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Abstract

Multi-Span Question Answering (MSQA) re-001
quires models to extract one or multiple an-002
swer spans from a given context to answer003
a question. Prior work mainly focus on de-004
signing specific methods or applying heuris-005
tic strategies to encourage models to predict006
more correct predictions. However, these mod-007
els are trained on gold answers and fail to008
considier the incorrect predictions. Through009
a statistical analysis, we observe that models010
with stronger abilities do not predict less incor-011
rect predictions compared to other models. In012
this work, we propose Answering-Classifying-013
Correcting (ACC) framework, which employs014
a post-processing strategy to handle with incor-015
rect predictions. Specifically, the ACC frame-016
work first introduces a classifier to classify the017
predictions into three types and exclude "wrong018
predictions", then introduces a corrector to019
modify "partially correct predictions". Experi-020
ments on four datasets show that ACC frame-021
work significantly improves the EM F1 scores022
of several MSQA models, and further analy-023
sis demostrate that ACC framework efficiently024
reduces the number of incorrect predictions,025
improving the quality of predictions. 1026

1 Introduction027

Machine Reading Comprehension (MRC) requires028

models to answer a question based on a given con-029

text (Rajpurkar et al., 2018; Kwiatkowski et al.,030

2019; Lai et al., 2017). In a real-world scenario,031

a single question typically corresponds to multi-032

ple answers. To this end, Multi-Span Question033

Answering (MSQA) has been proposed (Ju et al.,034

2022; Li et al., 2022; Yue et al., 2023). Different035

from the traditional Single-Span Question Answer-036

ing (SSQA), the goal of MSQA is to extract one037

or multiple non-overlapped spans from the given038

context. For example, In Figure 1, the question039

1Our code and data are available at https://anonymous.
4open.science/r/ACC-F6FB.

Context:

Don’t Hug Me I’m Scared (often abbreviated to 

DHMIS) is a live - action / animated surreal 

horror comedy web series created by British 

filmmakers Becky Sloan and Joseph Pelling ...

Question: 

Who made Don't Hug Me I'm Scared?

Gold Answers: 

Becky Sloan, Joseph Pelling

Predictions:

Joseph Pelling (correct)

filmmakers Becky Sloan (partially correct)

DHMIS (wrong)

Figure 1: An example of multi-span questions, this
question has two gold answers: Becky Sloan and Joseph
Pelling. "Joseph Pelling" is a correct prediction, "film-
makers Becky Sloan" is a partially correct prediction
and "DHMIS" is a wrong prediction.

"Who made Don’t Hug Me I’m Scared?" has two 040

answers: "Becky Sloan" and "Joseph Pelling". 041

Recently, a series of methods have been pro- 042

posed to handle with MSQA. Some of them in- 043

corporate heuristic strategies based on traditional 044

pointer models (Vinyals et al., 2015) to extract mul- 045

tiple answers (Yang et al., 2021; Hu et al., 2019); 046

some of them convert MSQA task into a sequence- 047

tagging task and utilize BIO tags to mark answers 048

(Segal et al., 2020; Li et al., 2022); some of them 049

enumerate all candidate answers and select the final 050

answers with a learnable threshold (Huang et al., 051

2023a; Zhang et al., 2024). 052

Prior work mainly focus on designing specific 053

methods or applying heuristic strategies to encour- 054

age models to predict more correct predictions. 055

However, these models are trained on gold answers, 056

and fail to considier the incorrect predictions. To 057

further investigate the incorrect predictions pre- 058

dicted by these models, we classify the predictions 059

into correct predictions, partially correct pre- 060

1

https://anonymous.4open.science/r/ACC-F6FB
https://anonymous.4open.science/r/ACC-F6FB


dictions and wrong predictions based on whether061

they should be modified or excluded, and conduct062

a statistical analysis on some MSQA models (de-063

tails in Section 2.3). We observe that models with064

stronger abilities (i.e., achieving higher F1 scores)065

do not predict less incorrect predictions compared066

to other models. This indicates that the perfor-067

mance of the MSQA models can be improved if068

the number of incorrect predictions can be reduced.069

In this work, we propose Answer-Classify-070

Correct (ACC) framework, which employs a post-071

processing strategy to handle with incorrect pre-072

dictions. The ACC framework simulates humans073

strategy in English examinations: listing candidate074

answers, reviewing and modifying. Specifically,075

we design the classifier to categorize candidate an-076

swers into "correct predictions", "partially correct077

predictions" or "wrong predictions", then we de-078

sign the corrector to modify "partially correct pre-079

dictions", finally we exclude "wrong predictions"080

and obtain final predictions. To train the classi-081

fier and the corrector, we also apply an automatic082

annotation approach which samples incorrect pre-083

dictions from the training datasets and constructs084

the silver-labeled datasets.085

We conduct experiments on four MSQA datasets.086

Experiment results show that the ACC framework087

significantly improves the performance. For in-088

stances, after applying the ACC framework, the089

EM F1 score increases from 60.74% to 67.78% for090

Tagger-BERT (Li et al., 2022) and from 69.05% to091

72.26% for Tagger-RoBERTa (Li et al., 2022) on092

the MultiSpanQA dataset (Li et al., 2022). Further093

analysis on the predictions also indicate that the094

ACC framework effectively reduces the number of095

incorrect predictions and obtains more correct pre-096

dictions, enhancing the qualities of predictions. In097

addition, We also conduct a pilot study with GPT-098

3.5 2, demostrating that ACC framework can be099

applied to Large Language Models (LLMs) in a100

Chain-of-Thought (CoT) (Wei et al., 2022; Kojima101

et al., 2022) manner.102

Our contributions are summarized as follows:103

• We develop a three-fold taxonomy for the104

MSQA predictions based on whether a pre-105

diction should be modified or excluded. Then,106

we conduct a statistical analysis, revealing dis-107

tributions over the three categories.108

• Inspired by humans’ strategies, we propose109

2https://platform.openai.com/.

the ACC framework, which includes a clas- 110

sifier to exclude incorrect predictions and in- 111

cludes a corrector to modify imperfect predic- 112

tions. We also design an automatical annota- 113

tion approach to sample incorrect predictions 114

and construct silver-labeled datasets. 115

• We conduct several experiments on four 116

MSQA datasets. Results show that the ACC 117

framework significantly enhances the quality 118

of the MSQA predictions. 119

2 Taxonomy of MSQA Predictions 120

2.1 Formalization 121

The MSQA task can be described as a triplet 122

(Q,C,A): a question Q, its corresponding context 123

C, and a set of gold answers A = {a1, a2, ..., an}, 124

where each answer ai is a contigious span from 125

C. Existing methods utilize a model M to extract 126

P = {p1, p2, ..., pn} from C as the predictions, 127

shown as Eq (1). 128

P = M(C,Q) (1) 129

2.2 Taxonomy 130

Intuitively, the predictions can be categorized as 131

correct or incorrect predictions. However, some 132

of incorrect predictions should be modified while 133

others should be excluded. For example, assuming 134

that one of gold answers is "a clever boy" and the 135

predictions are "boy" and "girl", both of the pre- 136

dictions are incorrect but "boy" should be modified 137

and "girl" should be excluded. Therefore, we fur- 138

ther categorize incorrect predictions into "partially 139

correct predictions" and "wrong predictions". 140

Based on above analysis, we category the pre- 141

diction pi into one of the following three types: 142

correct prediction, partially correct prediction 143

and wrong prediction. 144

Correct prediction The prediction pi is one of 145

the gold answers, which means pi ∈ A. 146

Partially correct prediction The prediction pi 147

is not a correct prediction, but there exists a gold 148

answer aj which is similar to pi, then pi is defined 149

as partially correct prediction and aj is defined as 150

its corresponding similar gold answer. 151

Considering that gold answers typically contain 152

complicated grammar structures, we utilize both 153

Word Overlap and Semantic Similarity to define 154

partially correct predictions. Assuming that a pre- 155

diction pi contains k words {pi1, pi2, ..., pik} and a 156
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gold answer aj contains l words {aj1, aj2, ..., ajl},157

