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Abstract001

Large Language Models (LLMs) and Vision002
Large Language Models (VLLMs) demonstrate003
impressive abilities in comprehending natural004
language and interpreting visual information,005
but they can also preserve outdated or incorrect006
information in both forms. Existing knowl-007
edge editing methods can efficiently update er-008
roneous text information in LLMs, avoiding the009
need for full retraining. The locality in multi-010
modal knowledge editing refers to editing that011
should affect only the targeted outputs while012
preserving the model’s behavior on unrelated013
inputs in both textual and visual modalities.014
Existing methods often overlook this princi-015
ple and do not explicitly design to preserve016
the consistency of responses on unrelated in-017
formation. Here, we propose LPEdit, a novel018
method that leverages the null space projection019
on key layers to focus the editing on conveyed020
visual information without influencing unre-021
lated knowledge. Experiments show that our022
method achieves strong performance across dif-023
ferent models and datasets. Moreover, our work024
advances the understanding and development025
of locality in multimodal knowledge editing.026

1 Introduction027

LLMs store vast amounts of factual knowledge ac-028

quired from large-scale pretraining corpora (Ope-029

nAI, 2023; Touvron et al., 2023). However, these030

corpora often contain outdated or incorrect infor-031

mation, prompting growing interest in model edit-032

ing techniques that can efficiently revise specific033

knowledge without full retraining (Sajjad et al.,034

2022). This line of work addresses the need for035

dynamic updates in deployed models while avoid-036

ing the high cost of retraining (Roberts et al., 2020;037

Petroni et al., 2019).038

Recent model editing efforts have mainly fo-039

cused on the text modality and can be broadly040

classified into two categories. The first directly041

Figure 1: Multimodal knowledge editing leads to differ-
ent types of incorrect responses on images and questions,
from the EVQA dataset, unrelated to the editing target.

modifies model parameters to embed new knowl- 042

edge (Meng et al., 2022, 2023; Cao et al., 2021; 043

Mitchell et al., 2022a; Jiang et al., 2024), while the 044

second introduces external mechanisms (e.g., mem- 045

ory modules or adapters) without altering internal 046

weights (Zheng et al., 2023; Mitchell et al., 2022c; 047

Hartvigsen et al., 2023; Huang et al., 2023). 048

Editing VLLMs introduces unique challenges 049

due to the complex interactions between visual and 050

textual modalities, making it a relatively underex- 051

plored area. Prior work has extended text-based 052

editing methods to VLLMs and proposed evalua- 053

tion metrics (Cheng et al., 2023; Basu et al., 2024), 054

but results suggest that such editors are often sub- 055

optimal, likely due to cross-modal dependencies 056

beyond decoder weights. While recent methods 057

have made notable progress in ensuring the correct- 058

ness of edited answers, they often struggle to main- 059

tain the model’s behavior on irrelevant samples. As 060

a result, they may introduce unintended failures, 061

such as off-topic responses, factual interference, or 062

linguistic degradation (Gupta et al., 2024; Gu et al., 063

2024), shown in Figure 1. These limitations un- 064

derscore the need for editing methods that not only 065

correct target outputs but also maintain the model’s 066

overall reliability and behavior on unrelated inputs. 067
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While methods using null space projection (Wang068

