θ1

g, · · · ,Θl
g, · · · ,ΘL

g } with L layers, let Sl represent the set of
clients that fine-tuned the l-th layer. The aggregated global model is expressed as follows:

Θg =
{
Θl

g | l = 1, · · · , L
}
=

{∑
i∈Sl

Di∑
j∈Sl

Dj
Θl

i | l = 1, · · · , L

}
. (8)

Once the server completes the aggregation and acquires the updated global model, the subsequent
communication round commences. This process continues until the model converges or reaches a
predetermined number of iterations.
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4 Convergence Analysis

4.1 Assumptions

Our convergence analysis of LEFF relies on the following assumptions. Assumptions 1,2,3 are
standard in FL (Li et al., 2020); Assumption 4 addresses complexities from LEFF’s layer selection
and model compression.
Assumption 1 (L-Smoothness). Each client’s local loss function Fi : Rd → R is L-smooth with
respect to the full model parameters Θ. Thus, for a constant L > 0, all Θ1,Θ2 ∈ Rd, and all clients
i ∈ [N ]:

∥∇Fi(Θ1)−∇Fi(Θ2)∥ ≤ L∥Θ1 −Θ2∥. (9)

The global loss function F(Θ) = 1
N

∑N
i=1 Fi(Θ) is thus also L-smooth.

Assumption 2 (Bounded Variance). The variance of stochastic gradients computed by each client is
bounded. Let ∇Fi(Θ; ξ) be client i’s stochastic gradient for sample ξ ∼ Di at parameters Θ, and
∇Fi(Θ) = Eξ∼Di

[∇Fi(Θ; ξ)] be the true local gradient. We assume constants σ2
i ≥ 0 such that for

all Θ ∈ Rd and i ∈ [N ]:
Eξ∼Di

∥∇Fi(Θ; ξ)−∇Fi(Θ)∥2 ≤ σ2
i . (10)

We define σ2 = maxi∈[N ] σ
2
i . This is standard in analyzing stochastic optimization, including FL.

Assumption 3 (Bounded Heterogeneity). To account for data heterogeneity (non-IID data), we
assume the dissimilarity between true local and global gradients is bounded. For a constant ζ2 ≥ 0
and all Θ ∈ Rd:

1

N

N∑
i=1

∥∇Fi(Θ)−∇F(Θ)∥2 ≤ ζ2. (11)

This is standard in FL analysis, especially for non-IID settings.

During local training in round t, client i performs K steps of stochastic gradient descent, starting
from ΘLi

i,t,0 = ΘLi
g,t. At local step k ∈ {0, . . . ,K − 1}, the client updates ΘLi

i,t,k using a stochastic
gradient Gi,t,k computed with respect to these active parameters:

Gi,t,k = ∇ΘLiFi(Θ
Li

i,t,k|Θ̌
L−

i
g,t ; ξi,t,k). (12)

Here, Fi(·|·; ξ) indicates the loss evaluated with active parameters ΘLi

i,t,k conditioned on the fixed

context Θ̌L−
i

g,t , using data sample ξi,t,k ∼ Di.

Let Ḡi,t be the average expected effective gradient computed by client i over its K local steps in
round t:

Ḡi,t =
1

K

K−1∑
k=0

Eξi,t,k∼Di [Gi,t,k]. (13)

Let ∇ΘLiFi(Θg,t) denote the restriction of the full local gradient ∇Fi(Θg,t) to the subspace corre-
sponding to the selected layers Li.
Assumption 4 (Bounded Model Approximation Error). The expected squared norm difference
between the average effective gradient Ḡi,t and the corresponding part of the true local gradient
∇ΘLiFi(Θg,t) (evaluated at the start-of-round global model Θg

t ) is bounded. The expectation ELi∼pi
is taken over the randomness of layer selection for client i (with selection distribution pi):

ELi∼pi

[
∥Ḡi,t −∇ΘLiFi(Θg,t)∥2

]
≤ ∆2

i,t. (14)

Furthermore, we assume the average of these client-specific error bounds across all clients is bounded,
potentially depending on the round t:

1

N

N∑
i=1

∆2
i,t ≤ ∆2

t . (15)

For simplicity in certain analyses, one might further assume a uniform bound ∆2 such that ∆2
t ≤ ∆2

for all t.
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4.2 Main Theorem

We present the key lemma leading to our main convergence theorem.
Lemma 1 (Bound on Expected Squared Norm of Global Update). Let Assumptions 1, 2, 3, and 4
hold. Let At be the set of clients selected in round t. The expected squared norm of the global model
change in one communication round t is bounded by:

E
[∥∥Θg

t+1 −Θg
t

∥∥2] ≤ C3η
2K2

(
σ2 +∆2

t + ζ2 + ∥∇F(Θg
t )∥

2
)
, (16)

where the expectation E[·] is taken over the randomness of client selection At, layer selections
{Li}i∈At , and local stochastic gradients {ξi,t,k}i∈At,0≤k<K . Here, C3 is a constant that may
depend on the total number of layers L, client sampling strategy, layer sampling probabilities pi, and
aggregation weights.

Theorem 1 (Convergence of LEFF). Let Assumptions 1, 2, 3, and 4 hold. If η is chosen such that
η ≤ C4/(LC3K) for sufficiently small C4 (where C3 is from Lemma 1, L is the smoothness constant
from Assumption 1, and K is the number of local steps), then the LEFF algorithm satisfies:

1

T

T−1∑
t=0

E[∥∇F(Θg,t)∥2] ≤
C8(F(Θg,0)− F ∗)

ηKT︸ ︷︷ ︸
Vanishing term

+C9

(
∆̄2 + ζ2 +

σ2

K

)
+ C10ηK(σ2 + ∆̄2 + ζ2)︸ ︷︷ ︸

Error floor

,

(17)
where E[·] takes expectation over all randomness up to round t, T is the total number of communica-
tion rounds, ∆̄2 = 1

T

∑T−1
t=0 ∆2

t is the average model approximation error over T rounds, F ∗ is a
lower bound for the global loss function F(Θ), and C8, C9, C10 are positive constants depending on
problem parameters (L, σ2, ζ2), algorithm parameters (K), and constants from the assumptions and
lemmas.

