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Abstract

Multi-Span Question Answering (MSQA) re-
quires models to extract one or multiple an-
swer spans from a given context to answer
a question. Prior work mainly focus on de-
signing specific methods or applying heuris-
tic strategies to encourage models to predict
more correct predictions. However, these mod-
els are trained on gold answers and fail to
considier the incorrect predictions. Through
a statistical analysis, we observe that models
with stronger abilities do not predict less incor-
rect predictions compared to other models. In
this work, we propose Answering-Classifying-
Correcting (ACC) framework, which employs
a post-processing strategy to handle with incor-
rect predictions. Specifically, the ACC frame-
work first introduces a classifier to classify the
predictions into three types and exclude "wrong
predictions”, then introduces a corrector to
modify "partially correct predictions". Experi-
ments on four datasets show that ACC frame-
work significantly improves the EM F1 scores
of several MSQA models, and further analy-
sis demostrate that ACC framework efficiently
reduces the number of incorrect predictions,
improving the quality of predictions. !

1 Introduction

Machine Reading Comprehension (MRC) requires
models to answer a question based on a given con-
text (Rajpurkar et al., 2018; Kwiatkowski et al.,
2019; Lai et al., 2017). In a real-world scenario,
a single question typically corresponds to multi-
ple answers. To this end, Multi-Span Question
Answering (MSQA) has been proposed (Ju et al.,
2022; Li et al., 2022; Yue et al., 2023). Different
from the traditional Single-Span Question Answer-
ing (SSQA), the goal of MSQA is to extract one
or multiple non-overlapped spans from the given
context. For example, In Figure 1, the question

'Our code and data are available at https: //anonymous.
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(" Context:
Don’t Hug Me I'm Scared (often abbreviated to
DHMIS) is a live - action / animated surreal
horror comedy web series created by British
filmmakers Becky Sloan and Joseph Pelling ...

Question:
Who made Don't Hug Me I'm Scared?

Gold Answers:
Becky Sloan, Joseph Pelling

Predictions:

Joseph Pelling (correct)

filmmakers Becky Sloan (partially correct)
\_DHMIS (wrong) D,

Figure 1: An example of multi-span questions, this
question has two gold answers: Becky Sloan and Joseph
Pelling. "Joseph Pelling" is a correct prediction, "film-
makers Becky Sloan" is a partially correct prediction
and "DHMIS" is a wrong prediction.

"Who made Don’t Hug Me I'm Scared?" has two
answers: "Becky Sloan" and "Joseph Pelling".

Recently, a series of methods have been pro-
posed to handle with MSQA. Some of them in-
corporate heuristic strategies based on traditional
pointer models (Vinyals et al., 2015) to extract mul-
tiple answers (Yang et al., 2021; Hu et al., 2019);
some of them convert MSQA task into a sequence-
tagging task and utilize BIO tags to mark answers
(Segal et al., 2020; Li et al., 2022); some of them
enumerate all candidate answers and select the final
answers with a learnable threshold (Huang et al.,
2023a; Zhang et al., 2024).

Prior work mainly focus on designing specific
methods or applying heuristic strategies to encour-
age models to predict more correct predictions.
However, these models are trained on gold answers,
and fail to considier the incorrect predictions. To
further investigate the incorrect predictions pre-
dicted by these models, we classify the predictions
into correct predictions, partially correct pre-
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dictions and wrong predictions based on whether
they should be modified or excluded, and conduct
a statistical analysis on some MSQA models (de-
tails in Section 2.3). We observe that models with
stronger abilities (i.e., achieving higher F1 scores)
do not predict less incorrect predictions compared
to other models. This indicates that the perfor-
mance of the MSQA models can be improved if
the number of incorrect predictions can be reduced.

In this work, we propose Answer-Classify-
Correct (ACC) framework, which employs a post-
processing strategy to handle with incorrect pre-
dictions. The ACC framework simulates humans
strategy in English examinations: listing candidate
answers, reviewing and modifying. Specifically,
we design the classifier to categorize candidate an-
swers into "correct predictions”, "partially correct
predictions” or "wrong predictions”, then we de-
sign the corrector to modify "partially correct pre-
dictions", finally we exclude "wrong predictions"
and obtain final predictions. To train the classi-
fier and the corrector, we also apply an automatic
annotation approach which samples incorrect pre-
dictions from the training datasets and constructs
the silver-labeled datasets.

We conduct experiments on four MSQA datasets.
Experiment results show that the ACC framework
significantly improves the performance. For in-
stances, after applying the ACC framework, the
EM F1 score increases from 60.74% to 67.78% for
Tagger-BERT (Li et al., 2022) and from 69.05% to
72.26% for Tagger-RoBERTa (Li et al., 2022) on
the MultiSpanQA dataset (Li et al., 2022). Further
analysis on the predictions also indicate that the
ACC framework effectively reduces the number of
incorrect predictions and obtains more correct pre-
dictions, enhancing the qualities of predictions. In
addition, We also conduct a pilot study with GPT-
3.5 2, demostrating that ACC framework can be
applied to Large Language Models (LLMs) in a
Chain-of-Thought (CoT) (Wei et al., 2022; Kojima
et al., 2022) manner.

Our contributions are summarized as follows:

* We develop a three-fold taxonomy for the
MSQA predictions based on whether a pre-
diction should be modified or excluded. Then,
we conduct a statistical analysis, revealing dis-
tributions over the three categories.