we define the word overlap WO and the semantic158

similarity SS as:159

WO(pi, aj) =
card(pi ∩ aj)

max(k, l)
(2)160

161

SS(pi, aj) =
HpiH

T
aj

|Hpi ||Haj |
(3)162

where card(A) denotes the number of element in163

the set A, Hpi and Haj are the representations of164

pi and aj from a Pre-trained Language Model, |a|165

denotes the length of the vector a. 3.166

For a prediction pi, if there exists aj ∈ A which167

satisfies WO(pi, aj) ≥ α and SS(pi, aj) ≥ β,168

where α and β are hyper-parameters, the pi is de-169

fined as the partially correct prediction.170

Wrong prediction : If pi could not satisfy the171

conditions of correct prediction and partially cor-172

rect prediction, we define pi as wrong prediction.173

Figure 1 shows an example containing these174

three types of predictions. The gold answers are175

"Becky Sloan" and "Joseph Pelling". For the pre-176

dictions, "Joseph Pelling" is a correct prediction;177

"filmmakers Becky Sloan" is a partially correct pre-178

diction because it is similar to "Becky Sloan", and179

"DHMIS" is a wrong prediction because it is not180

similar to any gold answer.181

2.3 Analysis of MSQA Predictions182

Based on our designed taxonomy, we conduct a183

statistical analysis on the dev set of MultiSpanQA184

(Li et al., 2022). We select four MSQA model:185

MTMSN (Hu et al., 2019), MUSST(Yang et al.,186

2021), Tagger (Li et al., 2022) and SpanQualifier187

(Huang et al., 2023a). We utilize BERT (Devlin188

et al., 2019) as the encoder. More details of these189

models are shown in Appendix A.2.190

The statistical results are shown in Figure 2.191

Compared with MTMSN and MUSST, Tagger and192

SpanQualifier predict more correct predictions but193

also predict equal or more incorrect predictions.194

For example, Tagger predicts 1,212 correct predic-195

tions but also predict 748 wrong predictions, while196

MTMSN predicts 742 correct predictions and 459197

wrong predictions. We also observe that Tagger and198

SpanQualifier outperform MTMSN and MUSST199

on several MSQA benchmarks. This indicates that200

the improvements of the existing MSQA models201

3In practice, we utilize BERTScore (Zhang et al., 2020) to
calculate semantic similarity.
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Figure 2: The prediction distributions of correct pre-
dictions, partially correct predictions and wrong predic-
tions on the dev set of MultiSpanQA.

are derived from predicting more correct predic- 202

tions rather than less incorrect predictions. There- 203

fore, we believe that the post-processing method 204

can effectively enhance the quality of predictions 205

by reducing the number of incorrect predictions, 206

resulting in better performance. 207

3 Method 208

In this section, we describe the ACC framework, 209

which is designed to handle with partially correct 210

predictions and wrong predictions. The architec- 211

ture of the ACC framework is shown in Figure 3. 212

Similar to the humans’ strategies, the post- 213

processing procedure of the ACC framework con- 214

sists of three steps: The first step is answering, 215

where we employ a reader to obtain initial predic- 216

tions P ; The second step is classifying, where we 217

employ a classifier to categorize each prediction 218

pi into one of the three classes: correct prediction, 219

partially correct prediction and wrong prediction; 220

The last step is correcting, where we employ a 221

corrector to modify the partially correct predic- 222

tions. We reserve correct predictions predicted by 223

the classifier and the modified predictions from the 224

corrector as the final predictions. 225

Next, we will provide more details of the reader, 226

the classifier and the corrector. We will also in- 227

troduce an automatic annotation approach which 228

samples incorrect predictions and constructs train- 229

ing data for the classifier and the corrector. 230

3.1 Reader 231

The main function of the reader is to extract several 232

text spans from context based on a given question. 233

This process can be described as: 234
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Context: Don't Hug Me I 'm Scared (often abbreviated to DHMIS) is a live - action / animated surreal 

horror comedy web series created by British filmmakers Becky Sloan and Joseph Pelling...

Question: Who made Don't Hug Me I'm Scared?

Question Context

Reader

Joseph Pelling

filmmakers 

Becky Sloan

DHMIS

Classifier

Joseph Pelling

DHMIS

Corrector Becky Sloan

Question Context Question Context

Original Predictions:

Joseph Pelling , filmmakers Becky Sloan , 

DHMIS

Final Predictions:

Becky Sloan , Joseph Pelling

filmmakers 

Becky Sloan 

√

?

×

Figure 3: The overall architecture of our proposed ACC framework.

P = Reader(Q,C) (4)235

where P = {p1, p2, ..., pn} are the predictions236

given by the reader, Q is the question and C is237

the corresponding context.238

3.2 Classifier239

The predictions of the reader may include partially240

correct predictions or wrong predictions (men-241

tioned in 2.2). To this end, we design the classifier242

to classify them and exclude wrong predictions.243

Given the candidate predictions P , the classifier244

splits them into correct predictions Pc, partially245

correct predictions Pp and wrong predictions Pw.246

This process can be described as:247

Pc, Pp, Pw = Classifier(P,Q,C) (5)248

where Pc, Pp and Pw denote the correct predic-249

tions, partially predictions and wrong predictions250

predicted by the classifier, respectively.251

Specifically, the classifier consists of a trans-252

former (Vaswani et al., 2017) encoder and a classi-253

fication head. The classification head includes an254

MLP layer to obtain logits of each class. Inspired255

by Zhu et al. (2022), we also add a cross-attention256

layer in the classification head which calculates257

the attention scores between the question and the258

context to enhance the representations of them.259

3.3 Corrector260

The classifier is able to exclude wrong predictions,261

however, there may still contain partially correct262

predictions which are imperfect and should be mod- 263

ified. Hence, we design the corrector to modify 264

those partially correct predictions. This process 265

can be described as: 266

P̂p = Corrector(Pp, Q,C) (6) 267

where Pp are the partially correct predictions given 268

by the classifier and P̂p are the predictions modified 269

by the corrector. 270

We adpot traditional pointer model (Vinyals 271

et al., 2015) to predict the start and end proba- 272

bilities, st and ed. During the inference stage, 273

for the text span starting at i-th token and end- 274

ing at j-th token, we calculate its confidence score 275

scoreij = sti + edj and obtain the best index pair 276

(i, j) which maximizes scoreij , then extract its cor- 277

responding span as the modified prediction. 278

The final outputs of the ACC framework P̂ con- 279

sist of the correct predictions Pc predicted by the 280

classifier and the modified predictions P̂p from the 281

corrector, described as: 282

P̂ = Pc ∪ P̂p (7) 283

3.4 Data Annotations 284

To train the classifier and the corrector, we need 285

both correct predictions and incorrect predictions. 286

However, most MSQA datasets do not contain in- 287

correct predictions. Inspired by Gangi Reddy et al. 288

(2020), we adopt an automatical sampling method 289

similar to K-fold cross-validation, to collect in- 290

correct predictions from the MSQA datasets and 291

construct our silver-labeled datasets. 292
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MultiSpanQA MultiSpanQA-Expand MAMRC MAMRC-Multi
EM P EM R EM F1 EM P EM R EM F1 EM P EM R EM F1 EM P EM R EM F1