With an appropriately chosen decaying learning rate η = O(1/
√
T ) (satisfying the condition in

Theorem 1 for sufficiently large T ), the bound in Eq. (17) implies a convergence rate where the
average squared gradient norm diminishes towards an error floor. This leads to the following corollary
regarding the minimum expected gradient norm:
Corollary 1 (Convergence Rate). Under the conditions of Theorem 1, if a decaying learning rate
η = O(1/

√
T ) is used, then LEFF achieves:

min
0≤t≤T−1

E[∥∇F(Θg,t)∥2] ≤ O
(

1√
T

)
+ C9

(
∆̄2 + ζ2 +

σ2

K

)
. (18)

The convergence is guaranteed only up to an error floor, primarily determined by the non-vanishing
term C9(∆̄

2 + ζ2 + σ2/K) in Eq. (18). This term quantifies the sources of residual error inherent in
the federated optimization process with LEFF.

Trade-offs: The analysis reveals a fundamental trade-off inherent in LEFF. The framework enhances
client-side efficiency (computation, memory, potentially comddddmunication) through layer selection
and context compression. However, this introduces the model approximation error ∆̄2, which
contributes directly to the convergence error floor and may limit the achievable model accuracy.
Consequently, the practical success of LEFF hinges on implementing layer selection and compression
techniques that effectively minimize ∆̄2 while preserving the desired efficiency gains.

5 Evaluations

5.1 Experimental Setup

We conduct extensive experiments to evaluate our proposed method against established FL approaches.
The evaluation framework incorporates baseline algorithms, pre-trained models, benchmark datasets,
and detailed experimental configurations.

We benchmark our approach against FedAvg McMahan et al. (2017), which averages full model
parameters, and three parameter-efficient FL methods: FedBitFit Zaken et al. (2021), updating only

7



bias terms; FedLoRA Hu et al. (2022), employing low-rank updates; and SLoRA Babakniya et al.
(2023), utilizing server-side singular value decomposition (SVD) for enhanced stability and efficiency.
Experiments are conducted using GPT-2 Medium Radford et al. (2019) for natural language generation
(NLG) and DeBERTaV3 Base He et al. (2021) for natural language understanding (NLU). We evaluate
on the GLUE benchmark Wang et al. (2019) (e.g., CoLA, MRPC, MNLI) for NLU tasks and the E2E
NLG Challenge Novikova et al. (2017) for NLG from structured meaning representations.

Experiments were conducted for 20 communication rounds on the public datasets WebNLG Gardent
et al. (2017) and WNLI Wang et al. (2019). To simulate heterogeneous (non-IID) data distributions,
client data was partitioned using a Dirichlet distribution with a concentration parameter (α) ranging
from 0.05 to 50.0. Our FL simulations involved a varying number of clients, each performing one
local training epoch per communication round. During local training, clients fine-tuned their local
models using the AdamW optimizer Loshchilov, Hutter (2019) with a learning rate of 1× 10−5. All
experiments were performed on a system with eight NVIDIA H100 GPUs. This experimental setup
enables a systematic evaluation of the proposed method’s robustness against diverse data distributions
and varying client participation levels.

5.2 Results

5.2.1 Comparison with Baselines
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Figure 4: Average score of DeBERTaV3
on GLUE benchmark.

We evaluate LEFF on the GLUE benchmark across vary-
ing data heterogeneity, controlled by the Dirichlet param-
eter α ∈ {0.05, 0.1, 0.5, 1.0, 5.0, 10.0, 50.0} (Figure 4).
While FedAvg’s full-parameter fine-tuning ensures robust
performance across all α values, methods relying on par-
tial parameter updates (e.g., FedBitFit, FedLoRA, and
SLoRA) exhibit limitations, particularly in highly hetero-
geneous settings (low α). In contrast, LEFF employs a
layer-wise federated fine-tuning strategy, dynamically se-
lecting layers based on client computational capabilities
and importance sampling. This approach enables LEFF
to achieve consistently strong performance, effectively
addressing both data and system heterogeneity and outperforming baselines in critical heterogene-
ity ranges. Notably, at high data heterogeneity (α = 0.05, Table 1), FedAvg attains the highest
GLUE scores, with LEFF delivering closely comparable results and also demonstrating competitive
performance on NLG tasks.

Table 1: Test results of DeBERTaV3 (trained on GLUE tasks) and GPT2 (trained on E2E NLG task).
The best result per task group is marked in underline, and the secondary is marked in bold.

DeBERTaV3 (GLUE Tasks) GPT2 (E2E NLG Task)
Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg. BLEU NIST METEOR ROUGE CIDEr Avg.

FedAvg 28.36 81.08 71.45 87.07 73.24 68.43 65.26 52.17 65.88 0.5878 8.0645 0.4123 0.6405 1.7848 2.2980
FedBitFit 4.65 70.30 69.49 71.64 62.02 43.45 59.82 45.90 53.41 0.5570 7.3859 0.3443 0.5917 1.4059 2.0570
FedLoRA 6.31 70.49 68.38 78.40 68.97 41.97 58.97 43.07 54.57 0.5402 7.0344 0.3625 0.5857 1.3712 1.9788
SLoRA 21.82 72.44 69.00 80.35 69.08 53.26 60.68 50.97 59.70 0.5700 7.9592 0.4001 0.6243 1.7322 2.2572
LEFF 27.74 79.30 70.00 85.00 70.83 62.75 63.24 51.89 63.84 0.5799 8.0296 0.4064 0.6346 1.7521 2.2805

5.2.2 Effect of Compression Ratio
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Figure 5: Average scores of
LEFF on GLUE benchmark and
E2E NLG dataset at different
compression rates.
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We analyze the sensitivity of LEFF’s performance to the compression ratio r. Figure 5 shows that
LEFF achieves superior performance with higher values of r (i.e., lower compression levels where
more parameters are retained). With higher r, the student model retains more parameters, enhancing
its representational capacity to emulate the teacher model more effectively. This, in turn, provides
a more precise training context for the local model. Conversely, lower values of r (i.e., higher
compression levels) indicate the student model retains fewer parameters, thereby constraining its
representational capacity. This leads to less accurate teacher emulation and subsequently degrades
LEFF’s training efficacy and overall performance.

