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Abstract

Large Language Models (LLMs) and Vision
Large Language Models (VLLMs) demonstrate
impressive abilities in comprehending natural
language and interpreting visual information,
but they can also preserve outdated or incorrect
information in both forms. Existing knowl-
edge editing methods can efficiently update er-
roneous text information in LLMs, avoiding the
need for full retraining. The locality in multi-
modal knowledge editing refers to editing that
should affect only the targeted outputs while
preserving the model’s behavior on unrelated
inputs in both textual and visual modalities.
Existing methods often overlook this princi-
ple and do not explicitly design to preserve
the consistency of responses on unrelated in-
formation. Here, we propose LPEdit, a novel
method that leverages the null space projection
on key layers to focus the editing on conveyed
visual information without influencing unre-
lated knowledge. Experiments show that our
method achieves strong performance across dif-
ferent models and datasets. Moreover, our work
advances the understanding and development
of locality in multimodal knowledge editing.

1 Introduction

LLMs store vast amounts of factual knowledge ac-
quired from large-scale pretraining corpora (Ope-
nAl, 2023; Touvron et al., 2023). However, these
corpora often contain outdated or incorrect infor-
mation, prompting growing interest in model edit-
ing techniques that can efficiently revise specific
knowledge without full retraining (Sajjad et al.,
2022). This line of work addresses the need for
dynamic updates in deployed models while avoid-
ing the high cost of retraining (Roberts et al., 2020;
Petroni et al., 2019).

Recent model editing efforts have mainly fo-
cused on the text modality and can be broadly
classified into two categories. The first directly
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Figure 1: Multimodal knowledge editing leads to differ-
ent types of incorrect responses on images and questions,
from the EVQA dataset, unrelated to the editing target.

modifies model parameters to embed new knowl-
edge (Meng et al., 2022, 2023; Cao et al., 2021;
Mitchell et al., 2022a; Jiang et al., 2024), while the
second introduces external mechanisms (e.g., mem-
ory modules or adapters) without altering internal
weights (Zheng et al., 2023; Mitchell et al., 2022c;
Hartvigsen et al., 2023; Huang et al., 2023).
Editing VLLMs introduces unique challenges
due to the complex interactions between visual and
textual modalities, making it a relatively underex-
plored area. Prior work has extended text-based
editing methods to VLLMs and proposed evalua-
tion metrics (Cheng et al., 2023; Basu et al., 2024),
but results suggest that such editors are often sub-
optimal, likely due to cross-modal dependencies
beyond decoder weights. While recent methods
have made notable progress in ensuring the correct-
ness of edited answers, they often struggle to main-
tain the model’s behavior on irrelevant samples. As
a result, they may introduce unintended failures,
such as off-topic responses, factual interference, or
linguistic degradation (Gupta et al., 2024; Gu et al.,
2024), shown in Figure 1. These limitations un-
derscore the need for editing methods that not only
correct target outputs but also maintain the model’s
overall reliability and behavior on unrelated inputs.



While methods using null space projection (Wang
et al., 2021) to preserve original knowledge during
editing have proven effective, they have not yet
been applied to multimodal systems.

To achieve this, we introduce LPEdit, which
adopt null space projection to ensure that the
model’s performance on unrelated inputs remains
unaffected while correcting the target outputs. By
applying null space projection to the MLP projec-
tion matrix, we constrain the parameter updates to
occur only along directions without interfering with
prior knowledge. Our method effectively guaran-
tees that the edited model produces correct outputs
for target inputs while maintaining stability on un-
related inputs. In this way, our approach not only
corrects errors of editing outputs but also avoids
introducing biases to irrelevant tasks or degrading
the model’s essential capabilities. Specifically, in
multimodal tasks, we ensure that the interaction
between visual and textual information is not dis-
rupted by unnecessary interference.