et al., 2021) to preserve original knowledge during069

editing have proven effective, they have not yet070

been applied to multimodal systems.071

To achieve this, we introduce LPEdit, which072

adopt null space projection to ensure that the073

model’s performance on unrelated inputs remains074

unaffected while correcting the target outputs. By075

applying null space projection to the MLP projec-076

tion matrix, we constrain the parameter updates to077

occur only along directions without interfering with078

prior knowledge. Our method effectively guaran-079

tees that the edited model produces correct outputs080

for target inputs while maintaining stability on un-081

related inputs. In this way, our approach not only082

corrects errors of editing outputs but also avoids083

introducing biases to irrelevant tasks or degrading084

the model’s essential capabilities. Specifically, in085

multimodal tasks, we ensure that the interaction086

between visual and textual information is not dis-087

rupted by unnecessary interference.088

Our method demonstrates strong performance089

across two distinct VLLM architectures, highlight-090

ing its generality and effectiveness. In particular,091

we observe consistent improvements in locality, the092

ability to constrain changes to the target region of093

knowledge without affecting unrelated outputs. We094

show that LPEdit enables effective editing while095

preserving the integrity of prior knowledge, mark-096

ing a small step forward in the exploration of local-097

ity in multimodal knowledge editing.098

2 Related work099

Model editing has emerged as an essential research100

area focused on modifying the behavior of pre-101

trained large language models (LLMs) to integrate102

new knowledge or correct factual errors, all with-103

out the need for extensive retraining. In the text do-104

main, knowledge editing has seen notable progress,105

with various methods successfully achieving pre-106

cise updates while minimizing unintended changes107

to unrelated outputs. A more comprehensive review108

of both unimodal and multimodal model editing109

methods is provided in Appendix A.110

Model Editing for VLLMs: While model edit-111

ing has been widely studied for text-only LLMs, its112

extension to VLLMs remains limited. MMEdit113

(Cheng et al., 2023) first adapted LLM editing114

methods to MLLMs by constructing dedicated edit-115

ing datasets and evaluation protocols. UniKE (Pan116

et al., 2024) is a unified multimodal editing frame-117

work that models knowledge as key-value mem- 118

ories and disentangles semantics and truthfulness 119

to improve editing reliability. VisEdit (Chen et al., 120

2025) introduces an attribution-based editor that 121

locates key visual layers and regions relevant to 122

prompts for targeted VLLM editing. FGVEdit 123

(Zeng et al., 2024) benchmark and MSCKE frame- 124

work integrate multimodal cues to support fine- 125

grained entity-level editing in images. Compre- 126

hendEdit (Ma et al., 2025)offers a comprehensive 127

benchmark with eight tasks and two new metrics 128

(KGI and KPI), along with HICE for balancing edit- 129

ing quality and preservation. MC-MKE benchmark 130

(Zhang et al., 2024) focused on modality consis- 131

tency by decomposing knowledge into visual and 132

textual parts and defining three editing formats. 133

MIKE (Li et al., 2024a) introduces a fine-grained 134

multimodal entity editing dataset with over 1,000 135

entities and multi-step editing tasks to enhance effi- 136

ciency and precision. 137

3 Method 138

3.1 Preliminary 139

For a VLLM fθ ∈ F , given an edit sample 140

(xei , x
e
t , y

e) such that fθ(xei , x
e
t ) ̸= ye, with xei and 141

xet representing the image and textual modal in- 142

puts, and oe being the pre-edit target output. Given 143

a VLLM editor Eedit(·) : (fθ, x
e
i , x

e
t , y

e) −→ f ′
θ, 144

where f ′
θ ∈ F denotes the updated model, an effec- 145

tive multimodal knowledge editing method should 146

satisfy the following three evaluation criteria. 147

Reliability evaluates whether the post-edit 148

model can produce accurate outputs for the edited 149

instances, where De is the set of edit samples and 150

I denotes the indicator function: 151

E(xe
i ,x

e
t ,y

e)∼Dedit
I {fθe (xei , xet ) = ye} 152

Generality measures the model’s ability to adapt 153

its predictions to variations semantically or visually 154

related to the edited sample, encompassing both 155

modal and textual generality; specifically, Dtn(x
e
t ) 156

and Din(x
e
i ) represent the textual and visual neigh- 157

borhoods of the image xei and prompt xet , respec- 158

tively. 159

E(xe
i ,x

e
t ,y

e)∼De
Extn

t ∼Dtn(xe
t )
I
{
fθe

(
xei , x

tn
t

)
= ye

}
E(xe

i ,x
e
t ,y

e)∼De
Exin

i ∼Din(xe
i )
I
{
fθe

(
xini , xet

)
= ye

} 160

Locality requires the revised model to maintain 161

consistent outputs with the original model on sam- 162
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ples that are irrelevant to the edited instance, in-163

cluding both textual and visual locality:164

E(xe
i ,x

e
t ,o

e)∼Dedit E(xtu
t ,otu)∼Dtu(xe

t )