¢ Inspired by humans’ strategies, we propose

2https ://platform.openai.com/.

the ACC framework, which includes a clas-
sifier to exclude incorrect predictions and in-
cludes a corrector to modify imperfect predic-
tions. We also design an automatical annota-
tion approach to sample incorrect predictions
and construct silver-labeled datasets.

* We conduct several experiments on four
MSQA datasets. Results show that the ACC
framework significantly enhances the quality
of the MSQA predictions.

2 Taxonomy of MSQA Predictions

2.1 Formalization

The MSQA task can be described as a triplet
(Q,C, A): a question @, its corresponding context
C, and a set of gold answers A = {a1,aq,...,an},
where each answer a; is a contigious span from
C'. Existing methods utilize a model M to extract
P = {p1,p2,....,pn} from C as the predictions,
shown as Eq (1).

P=M(C,Q) ey

2.2 Taxonomy

Intuitively, the predictions can be categorized as
correct or incorrect predictions. However, some
of incorrect predictions should be modified while
others should be excluded. For example, assuming
that one of gold answers is "a clever boy" and the
predictions are "boy" and "girl", both of the pre-
dictions are incorrect but "boy" should be modified
and "girl" should be excluded. Therefore, we fur-
ther categorize incorrect predictions into "partially
correct predictions" and "wrong predictions".

Based on above analysis, we category the pre-
diction p; into one of the following three types:
correct prediction, partially correct prediction
and wrong prediction.

Correct prediction The prediction p; is one of
the gold answers, which means p; € A.

Partially correct prediction The prediction p;
is not a correct prediction, but there exists a gold
answer a; which is similar to p;, then p; is defined
as partially correct prediction and a; is defined as
its corresponding similar gold answer.
Considering that gold answers typically contain
complicated grammar structures, we utilize both
Word Overlap and Semantic Similarity to define
partially correct predictions. Assuming that a pre-
diction p; contains k words {p;1, pi2, ..., pir } and a
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gold answer a; contains [ words {a;1, ajo, ..., aj},
we define the word overlap WO and the semantic
similarity S.S as:

card(p; N aj)

WO(Pi,aj) = W ()
S5 _ g
(Pi,aj) = m 3)
7 aj

where card(A) denotes the number of element in
the set A, H),, and H,, are the representations of
pi and a; from a Pre-trained Language Model, |a|
denotes the length of the vector a. 3.

For a prediction p;, if there exists a; € A which
satisfies WO(p;,a;) > o and SS(p;,a;) > B,
where « and 3 are hyper-parameters, the p; is de-
fined as the partially correct prediction.

Wrong prediction : If p; could not satisfy the
conditions of correct prediction and partially cor-
rect prediction, we define p; as wrong prediction.

Figure 1 shows an example containing these
three types of predictions. The gold answers are
"Becky Sloan" and "Joseph Pelling". For the pre-
dictions, "Joseph Pelling" is a correct prediction;
"filmmakers Becky Sloan" is a partially correct pre-
diction because it is similar to "Becky Sloan", and
"DHMIS" is a wrong prediction because it is not
similar to any gold answer.

2.3 Analysis of MSQA Predictions

Based on our designed taxonomy, we conduct a
statistical analysis on the dev set of MultiSpanQA
(Li et al., 2022). We select four MSQA model:
MTMSN (Hu et al., 2019), MUSST(Yang et al.,
2021), Tagger (Li et al., 2022) and SpanQualifier
(Huang et al., 2023a). We utilize BERT (Devlin
et al., 2019) as the encoder. More details of these
models are shown in Appendix A.2.

The statistical results are shown in Figure 2.
Compared with MTMSN and MUSST, Tagger and
SpanQualifier predict more correct predictions but
also predict equal or more incorrect predictions.
For example, Tagger predicts 1,212 correct predic-
tions but also predict 748 wrong predictions, while
MTMSN predicts 742 correct predictions and 459
wrong predictions. We also observe that Tagger and
SpanQualifier outperform MTMSN and MUSST
on several MSQA benchmarks. This indicates that
the improvements of the existing MSQA models

3In practice, we utilize BERTScore (Zhang et al., 2020) to
calculate semantic similarity.
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Figure 2: The prediction distributions of correct pre-
dictions, partially correct predictions and wrong predic-
tions on the dev set of MultiSpanQA.

are derived from predicting more correct predic-
tions rather than less incorrect predictions. There-
fore, we believe that the post-processing method
can effectively enhance the quality of predictions
by reducing the number of incorrect predictions,
resulting in better performance.

3 Method

In this section, we describe the ACC framework,
which is designed to handle with partially correct
predictions and wrong predictions. The architec-
ture of the ACC framework is shown in Figure 3.

Similar to the humans’ strategies, the post-
processing procedure of the ACC framework con-
sists of three steps: The first step is answering,
where we employ a reader to obtain initial predic-
tions P; The second step is classifying, where we
employ a classifier to categorize each prediction
p; into one of the three classes: correct prediction,
partially correct prediction and wrong prediction;
The last step is correcting, where we employ a
corrector to modify the partially correct predic-
tions. We reserve correct predictions predicted by
the classifier and the modified predictions from the
corrector as the final predictions.

Next, we will provide more details of the reader,
the classifier and the corrector. We will also in-
troduce an automatic annotation approach which
samples incorrect predictions and constructs train-
ing data for the classifier and the corrector.