Our method demonstrates strong performance
across two distinct VLLM architectures, highlight-
ing its generality and effectiveness. In particular,
we observe consistent improvements in locality, the
ability to constrain changes to the target region of
knowledge without affecting unrelated outputs. We
show that LPEdit enables effective editing while
preserving the integrity of prior knowledge, mark-
ing a small step forward in the exploration of local-
ity in multimodal knowledge editing.

2 Related work

Model editing has emerged as an essential research
area focused on modifying the behavior of pre-
trained large language models (LLMs) to integrate
new knowledge or correct factual errors, all with-
out the need for extensive retraining. In the text do-
main, knowledge editing has seen notable progress,
with various methods successfully achieving pre-
cise updates while minimizing unintended changes
to unrelated outputs. A more comprehensive review
of both unimodal and multimodal model editing
methods is provided in Appendix A.

Model Editing for VLLMs: While model edit-
ing has been widely studied for text-only LLMs, its
extension to VLLMs remains limited. MMEdit
(Cheng et al., 2023) first adapted LLM editing
methods to MLLMs by constructing dedicated edit-
ing datasets and evaluation protocols. UniKE (Pan
et al., 2024) is a unified multimodal editing frame-

work that models knowledge as key-value mem-
ories and disentangles semantics and truthfulness
to improve editing reliability. VisEdit (Chen et al.,
2025) introduces an attribution-based editor that
locates key visual layers and regions relevant to
prompts for targeted VLLM editing. FGVEdit
(Zeng et al., 2024) benchmark and MSCKE frame-
work integrate multimodal cues to support fine-
grained entity-level editing in images. Compre-
hendEdit (Ma et al., 2025)offers a comprehensive
benchmark with eight tasks and two new metrics
(KGI and KPI), along with HICE for balancing edit-
ing quality and preservation. MC-MKE benchmark
(Zhang et al., 2024) focused on modality consis-
tency by decomposing knowledge into visual and
textual parts and defining three editing formats.
MIKE (Li et al., 2024a) introduces a fine-grained
multimodal entity editing dataset with over 1,000
entities and multi-step editing tasks to enhance effi-
ciency and precision.

3 Method

3.1 Preliminary

For a VLLM fy € F, given an edit sample
(xf, xf,y°) such that fy(z§, z7) # y°, with 2§ and
x¢ representing the image and textual modal in-
puts, and o° being the pre-edit target output. Given
a VLLM editor Eeic(-) : (fo, 25, x5, y¢) — fps
where f) € F denotes the updated model, an effec-
tive multimodal knowledge editing method should
satisfy the following three evaluation criteria.

Reliability evaluates whether the post-edit
model can produce accurate outputs for the edited
instances, where D, is the set of edit samples and
I denotes the indicator function:

Bt sty U (a500) = 1)

Generality measures the model’s ability to adapt
its predictions to variations semantically or visually
related to the edited sample, encompassing both
modal and textual generality; specifically, Dy, (z§)
and Dy, () represent the textual and visual neigh-
borhoods of the image x{ and prompt x§, respec-
tively.
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Locality requires the revised model to maintain
consistent outputs with the original model on sam-



ples that are irrelevant to the edited instance, in-
cluding both textual and visual locality:

B¢ we 00)~Dedit E(gtv otu) Dy, (22)
I{fo.(0,21") = fo(0,2}")}
Eze 28 00)~Dedit Egin ziv giv) D, (22 22)
I{ fo.(ai",2}") = folai®,z}")}
Dy (xf) and Dy, (z§, z7) denote the sets of unre-
lated text-only and image samples, respectively.

3.2 Null Space Projection for Editing

To ensure that editing does not alter the model’s re-
sponses to unrelated inputs, we constrain parameter
updates to directions that are unlikely to interfere
with existing representations. This is achieved by
projecting the updates onto the approximate null
space of the input representations at selected layers.

Given a layer input matrix X € R™*¢ where n
denotes the number of input tokens and d is the fea-
ture dimension, we compute its uncentered covari-
ance matrix C' = X | X, which captures the raw
correlations among input features without mean
subtraction. Since not every covariance matrix pos-
sesses a strict null space in practice, we adopt a
strategy by approximating the null space via singu-
lar value decomposition (SVD).