BERT-base
MTMSN 51.76 41.69 46.18 60.88 51.46 55.78 72.65 77.41 74.96 71.50 76.71 74.01
+ACC 67.75 49.52 57.22 67.77 54.91 60.66 81.60 77.40 79.44 85.55 79.32 82.32
MUSST 61.44 53.74 57.33 67.48 59.71 63.36 76.28 79.00 77.62 75.68 78.12 76.88
+ACC 68.84 54.39 60.76 69.62 60.05 64.48 81.94 77.10 79.45 85.87 78.38 81.95
Tagger 56.66 65.46 60.74 52.81 55.92 54.30 77.15 81.83 79.42 74.71 76.74 75.70
+ACC 68.52 67.05 67.78 62.74 58.83 60.71 82.56 79.67 81.10 85.80 77.58 81.48
SpanQualifier 67.99 69.44 68.70 62.83 67.88 65.25 77.51 84.51 80.86 76.10 85.39 80.47
+ACC 72.04 67.82 69.86 65.78 67.13 66.45 82.40 80.76 81.57 85.67 83.37 84.51
RoBERTa-base
MTMSN 59.86 49.97 54.47 63.39 56.00 59.47 73.94 78.36 76.08 71.69 77.47 74.46
+ACC 71.75 55.87 62.82 68.95 58.81 63.48 81.84 77.70 79.72 85.13 79.82 82.39
MUSST 69.82 61.94 65.64 69.29 63.16 66.08 78.01 79.71 78.85 76.69 77.16 76.92
+ACC 73.07 61.78 66.96 70.54 62.60 66.33 82.75 77.57 80.08 86.10 77.48 81.56
Tagger 66.22 72.14 69.05 64.35 65.66 64.99 79.47 83.59 81.48 75.85 78.19 77.00
+ACC 72.39 72.12 72.26 68.70 66.21 67.43 83.62 81.80 82.70 85.77 78.36 81.90
SpanQualifier 70.40 72.82 71.58 64.65 69.65 66.99 83.40 80.83 82.10 75.63 85.77 80.37
+ACC 73.69 71.32 72.47 67.68 68.53 68.09 82.83 81.88 82.35 85.14 83.77 84.45

Table 1: EM Scores on four MSQA datasets. "P" "R" "F1" refer to Precision, Recall and F1 score. "BERT-base"
and "RoBERTa-base" refer to the encoders of the MSQA models. The results marked in bold means improvements
after applying the ACC framework.

First, we randomly divide the training data D293

into K equal subsets: D1, D2, ..., DK . We perform294

K iterations, in the i-th iteration we initialize an295

reader M and train it with all training data except296

Di, then sampling the predictions of Di with M .297

After K iterations, we utilize the gold answers from298

training dataset D to annotate all predictions, and299

construct the silver-labeled dataset. More details300

are shown in Appendix A.3.301

4 Experiments302

4.1 Experimental Setup303

Datasets We evaluate the ACC framework304

on four datasets: MultiSpanQA (Li et al.,305

2022), MultiSpanQA-Expand (Li et al., 2022),306

MAMRC (Yue et al., 2023) and MAMRC-Multi.307

Details are shown in Appendix A.1.308

MSQA models we set four MSQA models as309

the reader in the ACC framework: MTMSN (Hu310

et al., 2019), MUSST (Yang et al., 2021), Tagger311

(Li et al., 2022) and SpanQualifier (Huang et al.,312

2023a). Details are shown in Appendix A.2.313

Evaluation Metrics We use Exact Match Pre-314

cision/Recall/F1 (EM P/R/F1) (Li et al., 2022) as315

the main metrics in our experiments. EM assign a316

score of 1 when a prediction fully matches one of317

the gold answers and 0 otherwise.318

Implementation Details For the classifier and 319

corrector in the ACC framework, we use RoBERTa- 320

base (Zhuang et al., 2021) as encoder. For MSQA 321

models, we use both BERT-base (Devlin et al., 322

2019) and RoBERTa-base as encoder. For the hy- 323

per parameters mentioned in Section 2.2, we set 324

α = 0.25 and β = 0.6. See more training and 325

inference details in Appendix A.3. 326

4.2 Main Results 327

Table 1 shows the main results on four MSQA 328

datasets. After applying the ACC framework, 329

all MSQA models gain improvements in EM F1 330

scores. For instances, the EM F1 score of Tagger 331

(BERT-base) increases from 60.74% to 67.78%, 332

and the EM F1 score of Tagger (RoBERTa-base) 333

increases from 69.05% to 72.26% on the dev set 334

of MultiSpanQA. We observe that presicion scores 335

show significant improvements while some recall 336

scores show slight declines, demonstrating that 337

ACC framework may exclude incorrect predictions 338

effectively but also exclude a small number of cor- 339

rect predictions. Ultimately, due to the greater de- 340

gree of improvement in precision scores, the F1 341

scores are increased. In Section 5.2, we will in- 342

vestigate the performance of the classifier and the 343

corrector, and analyze why the ACC framework 344

improves the EM F1 scores. 345

We also evaluate the ACC framework with Par- 346

tial Match P/R/F1 (PM P/R/F1), which considers 347
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MultiSpanQA
EM P EM R EM F1

Tagger BERT 56.66 65.46 60.74
+ cls only 64.90 63.98 64.44
+ cor only 62.49 69.11 65.63
+ cor & cls 67.14 67.44 67.29
+ binary cls & cor 68.58 66.56 67.56
+ cls & cor 68.52 67.05 67.78
Tagger RoBERTa 66.22 72.14 69.05
+ cls only 70.54 70.58 70.56
+ cor only 68.50 73.09 70.72
+ cor & cls 71.21 71.43 71.32
+ binary cls & cor 72.45 70.94 71.68
+ cls & cor 72.39 72.12 72.26

Table 2: Ablation study of ACC framework on the dev
set of MultiSpanQA. The best performance is in bold.

the overlap between the predictions and gold an-348

swers. Results are shown in Appendix B.1.349

5 Discussions350

5.1 Ablation Study351

Roles of classifier and corrector. ACC frame-352

work uses the "answer-classify-correct" procedure353

with the classifier and the corrector. To investigate354

whether there exists better post-processing proce-355

dure, we conduct an ablation study by: 1. only em-356

ploying the classifier or corrector (cls \ cor only); 2.357

changing the order of classifier and corrector (cor358

& cls); 3. modifying both correct predictions and359

partially correct predictions (binary cls & cor).4360

Table 2 shows the results of the ablation study361

on the dev set of MultiSpanQA. The performance362

of "cls only" and "cor only" lag behind ACC frame-363

work, demonstrating the significance of the clas-364

sifier and corrector. Changing the order between365

classifier and corrector also shows decline, the rea-366

son may be that using corrector first may lead to367

conceal wrong predictions, thereby the classifier368

may fail to categorize them as wrong predictions.369

We also observe that modifying both correct pre-370

dictions and partially correct predictions does not371

achieve improvements, demostrating the necessity372

of distinguishing correct predictions and partially373

correct predictions and modifying partially correct374

predictions solely.375

Comparison with different models. ACC376

framework uses a classifier with a cross-attention377

layer and a corrector based on the pointer model.378

4For "cls only", we only exclude wrong predictions; For
"cor only", we correct all predictions; For "cor & cls", we first
correct all predictions, then classify them and only exclude
wrong predictions.