3.1 Reader

The main function of the reader is to extract several
text spans from context based on a given question.
This process can be described as:



Context: Don't Hug Me | 'm Scared (often abbreviated to DHMIS) is a live - action / animated surreal
horror comedy web series created by British filmmakers Becky Sloan and Joseph Pelling...

Question: Who made Don't Hug Me I'm Scared?

[Question] [ Context] [Question]

[Context]

L

v Joseph Pelling
filmmakers
Becky Sloan
DHMIS

Original Predictions: ’

Reader

Joseph Pelling , filmmakers Becky Sloan ,
DHMIS

Joseph Pelling

o filmmakers
Classifier Becky Sloan Corrector Becky Sloan

DHMIS

[Question] [ Context]

L

Final Predictions:
Becky Sloan , Joseph Pelling

Figure 3: The overall architecture of our proposed ACC framework.

P = Reader(Q, C) 4)

where P = {p1,p2,...,pn} are the predictions
given by the reader, ) is the question and C' is
the corresponding context.

3.2 Classifier

The predictions of the reader may include partially
correct predictions or wrong predictions (men-
tioned in 2.2). To this end, we design the classifier
to classify them and exclude wrong predictions.
Given the candidate predictions P, the classifier
splits them into correct predictions F., partially
correct predictions P, and wrong predictions F,.
This process can be described as:

P., P,, P, = Classifier(P,Q,C)  (5)

where P, P, and P, denote the correct predic-
tions, partially predictions and wrong predictions
predicted by the classifier, respectively.
Specifically, the classifier consists of a trans-
former (Vaswani et al., 2017) encoder and a classi-
fication head. The classification head includes an
MLP layer to obtain logits of each class. Inspired
by Zhu et al. (2022), we also add a cross-attention
layer in the classification head which calculates
the attention scores between the question and the
context to enhance the representations of them.

3.3 Corrector

The classifier is able to exclude wrong predictions,
however, there may still contain partially correct

predictions which are imperfect and should be mod-
ified. Hence, we design the corrector to modify
those partially correct predictions. This process
can be described as:

Pp = Corrector(Pp,Q,C) (6)

where P, are the partially correct predictions given
by the classifier and pp are the predictions modified
by the corrector.

We adpot traditional pointer model (Vinyals
et al., 2015) to predict the start and end proba-
bilities, st and ed. During the inference stage,
for the text span starting at i-th token and end-
ing at j-th token, we calculate its confidence score
score;j = st; + ed; and obtain the best index pair
(4, 7) which maximizes score;j, then extract its cor-
responding span as the modified prediction.

The final outputs of the ACC framework P con-
sist of the correct predictions P, predicted by the
classifier and the modified predictions Pp from the
corrector, described as:

P=P.UP, (7)

3.4 Data Annotations

To train the classifier and the corrector, we need
both correct predictions and incorrect predictions.
However, most MSQA datasets do not contain in-
correct predictions. Inspired by Gangi Reddy et al.
(2020), we adopt an automatical sampling method
similar to K-fold cross-validation, to collect in-
correct predictions from the MSQA datasets and
construct our silver-labeled datasets.



MultiSpanQA MultiSpanQA-Expand MAMRC MAMRC-Multi

EMP EMR EMF1 | EMP EMR EMFI | EMP EMR EMFI | EMP EMR EMFI
BERT-base
MTMSN 51.76 41.69 46.18 | 60.88 51.46 5578 | 72.65 7741 7496 | 71.50 76.71 74.01
+ACC 67.75 49.52 57.22 | 67.77 5491 60.66 | 81.60 77.40 79.44 | 85.55 79.32 82.32
MUSST 61.44 5374 5733 | 6748 59.71 6336 | 76.28 79.00 77.62 | 75.68 78.12 76.88
+ACC 68.84 5439 60.76 | 69.62 60.05 6448 | 81.94 77.10 7945 | 85.87 78.38 81.95
Tagger 56.66 6546 60.74 | 52.81 5592 5430 | 77.15 81.83 7942 | 7471 76.74 75.70
+ACC 68.52 67.05 67.78 | 62.74 5883 60.71 | 82.56 79.67 81.10 | 85.80 77.58 81.48
SpanQualifier | 67.99 69.44 68.70 | 62.83 67.88 65.25 | 77.51 84.51 80.86 | 76.10 85.39 80.47
+ACC 72.04 67.82 69.86 | 65.78 67.13 6645 | 82.40 80.76 81.57 | 85.67 83.37 84.51
RoBERTa-base
MTMSN 59.86 49.97 5447 | 63.39 56.00 5947 | 7394 7836 76.08 | 71.69 77.47 74.46
+ACC 7175 55.87 62.82 | 68.95 5881 6348 | 81.84 77.70 79.72 | 8513 79.82 82.39
MUSST 69.82 6194 65.64 | 6929 63.16 66.08 | 78.01 79.71 78.85 | 76.69 77.16 76.92
+ACC 73.07 61.78 66.96 | 70.54 62.60 6633 | 82.75 77.57 80.08 | 86.10 77.48 81.56
Tagger 66.22 72.14 69.05 | 6435 65.66 6499 | 79.47 8359 8148 | 75.85 78.19 77.00
+ACC 7239 72.12 7226 | 68.70 66.21 6743 | 83.62 §81.80 82.70 | 85.77 7836 81.90
SpanQualifier | 7040 72.82 71.58 | 64.65 69.65 66.99 | 83.40 80.83 82.10 | 75.63 85.77 80.37
+ACC 73.69 7132 7247 | 67.68 68.53 68.09 | 82.83 81.88 8235 | 85.14 83.77 8445

Table 1: EM Scores on four MSQA datasets. "P" "R" "F1" refer to Precision, Recall and F1 score. "BERT-base"
and "RoBERTa-base" refer to the encoders of the MSQA models. The results marked in bold means improvements

after applying the ACC framework.