We perform SVD on C, yielding UAU T, where
U = [U1,Us] contains the left singular vectors,
and A = diag([A1, A2]) is the diagonal matrix of
singular values. The subspace spanned by U; cor-
responds to high-variance (informative) directions,
while U spans the directions associated with near-
zero singular values. These latter directions define
an approximate null space of the input covariance.
To constrain the parameter update Aw to lie within
this null space, we project it as:

Awpan = UQUZTA'UJ.

This projection ensures that the update does not
alter the activations along directions that encode
existing task knowledge. In our implementation,
we apply this null space projection to the parame-
ter updates of the MLP projection matrix in high-
contribution layers, which are identified as particu-
larly influential for model predictions. This ensures
that the parameter updates occur only along the null
space directions, preserving the model’s core ca-
pabilities and stability of prior knowledge. As a
result, this approach effectively enables multimodal
knowledge editing while minimizing unintended
side effects on unrelated inputs.
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Figure 2: An illustration of our proposed method.

4 Experiments

4.1 Experiment setting

Datasets: In line with Cheng et al. (2023), we
adopt EVQA (Editing Visual Question Answering)
and E-IC (Editing Image Caption) as our bench-
mark datasets for evaluating editing performance.
VLLM Backbones: To ensure comprehensive eval-
uation in both model scale and architecture, we
select two representative VLLMs for experimenta-
tion: BLIP2-OPT (2.7B) (Li et al., 2024b), LLaVA-
V1.5 (7B) (Liu et al., 2023a).

Baselines: Since dedicated editing methods for
VLLMs have not yet been proposed, existing ap-
proaches primarily adapt LLM editors for use in
the multimodal setting (Cheng et al., 2023). We
include several representative baselines in our eval-
uation: FT'V (fine-tuning the visual encoder), TF-
L (fine-tuning the final language model layer),
IKE (Zheng et al., 2023), SERAC (Mitchell et al.,
2022c), MEND (Mitchell et al., 2022a), TP (Huang
et al., 2023), and LTE (Jiang et al., 2024). Full
experimental details, including model configura-
tions and training hyperparameters, are provided
in Appendix B. Based on these settings, we sys-
tematically assess editing performance and further
analyze the internal mechanisms of null space to
confirm its effectiveness in boosting locality.

4.2 Analysis of Editing Performance

Table 1 presents the overall editing results. In the
following, we provide a detailed experimental anal-
ysis from multiple perspectives.

In terms of method, LPEdit exhibits the
strongest overall performance among all editing



Table 1: Performance comparison on E-VQA and E-IC benchmarks on BLIP2-OPT (2.7B) and LLaVA-V1.5 (7B).
Rel., T-Gen., M-Gen., T-Loc., and M-Loc. denote Reliability, Textual Generality, Multimodal Generality, Textual
Locality, and Multimodal Locality. Average is computed over the five metrics.