MultiSpanQA
EM P EM R EM F1

Tagger BERT 56.66 65.46 60.74
+ att cls & T5 cor 64.90 63.98 64.44
+ vanilla cls & ext cor 68.54 66.10 67.29
+ att cls & ext cor 68.52 67.05 67.78
Tagger RoBERTa 66.22 72.14 69.05
+ att cls & T5 cor 70.54 70.58 70.56
+ vanilla cls & ext cor 72.23 71.56 71.89
+ att cls & ext cor 72.39 72.12 72.26

Table 3: Comparison between diffent combinations of
the classifier and the corrector on the dev set of Mul-
tiSpanQA. "att cls" refer to the classifier mentioned in
Section 3.2, "vanilla cls" refer to the classifier without
cross-attention layer, "ext cor" refer to the corrector
mentioned in Section 3.3 and "T5 cor" refer to the T5
corrector. The best performance is in bold.

However, ACC framework can also opt for alterna- 379

tive type of classifiers or correctors. To this end, we 380

replace the classifier and the corrector with other 381

models and compare their performance.5 382

Table 3 shows the results of the comparison be- 383

tween different model combinations on the dev set 384

of MultiSpanQA. After replacing the classifier or 385

the corrector, ACC framework shows declines, es- 386

pecially when applying a generative model, ACC 387

framework lag behind other settings. This indicates 388

that the generative models are less capable than tra- 389

ditional pointer models in correcting predictions. 390

5.2 Analysis on the Predictions 391

Accuracy of the classifier. To analyze the ca- 392

pability of the classifier, we conduct a statistical 393

analysis on its classification results. Table 5 shows 394

the accuracy of the classifier on the dev set of Mul- 395

tiSpanQA. The classifier achieves an high accu- 396

racy on the correct predictions (95.82% for Tagger- 397

BERT and 95.45% for Tagger-RoBERTa), demon- 398

strating that the ACC framework reserves most cor- 399

rect predictions. On the other hand, the classifier 400

exclude about 1/3 wrong predictions, contributing 401

to the imporvements on EM F1 scores, while the 402

accuracies on the partially true predictions and the 403

wrong predictions can be further improved. 404

Changes in answers by the corrector. To ana- 405

lyze the capability of the corrector, we also con- 406

duct a statistical analysis on how many prediction 407

has been changed. Table 6 shows the changes of 408

the partially correct predictions on the dev set of 409

5for the classifier, we replace it with a vanilla classifier
where we remove the cross-attention layer; for the corrector,
we replace it with T5 (Raffel et al., 2020) which outputs texts
as the corrected answers.
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Context: The California State Legislature is the state legislature of the U.S. state of California. It is a bicameral body
consisting of the lower house, the California State Assembly, with 80 members, and the upper house, the California
State Senate, with 40 members...
Question: What are the two chambers of the California state legislation ?
Gold Answers: California State Assembly , California State Senate

Original Predictions New Predictions
MTMSN

(RoBERTa-base)
the California State Assembly ,

the California State Senate
California State Assembly ,

California State Senate
MUSST

(RoBERTa-base)
California State , Senate ,

lower house , the California State Assembly
California State Assembly ,

California State Senate
Tagger

(RoBERTa-base)
Assembly , California State Senate ,

Senate , State Assembly
California State Assembly ,

California State Senate
SpanQualifier

(RoBERTa-base)
Assembly

Senate
Assembly ,

California State Senate

Table 4: Case study on the dev set of MultiSpanQA. "Original Predictions" refers to the predictions of the MSQA
models and "New Predictions" refers to the predictions after applying the ACC framework. Correct predictions are
in bold.

Tagger BERT
label \ pred wrong partially correct
wrong 268 (37.85%) 148 (20.9%) 292 (41.24%)
partially 16 (6.13%) 98 (37.55%) 147 (56.32%)
correct 26 (2.18%) 24 (2.01%) 1145 (95.82%)
Tagger RoBERTa
label \ pred wrong partially correct
wrong 135 (27.44%) 105 (21.34%) 252 (51.22%)
partially 22 (8.63%) 83 (32.55%) 150 (58.82%)
correct 27 (2.01%) 34 (2.54%) 1280 (95.45%)

Table 5: Accuracy of the classifier on the dev set of
MultiSpanQA. The correct classifications of each types
are in bold.

MultiSpanQA. The corrector changes 30.77% of410

the answers for Tagger-BERT and 27% for Tagger-411

RoBERTa, respectively. For Tagger-BERT, 27.47%412

of the not-correct predictions are modified to the413

correct predictions, while 3.3% of the correct pre-414

dictions are modified to the not-correct predictions.415

Furthermore, among all the partially correct pre-416

dictions derived from the classifier, over 60% of417

the not-correct predictions remain unchanged, indi-418

catisng a significant room for improvements.419

5.3 Case Study420

Table 4 illustrates the original predictions from421

MSQA models and the new predictions after ap-422

plying the ACC framework. All the four MSQA423

models fail to provide precise predictions, but af-424

ter applying ACC framework, the predictions of425

MTMSN, MUSST and Tagger are completely con-426

sistent with the golds answers (i.e. EMF1 =427

100%, PMF1 = 100%), indicating that the ACC428

framework is able to provide better predictions.429

Tagger BERT
cls \ cls & cor not correct correct
not correct 172 (63.00%) 75 (27.47%)
correct 9 (3.3%) 17 (6.23%)
Tagger RoBERTa
cls \ cls & cor not correct correct
not correct 137 (61.43%) 52 (23.32%)
correct 11 (4.93%) 23 (10.31%)

Table 6: Changes in answers by the corrector on the
dev set of MultiSpanQA.

5.4 Pilot Study with LLM 430

ACC framework utilizes a fine-tuned RoBERTa en- 431

coder as the backbone. To investigate whether our 432

proposed method works on larger models, we con- 433

duct a pilot study by replacing the classifier or cor- 434

rector with a prompted LLM. The implementation 435

details and prompts are shown in Appendix B.3. 436

Table 7 shows the experiment results. After re- 437

placing the classifier or the corrector with LLM, 438

the ACC framework still achieves improvements on 439

Tagger-BERT and Tagger-RoBERTa, which proves 440

that our post-processing strategies can be effec- 441

tively applied to LLM. 442

5.5 Model Size and Inference Time 443

We analyze the model size and the inference time 444

of the ACC framework. Results and analysis are 445

shown in Appendix B.2. 446

6 Related Work 447

6.1 Multi-Span Question Answering 448

Recently, a series of MSQA benchmarks (Ju et al., 449

2022; Li et al., 2022; Yue et al., 2023) have been 450

proposed to faclitate research on QA tasks that 451

are closer to real-world scenarios. MSQA tasks 452

7



MultiSpanQA
EM P EM R EM F1

Tagger BERT 56.66 65.46 60.74
+LLM cls & LLM cor 68.60 63.35 65.87
+LLM cls & FT cor 70.04 64.47 67.14
+FT cls & LLM cor 67.93 66.51 67.21
+FT cls & FT cor 68.52 67.05 67.78
Tagger RoBERTa 66.22 72.14 69.05
+LLM cls & LLM cor 72.71 68.10 70.33
+LLM cls & FT cor 73.69 68.97 71.25
+FT cls & LLM cor 71.71 71.48 71.59
+FT cls & FT cor 72.39 72.12 72.26

Table 7: Performance of ACC framework with LLM
on the dev set of MultiSpanQA. "LLM cls/cor" refers to
classifier/corrector replaced by LLM, and "FT cls/cor"
refers to a fine-tuned model. The best performance is in
bold.