5.2.3 Effect of Client Scale
Table 2: Test result of DeBERTaV3
trained under different client scales.

Number of Clients
8 16 24 32 40

CoLA 61.51 50.21 44.87 35.60 31.26
SST-2 94.30 93.77 93.15 92.30 91.38
MRPC 82.82 77.38 71.44 68.38 64.38
STS-B 86.84 85.90 85.12 80.39 79.35
QQP 88.35 87.32 86.76 86.32 86.00

MNLI 88.20 88.07 87.57 87.36 86.52
QNLI 91.79 91.09 90.45 89.45 89.20
RTE 60.01 59.33 57.16 52.71 50.90

Average 81.73 79.13 77.07 74.06 72.37

We evaluated model performance across a range of federated
clients (8 to 40) on tasks from the GLUE benchmark and for
NLG. Our results reveal a systematic degradation in perfor-
mance as the number of clients increases. As detailed in Ta-
ble 2, for GLUE tasks, the robustness to client scaling var-
ied significantly across different metrics. For instance, SST-2
demonstrated minimal degradation, with performance decreas-
ing by 3.10% (from 94.30 to 91.38). In contrast, CoLA exhib-
ited substantial sensitivity, with its score declining by 49.18%
(from 61.51 to 31.26). Consequently, the average GLUE score
dropped from 81.73 to 72.37. NLG tasks, presented in Table 3, showed greater resilience. BLEU
scores experienced a marginal reduction of 1.94% (from 0.5762 to 0.5650), while CIDEr registered
the largest relative decline at 5.16% (from 1.5174 to 1.4391). These findings suggest that while the
model can maintain reasonable efficacy in federated settings with fewer clients, its performance is
challenged when scaling to larger client populations.

5.2.4 Effect of Sampling Methods

Table 3: Test result of GPT-2 trained
under different client scales.

Number of Clients
8 16 24 32 40

BLEU 0.5762 0.5728 0.5726 0.5715 0.5650
NIST 7.4802 7.2763 7.2368 7.1747 6.8036

METEOR 0.3448 0.3401 0.3384 0.3352 0.3275
ROUGE 0.6056 0.6042 0.6033 0.6018 0.5981
CIDEr 1.5174 1.5139 1.5086 1.4988 1.4391

Average 2.1048 2.0615 2.0519 2.0364 1.9467

We evaluate LEFF employing three distinct sampling
strategies: importance-based, round-robin (sequential
block fine-tuning per communication round), and random
(arbitrary block selection per round). As illustrated in
Figure 6 and Figure 7, the importance-based sampling
strategy consistently outperforms the round-robin and ran-
dom strategies across metrics from both the GLUE and
E2E NLG benchmarks. On the GLUE benchmark, this
performance advantage is particularly pronounced on chal-
lenging tasks such as CoLA. Similar trends are observed for MRPC and RTE, although the perfor-
mance gap diminishes for tasks where all methods achieve high scores. For tasks within the E2E NLG
benchmark, importance-based sampling demonstrates consistent superiority, yielding substantial
improvements in METEOR and CIDEr scores, alongside modest gains in BLEU and NIST metrics.
These results underscore its effectiveness across diverse natural language tasks.

6 Conclusion

This paper introduced LEFF, a novel federated fine-tuning approach for LLMs that employs selective
layer-wise fine-tuning to balance computational efficiency and model performance, achieving a
theoretical convergence rate of O(1/

√
T ). Experimental evaluations on the GLUE benchmark and

E2E NLG challenge demonstrate LEFF’s performance is comparable to full fine-tuning and surpasses
other parameter-efficient methods, highlighting its efficacy for resource-constrained, heterogeneous
environments. Despite these strengths, LEFF’s layer selection and compression introduce an in-
herent efficiency-fidelity trade-off and an approximation error (∆̄2) that can cap performance, as
indicated by our theory. Additionally, LEFF increases server-side computational load for tasks like
layer importance calculation and specialized aggregation, and can incur substantial server-to-client
communication for customized model components, particularly with lighter compression. Future
research could mitigate these limitations by developing more sophisticated adaptive compression
strategies, optimizing server-side operations, or exploring alternative proxy data utilization methods.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the LEFF framework, its mecha-
nisms for efficiency and performance preservation (e.g., layer selection, model compression),
its handling of data and system heterogeneity, the theoretical convergence rate claim, and the
claim of superior empirical results. These aspects are subsequently detailed and supported
in Sections 3 (Methodology), 4 (Convergence Analysis), and 5 (Evaluations).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The Conclusion (Section 6) explicitly discusses limitations, including the
efficiency-fidelity trade-off due to layer selection and compression, the impact of approxi-
mation error (∆̄2) on performance, increased server-side computational load, and potential
server-to-client communication overhead.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Section 4 (specifically Subsection 4.1) lists the assumptions (Assumptions 1-4)
for the theoretical analysis. The main theoretical results (Theorem 1 and Corollary 1) are
presented, and the paper states that proofs are provided in the Appendix (Sections A, B).

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 5 (specifically Subsection 5.1) details the experimental setup, includ-
ing baselines, models (GPT-2 Medium, DeBERTaV3 Base), datasets (GLUE, E2E NLG,
WebNLG, WNLI), data heterogeneity settings (Dirichlet α), number of clients, communi-
cation rounds, and local epochs. Key components of LEFF like layer sampling and model
compression are described in Section 3. The provided information covers the core aspects
needed to understand and attempt reproduction.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The paper uses public datasets (GLUE, E2E NLG, WebNLG, WNLI) and
existing pre-trained models (GPT-2, DeBERTaV3), which are cited. However, it does not
explicitly state that the code for the proposed LEFF method or the experimental scripts are
publicly available, nor does it provide a link or instructions for accessing them.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 5.1 (Experimental Setup) specifies the models (GPT-2 Medium, De-
BERTaV3 Base), datasets (GLUE, E2E NLG, WebNLG, WNLI), data partitioning (Dirichlet
with α), optimizer (AdamW), learning rate (1× 10−5), communication rounds (20), and lo-
cal epochs (1). Key aspects of LEFF like layer sampling and model compression (including
the analysis of compression ratio r) are described.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The authors provide the standard deviation of the experimental results in the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 5.1 (Experimental Setup) states that ’All experiments were performed
on a system with eight NVIDIA H100 GPUs.’ This specifies the type and number of compute
workers.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research focuses on algorithmic development for efficient federated fine-
tuning of language models using publicly available datasets. The work aims to improve
efficiency and manage resource constraints, with no apparent direct ethical concerns or
violations of the NeurIPS Code of Ethics.
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Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: A discussion of broader impacts is provided in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper proposes a new fine-tuning method (LEFF) and evaluates it using
existing pre-trained models (GPT-2, DeBERTaV3) and public datasets. It does not introduce
or release new models or datasets that would inherently pose a high risk for misuse requiring
specific safeguards developed by the authors.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly cites the original sources for existing assets like pre-trained
models (GPT-2 Radford et al. (2019), DeBERTaV3 He et al. (2021)) and datasets (GLUE
Wang et al. (2019), E2E NLG Novikova et al. (2017), WebNLG Gardent et al. (2017)).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper introduces a new method (LEFF). The paper itself serves as docu-
mentation for this method. No new datasets or standalone models are introduced for release
as distinct assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research does not involve crowdsourcing experiments or new research
with human subjects; it utilizes existing public datasets.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research does not involve new studies with human subjects, so IRB
approval or discussion of participant risks is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The research focuses on developing a new method (LEFF) for fine-tuning
LLMs. LLMs are the subject of the study (e.g., GPT-2, DeBERTaV3 are fine-tuned),
not a tool used in an important, original, or non-standard way to develop the core LEFF
methodology itself (e.g., for algorithm design or proof generation).
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Lemma 1

A.1 Bound on the Expected Local Gradient Norm

Proof. We use the standard variance decomposition E[∥X∥2] = E[∥X − E[X]∥2] + ∥E[X]∥2.