First, we randomly divide the training data D
into K equal subsets: D1, Ds, ..., Dg. We perform
K iterations, in the i-th iteration we initialize an
reader M and train it with all training data except
D;, then sampling the predictions of D; with M.
After K iterations, we utilize the gold answers from
training dataset D to annotate all predictions, and
construct the silver-labeled dataset. More details
are shown in Appendix A.3.

4 Experiments

4.1 Experimental Setup

Datasets We evaluate the ACC framework
on four datasets: MultiSpanQA (Li et al.,
2022), MultiSpanQA-Expand (Li et al., 2022),
MAMRC (Yue et al., 2023) and MAMRC-Multi.
Details are shown in Appendix A.1.

MSQA models we set four MSQA models as
the reader in the ACC framework: MTMSN (Hu
et al., 2019), MUSST (Yang et al., 2021), Tagger
(Li et al., 2022) and SpanQualifier (Huang et al.,
2023a). Details are shown in Appendix A.2.

Evaluation Metrics We use Exact Match Pre-
cision/Recall/F1 (EM P/R/F1) (Li et al., 2022) as
the main metrics in our experiments. EM assign a
score of 1 when a prediction fully matches one of
the gold answers and O otherwise.

Implementation Details For the classifier and
corrector in the ACC framework, we use ROBERTa-
base (Zhuang et al., 2021) as encoder. For MSQA
models, we use both BERT-base (Devlin et al.,
2019) and RoBERTa-base as encoder. For the hy-
per parameters mentioned in Section 2.2, we set
o = 0.25 and 5 = 0.6. See more training and
inference details in Appendix A.3.

4.2 Main Results

Table 1 shows the main results on four MSQA
datasets. After applying the ACC framework,
all MSQA models gain improvements in EM F1
scores. For instances, the EM F1 score of Tagger
(BERT-base) increases from 60.74% to 67.78%,
and the EM F1 score of Tagger (RoOBERTa-base)
increases from 69.05% to 72.26% on the dev set
of MultiSpanQA. We observe that presicion scores
show significant improvements while some recall
scores show slight declines, demonstrating that
ACC framework may exclude incorrect predictions
effectively but also exclude a small number of cor-
rect predictions. Ultimately, due to the greater de-
gree of improvement in precision scores, the F1
scores are increased. In Section 5.2, we will in-
vestigate the performance of the classifier and the
corrector, and analyze why the ACC framework
improves the EM F1 scores.

We also evaluate the ACC framework with Par-
tial Match P/R/F1 (PM P/R/F1), which considers



MultiSpanQA

EMP EMR EMFI
Tagger BERT 56.66 6546  60.74
+ cls only 6490 6398 64.44
+ cor only 6249 69.11 65.63
+cor &cls 67.14 6744  67.29
+ binary cls & cor | 68.58 66.56  67.56
+ cls & cor 68.52 67.05 67.78
Tagger ROBERTa | 66.22 72.14  69.05
+ cls only 70.54  70.58  70.56
+ cor only 68.50 73.09 70.72
+ cor & cls 7121 7143 71.32
+ binary cls & cor | 7245 7094  71.68
+ cls & cor 7239 7212 72.26

Table 2: Ablation study of ACC framework on the dev
set of MultiSpanQA. The best performance is in bold.

the overlap between the predictions and gold an-
swers. Results are shown in Appendix B.1.

5 Discussions

5.1 Ablation Study

Roles of classifier and corrector. ACC frame-
work uses the "answer-classify-correct" procedure
with the classifier and the corrector. To investigate
whether there exists better post-processing proce-
dure, we conduct an ablation study by: 1. only em-
ploying the classifier or corrector (cls \ cor only); 2.
changing the order of classifier and corrector (cor
& cls); 3. modifying both correct predictions and
partially correct predictions (binary cls & cor).*

Table 2 shows the results of the ablation study
on the dev set of MultiSpanQA. The performance
of "cls only" and "cor only" lag behind ACC frame-
work, demonstrating the significance of the clas-
sifier and corrector. Changing the order between
classifier and corrector also shows decline, the rea-
son may be that using corrector first may lead to
conceal wrong predictions, thereby the classifier
may fail to categorize them as wrong predictions.
We also observe that modifying both correct pre-
dictions and partially correct predictions does not
achieve improvements, demostrating the necessity
of distinguishing correct predictions and partially
correct predictions and modifying partially correct
predictions solely.

Comparison with different models. ACC
framework uses a classifier with a cross-attention
layer and a corrector based on the pointer model.

“For "cls only", we only exclude wrong predictions; For
"cor only", we correct all predictions; For "cor & cls", we first
correct all predictions, then classify them and only exclude
wrong predictions.