require models to extract one or multiple answer453

spans from a given context. Therefore, traditional454

SSQA models (Seo et al., 2017; Yu et al., 2018) are455

not sufficient to handle multi-span questions.456

Existing MSQA methods can be categorized into457

four categories: (1) pointer-network-based meth-458

ods. MTMSN (Hu et al., 2019) predicts the num-459

ber of answers, then extracts non-overlapped an-460

swer spans; MUSST (Yang et al., 2021) uses an461

autogressive approach to iteratively extract mul-462

tiple answers. (2) sequence-tagging-based meth-463

ods. Segal et al. (2020) first convert MSQA task464

to a sequence-tagging task and utilize BIO tags to465

mark answer spans; Furthermore, Li et al. (2022)466

introduce multi-task learning and achieve better467

performance. (3) span-enumeration-based meth-468

ods. SpanQualifier (Huang et al., 2023a) utilizes469

Multi-Layer Perceptron (MLP) to obtain confi-470

dence scores for each candidate span and applies471

a learnable threshold to select answer spans; Sim-472

ilarly, CSS (Zhang et al., 2024) compares each473

candidate span with its corresponding question af-474

ter scoring to obtain answers more similar to the475

question. (4) LLM-based methods. With the emer-476

gence of LLMs like ChatGPT and GPT-4, genera-477

tive pre-trained language models have been widely478

applied to various NLP tasks. Zhang et al. (2023)479

employ CoT strategies to prompt LLM, and Huang480

et al. (2023b) add negative examples in the few-481

shot demonstrations.482

Existing methods mainly focus on predicting483

more correct predictions, while the ACC frame-484

work takes a post-processing strategy which aims485

to reduce the number of incorrect predictions. By486

excluding or modifying incorrect predictions, the487

ACC framework achieves better performance.488

6.2 Post-Processing Methods 489

The post-processing method refers to modifying 490

the original of the model to obtain better predic- 491

tions. Existing post-processing methods can be 492

categorized into two types: rule-based methods 493

and model-based methods. 494

Ruled-based methods typically involve mannu- 495

ally designed rules such as voting to process the 496

outputs from models (Campos and Couto, 2021; 497

Wang et al., 2023). On the other hand, model- 498

based methods utilize additional models to modify 499

the hidden states or outputs of the original model, 500

which have been widely applied in Controlled Text 501

Generation (CTG) (Yang and Klein, 2021; Krause 502

et al., 2021; Kim and Cho, 2023). In addition to 503

CTG methods, GRACE (Khalifa et al., 2023) ap- 504

plies a fine-tuned discriminator to guide language 505

model towards correct multi-step solutions; Ohashi 506

and Higashinaka (2023) utilize a generative model 507

to rewrite the output from a dialogue system and 508

optimize it with Reinforcement Learning (RL) al- 509

gorithms (Stiennon et al., 2020). 510

The work most similar to ours is (Gangi Reddy 511

et al., 2020), which utilizes a corrector to modify 512

the outputs of the SSQA model. However, they 513

only focus on partial matches in single-span ques- 514

tions. In constrast, we consider the correctness 515

of multiple predictions in MSQA and additionally 516

employ a classifier to exclude incorrect predictions. 517

7 Conclusion 518

In this work, we primarily focus on incorrect pre- 519

dictions of the MSQA models. Through a statistical 520

analysis, we observe that models with better per- 521

formance do not predict less incorrect predictions 522

compared to other models. To this end, we propose 523

ACC framework, which employ a post-processing 524

strategy to exclude wrong predictions and modify 525

partially correct predictions. Experiments and anal- 526

ysis show that the ACC framework significantly 527

improving the performance by reducing the num- 528

ber of incorrect predictions and obtaining more 529

correct predictions, enhancing the quality of the 530

MSQA predictions. 531

8 Limitations and Future Works 532

In this work, we categorize incorrect predictions 533

into "partially correct predictions" and "wrong pre- 534

dictions", based on whether the answer should be 535

modified or excluded. However, for "partially cor- 536

rect predictions", there exists more complicated 537

8



conditions, for example, an incorrect prediction538

may responses to multiple gold answers. However,539

the ACC framework can only obtain one modified540

prediction. In addition, we do not consider the gold541

answers that MSQA models fail to predict (i.e.,542

"missing answers"), although the SOTA model still543

miss 1/3 gold answers. As for future works, we544

will design more effectively models to handle with545

"partially correct predictions" and "wrong predic-546

tions". we will also explore strategies to handle547

with "missing answers".548

References549

Tom Brown, Benjamin Mann, Nick Ryder, Melanie550
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind551
Neelakantan, Pranav Shyam, Girish Sastry, Amanda552
Askell, Sandhini Agarwal, Ariel Herbert-Voss,553
Gretchen Krueger, Tom Henighan, Rewon Child,554
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens555
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-556
teusz Litwin, Scott Gray, Benjamin Chess, Jack557
Clark, Christopher Berner, Sam McCandlish, Alec558
Radford, Ilya Sutskever, and Dario Amodei. 2020.559
Language models are few-shot learners. In Ad-560
vances in Neural Information Processing Systems,561
volume 33, pages 1877–1901. Curran Associates,562
Inc.563

Margarida M. Campos and Francisco M. Couto. 2021.564
Post-processing biobert and using voting methods565
for biomedical question answering. In Proceedings566
of the Working Notes of CLEF 2021 - Conference567
and Labs of the Evaluation Forum, Bucharest, Roma-568
nia, September 21st - to - 24th, 2021, volume 2936569
of CEUR Workshop Proceedings, pages 258–273.570
CEUR-WS.org.571

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and572
Kristina Toutanova. 2019. BERT: Pre-training of573
deep bidirectional transformers for language under-574
standing. In Proceedings of the 2019 Conference of575
the North American Chapter of the Association for576
Computational Linguistics: Human Language Tech-577
nologies, Volume 1 (Long and Short Papers), pages578
4171–4186, Minneapolis, Minnesota. Association for579
Computational Linguistics.580

Revanth Gangi Reddy, Md Arafat Sultan, Efsun Sari-581
oglu Kayi, Rong Zhang, Vittorio Castelli, and Avi582
Sil. 2020. Answer span correction in machine read-583
ing comprehension. In Findings of the Association584
for Computational Linguistics: EMNLP 2020, pages585
2496–2501, Online. Association for Computational586
Linguistics.587

Minghao Hu, Yuxing Peng, Zhen Huang, and Dong-588
sheng Li. 2019. A multi-type multi-span network589
for reading comprehension that requires discrete rea-590
soning. In Proceedings of the 2019 Conference on591
Empirical Methods in Natural Language Processing592

and the 9th International Joint Conference on Natu- 593
ral Language Processing (EMNLP-IJCNLP), pages 594
1596–1606, Hong Kong, China. Association for Com- 595
putational Linguistics. 596

Zixian Huang, Jiaying Zhou, Chenxu Niu, and Gong 597
Cheng. 2023a. Spans, not tokens: A span-centric 598
model for multi-span reading comprehension. In Pro- 599
ceedings of the 32nd ACM International Conference 600
on Information and Knowledge Management, CIKM 601
’23, page 874–884, New York, NY, USA. Association 602
for Computing Machinery. 603

Zixian Huang, Jiaying Zhou, Gengyang Xiao, and 604
Gong Cheng. 2023b. Enhancing in-context learn- 605
ing with answer feedback for multi-span question 606
answering. In Natural Language Processing and 607
Chinese Computing, pages 744–756, Cham. Springer 608
Nature Switzerland. 609