Eξ

[
∥Gi,t,k∥2

]
= Eξ

[
∥Gi,t,k − Eξ[Gi,t,k]∥2

]
+ ∥Eξ[Gi,t,k]∥2 . (19)

By definition, Eξ[Gi,t,k] = ∇ΘLiFi(Θ
Li

i,t,k|Θ̌
L−

i
g,t ). The first term is the variance of the stochastic

gradient given the current local model ΘLi

i,t,k and the (potentially compressed) non-updated param-

eters Θ̌
L−

i
g,t . Assumption 2 provides a bound on the variance of the gradient for the full model:

Eξ[∥∇Fi(Θ; ξ)−∇Fi(Θ)∥2] ≤ σ2
i ≤ σ2. We assume this bound also applies to the variance of the

stochastic gradient computed only for the selected layers Li:

Eξ

[
∥Gi,t,k − Eξ[Gi,t,k]∥2

]
≤ σ2 (20)

For the second term, the squared norm of the expected gradient, we use the inequality ∥a+ b∥2 ≤
2∥a∥2 + 2∥b∥2:

∥Eξ[Gi,t,k]∥2 =
∥∥∥∇ΘLiFi(Θ

Li

i,t,k|Θ̌
L−

i
g,t )

∥∥∥2
=
∥∥∥(∇ΘLiFi(Θ

Li

i,t,k|Θ̌
L−

i
g,t )−∇ΘLiFi(Θg,t)

)
+∇ΘLiFi(Θg,t)

∥∥∥2
≤ 2

∥∥∥∇ΘLiFi(Θ
Li

i,t,k|Θ̌
L−

i
g,t )−∇ΘLiFi(Θg,t)

∥∥∥2 + 2 ∥∇ΘLiFi(Θg,t)∥2

(21)

The first term in (21) captures the deviation of the expected local gradient at step k from the
true local gradient (for layers Li) evaluated at the round’s initial global model Θg,t. This de-
viation arises from both the drift of the local model (ΘLi

i,t,k vs ΘLi
g,t) and the use of potentially

approximated parameters (Θ̌L−
i

g,t ). Assumption 4 bounds the average deviation over K steps:
ELi∼pi

[∥Ḡi,t −∇ΘLiFi(Θg,t)∥2] ≤ ∆2
i,t, where Ḡi,t = (1/K)

∑K−1
k=0 Eξ[Gi,t,k]. While Assump-

tion 4 applies to the average, analyses often rely on bounding the instantaneous deviation. We make
a simplifying assumption, that the expected instantaneous deviation (over Li) is also related to the
average approximation error bound ∆2

t . Specifically, we assume:

ELi∼pi

[∥∥∥∇ΘLiFi(Θ
Li

i,t,k|Θ̌
L−

i
g,t )−∇ΘLiFi(Θg,t)

∥∥∥2] ≤ ca∆
2
t (22)

for some constant ca ≥ 1.

Combining (20), (21), and (22), and taking expectation over Li ∼ pi:

ELi
Eξ

[
∥Gi,t,k∥2

]
≤ ELi

[
σ2 + ∥Eξ[Gi,t,k]∥2

]
≤ σ2 + ELi

[
2
∥∥∥∇ΘLiFi(Θ

Li

i,t,k|Θ̌
L−

i
g,t )−∇ΘLiFi(Θg,t)

∥∥∥2 + 2 ∥∇ΘLiFi(Θg,t)∥2
]

≤ σ2 + 2ca∆
2
t + 2ELi

[
∥∇ΘLiFi(Θg,t)∥2

]
≤ cb

(
σ2 +∆2

t + ELi

[
∥∇ΘLiFi(Θg,t)∥2

])
(23)

where cb = 2ca is a constant.

A.2 Bound on the Global Model Update Norm

Proof. The squared norm of the global model change is the sum of the squared norms of the changes
in each layer:

E
[
∥Θg,t+1 −Θg,t∥2

]
= E

[
L∑

l=1

∥∥Θl
g,t+1 −Θl

g,t

∥∥2] =

L∑
l=1

E
[∥∥Θl

g,t+1 −Θl
g,t

∥∥2] , (24)
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where Θl
g,t denotes the parameters of the l-th layer of the global model at round t.

The global model update for layer l at round t+1 is given by the weighted average of the corresponding
layer parameters from clients that updated this layer:

Θl
g,t+1 =

∑
i∈Sl

t

wl
iΘ

l
i,t,K , (25)

where Sl
t = {i ∈ At | l ∈ Li} is the set of clients selected in round t (At) that included layer l in their

layer block Li, wl
i = Di/(

∑
j∈Sl

t
Dj) are the aggregation weights (with

∑
i∈Sl

t
wl

i = 1, wl
i ≥ 0),

and Θl
i,t,K is the l-th layer parameter of client i after K local steps starting from Θl

i,t,0 = Θl
g,t.

The local update process for layer l on client i (if l ∈ Li) follows:

Θl
i,t,K = Θl

i,t,0 − η

K−1∑
k=0

Gl
i,t,k = Θl

g,t − η

K−1∑
k=0

Gl
i,t,k, (26)

where Gl
i,t,k is the component of the stochastic gradient Gi,t,k (computed by client i at local step k

using data sample ξi,t,k) corresponding to layer l.

Therefore, the change in the global model’s l-th layer is:

Θl
g,t+1 −Θl

g,t =
∑
i∈Sl

t

wl
i(Θ

l
i,t,K −Θl

g,t) = −η
∑
i∈Sl

t

wl
i

(
K−1∑
k=0

Gl
i,t,k

)
. (27)

We want to bound the expected squared norm E[||Θl
g,t+1 − Θl

g,t||2]. Let δli,t = Θl
i,t,K − Θl

g,t =

−η
∑K−1

k=0 Gl
i,t,k denote the total update applied by client i to layer l (if l ∈ Li).