MultiSpanQA

EMP EMR EMFI
Tagger BERT 56.66 6546  60.74
+ att cls & T5 cor 6490 6398 64.44
+ vanilla cls & ext cor | 68.54 66.10 67.29
+ att cls & ext cor 68.52 67.05 67.78
Tagger ROBERTa 66.22 72.14  69.05
+ att cls & TS5 cor 70.54  70.58 70.56
+ vanilla cls & ext cor | 72.23  71.56 71.89
+ att cls & ext cor 7239 7212 72.26

Table 3: Comparison between diffent combinations of
the classifier and the corrector on the dev set of Mul-
tiSpanQA. "att cls" refer to the classifier mentioned in
Section 3.2, "vanilla cls" refer to the classifier without
cross-attention layer, "ext cor" refer to the corrector
mentioned in Section 3.3 and "T5 cor" refer to the TS
corrector. The best performance is in bold.

However, ACC framework can also opt for alterna-
tive type of classifiers or correctors. To this end, we
replace the classifier and the corrector with other
models and compare their performance.’

Table 3 shows the results of the comparison be-
tween different model combinations on the dev set
of MultiSpanQA. After replacing the classifier or
the corrector, ACC framework shows declines, es-
pecially when applying a generative model, ACC
framework lag behind other settings. This indicates
that the generative models are less capable than tra-
ditional pointer models in correcting predictions.

5.2 Analysis on the Predictions

Accuracy of the classifier. To analyze the ca-
pability of the classifier, we conduct a statistical
analysis on its classification results. Table 5 shows
the accuracy of the classifier on the dev set of Mul-
tiSpanQA. The classifier achieves an high accu-
racy on the correct predictions (95.82% for Tagger-
BERT and 95.45% for Tagger-RoBERTa), demon-
strating that the ACC framework reserves most cor-
rect predictions. On the other hand, the classifier
exclude about 1/3 wrong predictions, contributing
to the imporvements on EM F1 scores, while the
accuracies on the partially true predictions and the
wrong predictions can be further improved.

Changes in answers by the corrector. To ana-
lyze the capability of the corrector, we also con-
duct a statistical analysis on how many prediction
has been changed. Table 6 shows the changes of
the partially correct predictions on the dev set of

3for the classifier, we replace it with a vanilla classifier
where we remove the cross-attention layer; for the corrector,
we replace it with TS (Raffel et al., 2020) which outputs texts
as the corrected answers.



Context: The California State Legislature is the state legislature of the U.S. state of California. It is a bicameral body
consisting of the lower house, the California State Assembly, with 80 members, and the upper house, the California

State Senate, with 40 members...

Question: What are the two chambers of the California state legislation ?
Gold Answers: California State Assembly , California State Senate

Original Predictions New Predictions
MTMSN the California State Assembly , California State Assembly ,
(RoBERTa-base) the California State Senate California State Senate
MUSST California State , Senate , California State Assembly ,
(RoBERTa-base) | lower house , the California State Assembly California State Senate
Tagger Assembly , California State Senate , California State Assembly ,
(RoBERTa-base) Senate , State Assembly California State Senate
SpanQualifier Assembly Assembly ,
(RoBERTa-base) Senate California State Senate

Table 4: Case study on the dev set of MultiSpanQA. "Original Predictions" refers to the predictions of the MSQA
models and "New Predictions" refers to the predictions after applying the ACC framework. Correct predictions are

in bold.
Tagger BERT
label \ pred wrong partially correct
wrong 268 (37.85%) 148 (20.9%) 292 (41.24%)
partially 16 (6.13%) 98 (37.55%) 147 (56.32%)
correct 26 (2.18%) 24 (2.01%) 1145 (95.82%)
Tagger ROBERTa
label \ pred wrong partially correct
wrong 135 (27.44%) 105 (21.34%) 252 (51.22%)
partially 22 (8.63%)  83(32.55%) 150 (58.82%)
correct 27 (2.01%) 34 (2.54%) 1280 (95.45%)

Table 5: Accuracy of the classifier on the dev set of
MultiSpanQA. The correct classifications of each types
are in bold.

MultiSpanQA. The corrector changes 30.77% of
the answers for Tagger-BERT and 27% for Tagger-
RoBERTa, respectively. For Tagger-BERT, 27.47%
of the not-correct predictions are modified to the
correct predictions, while 3.3% of the correct pre-
dictions are modified to the not-correct predictions.
Furthermore, among all the partially correct pre-
dictions derived from the classifier, over 60% of
the not-correct predictions remain unchanged, indi-
catisng a significant room for improvements.

5.3 Case Study

Table 4 illustrates the original predictions from
MSQA models and the new predictions after ap-
plying the ACC framework. All the four MSQA
models fail to provide precise predictions, but af-
ter applying ACC framework, the predictions of
MTMSN, MUSST and Tagger are completely con-
sistent with the golds answers (i.e. FMF1 =
100%, PM F'1 = 100%), indicating that the ACC
framework is able to provide better predictions.

Tagger BERT

cls \ cls & cor not correct correct
not correct 172 (63.00%) 75 (27.47%)
correct 9 3.3%) 17 (6.23%)
Tagger ROBERTa

cls\cls & cor not correct correct
not correct 137 (61.43%) 52 (23.32%)
correct 11 (4.93%) 23 (10.31%)

Table 6: Changes in answers by the corrector on the
dev set of MultiSpanQA.