Yiming Ju, Weikang Wang, Yuanzhe Zhang, Suncong 610
Zheng, Kang Liu, and Jun Zhao. 2022. CMQA: 611
A dataset of conditional question answering with 612
multiple-span answers. In Proceedings of the 29th 613
International Conference on Computational Linguis- 614
tics, pages 1697–1707, Gyeongju, Republic of Korea. 615
International Committee on Computational Linguis- 616
tics. 617

Muhammad Khalifa, Lajanugen Logeswaran, Moontae 618
Lee, Honglak Lee, and Lu Wang. 2023. GRACE: 619
Discriminator-guided chain-of-thought reasoning. In 620
Findings of the Association for Computational Lin- 621
guistics: EMNLP 2023, pages 15299–15328, Singa- 622
pore. Association for Computational Linguistics. 623

Heegyu Kim and Hyunsouk Cho. 2023. GTA: Gated 624
toxicity avoidance for LM performance preservation. 625
In Findings of the Association for Computational 626
Linguistics: EMNLP 2023, pages 14747–14763, Sin- 627
gapore. Association for Computational Linguistics. 628

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu- 629
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 630
guage models are zero-shot reasoners. In Advances in 631
Neural Information Processing Systems, volume 35, 632
pages 22199–22213. Curran Associates, Inc. 633

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, 634
Nitish Shirish Keskar, Shafiq Joty, Richard Socher, 635
and Nazneen Fatema Rajani. 2021. GeDi: Gener- 636
ative discriminator guided sequence generation. In 637
Findings of the Association for Computational Lin- 638
guistics: EMNLP 2021, pages 4929–4952, Punta 639
Cana, Dominican Republic. Association for Compu- 640
tational Linguistics. 641

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red- 642
field, Michael Collins, Ankur Parikh, Chris Alberti, 643
Danielle Epstein, Illia Polosukhin, Matthew Kelcey, 644
Jacob Devlin, Kenton Lee, Kristina N. Toutanova, 645
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob 646
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu- 647
ral questions: a benchmark for question answering 648
research. Transactions of the Association of Compu- 649
tational Linguistics. 650

9

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://ceur-ws.org/Vol-2936/paper-19.pdf
https://ceur-ws.org/Vol-2936/paper-19.pdf
https://ceur-ws.org/Vol-2936/paper-19.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.226
https://doi.org/10.18653/v1/2020.findings-emnlp.226
https://doi.org/10.18653/v1/2020.findings-emnlp.226
https://doi.org/10.18653/v1/D19-1170
https://doi.org/10.18653/v1/D19-1170
https://doi.org/10.18653/v1/D19-1170
https://doi.org/10.18653/v1/D19-1170
https://doi.org/10.18653/v1/D19-1170
https://doi.org/10.1145/3583780.3615064
https://doi.org/10.1145/3583780.3615064
https://doi.org/10.1145/3583780.3615064
https://aclanthology.org/2022.coling-1.146
https://aclanthology.org/2022.coling-1.146
https://aclanthology.org/2022.coling-1.146
https://aclanthology.org/2022.coling-1.146
https://aclanthology.org/2022.coling-1.146
https://doi.org/10.18653/v1/2023.findings-emnlp.1022
https://doi.org/10.18653/v1/2023.findings-emnlp.1022
https://doi.org/10.18653/v1/2023.findings-emnlp.1022
https://doi.org/10.18653/v1/2023.findings-emnlp.983
https://doi.org/10.18653/v1/2023.findings-emnlp.983
https://doi.org/10.18653/v1/2023.findings-emnlp.983
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://doi.org/10.18653/v1/2021.findings-emnlp.424
https://doi.org/10.18653/v1/2021.findings-emnlp.424
https://doi.org/10.18653/v1/2021.findings-emnlp.424


Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,651
and Eduard Hovy. 2017. RACE: Large-scale ReAd-652
ing comprehension dataset from examinations. In653
Proceedings of the 2017 Conference on Empirical654
Methods in Natural Language Processing, pages 785–655
794, Copenhagen, Denmark. Association for Compu-656
tational Linguistics.657

Haonan Li, Martin Tomko, Maria Vasardani, and Tim-658
othy Baldwin. 2022. MultiSpanQA: A dataset for659
multi-span question answering. In Proceedings of660
the 2022 Conference of the North American Chap-661
ter of the Association for Computational Linguistics:662
Human Language Technologies, pages 1250–1260,663
Seattle, United States. Association for Computational664
Linguistics.665

Atsumoto Ohashi and Ryuichiro Higashinaka. 2023. En-666
hancing task-oriented dialogue systems with genera-667
tive post-processing networks. In Proceedings of the668
2023 Conference on Empirical Methods in Natural669
Language Processing, pages 3815–3828, Singapore.670
Association for Computational Linguistics.671

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-672
ine Lee, Sharan Narang, Michael Matena, Yanqi673
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the674
limits of transfer learning with a unified text-to-text675
transformer. Journal of Machine Learning Research,676
21(140):1–67.677

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.678
Know what you don’t know: Unanswerable ques-679
tions for SQuAD. In Proceedings of the 56th Annual680
Meeting of the Association for Computational Lin-681
guistics (Volume 2: Short Papers), pages 784–789,682
Melbourne, Australia. Association for Computational683
Linguistics.684

S. E. Robertson and S. Walker. 1994. Some simple685
effective approximations to the 2-poisson model for686
probabilistic weighted retrieval. In SIGIR ’94, pages687
232–241, London. Springer London.688

A. Rosenfeld and M. Thurston. 1971. Edge and curve689
detection for visual scene analysis. IEEE Transac-690
tions on Computers, C-20(5):562–569.691

Elad Segal, Avia Efrat, Mor Shoham, Amir Glober-692
son, and Jonathan Berant. 2020. A simple and effec-693
tive model for answering multi-span questions. In694
Proceedings of the 2020 Conference on Empirical695
Methods in Natural Language Processing (EMNLP),696
pages 3074–3080, Online. Association for Computa-697
tional Linguistics.698

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and699
Hannaneh Hajishirzi. 2017. Bidirectional attention700
flow for machine comprehension. In 5th Inter-701
national Conference on Learning Representations,702
ICLR 2017, Toulon, France, April 24-26, 2017, Con-703
ference Track Proceedings. OpenReview.net.704

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel705
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,706

Dario Amodei, and Paul F Christiano. 2020. Learn- 707
ing to summarize with human feedback. In Ad- 708
vances in Neural Information Processing Systems, 709
volume 33, pages 3008–3021. Curran Associates, 710
Inc. 711

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 712
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 713
Kaiser, and Illia Polosukhin. 2017. Attention is all 714
you need. In Advances in Neural Information Pro- 715
cessing Systems, volume 30. Curran Associates, Inc. 716

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 717
2015. Pointer networks. In Advances in Neural 718
Information Processing Systems, volume 28. Curran 719
Associates, Inc. 720

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, 721
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, 722
and Denny Zhou. 2023. Self-consistency improves 723
chain of thought reasoning in language models. In 724
The Eleventh International Conference on Learning 725
Representations. 726

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 727
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, 728
and Denny Zhou. 2022. Chain-of-thought prompt- 729
ing elicits reasoning in large language models. In 730
Advances in Neural Information Processing Systems, 731
volume 35, pages 24824–24837. Curran Associates, 732
Inc. 733

Junjie Yang, Zhuosheng Zhang, and Hai Zhao. 2021. 734
Multi-span style extraction for generative reading 735
comprehension. In Proceedings of the Workshop 736
on Scientific Document Understanding co-located 737
with 35th AAAI Conference on Artificial Inteligence, 738
SDU@AAAI 2021, Virtual Event, February 9, 2021, 739
volume 2831 of CEUR Workshop Proceedings. 740
CEUR-WS.org. 741