E
[∥∥Θl

g,t+1 −Θl
g,t

∥∥2] = E


∥∥∥∥∥∥
∑
i∈Sl

t

wl
iδ

l
i,t

∥∥∥∥∥∥
2
 . (28)

The expectation E[·] is over all sources of randomness: At, {Li}i∈At , and {ξi,t,k}i∈At,0≤k<K .

Since ∥ · ∥2 is a convex function and
∑

i∈Sl
t
wl

i = 1 with wl
i ≥ 0, we can apply Jensen’s inequality:∥∥∥∥∥∥

∑
i∈Sl

t

wl
iδ

l
i,t

∥∥∥∥∥∥
2

≤
∑
i∈Sl

t

wl
i

∥∥δli,t∥∥2 . (29)

Taking the expectation over all randomness:

E
[∥∥Θl

g,t+1 −Θl
g,t

∥∥2] ≤ E

∑
i∈Sl

t

wl
i

∥∥δli,t∥∥2
 . (30)

We can rewrite the expectation using the law of total expectation, conditioning first on the client and
layer selections (At,Li), which determines the set Sl

t and weights wl
i:

E
[∥∥Θl

g,t+1 −Θl
g,t

∥∥2] ≤ EAt,Li

∑
i∈Sl

t

wl
iEξ

[∥∥δli,t∥∥2 | At,Li

] , (31)

where Eξ[· | At,Li] denotes the expectation over the stochasticity of local gradients {ξi,t,k} given
the client and layer selections. Note that the condition i ∈ Sl

t implies i ∈ At and l ∈ Li.

Now, we bound the inner term Eξ[∥δli,t∥2 | At,Li] for i ∈ Sl
t:

Eξ

[∥∥δli,t∥∥2 | At,Li

]
= Eξ

∥∥∥∥∥−η

K−1∑
k=0

Gl
i,t,k

∥∥∥∥∥
2

| At,Li

 = η2Eξ

∥∥∥∥∥
K−1∑
k=0

Gl
i,t,k

∥∥∥∥∥
2

| At,Li

 .

(32)
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Using the standard bound E[||
∑K−1

k=0 Xk||2] ≤ K
∑K−1

k=0 E[||Xk||2] (often used in FL analysis
Karimireddy et al. (2020)):

Eξ

∥∥∥∥∥
K−1∑
k=0

Gl
i,t,k

∥∥∥∥∥
2

| At,Li

 ≤ K

K−1∑
k=0

Eξ

[∥∥Gl
i,t,k

∥∥2 | At,Li

]
. (33)

Since Gl
i,t,k is the l-th layer component of the full gradient Gi,t,k, we have ∥Gl

i,t,k∥2 ≤ ∥Gi,t,k∥2.
Thus:

Eξ

[∥∥Gl
i,t,k

∥∥2 | At,Li

]
≤ Eξ

[
∥Gi,t,k∥2 | At,Li

]
. (34)

From Assumptions 1, 2, and 4, the expected squared norm of the stochastic gradient Gi,t,k computed
by client i at local step k can be bounded. A common bound derived under these assumptions in (23)
takes the form:

Eξ

[
∥Gi,t,k∥2 | At,Li

]
≤ Cgrad

(
σ2 +∆2

t + ∥∇Fi(Θg,t)∥2
)
, (35)

where Cgrad is a constant, and we use Θg,t as a reference point, absorbing dependencies on the
intermediate local models Θi,t,k into the constant Cgrad (this is a common simplification in FL
analysis, valid for sufficiently small ηK). Let Xi,t = σ2 +∆2

t + ∥∇Fi(Θg,t)∥2. Then:

Eξ

[∥∥Gl
i,t,k

∥∥2 | At,Li

]
≤ CgradXi,t. (36)

Substituting back:

Eξ

[∥∥δli,t∥∥2 | At,Li

]
≤ η2K

K−1∑
k=0

(CgradXi,t) = η2K2CgradXi,t. (37)

Now, substitute this into the bound for E[||Θl
g,t+1 −Θl

g,t||2]:

E
[∥∥Θl

g,t+1 −Θl
g,t

∥∥2] ≤ EAt,Li

∑
i∈Sl

t

wl
i(η

2K2CgradXi,t)


= η2K2CgradEAt,Li

∑
i∈Sl

t

wl
i

(
σ2 +∆2

t + ∥∇Fi(Θg,t)∥2
) (38)

Let ESl
t
[·] denote the expectation EAt,Li [·]. The term ESl

t
[
∑

i∈Sl
t
wl

i(·)] represents the expected
weighted average over clients participating in the update for layer l. Under assumptions of unbiased
client sampling (e.g., uniform random sampling of At clients) and potentially layer sampling (Li),
this expectation can be related to the average over all clients. Assuming there exists a constant cd
(which may depend on the sampling strategy, e.g., A/N , and the distribution of weights wl

i) such
that:

ESl
t

∑
i∈Sl

t

wl
iXi,t

 ≤ cd
1

N

N∑
i=1

Xi,t. (39)

Then:

E
[∥∥Θl

g,t+1 −Θl
g,t

∥∥2] ≤ η2K2Cgradcd
1

N

N∑
i=1

(
σ2 +∆2

t + ∥∇Fi(Θg,t)∥2
)

= η2K2Cgradcd

(
σ2 +∆2

t +
1

N

N∑
i=1

∥∇Fi(Θg,t)∥2
)
.

(40)
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Now we use Assumption 3 (Bounded Heterogeneity): 1
N

∑N
i=1 ||∇Fi(Θ) −∇F(Θ)||2 ≤ ζ2. We

have the decomposition:

1

N

N∑
i=1

∥∇Fi(Θg,t)∥2 =
1

N

N∑
i=1

∥∇Fi(Θg,t)−∇F(Θg,t) +∇F(Θg,t)∥2

=
1

N

N∑
i=1

(
∥∇Fi(Θg,t)−∇F(Θg,t)∥2 + ∥∇F(Θg

t )∥2 + 2⟨∇Fi(Θg,t)−∇F(Θg,t),∇F(Θg,t)⟩
)

=

(
1

N

N∑
i=1

∥∇Fi(Θg,t)−∇F(Θg,t)∥2
)

+ ∥∇F(Θg,t)∥2

+ 2

〈
1

N

N∑
i=1

∇Fi(Θg,t)−∇F(Θg,t),∇F(Θg,t)

〉
.