5.4 Pilot Study with LLM

ACC framework utilizes a fine-tuned ROBERTa en-
coder as the backbone. To investigate whether our
proposed method works on larger models, we con-
duct a pilot study by replacing the classifier or cor-
rector with a prompted LLM. The implementation
details and prompts are shown in Appendix B.3.

Table 7 shows the experiment results. After re-
placing the classifier or the corrector with LLM,
the ACC framework still achieves improvements on
Tagger-BERT and Tagger-RoBERTa, which proves
that our post-processing strategies can be effec-
tively applied to LLM.

5.5 Model Size and Inference Time

We analyze the model size and the inference time
of the ACC framework. Results and analysis are
shown in Appendix B.2.

6 Related Work

6.1 Multi-Span Question Answering

Recently, a series of MSQA benchmarks (Ju et al.,
2022; Li et al., 2022; Yue et al., 2023) have been
proposed to faclitate research on QA tasks that
are closer to real-world scenarios. MSQA tasks



MultiSpanQA

EMP EMR EMFI
Tagger BERT 56.66 6546  60.74
+LLMcls & LLMcor | 68.60 63.35  65.87
+LLM cls & FT cor 70.04 6447 67.14
+FT cls & LLM cor 67.93 6651  67.21
+FT cls & FT cor 68.52 67.05 67.78
Tagger ROBERTa 66.22 7214  69.05
+LLMcls & LLMcor | 72.71 68.10  70.33
+LLM cls & FT cor 73.69 6897 71.25
+FT cls & LLM cor 7171 7148  71.59
+FT cls & FT cor 7239 7212 72.26

Table 7: Performance of ACC framework with LLM
on the dev set of MultiSpanQA. "LLM cls/cor" refers to
classifier/corrector replaced by LLM, and "FT cls/cor"
refers to a fine-tuned model. The best performance is in
bold.

require models to extract one or multiple answer
spans from a given context. Therefore, traditional
SSQA models (Seo et al., 2017; Yu et al., 2018) are
not sufficient to handle multi-span questions.

Existing MSQA methods can be categorized into
four categories: (1) pointer-network-based meth-
ods. MTMSN (Hu et al., 2019) predicts the num-
ber of answers, then extracts non-overlapped an-
swer spans; MUSST (Yang et al., 2021) uses an
autogressive approach to iteratively extract mul-
tiple answers. (2) sequence-tagging-based meth-
ods. Segal et al. (2020) first convert MSQA task
to a sequence-tagging task and utilize BIO tags to
mark answer spans; Furthermore, Li et al. (2022)
introduce multi-task learning and achieve better
performance. (3) span-enumeration-based meth-
ods. SpanQualifier (Huang et al., 2023a) utilizes
Multi-Layer Perceptron (MLP) to obtain confi-
dence scores for each candidate span and applies
a learnable threshold to select answer spans; Sim-
ilarly, CSS (Zhang et al., 2024) compares each
candidate span with its corresponding question af-
ter scoring to obtain answers more similar to the
question. (4) LLM-based methods. With the emer-
gence of LLMs like ChatGPT and GPT-4, genera-
tive pre-trained language models have been widely
applied to various NLP tasks. Zhang et al. (2023)
employ CoT strategies to prompt LLM, and Huang
et al. (2023b) add negative examples in the few-
shot demonstrations.

Existing methods mainly focus on predicting
more correct predictions, while the ACC frame-
work takes a post-processing strategy which aims
to reduce the number of incorrect predictions. By
excluding or modifying incorrect predictions, the
ACC framework achieves better performance.

6.2 Post-Processing Methods

The post-processing method refers to modifying
the original of the model to obtain better predic-
tions. Existing post-processing methods can be
categorized into two types: rule-based methods
and model-based methods.

Ruled-based methods typically involve mannu-
ally designed rules such as voting to process the
outputs from models (Campos and Couto, 2021;
Wang et al., 2023). On the other hand, model-
based methods utilize additional models to modify
the hidden states or outputs of the original model,
which have been widely applied in Controlled Text
Generation (CTG) (Yang and Klein, 2021; Krause
et al., 2021; Kim and Cho, 2023). In addition to
CTG methods, GRACE (Khalifa et al., 2023) ap-
plies a fine-tuned discriminator to guide language
model towards correct multi-step solutions; Ohashi
and Higashinaka (2023) utilize a generative model
to rewrite the output from a dialogue system and
optimize it with Reinforcement Learning (RL) al-
gorithms (Stiennon et al., 2020).

The work most similar to ours is (Gangi Reddy
et al., 2020), which utilizes a corrector to modify
the outputs of the SSQA model. However, they
only focus on partial matches in single-span ques-
tions. In constrast, we consider the correctness
of multiple predictions in MSQA and additionally
employ a classifier to exclude incorrect predictions.

7 Conclusion

In this work, we primarily focus on incorrect pre-
dictions of the MSQA models. Through a statistical
analysis, we observe that models with better per-
formance do not predict less incorrect predictions
compared to other models. To this end, we propose
ACC framework, which employ a post-processing
strategy to exclude wrong predictions and modify
partially correct predictions. Experiments and anal-
ysis show that the ACC framework significantly
improving the performance by reducing the num-
ber of incorrect predictions and obtaining more
correct predictions, enhancing the quality of the
MSQA predictions.