Kevin Yang and Dan Klein. 2021. FUDGE: Controlled 742
text generation with future discriminators. In Pro- 743
ceedings of the 2021 Conference of the North Amer- 744
ican Chapter of the Association for Computational 745
Linguistics: Human Language Technologies, pages 746
3511–3535, Online. Association for Computational 747
Linguistics. 748

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui 749
Zhao, Kai Chen, Mohammad Norouzi, and Quoc V. 750
Le. 2018. Qanet: Combining local convolution with 751
global self-attention for reading comprehension. In 752
6th International Conference on Learning Represen- 753
tations, ICLR 2018, Vancouver, BC, Canada, April 754
30 - May 3, 2018, Conference Track Proceedings. 755
OpenReview.net. 756

Zhiang Yue, Jingping Liu, Cong Zhang, Chao Wang, 757
Haiyun Jiang, Yue Zhang, Xianyang Tian, Zhedong 758
Cen, Yanghua Xiao, and Tong Ruan. 2023. Ma- 759
mrc: A multi-answer machine reading comprehen- 760
sion dataset. In Proceedings of the 46th Interna- 761
tional ACM SIGIR Conference on Research and De- 762
velopment in Information Retrieval, SIGIR ’23, page 763

10

https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/2022.naacl-main.90
https://doi.org/10.18653/v1/2022.naacl-main.90
https://doi.org/10.18653/v1/2022.naacl-main.90
https://doi.org/10.18653/v1/2023.emnlp-main.231
https://doi.org/10.18653/v1/2023.emnlp-main.231
https://doi.org/10.18653/v1/2023.emnlp-main.231
https://doi.org/10.18653/v1/2023.emnlp-main.231
https://doi.org/10.18653/v1/2023.emnlp-main.231
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.1109/T-C.1971.223290
https://doi.org/10.1109/T-C.1971.223290
https://doi.org/10.1109/T-C.1971.223290
https://doi.org/10.18653/v1/2020.emnlp-main.248
https://doi.org/10.18653/v1/2020.emnlp-main.248
https://doi.org/10.18653/v1/2020.emnlp-main.248
https://openreview.net/forum?id=HJ0UKP9ge
https://openreview.net/forum?id=HJ0UKP9ge
https://openreview.net/forum?id=HJ0UKP9ge
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://ceur-ws.org/Vol-2831/paper7.pdf
https://ceur-ws.org/Vol-2831/paper7.pdf
https://ceur-ws.org/Vol-2831/paper7.pdf
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/2021.naacl-main.276
https://doi.org/10.18653/v1/2021.naacl-main.276
https://openreview.net/forum?id=B14TlG-RW
https://openreview.net/forum?id=B14TlG-RW
https://openreview.net/forum?id=B14TlG-RW
https://doi.org/10.1145/3539618.3592015
https://doi.org/10.1145/3539618.3592015
https://doi.org/10.1145/3539618.3592015
https://doi.org/10.1145/3539618.3592015
https://doi.org/10.1145/3539618.3592015


2144–2148, New York, NY, USA. Association for764
Computing Machinery.765

Chen Zhang, Jiuheng Lin, Xiao Liu, Yuxuan Lai, Yan-766
song Feng, and Dongyan Zhao. 2023. How many767
answers should I give? an empirical study of multi-768
answer reading comprehension. In Findings of the769
Association for Computational Linguistics: ACL770
2023, pages 5811–5827, Toronto, Canada. Associa-771
tion for Computational Linguistics.772

Penghui Zhang, Guanming Xiong, and Wen Zhao. 2024.773
Css: Contrastive span selector for multi-span ques-774
tion answering. In PRICAI 2023: Trends in Artificial775
Intelligence, pages 225–236, Singapore. Springer Na-776
ture Singapore.777

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.778
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-779
uating text generation with bert. In International780
Conference on Learning Representations.781

Pengfei Zhu, Zhuosheng Zhang, Hai Zhao, and Xi-782
aoguang Li. 2022. Duma: Reading comprehension783
with transposition thinking. IEEE/ACM Transactions784
on Audio, Speech, and Language Processing, 30:269–785
279.786

Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. 2021. A787
robustly optimized BERT pre-training approach with788
post-training. In Proceedings of the 20th Chinese789
National Conference on Computational Linguistics,790
pages 1218–1227, Huhhot, China. Chinese Informa-791
tion Processing Society of China.792

A More Details of Experimental Setup793

A.1 Datasets794

MultiSpanQA (Li et al., 2022) and MultiSpanQA-795

Expand (Li et al., 2022): MultiSpanQA and796

MultiSpanQA-Expand focus on multi-span ques-797

tions. The raw questions and contexts are extracted798

from the Natural Question dataset (Kwiatkowski799

et al., 2019). MultiSpanQA only contains multi-800

span questions, while MultiSpanQA-Expand con-801

tains both multi-span questions, single-span ques-802

tions and unanswerable questions.803

MAMRC (Yue et al., 2023) and MAMRC-804

Multi: MAMRC is a large-scale dataset containing805

over 100,000 questions, including both multi-span806

questions and single-span questions. To investi-807

gate the performance on the multi-span questions,808

we select multi-span questions from MAMRC and809

obtain MAMRC-Multi.810

Since the official test sets of these four datasets811

are not public, we report the performance on dev812

sets. Some statistics about the four datasets are813

shown in Table 8.814

A.2 Baselines 815

MTMSN (Hu et al., 2019): MTMSN adds a classi- 816

fication head to predict the number of answers. Dur- 817

ing the inference stage, for each question, MUSST 818

first obtains top-20 predictions and predict answer 819

number K, then applies Non-Maximum Sampling 820

algorithm (Rosenfeld and Thurston, 1971) to ex- 821

tract K non-overlapped spans. 822

MUSST (Yang et al., 2021): MUSST adds m 823

linear layer to predict the start position and end 824

position of m spans, where m is the maximum an- 825

swer number in the training dataset. During the 826

inference stage, MUSST applies an autogressive 827

decoding strategy, where in each iteration MUSST 828

masks out predicted spans and chooses top-1 pre- 829

dictions. The iterative process terminates when the 830

model predicts no more answers or the number of 831

predictions reaches the maximum answer number. 832

Tagger: Following the implementation of (Li 833

et al., 2022), we utilize BIO tags to label each 834

token in context: the first token of the answer is 835

labeled with "B", the other tokens of the answer 836

are labeled with "I" and the tokens not in an answer 837

are labeled with "O". 838

SpanQualifier (Huang et al., 2023a) SpanQual- 839

ifier enumerates all possible answer spans and ob- 840

tains their corresponding confidence scores as cor- 841

rect predictions, then utilizes a learnable thresh- 842

old to select the correct prediction spans, achiev- 843

ing state-of-the-art performance on MultiSpanQA- 844

Expand dataset. 845

A.3 Implementation Details 846

When sampling training data for ACC framework, 847

we set split number K = 3, which means in each 848

iteration, we use two-thirds of the training data for 849

training and sample the predictions on the remain- 850

ing data. for the classifier, we maintain a balanced 851

ratio of 1:1:1 among the three answer categories for 852

the classifier, and for the corrector, we added exam- 853

ples that require no modifications and maintained 854

a ratio of 2:1 between examples requiring modifi- 855

cations and examples requiring no modifications, 856

considering that corrector may not necessarily mod- 857

ifies all the input predictions. 858

During training stage of classifier and correc- 859

tor, for MultiSpanQA and MultiSpanQA-Expand, 860

we set learning_rate = 3e−5, batch_size = 861

48, epochs = 10 and max_length = 512; 862

For MAMRC and MAMRC-Multi, we set 863

learning_rate = 3e−5, batch_size = 96, 864

11

https://doi.org/10.18653/v1/2023.findings-acl.359
https://doi.org/10.18653/v1/2023.findings-acl.359
https://doi.org/10.18653/v1/2023.findings-acl.359
https://doi.org/10.18653/v1/2023.findings-acl.359
https://doi.org/10.18653/v1/2023.findings-acl.359
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.1109/TASLP.2021.3138683
https://doi.org/10.1109/TASLP.2021.3138683
https://doi.org/10.1109/TASLP.2021.3138683
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108


#train #dev
answer number prop. avgerage

answer number
average

context length
avgerage

question length≥2 1 0
MultiSpanQA 5,230 658 100.0% 0.0% 0.0% 2.89 279 10
MultiSpanQA-Expand 15,690 1,959 33.4% 33.3% 33.3% 1.30 251 10
MAMRC 110,108 13,764 58.7% 41.3% 0.0% 1.77 69 10
MAMRC-Multi 64,625 8,081 100.0% 0.0% 0.0% 2.31 77 10

Table 8: Dataset statistics.