Model Method E-VQA E-IC
Rel. T-Gen. M-Gen. T-Loc. M-Loc. Avg. | Rel. T-Gen. M-Gen. T-Loc. M-Loc. Avg.
FT-V 23.00 15.41 19.08 97.87 86.97 48.47 | 40.14 38.66 34.65 98.94 88.39 60.16
FT-L 23.63 15.86 19.94 96.75 88.41 4892 | 40.00 38.15 3541 98.02 87.46 59.81
IKE 97.31 89.80 90.17 12.38 1.77 58.35 | 95.38 76.48 81.16 12.67 2.05 53.55
SERAC 89.25 90.41 88.47 100.00 0.31 73.69 | 92.59 93.79 89.68 100.00 0.45 75.30
BLIP2-OPT MEND 90.59 89.86 90.46 94.52 63.74 85.83 | 64.23 35.88 34.21 90.99 55.07 56.08
TP 66.64 5939 55.04 97.50 83.77 72.47 | 47.03 46.72 4292 91.65 79.16 61.50
LTE 95.78 96.18 95.15 93.09 83.56 92.75 | 94.50 93.76 92.66 93.22 86.70 92.17
VisEdit 96.66 96.74 97.39 100.00 90.04 96.17 | 95.82 95.02 93.66 100.00 90.63 95.03
LPEdit97.774 97.53 96.86 100.00 97.41 97.91 | 96.44 96.02 93.97 100.00 94.58 96.20
FI-V 2992 28.19 25.87 98.32 89.97 54.45 | 52.02 50.85 46.23 98.30 91.12 67.70
FT-L 30.06 29.03 25.89 98.54 90.66 54.84 | 51.91 50.25 4698 97.59 93.78 68.10
IKE 89.88 89.15 89.17 59.32 50.56 75.62 | 92.49 86.66 78.46 74.88 64.11 79.32
SERAC 80.78 79.86 78.87 100.00 56.17 79.14 | 41.23 39.98 40.99 100.00 7.29 45.90
LLaVA-V1.5 MEND 90.06 90.52 90.52 89.43 80.11 88.13 | 91.90 9243 90.81 89.46 85.44 90.01
TP 4735 46.97 43.05 93.62 89.30 64.06 | 57.86 56.23 54.28 63.35 87.04 63.75
LTE 9299 92.12 91.57 81.73 79.70 87.62 | 92.04 90.77 89.78 84.38 87.21 88.84
VisEdit 95.12 95.02 93.85 100.00 93.97 95.59 | 95.06 94.19 93.12 100.00 94.74 95.42
LPEdit 95.15 9498 93.92 100.00 98.39 96.49 | 95.23 94.50 93.43 100.00 97.41 96.11

methods, particularly excelling in both locality met-
rics (T-Loc and M-Loc). VisEdit stands out as the
most effective among existing baselines, leveraging
precise visual-pathway manipulations to maintain
strong performance across diverse evaluation di-
mensions. LTE also achieves competitive results
through full-model fine-tuning, but shows limita-
tions in maintaining stable performance on non-
edited textual and visual outputs.

In terms of datasets, editing on E-VQA tends to
perform better, as corrections typically involve a
few key tokens. In contrast, E-IC requires full-
sentence caption rewriting grounded in compre-
hensive image understanding, which poses greater
challenges for maintaining locality.

In terms of models, most editors demonstrate
greater stability on BLIP2-OPT, likely due to
clearer modular separation between visual and lan-
guage pathways, allowing local interventions to
remain more contained. In contrast, LLaVA-V1.5
integrates visual features more deeply into the lan-
guage decoder, making localized editing more diffi-
cult and leading to increased performance variation
among editors. This highlights the importance of
architectural compatibility in multimodal editing.

In terms of evaluation metrics, LPEdit achieves
the highest performance on both textual and visual
locality metrics, indicating strong consistency on
unrelated samples across modalities. FT-V and

VisEdit, which apply edits to the visual modality,
naturally preserve the language generation pathway
and maintain linguistic locality and overall output
quality. In contrast, SERAC leverages a classifier
to identify purely textual inputs, which helps main-
tain locality on the language side but fails for visual
samples. Methods with lower overall performance
often exhibit high locality at the expense of reliabil-
ity and generality, suggesting that these objectives
are difficult to satisfy simultaneously. In contrast,
LPEdit demonstrates a more balanced performance:
it significantly enhances locality while maintaining
competitive reliability and generality.

5 Conclusions

We present LPEdit, a locality-preserving method
using null-space projection for multimodal knowl-
edge editing. By constraining parameter updates
to directions that minimally affect unrelated knowl-
edge, our method achieves accurate edits while
preserving model behavior on non-target informa-
tion. Experimental results across multiple models
and tasks demonstrate its effectiveness and general-
ization ability. LPEdit is only a small step towards
more general and reliable editing in multimodal sys-
tems, and locality-preserving capability is only the
beginning. We hope this work encourages further
research on knowledge editing techniques across
diverse vision-and-language domains.