(41)
Since ∇F(Θg,t) =

1
N

∑N
i=1 ∇Fi(Θg,t), the cross term is zero. Using Assumption 3:

1

N

N∑
i=1

∥∇Fi(Θg,t)∥2 ≤ ζ2 + ∥∇F(Θg,t)∥2. (42)

Substituting this into the bound for the layer update:

E
[∥∥Θl

g,t+1 −Θl
g,t

∥∥2] ≤ η2K2Cgradcd
(
σ2 +∆2

t + ζ2 + ∥∇F(Θg,t)∥2
)
. (43)

Finally, sum over all layers l = 1, . . . , L:

E
[
∥Θg,t+1 −Θg,t∥2

]
=

L∑
l=1

E
[∥∥Θl

g,t+1 −Θl
g,t

∥∥2]
≤

L∑
l=1

[
η2K2Cgradcd

(
σ2 +∆2

t + ζ2 + ||∇F(Θg,t)||2
)]

= Lη2K2Cgradcd
(
σ2 +∆2

t + ζ2 + ||∇F(Θg,t)||2
)

(44)

Let C3 = LCgradcd. This constant incorporates the number of layers L, the constant from the gradient
bound Cgrad, and the constant related to sampling and weighting cd. This yields the final result:

E
[
∥Θg,t+1 −Θg,t∥2

]
≤ C3η

2K2
(
σ2 +∆2

t + ζ2 + ∥∇F(Θg,t)∥2
)
. (45)

This completes the proof.

B Proof of Main Theorem

Proof. In this section, we present the convergence analysis for our algorithm. Our goal is to bound
the average squared norm of the global gradient over T communication rounds.

We begin with the L-smoothness property of the global objective function F , stated in Assumption 1.
By the definition of L-smoothness, often referred to as the Descent Lemma or Quadratic Upper
Bound, we have:

E[F(Θg,t+1)] ≤ F(Θg,t) + E[⟨∇F(Θg,t),Θg,t+1 −Θg,t⟩] +
L

2
E[∥Θg,t+1 −Θg,t∥2], (46)

where the expectation E[·] is taken over all sources of randomness up to round t+ 1, including client
sampling (At), layer sampling (Li for i ∈ At), and local stochastic gradient noise (ξi,t,k).

The core of the analysis involves carefully bounding the inner product term E[⟨∇F(Θg,t),Θg,t+1 −
Θg,t⟩] and the quadratic term E[∥Θg,t+1 − Θg,t∥2]. The bound for the quadratic term is typically
established in a separate lemma (referred to as Lemma 1). We focus on deriving the bound for the
inner product term.
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B.1 Bounding the Inner Product Term

Recall the global model update is constructed layer-wise:

Θg,t+1 −Θg,t = {Θl
g,t+1 −Θl

g,t}l=1...L (47)
where for each layer l:

Θl
g,t+1 −Θl

g,t = −η
∑
i∈Sl

t

wl
i

K−1∑
k=0

Gl
i,t,k (48)

Here, Sl
t = {i ∈ At | l ∈ Li} is the set of selected clients that update layer l, wl

i is the aggregation
weight for client i on layer l, and Gl

i,t,k is the stochastic gradient computed by client i for layer l at
local step k.

The inner product term can be expanded as a sum over layers:

E[⟨∇F(Θg,t),Θg,t+1 −Θg,t⟩] = E

[
L∑

l=1

⟨∇ΘlF(Θg,t),Θ
l
g,t+1 −Θl

g,t⟩

]

=

L∑
l=1

E

⟨∇ΘlF(Θg,t),−η
∑
i∈Sl

t

wl
i

K−1∑
k=0

Gl
i,t,k⟩


= −

L∑
l=1

ηE

⟨∇ΘlF(Θg,t),
∑
i∈Sl

t

wl
i

K−1∑
k=0

Gl
i,t,k⟩


(49)

Let Eξ[·] denote the expectation over the local data samples ξ, conditioned on the client selection
At and layer selections Li. Let Ḡl

i,t =
1
K

∑K−1
k=0 Eξ[G

l
i,t,k|At,Li] be the average expected local

gradient for layer l computed by client i (if l ∈ Li). Then
∑K−1

k=0 Eξ[G
l
i,t,k|At,Li] = KḠl

i,t. Taking
the expectation over ξ first, we get:

E[⟨· · · ⟩] = −
L∑

l=1

ηEAt,Li

⟨∇ΘlF(Θg,t),
∑
i∈Sl

t

wl
iKḠl

i,t⟩


= −K

L∑
l=1

ηE

⟨∇ΘlF(Θg,t),
∑
i∈Sl

t

wl
iḠ

l
i,t⟩

 (50)

where the outer expectation E[·] is now over At and Li.

Standard techniques in FL analysis (e.g., using algebraic identities like 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 −
∥a− b∥2 or Young’s inequality, and carefully handling the expectations over sampling) allow us to
bound the inner product. This involves decomposing the error terms and applying the assumptions.
While the detailed derivation is intricate due to the layer selection and weighting scheme, it leads to a
bound of the following form (similar to analyses of FedAvg variants):

E[⟨∇F(Θg,t),Θg,t+1 −Θg,t⟩] ≤ −C4ηK∥∇F(Θg,t)∥2 + C5ηK(∆̄2
t + ζ2 + σ2/K) (51)

where ∆̄2
t = 1

N

∑
i ∆

2
i,t is the average model approximation error bound across clients at round t.

The constants C4 and C5 depend on factors like the client sampling ratio (A/N ), layer sampling
probabilities (pi), and potentially the distribution of weights wl

i. The term −C4ηK∥∇F(Θg,t)∥2
represents the desired descent along the negative gradient direction, while the term C5ηK(∆̄2

t +
ζ2 + σ2/K) captures the accumulated error from model approximation, heterogeneity, and residual
stochastic gradient variance (scaled by 1/K due to averaging K steps implicitly or explicitly in the
derivation).

B.2 Completing the Proof

We now substitute the inner product bound (51) and the bound on the quadratic term from Lemma 1
into the L-smoothness inequality (46). Lemma 1 typically provides a bound like:

E[∥Θg,t+1 −Θg,t∥2] ≤ C3η
2K2(σ2 + ∆̄2

t + ζ2 + ∥∇F(Θg,t)∥2) (52)
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where C3 is another constant derived in Lemma 1.