8 Limitations and Future Works

In this work, we categorize incorrect predictions
into "partially correct predictions" and "wrong pre-
dictions", based on whether the answer should be
modified or excluded. However, for "partially cor-
rect predictions", there exists more complicated



conditions, for example, an incorrect prediction
may responses to multiple gold answers. However,
the ACC framework can only obtain one modified
prediction. In addition, we do not consider the gold
answers that MSQA models fail to predict (i.e.,
"missing answers"), although the SOTA model still
miss 1/3 gold answers. As for future works, we
will design more effectively models to handle with
"partially correct predictions" and "wrong predic-
tions". we will also explore strategies to handle
with "missing answers".
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A More Details of Experimental Setup

A.1 Datasets

MultiSpanQA (Li et al., 2022) and MultiSpanQA -
Expand (Li et al.,, 2022): MultiSpanQA and
MultiSpanQA-Expand focus on multi-span ques-
tions. The raw questions and contexts are extracted
from the Natural Question dataset (Kwiatkowski
et al., 2019). MultiSpanQA only contains multi-
span questions, while MultiSpanQA-Expand con-
tains both multi-span questions, single-span ques-
tions and unanswerable questions.

MAMRC (Yue et al., 2023) and MAMRC-
Multi: MAMRC is a large-scale dataset containing
over 100,000 questions, including both multi-span
questions and single-span questions. To investi-
gate the performance on the multi-span questions,
we select multi-span questions from MAMRC and
obtain MAMRC-Multi.

Since the official test sets of these four datasets
are not public, we report the performance on dev
sets. Some statistics about the four datasets are
shown in Table 8.
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A.2 Baselines

MTMSN (Hu et al., 2019): MTMSN adds a classi-
fication head to predict the number of answers. Dur-
ing the inference stage, for each question, MUSST
first obtains top-20 predictions and predict answer
number K, then applies Non-Maximum Sampling
algorithm (Rosenfeld and Thurston, 1971) to ex-
tract K non-overlapped spans.

MUSST (Yang et al., 2021): MUSST adds m
linear layer to predict the start position and end
position of m spans, where m is the maximum an-
swer number in the training dataset. During the
inference stage, MUSST applies an autogressive
decoding strategy, where in each iteration MUSST
masks out predicted spans and chooses top-1 pre-
dictions. The iterative process terminates when the
model predicts no more answers or the number of
predictions reaches the maximum answer number.

Tagger: Following the implementation of (Li
et al., 2022), we utilize BIO tags to label each
token in context: the first token of the answer is
labeled with "B", the other tokens of the answer
are labeled with "I" and the tokens not in an answer
are labeled with "O".

SpanQualifier (Huang et al., 2023a) SpanQual-
ifier enumerates all possible answer spans and ob-
tains their corresponding confidence scores as cor-
rect predictions, then utilizes a learnable thresh-
old to select the correct prediction spans, achiev-
ing state-of-the-art performance on MultiSpanQA-
Expand dataset.

A.3 Implementation Details

When sampling training data for ACC framework,
we set split number K = 3, which means in each
iteration, we use two-thirds of the training data for
training and sample the predictions on the remain-
ing data. for the classifier, we maintain a balanced
ratio of 1:1:1 among the three answer categories for
the classifier, and for the corrector, we added exam-
ples that require no modifications and maintained
aratio of 2:1 between examples requiring modifi-
cations and examples requiring no modifications,
considering that corrector may not necessarily mod-
ifies all the input predictions.

During training stage of classifier and correc-
tor, for MultiSpanQA and MultiSpanQA-Expand,
we set learning_rate 3e7°, batch_size

48, epochs = 10 and max_length = 512;
For MAMRC and MAMRC-Multi, we set
learning_rate = 3e°, batch_size = 96,
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. answer number prop. avgerage average avgerage
#train #dev >2 1 . % answegr nu%nber context lingth questigon lgngth
MultiSpanQA 5,230 658 100.0% 0.0% 0.0% 2.89 279 10
MultiSpanQA-Expand | 15,690 1,959 334% 333% 33.3% 1.30 251 10
MAMRC 110,108 13,764 58.7% 41.3% 0.0% 1.77 69 10
MAMRC-Multi 64,625 8,081 100.0% 0.0% 0.0% 2.31 77 10
Table 8: Dataset statistics.
MultiSpanQA MultiSpanQA-Expand MAMRC MAMRC_Multi
PMP PMR PMFI | PMP PMR PMFI |PMP PMR PMFl | PMP PMR PMFI
BERT-base
MTMSN 69.97 7923 7430 | 73.29 7346 7337 | 84.59 89.62 87.03 | 84.68 89.97 87.25
+ACC 81.10 66.77 7324 | 7720 67.04 71.76 | 88.45 8586 87.13 | 90.74 85.68 88.14
MUSST 7639 68.76 7238 | 7779 7099 7422 | 87.25 8825 87.74 | 8775 87.69 87.72
+ACC 81.25 6568 72.64 | 7836 68.65 73.17 | 88.68 8546 87.04 | 90.93 84.61 87.66
Tagger 7827 7792 78.09 | 70.60 6575 68.05 | 88.81 89.05 88.92 | 88.23 84.98 86.57
+ACC 83.30 7729 80.19 | 74.06 66.64 70.14 | 89.07 87.13 88.09 | 90.85 83.54 87.04
SpanQualifier | 81.17 79.70 80.43 | 74.01 76.73 7534 | 87.75 90.94 89.31 | 87.55 9190 89.67
+ACC 84.26 77.70 80.84 | 76.20 75.15 75.67 | 88.83 8794 88.38 | 90.78 88.37 89.56
RoBERTa-base
MTMSN 77.57 8229 79.86 | 76.36 76.80 76.58 | 85.77 89.72 87.70 | 85.15 90.18 87.60
+ACC 85.65 72.12 7830 | 78.88 6993 74.14 | 88.74 86.21 87.46 | 90.45 86.08 88.21
MUSST 83.44 7572 7939 | 80.22 7336 76.63 | 88.64 88.44 88.54 | 88.65 86.64 87.63
+ACC 8541 7324 7886 |79.99 7083 75.13 | 89.42 8595 87.65 |91.17 83.89 87.38
Tagger 83.97 8392 8394 | 7791 7543 76.64 | 90.09 90.22 90.15 | 88.07 8590 86.98
+ACC 86.60 82.67 84.59 | 7943 7462 7695 | 89.92 89.01 89.46 | 90.81 84.20 87.38
SpanQualifier | 83.85 83.17 83.50 | 76.77 78.62 77.65 | 89.82 88.19 89.00 | 87.27 92.14 89.63
+ACC 86.39 81.27 83.74 | 78.69 76.67 77.66 | 89.34 8898 89.16 | 90.49 88.82 89.65
Table 9: PM scores on four MSQA datasets.
model BERT-base RoBERTa-base
- Inference times per answer (ms) MTMSN 110M 125M
= cls model MUSST 110M 125M
= cor model Tagger 109M 125M
201 SpanQualifier 115M 131M
classifier - 128M
corrector - 124M