6 Limitations

Despite the effectiveness of LPEDIT, our study has
several limitations. First, we evaluate our method
on widely adopted VLLMs, but do not include the
most recent models such as the latest LLaVA vari-
ants or Qwen2.5-VL, which may exhibit different
cross-modal behaviors. Second, our experiments
rely on datasets derived from COCO images, which
have been extensively used in training and may al-
ready be memorized by some foundation models.
As VLLMs continue to evolve, there is a growing
need for new visual data and pretraining corpora
that better reflect contemporary content and usage
patterns. Third, although we introduce controlled
variations in both visual and textual inputs, our
evaluation remains grounded in two established
benchmarks: EVQA and EIC. Recently proposed
benchmarks target different aspects of multimodal
reasoning, including new datasets, evaluation pro-
tocols, and task paradigms. Future work should
explore whether LPEDIT generalizes well to these
emerging settings and tasks.

7 Ethical Statement

This research follows ethical guidelines in both
the collection and use of data and the use of open-
source models. The datasets used in this study,
including E-VQA and E-IC, are publicly available
and were used in accordance with their respective
licenses. We acknowledge that large-scale models
may inherit and perpetuate biases present in train-
ing data, and we make efforts to minimize these
biases by carefully curating the datasets and apply-
ing appropriate methods for evaluation. All experi-
ments were conducted in compliance with ethical
standards, ensuring that no personal or sensitive
data was used in the analysis. We follow the usage
protocols and licenses of the open-source models
we build upon. We are committed to advancing
research in a manner that promotes fairness, trans-
parency, and accountability. This work was con-
ducted during the author’s internship at Bytedance,
and the authors are required to adhere to the com-
pany’s regulations. The authors are committed to
ensuring that no proprietary data is leaked, and the
codebase will only be made publicly available after
undergoing a review process. The authors have
already submitted the code for review, and it is cur-
rently under evaluation. We expect to release the
specific code and related information in the next
phase, following the approval process.
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A Related Work

A.1 Vision Language Models

Recent advances in large language models (LLMs)
have catalyzed the growing interest in integrating
vision modalities into language systems to form vi-
sion language large language models (VLLMs). A
typical architecture involves coupling a pre-trained
visual encoder, most commonly a Vision Trans-
former (ViT)(Dosovitskiy et al., 2021), with a
frozen or lightly tuned LLM decoder. These sys-
tems are trained in a two-stage pipeline. The first
phase involves aligning the image features with the
token space of the LLM via lightweight feedfor-
ward adapters or more structured modules, such
as the resampler (Li et al., 2024b). The second
stage involves task-specific fine-tuning across a
broad range of multimodal tasks such as visual
question answering (Antol et al., 2015) and caption
correction dataset (Cheng et al., 2023), adapted to
interactive vision-language scenarios.

VLLMs can be broadly categorized by their
modality fusion strategies into Modal Deep Fusion
(MDF) and Modal Early Fusion (MEF) architec-
tures (Du et al., 2022a). MDF approaches, such as
VILBERT (Lu et al., 2019) and Flamingo (Alayrac
et al., 2022), incorporate visual information into
the intermediate layers of the LLM through cross-
modal attention. In contrast, MEF methods project
image features into the input space of the LLM
before language processing begins. For instance,
BLIP-2 (Li et al., 2024b) and MiniGPT-4 (Zhu
et al., 2024) employ a Q-Former module for visual
compression, while LLaVA (Liu et al., 2023b) uses
a single MLP layer to perform alignment. Due to its
modular design and scalability, MEF has emerged
as a more extensible and popular framework for
building VLLMs.