Substituting (51) and (52) into (46):

E[F(Θg,t+1)] ≤ F(Θg,t)− C4ηK∥∇F(Θg,t)∥2 + C5ηK(∆̄2
t + ζ2 + σ2/K)

+
L

2
C3η

2K2(σ2 + ∆̄2
t + ζ2 + ∥∇F(Θg,t)∥2)

(53)

Rearranging the terms to group the gradient norm:

E[F(Θg,t+1)] ≤ F(Θg,t)−
(
C4ηK − LC3

2
η2K2

)
∥∇F(Θg,t)∥2

+ C5ηK(∆̄2
t + ζ2 + σ2/K) +

LC3

2
η2K2(σ2 + ∆̄2

t + ζ2)

(54)

To ensure convergence, we require the coefficient of the gradient norm term to be positive. We choose
the local learning rate η sufficiently small such that C4ηK − LC3

2 η2K2 > 0. A standard choice is to
make the second term at most half of the first term, which holds if η ≤ C4

LC3K
. Under this condition:

C4ηK − LC3

2
η2K2 ≥ C4ηK − LC3

2

(
C4

LC3K

)
ηK = C4ηK − C4

2
ηK =

C4

2
ηK (55)

Thus, the inequality becomes:

E[F(Θg,t+1)] ≤ F(Θg,t)−
C4

2
ηK∥∇F(Θg,t)∥2

+ C6ηK(∆̄2
t + ζ2 + σ2/K) + C7η

2K2(σ2 + ∆̄2
t + ζ2)

(56)

where we define C6 = C5 and C7 = LC3/2.

Rearranging to isolate the gradient term:

C4

2
ηKE[∥∇F(Θg,t)∥2] ≤F(Θg,t)− E[F(Θg,t+1)]

+ C6ηK(∆̄2
t + ζ2 + σ2/K) + C7η

2K2(σ2 + ∆̄2
t + ζ2)

(57)

Summing this inequality over t = 0, 1, . . . , T − 1:

C4

2
ηK

T−1∑
t=0

E[∥∇F(Θg,t)∥2] ≤
T−1∑
t=0

(F(Θg,t)− E[F(Θg,t+1)])

+

T−1∑
t=0

[
C6ηK(∆̄2

t + ζ2 + σ2/K) + C7η
2K2(σ2 + ∆̄2

t + ζ2)
]

(58)
The first term on the right-hand side is a telescoping sum:

T−1∑
t=0

(F(Θg,t)− E[F(Θg,t+1)]) = F(Θg,0)− E[F(Θg,T )] (59)

Assuming the objective function is bounded below by F ∗, i.e., F(Θ) ≥ F ∗ for all Θ, we have
F(Θg,0)− E[F(Θg,T )] ≤ F(Θg,0)− F ∗.

Substituting this back and dividing by T :

C4ηK

2T

T−1∑
t=0

E[∥∇F(Θg,t)∥2] ≤
F(Θg,0)− F ∗

T

+
1

T

T−1∑
t=0

[
C6ηK(∆̄2

t + ζ2 + σ2/K) + C7η
2K2(σ2 + ∆̄2

t + ζ2)
]

(60)
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Finally, dividing by C4ηK
2 yields the bound on the average squared gradient norm:

1

T

T−1∑
t=0

E[∥∇F(Θg,t)∥2] ≤
2(F(Θg,0)− F ∗)

C4ηKT

+
2C6

C4

(
1

T

T−1∑
t=0

∆̄2
t + ζ2 +

σ2

K

)

+
2C7

C4
ηK

(
1

T

T−1∑
t=0

(σ2 + ∆̄2
t + ζ2)

) (61)

Let ∆̄2 = 1
T

∑T−1
t=0 ∆̄2

t be the average model approximation error over T rounds. Define constants
C8 = 2/C4, C9 = 2C6/C4, and C10 = 2C7/C4. We arrive at the final convergence result:

1

T

T−1∑
t=0

E[∥∇F(Θg,t)∥2] ≤
C8(F(Θg,0)− F ∗)

ηKT︸ ︷︷ ︸
Vanishing term

+C9

(
∆̄2 + ζ2 +

σ2

K

)
+ C10ηK(σ2 + ∆̄2 + ζ2)︸ ︷︷ ︸

Error floor
(62)

This result shows that the average squared gradient norm converges to an error floor determined by
the data heterogeneity (ζ2), stochastic gradient noise (σ2/K), average model approximation error
(∆̄2), and the chosen learning rate (η), at a rate of O(1/T ).

C Additional Experimental Results and Analyses

This appendix provides supplementary materials and detailed results that support the claims made
in the main paper. The content is organized to present further validation of LEFF’s scalability,
a comprehensive analysis of client-side overhead, ablation studies on key hyperparameters, and
empirical validation of our theoretical convergence claims.

C.1 Scalability to State-of-the-Art Models and Benchmarks

To demonstrate the scalability and effectiveness of LEFF on contemporary large-scale architectures,
we extend our evaluation to the Llama-3.1-8B Grattafiori et al. (2024) model using the challenging
MMLU benchmark Hendrycks et al. (2021). This experiment includes highly relevant state-of-the-art
baselines FLoRA Wang et al. (2024d) and FlexLoRA Bai et al. (2024). As shown in Table 4, LEFF
outperforms these recent methods by a significant margin of 1.8-2.3 points on the 5-shot MMLU
average. This superior performance is achieved while simultaneously reducing the peak client-side
GPU memory by over 36%. These results confirm that LEFF’s design is highly effective and its
efficiency benefits are even more pronounced on larger models where client-side resources are the
primary bottleneck.

Table 4: Comparison of LEFF with SOTA methods on the Llama-3.1-8B model using the MMLU
benchmark (5-shot average accuracy).

Method MMLU (5-shot Avg.) Peak GPU Memory (Client)
FlexLoRA 55.7 46.868 GB
FLoRA 55.2 46.868 GB
LEFF 57.5 29.881 GB

C.2 Analysis of Client-Side Computational Overhead

A detailed analysis of the computational overhead on client devices is crucial for evaluating the
practical viability of any federated fine-tuning method. We present a comprehensive comparison
of the number of trainable parameters and the peak GPU memory usage across various models and
algorithms in Table 5. This analysis highlights LEFF’s unique and superior efficiency profile. LEFF
drastically reduces peak GPU memory—for instance, achieving a 79% reduction on GPT2-Large
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compared to FedAvg and 66% compared to FedLoRA. This is because its architecture selectively
loads only the necessary layers into GPU memory, whereas other PEFT methods must load the
entire frozen model, resulting in much higher memory footprints. Concurrently, while achieving
the lowest memory cost, LEFF deliberately retains more trainable parameters than methods like
FedLoRA or FedBitFit. This design maintains greater model expressiveness, which translates to
superior task performance. Thus, LEFF strikes an optimal balance, delivering the minimal resource
cost for deployment on constrained devices while preserving enough capacity for high-accuracy
fine-tuning.