I
{
fθe(∅, xtut ) = fθ(∅, xtut )

}
E(xe

i ,x
e
t ,o

e)∼Dedit E(xiu
i ,xiu

t ,oiu)∼Diu(xe
i ,x

e
t )

I
{
fθe(x

iu
i , xiut ) = fθ(x

iu
i , xiut )

}165

Dtu(x
e
t ) and Diu(x

e
i , x

e
t ) denote the sets of unre-166

lated text-only and image samples, respectively.167

3.2 Null Space Projection for Editing168

To ensure that editing does not alter the model’s re-169

sponses to unrelated inputs, we constrain parameter170

updates to directions that are unlikely to interfere171

with existing representations. This is achieved by172

projecting the updates onto the approximate null173

space of the input representations at selected layers.174

Given a layer input matrix X ∈ Rn×d where n175

denotes the number of input tokens and d is the fea-176

ture dimension, we compute its uncentered covari-177

ance matrix C = X⊤X , which captures the raw178

correlations among input features without mean179

subtraction. Since not every covariance matrix pos-180

sesses a strict null space in practice, we adopt a181

strategy by approximating the null space via singu-182

lar value decomposition (SVD).183

We perform SVD on C, yielding UΛU⊤, where184

U = [U1, U2] contains the left singular vectors,185

and Λ = diag([Λ1,Λ2]) is the diagonal matrix of186

singular values. The subspace spanned by U1 cor-187

responds to high-variance (informative) directions,188

while U2 spans the directions associated with near-189

zero singular values. These latter directions define190

an approximate null space of the input covariance.191

To constrain the parameter update ∆w to lie within192

this null space, we project it as:193

∆wnull = U2U
⊤
2 ∆w.194

This projection ensures that the update does not195

alter the activations along directions that encode196

existing task knowledge. In our implementation,197

we apply this null space projection to the parame-198

ter updates of the MLP projection matrix in high-199

contribution layers, which are identified as particu-200

larly influential for model predictions. This ensures201

that the parameter updates occur only along the null202

space directions, preserving the model’s core ca-203

pabilities and stability of prior knowledge. As a204

result, this approach effectively enables multimodal205

knowledge editing while minimizing unintended206

side effects on unrelated inputs.207

Figure 2: An illustration of our proposed method.

4 Experiments 208

4.1 Experiment setting 209

Datasets: In line with Cheng et al. (2023), we 210

adopt EVQA (Editing Visual Question Answering) 211

and E-IC (Editing Image Caption) as our bench- 212

mark datasets for evaluating editing performance. 213

VLLM Backbones: To ensure comprehensive eval- 214

uation in both model scale and architecture, we 215

select two representative VLLMs for experimenta- 216

tion: BLIP2-OPT (2.7B) (Li et al., 2024b), LLaVA- 217

V1.5 (7B) (Liu et al., 2023a). 218

Baselines: Since dedicated editing methods for 219

VLLMs have not yet been proposed, existing ap- 220

proaches primarily adapt LLM editors for use in 221

the multimodal setting (Cheng et al., 2023). We 222

include several representative baselines in our eval- 223

uation: FTV (fine-tuning the visual encoder), TF- 224

L (fine-tuning the final language model layer), 225

IKE (Zheng et al., 2023), SERAC (Mitchell et al., 226

2022c), MEND (Mitchell et al., 2022a), TP (Huang 227

et al., 2023), and LTE (Jiang et al., 2024). Full 228

experimental details, including model configura- 229

tions and training hyperparameters, are provided 230

in Appendix B. Based on these settings, we sys- 231

tematically assess editing performance and further 232

analyze the internal mechanisms of null space to 233

confirm its effectiveness in boosting locality. 234

4.2 Analysis of Editing Performance 235

Table 1 presents the overall editing results. In the 236

following, we provide a detailed experimental anal- 237

ysis from multiple perspectives. 238

In terms of method, LPEdit exhibits the 239

strongest overall performance among all editing 240
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Table 1: Performance comparison on E-VQA and E-IC benchmarks on BLIP2-OPT (2.7B) and LLaVA-V1.5 (7B).
Rel., T-Gen., M-Gen., T-Loc., and M-Loc. denote Reliability, Textual Generality, Multimodal Generality, Textual
Locality, and Multimodal Locality. Average is computed over the five metrics.