Model Editing for LLMs: Model editing for
large language models (LLMs) can be broadly cat-
egorized into approaches that either preserve or
modify the model’s internal parameters. Methods
in the first category avoid changing the model by
incorporating external mechanisms. For example,
IKE (Zheng et al., 2023) adjusts model outputs
via in-context demonstrations without any gradi-
ent updates, while SERAC (Mitchell et al., 2022c)
isolates the editing process using a counterfactual
model. T-Patcher (Huang et al., 2023) introduce
additional neurons to correct specific errors or en-
code new knowledge. MELO (?) leverages a vec-
tor database to dynamically activate LoRA blocks

based on retrieval. Similarly, GRACE (Hartvigsen
et al., 2023) maintains an external codebook for se-
quential knowledge updates. In contrast, parameter-
modifying approaches directly update the internal
weights to embed new knowledge. LTE (Jiang
et al., 2024)adapts LLMs through fine-tuning to
enable them to execute editing instructions effec-
tively. KE and MEND (Mitchell et al., 2022a) use
hypernetworks trained via meta-learning to predict
targeted weight changes efficiently. ROME (Meng
et al., 2022) locates factual knowledge in specific
layers using causal tracing and applies precise ed-
its, while MEMIT (Meng et al., 2023) extends this
to batch editing of multiple facts. AlphaEdit (Fang
et al., 2025) introduces a novel approach that al-
lows for precise and targeted modifications while
preserving the model’s overall performance.

B Experiments setting details

B.1 Dataset details

The E-VQA dataset, introduced by Cheng et al.
(2023), is designed to fine-tune VLLMs by ad-
dressing errors found in samples from the VQA-v2
benchmark (Goyal et al., 2019). It contains 6,345
examples for training and 2,093 for testing. In this
task, the model is given an image along with a rele-
vant question and must generate an accurate textual
response based on both visual and linguistic cues.
Similarly, the E-IC dataset, also from Cheng et al.
(2023), focuses on correcting mistakes in image
captioning using samples from the COCO Caption
dataset (Chen et al., 2015). This collection includes
2,849 training and 1,000 testing instances. The
image captioning task requires the model to inter-
pret the image content and produce a coherent and
informative textual description. Due to some am-
biguities in the inherent meaning of certain image
captions and issues arising from prompt genera-
tion, some responses were incorrectly classified as
correct. To address this, we performed a selective
removal of the problematic examples in both the E-
VQA and E-IC datasets. The final datasets used for
our experiments consist of the samples that passed
this cleaning process, with incorrect or ambiguous
examples removed.

Each instance in these datasets comprises one
core edit example, two for evaluating modality
and textual generality, and two targeting modal-
ity and textual locality. To construct the gener-
ality examples, alternate versions of the original
images and questions are produced using Stable



Diffusion (Zhang et al., 2025) and ChatGLM (Du
et al., 2022b), respectively. For locality evaluation,
unrelated images and questions are drawn from the
OK-VQA dataset (Antol et al., 2015) and the Natu-
ral Questions (NQ) dataset (Mitchell et al., 2022b),
ensuring a robust assessment of model specificity.

B.2 VLLMs details

BLIP2 (Li et al., 2024b) introduces a visual query
transformer, Q-Former, which is learned through a
two-stage pre-training process to capture key visual
information and bridge the gap between the frozen
visual encoder and the frozen language model. In
this paper, we follow Cheng et al. (2023) and ex-
periment with the BLIP2-OPT1 variant. LLaVA
(Liu et al., 2023a) uses GPT-4 (OpenAl, 2023) to
create an instruction tuning dataset for VLLM pre-
training, aligning visual and linguistic representa-
tions by training only a two-layer MLP between
the visual encoder and the LLaMA language model
(Touvron et al., 2023). While BLIP2 compresses
visual representations using Q-Former, LLaVA pro-
cesses the entire visual input, preserving all visual
information but at the cost of reduced inference
efficiency.