Table 5: Computational cost comparison of different models and algorithms. "OOM" indicates Out
of Memory. For Llama-3.1-8B, FedBitFit is not applicable as the model has no bias terms to train.

Model Algorithm Trainable Params Peak Memory (GB)
DeBERTaV3-Base FedAvg 85,648,130 3.841
DeBERTaV3-Base FedLoRA 1,340,930 2.644
DeBERTaV3-Base FedBitFit 102,914 2.198
DeBERTaV3-Base LEFF 7,681,538 2.136
DeBERTaV3-Base SLoRA 1,340,930 2.644

DeBERTaV3-Large FedAvg 303,363,074 9.361
DeBERTaV3-Large FedLoRA 3,557,378 6.660
DeBERTaV3-Large FedBitFit 272,386 5.488
DeBERTaV3-Large LEFF 13,649,922 3.005
DeBERTaV3-Large SLoRA 3,557,378 6.660

GPT2 FedAvg 85,056,000 3.358
GPT2 FedLoRA 811,008 2.476
GPT2 FedBitFit 102,144 2.206
GPT2 LEFF 7,089,408 1.719
GPT2 SLoRA 811,008 2.476

GPT2-Large FedAvg 708,390,400 15.548
GPT2-Large FedLoRA 4,055,040 9.739
GPT2-Large FedBitFit 508,160 8.318
GPT2-Large LEFF 19,680,000 3.240
GPT2-Large SLoRA 4,055,040 9.739

Llama-3.1-8B FedAvg OOM OOM
Llama-3.1-8B FedLoRA 20,971,520 46.868
Llama-3.1-8B FedBitFit No Bias No Bias
Llama-3.1-8B LEFF 743,452,672 29.881
Llama-3.1-8B SLoRA 20,971,520 46.868

C.3 Ablation Study on the Proxy Dataset

The choice of the proxy dataset for knowledge distillation is a key aspect of the LEFF framework.
We conduct an ablation study to investigate the sensitivity of our method to this choice. Our
distillation objective is designed to be robust by matching intermediate functional representations
(hidden states and attention matrices) rather than task-specific knowledge, which should reduce
sensitivity to the proxy data’s domain. The empirical results on the E2E NLG task, shown in Table 6,
confirm this hypothesis. Performance remains remarkably stable across diverse corpora, from the
in-domain WebNLG to general-purpose datasets like WikiText-103 and OpenWebText. The minimal
fluctuation across all metrics demonstrates that LEFF is not reliant on a perfectly-matched proxy
corpus, validating its practical applicability in real-world scenarios where such data may not be
readily available.

Table 6: Ablation study on the choice of proxy datasets for the E2E NLG task.

Proxy Dataset BLEU NIST METEOR ROUGE CIDEr
WikiText-103 0.5765 8.0012 0.4041 0.6310 1.7450
WebNLG 0.5799 8.0296 0.4064 0.6346 1.7521
OpenWebText 0.5712 7.9688 0.4015 0.6259 1.7345
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Figure 8: The validation loss convergence curve of different methods under high data heterogeneity
(α = 0.05).

C.4 Statistical Stability of Results

To ensure the reliability of our findings, we report the standard deviations of our main experimental
results across three runs with different random seeds. The results, summarized in Table 7, show
that the standard deviations are consistently small across all tasks and methods. This confirms that
our method is stable and the reported performance gains are consistent. LEFF exhibits stability
comparable to or better than the baselines, substantiating the robustness of our conclusions.

Table 7: Standard deviations of test results for DeBERTaV3 (on GLUE tasks) and GPT2 (on the E2E
NLG task) across three runs with different random seeds.

DeBERTaV3 (GLUE Tasks) GPT2 (E2E NLG Task)
Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE BLEU NIST METEOR ROUGE CIDEr

FedAvg 1.52 0.71 0.88 0.45 0.31 0.53 0.62 1.21 0.0041 0.1512 0.0028 0.0033 0.0805
FedBitFit 1.89 0.95 1.02 0.82 0.55 0.98 0.77 1.53 0.0053 0.2144 0.0045 0.0049 0.1231
FedLoRA 1.72 0.88 1.15 0.75 0.49 1.05 0.81 1.68 0.0058 0.2516 0.0041 0.0051 0.1189
SLoRA 1.45 0.81 0.95 0.68 0.42 0.85 0.71 1.35 0.0049 0.1832 0.0035 0.0039 0.0948
LEFF 1.38 0.75 0.91 0.51 0.35 0.62 0.68 1.25 0.0045 0.1604 0.0031 0.0035 0.0882

C.5 Empirical Convergence Analysis

Figure 8 provides an empirical validation of our theoretical convergence analysis presented in
Section 4. The validation loss curves for all compared methods were plotted under a high data
heterogeneity setting (α = 0.05). The results show that LEFF converges stably and efficiently. Its
final validation loss is substantially closer to that of full fine-tuning (FedAvg) compared to other
PEFT methods like FedLoRA and SLoRA. This empirical evidence supports our theoretical analysis
(Theorem 1), demonstrating that LEFF not only converges but also reaches a superior solution in
challenging non-IID environments.

D Broader Impacts

D.1 Environmental Cost

The server-side computation in LEFF for layer importance calculation and knowledge distillation
represents a trade-off for enabling client-side efficiency. By making fine-tuning feasible on numerous
distributed, low-power edge devices, our approach can reduce the overall system’s reliance on large,
consistently energy-intensive data centers. This decentralization lowers the barrier to entry for
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participation in model training and may lead to a more distributed and potentially more energy-
efficient computational footprint compared to fully centralized training paradigms.

D.2 Dual-Use Risks

Making LLM fine-tuning more efficient and accessible could lower the barrier for misuse. However,
the federated architecture of LEFF provides a natural control and governance point at the central
server. This centralized aggregation step allows for the implementation of safeguards, such as client
vetting, anomaly detection in model updates, and monitoring for malicious fine-tuning objectives.
Such governance features are largely absent in purely decentralized or local fine-tuning scenarios,
providing a mechanism to mitigate potential misuse.
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