154

104

MAMRC

MultiSpanQA MultiSpanQA MAMRC-Multi
-Expand

Figure 4: Inference times on four datasets.

epochs = 5 and max_length = 256. We choose
the best classifier and corrector on our sliver-
labeled dev sets. All the baselines were trained
with three different seeds and we report the mean
results. We perform our experiments on a single
Tesla V-100 GPU(32GB).

Table 10: Model sizes of baselines model, the classifier
and the corrector.

B Additional Experiments and
Discussions

B.1 Partial Match Results

The Partial Match results are shown in Table 9.
While EM F1 scores show significant improve-
ments after applying the ACC framework, PM F1
scores achieve less improvements and even de-
cline in some cases. The main reason may be
that PM scores consider the overlaps between pre-
dictions and gold answers, as a result, incorrect
predictions may contribute to PM F1 score (i.e.,
EM F1 =0,PM F1 > 0). However, such pre-
dictions are not desired and may be excluded by
the ACC framework, limiting the improvements in
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PM F1 scores.

B.2 Model Size and Inference Time

We compare model sizes between MSQA models
and the ACC framework, shown in Table 10. The
ACC framework improves the performance of base-
lines without applying large-size models, avoiding
consuming excessive computational resources.

We also analyze inference times of the ACC
framework, shown in Figure 4. The results de-
mostrate that the ACC framework is time-effective,
especially when the input length is short (we set
max_length = 256 for MAMRC and MAMRC-
Multi and we set max_length = 512 for Multi-
SpanQA and MultiSpanQA-Expand).

B.3 Implementation details of pilot study with
LLM

We use OpenAl’s official API ¢ and select the
model gpt-3.5-turbo-0120 for our pilot study. Due
to the poor performance in zero-show settings, we
apply In-Context Learning (ICL) (Brown et al.,
2020) and utilize a BM25 retriever (Robertson and
Walker, 1994) to select the demonstrations which
is similar to the questions. When replacing the clas-
sifier, we select one demonstration for each answer
type; when replacing the corrector, we select two
demostractions for answers requiring modification
and requiring no modification. The prompts are
shown in Table 11.

6https ://platform.openai.com/.
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cls model prompt:

For this task, we will provide you a passage and a question. The question contains one or multiple
answers and these answers are in the passage. We will also provide you a candidate answer from
our Al model. You should read the passage, the question and classify the candidate answer into one
of three classes: "correct prediction”, "partially correct prediction" and "wrong prediction". Correct
prediction refers to a completely correct prediction; Partially correct prediction refers to a prediction
that is basically correct but still requires some modifications. Wrong prediction refers to a prediction
that is completely incorrect and should be excluded.\You should output your answer in a json format
like "{{"answer":"your_answer"}}", DO NOT include any explanations in your responses.
Examplel:

Passage: ...

Question: ...

Candidate Answer:...

"non

Output: {"answer":"correct prediction"}

Query:

Passage: ...
Question: ...
Candidate Answer: ...
Output:

cor model prompt:

For this task, we will provide you a passage and a question. The question contains one or multiple
answers and these answers are in the passage. We will also provide a candidate answer that our Al
model believes needs some modifications. You should read the passage, the question and judge whether
the candidate answer requires modifications. If no modifications are needed, you should output the
candidate answer as is. Otherwise, you should modify it by adding or deleting some words, and the
modified prediction must be a part of the passage and similar to the original candidate answer.\You
should output your answer in a json format like "{{"answer":"your_answer"}}", DO NOT include any
explanations in your responses.

Examplel:

Passage: ...

Question: ...

Original Answer: ...

non

Output: {"answer":"xxx"

Query:

Passage: ...
Question: ...
Candidate Answer: ...
Output:

Table 11: Prompts for pilot study with LLM
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