B.3 Baseline methods

We include several representative baselines in our
evaluation. For fine-tuning strategies, FI-V refers
to fine-tuning the visual encoder of the VLLM on
the edit sample, while FI-L fine-tunes only the fi-
nal layer of the language model. IKE (Zheng et al.,
2023) uses in-context learning with constructed
demonstrations to steer the model’s responses to-
ward the desired edits. SERAC (Mitchell et al.,
2022¢) trains both a classifier and a counterfac-
tual language model, redirecting inputs related to
the edit sample to the counterfactual model for in-
ference. MEND (Mitchell et al., 2022a) employs
an MLP to predict parameter offsets for the FFN
layer, conditioned on gradients from backpropaga-
tion with respect to the edit sample. TP (Huang
etal., 2023) augments the model with a new neuron
in the FFN layer that is trained specifically for the
edit sample. LTE (Jiang et al., 2024) fine-tunes the
language model to follow explicit editing instruc-
tions prepended to the input query. VisEdit (Chen
et al., 2025) introduces a novel VLLM editor that
effectively corrects knowledge by editing interme-
diate visual representations in regions important to
the edit prompt based on attribution analysis.

B.4 Model setting and Training details

To maximize the extraction of visual information
in VLLMs, our method is inserted prior to the high-
contribution layers identified through our analy-
sis. Specifically, our approach is applied at high-
contribution layers from layer 19 in BLIP-OPT and
from layer 18 in LLaVA-V1.5, resulting in 21M
and 33M trainable parameters, respectively. The
null-space threshold is set to 0.02. The learning
rate is set to n = 1 x 10~%, with a batch size of
B = 4 and a maximum of 200,000 training iter-
ations. We save a model checkpoint every 500
iterations and select the checkpoint with the low-
est loss for evaluation. We conduct our training
on two Nvidia HGX H20 Enterprise 96GB. All re-
ported results are averaged over five independent
runs with different random seeds while keeping all
other hyperparameters fixed.

C Method Details

C.1 SVD

Singular Value Decomposition (SVD) is a widely
used technique for matrix factorization. Given any
real matrix A’ € R"*¢, SVD decomposes A’ as

V1T

V2T

A= (ug,uy - ,u ) W
VkT

/
A = oyuyvi? + oguaval 4 - opuvi”

where o1, . . ., oy, are the singular values of the ma-
trix. where u; € R™ are the left singular vec-
tors, v; € R? are the right singular vectors, and
o; are the singular values for ¢+ = 1,..., k, with
k = min(n,d). Plus, W € RF** is a diagonal
matrix defined as

o1 0
W p—
0 O

In our method, we perform SVD on the uncen-
tered covariance matrix of the layer input (i.e.,
C = X TX) to obtain its singular values and sin-
gular vectors. The directions corresponding to
near-zero singular values (i.e., the singular vec-
tors in the approximate null space) are then used to
construct projection matrices for parameter update
constraints. This decomposition is efficiently com-
puted with standard linear algebra libraries such as
NumPy or PyTorch.



C.2 Closed-Form Derivation of Null-Space
Projected Update

As a theoretical supplement to the null space pro-
jection method described in the main paper, we
derive a closed-form expression for the projected
parameter update. This establishes a principled
basis for ensuring that updates remain within the
approximate null space while staying close to the
original gradient.

To further formalize the update process, we aim
to find a projected parameter update Awpyy that
not only lies in the approximate null space spanned
by Us, but also minimally deviates from the uncon-
strained gradient direction. We define the following
objective:

T 2 T 2
J= HUQU2 Aw—gH +>\HU2U2 AwH ,

where g is the original unconstrained gradient up-
date and A is a regularization coefficient. The first
term encourages the projected update to follow the
original direction g, while the second term penal-
izes large steps in the null space.

Taking the derivative of J with respect to Aw
and setting it to zero yields the following first-order
condition:

(1+ NUU,) Aw = UsUy g.

Solving for Aw, we obtain the optimal uncon-
strained update before projection:

1

Aw :1+)\

UsUsy g.
Finally, the null-space-constrained update is
given by projecting Aw* back into the null space:

1

Awp = UQUQTAw* =1 )

UUy g.