MultiSpanQA MultiSpanQA-Expand MAMRC MAMRC_Multi
PM P PM R PM F1 PM P PM R PM F1 PM P PM R PM F1 PM P PM R PM F1

BERT-base
MTMSN 69.97 79.23 74.30 73.29 73.46 73.37 84.59 89.62 87.03 84.68 89.97 87.25
+ACC 81.10 66.77 73.24 77.20 67.04 71.76 88.45 85.86 87.13 90.74 85.68 88.14
MUSST 76.39 68.76 72.38 77.79 70.99 74.22 87.25 88.25 87.74 87.75 87.69 87.72
+ACC 81.25 65.68 72.64 78.36 68.65 73.17 88.68 85.46 87.04 90.93 84.61 87.66
Tagger 78.27 77.92 78.09 70.60 65.75 68.05 88.81 89.05 88.92 88.23 84.98 86.57
+ACC 83.30 77.29 80.19 74.06 66.64 70.14 89.07 87.13 88.09 90.85 83.54 87.04
SpanQualifier 81.17 79.70 80.43 74.01 76.73 75.34 87.75 90.94 89.31 87.55 91.90 89.67
+ACC 84.26 77.70 80.84 76.20 75.15 75.67 88.83 87.94 88.38 90.78 88.37 89.56
RoBERTa-base
MTMSN 77.57 82.29 79.86 76.36 76.80 76.58 85.77 89.72 87.70 85.15 90.18 87.60
+ACC 85.65 72.12 78.30 78.88 69.93 74.14 88.74 86.21 87.46 90.45 86.08 88.21
MUSST 83.44 75.72 79.39 80.22 73.36 76.63 88.64 88.44 88.54 88.65 86.64 87.63
+ACC 85.41 73.24 78.86 79.99 70.83 75.13 89.42 85.95 87.65 91.17 83.89 87.38
Tagger 83.97 83.92 83.94 77.91 75.43 76.64 90.09 90.22 90.15 88.07 85.90 86.98
+ACC 86.60 82.67 84.59 79.43 74.62 76.95 89.92 89.01 89.46 90.81 84.20 87.38
SpanQualifier 83.85 83.17 83.50 76.77 78.62 77.65 89.82 88.19 89.00 87.27 92.14 89.63
+ACC 86.39 81.27 83.74 78.69 76.67 77.66 89.34 88.98 89.16 90.49 88.82 89.65

Table 9: PM scores on four MSQA datasets.

MultiSpanQA MultiSpanQA
-Expand

MAMRC-Multi MAMRC
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Inference times per answer (ms)
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Figure 4: Inference times on four datasets.

epochs = 5 and max_length = 256. We choose865

the best classifier and corrector on our sliver-866

labeled dev sets. All the baselines were trained867

with three different seeds and we report the mean868

results. We perform our experiments on a single869

Tesla V-100 GPU(32GB).870

model BERT-base RoBERTa-base
MTMSN 110M 125M
MUSST 110M 125M
Tagger 109M 125M
SpanQualifier 115M 131M
classifier - 128M
corrector - 124M

Table 10: Model sizes of baselines model, the classifier
and the corrector.

B Additional Experiments and 871

Discussions 872

B.1 Partial Match Results 873

The Partial Match results are shown in Table 9. 874

While EM F1 scores show significant improve- 875

ments after applying the ACC framework, PM F1 876

scores achieve less improvements and even de- 877

cline in some cases. The main reason may be 878

that PM scores consider the overlaps between pre- 879

dictions and gold answers, as a result, incorrect 880

predictions may contribute to PM F1 score (i.e., 881

EM F1 = 0, PM F1 > 0). However, such pre- 882

dictions are not desired and may be excluded by 883

the ACC framework, limiting the improvements in 884

12



PM F1 scores.885

B.2 Model Size and Inference Time886

We compare model sizes between MSQA models887

and the ACC framework, shown in Table 10. The888

ACC framework improves the performance of base-889

lines without applying large-size models, avoiding890

consuming excessive computational resources.891

We also analyze inference times of the ACC892

framework, shown in Figure 4. The results de-893

mostrate that the ACC framework is time-effective,894

especially when the input length is short (we set895

max_length = 256 for MAMRC and MAMRC-896

Multi and we set max_length = 512 for Multi-897

SpanQA and MultiSpanQA-Expand).898

B.3 Implementation details of pilot study with899

LLM900

We use OpenAI’s official API 6 and select the901

model gpt-3.5-turbo-0120 for our pilot study. Due902

to the poor performance in zero-show settings, we903

apply In-Context Learning (ICL) (Brown et al.,904

2020) and utilize a BM25 retriever (Robertson and905

Walker, 1994) to select the demonstrations which906

is similar to the questions. When replacing the clas-907

sifier, we select one demonstration for each answer908

type; when replacing the corrector, we select two909

demostractions for answers requiring modification910

and requiring no modification. The prompts are911

shown in Table 11.912

6https://platform.openai.com/.
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cls model prompt:
For this task, we will provide you a passage and a question. The question contains one or multiple
answers and these answers are in the passage. We will also provide you a candidate answer from
our AI model. You should read the passage, the question and classify the candidate answer into one
of three classes: "correct prediction", "partially correct prediction" and "wrong prediction". Correct
prediction refers to a completely correct prediction; Partially correct prediction refers to a prediction
that is basically correct but still requires some modifications. Wrong prediction refers to a prediction
that is completely incorrect and should be excluded.\You should output your answer in a json format
like "{{"answer":"your_answer"}}", DO NOT include any explanations in your responses.
Example1:
Passage: ...
Question: ...
Candidate Answer:...
Output: {"answer":"correct prediction"}
...
Query:
Passage: ...
Question: ...
Candidate Answer: ...
Output:

cor model prompt:
For this task, we will provide you a passage and a question. The question contains one or multiple
answers and these answers are in the passage. We will also provide a candidate answer that our AI
model believes needs some modifications. You should read the passage, the question and judge whether
the candidate answer requires modifications. If no modifications are needed, you should output the
candidate answer as is. Otherwise, you should modify it by adding or deleting some words, and the
modified prediction must be a part of the passage and similar to the original candidate answer.\You
should output your answer in a json format like "{{"answer":"your_answer"}}", DO NOT include any
explanations in your responses.
Example1:
Passage: ...
Question: ...
Original Answer: ...
Output: {"answer":"xxx"}
...
Query:
Passage: ...
Question: ...
Candidate Answer: ...
Output:

Table 11: Prompts for pilot study with LLM
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