This closed-form solution ensures that the up-
date remains within the approximate null space
while staying close to the gradient signal, thereby
preserving the model’s behavior on unrelated in-
puts. Plus, this derivation follows the structure
of projection-based constrained optimization and
adapts to the multimodal representation space via
null-space projection from input covariance.

D Visualization and Examples

D.1 Visual examples

Figure 5 illustrates two editing samples and their
corresponding unrelated samples in visual form.
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Figure 3: The visualization of editing samples in
VLLMs.

In editing sample (1), the prompt is “What is
the animal on the road? It is”, with the
expected answer being “elephant”. In editing
sample (2), the prompt is “What is the person
holding? It is”, with the expected answer being
“cell phone”. These samples serve as our targets
for multimodal knowledge editing.

To assess whether our method maintains locality,
we further present two unrelated examples. In the
first unrelated sample, the prompt is “What animal
is on the track? It is”, with the correct an-
swer “horse”. In the second, the prompt is “What
color are the flowers in the vase? It is”,
and the answer is “yellow”.

From the heatmaps shown in both the Original
and Revised visualizations, we observe that the
model correctly focuses on the relevant visual re-
gions specified in the prompt. Notably, even after
editing, the model continues to attend to the correct
visual cues in the unrelated examples. This indi-
cates that our method not only succeeds in perform-
ing effective knowledge editing for the intended
visual-textual pairs, but also preserves the model’s
behavior on unrelated inputs.

These visualizations provide qualitative evi-
dence that our method enables consistent and local-
ized multimodal editing in vision-language models
(VLLMs), supporting the quantitative results re-
ported in the main text.

D.2 Textual examples

To better illustrate the structure and intent of each
task, we provide two representative examples for
each of the two tasks: E-VQA and E-IC. These
examples serve as concrete references to help read-
ers understand how the prompts and target outputs



"src": "Why is this bike parked in a forest?",

"pred' is cycle",
"rephrase": "What is the reason for this bike being stationary in a wooded area?",
"alt": "yes",
"image" 12014_000000153083. jpg",
"image_rephrase' 2014_image_rephrase/153083001_C0C0_val2014_000000153083.png" ,
nq question: who climbed up the beanstalk to get back his money bag hen and h:
"loc_ans": "Jack",
14/C0C0O_val2014_000000111032. jpa",
"What brand is this wine?
"becker vineyards"

"What is in the bowl?",
“pred": "grass",
"rephrase": "What is inside the bowl?",
"alt": "lettuce'
"image": "val2014, 12014_000000022112. jpg",
"image_rephrase": "val2014_ima phrase/22112002_C0C0_val2014_000000022112.png",
"loc": "nq question: dwarfs in snow white and the huntsman movie",
"loc_ans": "Ian McShane",
12014/C0C0_val2014_000000509641. pg",
"What would happen if these i s fall to the ground?",
“shatter"

Figure 4: The two examples of VQA

"a photo of",
"chopped carrots and a knife on a cutting board",
offer a rich description of the image,",
"alt": "A knife and progressively finely chopped up carrots.",
"image": "val2014/C0C0_val2014_000000006415.jpg",
mage_rephrase": "val2014_image_rephrase/C0C0_val2014_000000006415.png"
"nq question: who is winner in telugu bigg boss 2",
"Kaushal",
"val2014/C0C0_val2014_000000493799. jpg",
: "What are the white veggies?",
"leek

"src": "a photo of",
"pred": "a man riding a surfboard down a river",
"rephrase": "please provide a detailed description of this picture,",
"A man on a surfboard that is on a wave.",
"val2014/C0C0O_val2014_000000127842.jpg",
image_rephrase": "val2014_image_rephrase/C0C0_val2014_000000127842.png"

"loc": "ng question: how long does a english springer spaniel live"

a typical lifespan of twelve to fourteen years",

val2014/C0C0_val2014_000000293452. jpg",
"What country or countries will you find these birds in?",
"new zealand"

Figure 5: The two examples of IC

are formulated in each setting. By examining these
instances, one can gain clearer insight into how the
multimodal task is formed during editing.
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