Model Method
E-VQA E-IC

Rel. T-Gen. M-Gen. T-Loc. M-Loc. Avg. Rel. T-Gen. M-Gen. T-Loc. M-Loc. Avg.

BLIP2-OPT

FT-V 23.00 15.41 19.08 97.87 86.97 48.47 40.14 38.66 34.65 98.94 88.39 60.16
FT-L 23.63 15.86 19.94 96.75 88.41 48.92 40.00 38.15 35.41 98.02 87.46 59.81
IKE 97.31 89.80 90.17 12.38 1.77 58.35 95.38 76.48 81.16 12.67 2.05 53.55

SERAC 89.25 90.41 88.47 100.00 0.31 73.69 92.59 93.79 89.68 100.00 0.45 75.30
MEND 90.59 89.86 90.46 94.52 63.74 85.83 64.23 35.88 34.21 90.99 55.07 56.08

TP 66.64 59.39 55.04 97.50 83.77 72.47 47.03 46.72 42.92 91.65 79.16 61.50
LTE 95.78 96.18 95.15 93.09 83.56 92.75 94.50 93.76 92.66 93.22 86.70 92.17

VisEdit 96.66 96.74 97.39 100.00 90.04 96.17 95.82 95.02 93.66 100.00 90.63 95.03
LPE di t 97.74 97.53 96.86 100.00 97.41 97.91 96.44 96.02 93.97 100.00 94.58 96.20

LLaVA-V1.5

FT-V 29.92 28.19 25.87 98.32 89.97 54.45 52.02 50.85 46.23 98.30 91.12 67.70
FT-L 30.06 29.03 25.89 98.54 90.66 54.84 51.91 50.25 46.98 97.59 93.78 68.10
IKE 89.88 89.15 89.17 59.32 50.56 75.62 92.49 86.66 78.46 74.88 64.11 79.32

SERAC 80.78 79.86 78.87 100.00 56.17 79.14 41.23 39.98 40.99 100.00 7.29 45.90
MEND 90.06 90.52 90.52 89.43 80.11 88.13 91.90 92.43 90.81 89.46 85.44 90.01

TP 47.35 46.97 43.05 93.62 89.30 64.06 57.86 56.23 54.28 63.35 87.04 63.75
LTE 92.99 92.12 91.57 81.73 79.70 87.62 92.04 90.77 89.78 84.38 87.21 88.84

VisEdit 95.12 95.02 93.85 100.00 93.97 95.59 95.06 94.19 93.12 100.00 94.74 95.42
LPEdit 95.15 94.98 93.92 100.00 98.39 96.49 95.23 94.50 93.43 100.00 97.41 96.11

methods, particularly excelling in both locality met-241

rics (T-Loc and M-Loc). VisEdit stands out as the242

most effective among existing baselines, leveraging243

precise visual-pathway manipulations to maintain244

strong performance across diverse evaluation di-245

mensions. LTE also achieves competitive results246

through full-model fine-tuning, but shows limita-247

tions in maintaining stable performance on non-248

edited textual and visual outputs.249

In terms of datasets, editing on E-VQA tends to250

perform better, as corrections typically involve a251

few key tokens. In contrast, E-IC requires full-252

sentence caption rewriting grounded in compre-253

hensive image understanding, which poses greater254

challenges for maintaining locality.255

In terms of models, most editors demonstrate256

greater stability on BLIP2-OPT, likely due to257

clearer modular separation between visual and lan-258

guage pathways, allowing local interventions to259

remain more contained. In contrast, LLaVA-V1.5260

integrates visual features more deeply into the lan-261

guage decoder, making localized editing more diffi-262

cult and leading to increased performance variation263

among editors. This highlights the importance of264

architectural compatibility in multimodal editing.265

In terms of evaluation metrics, LPEdit achieves266

the highest performance on both textual and visual267

locality metrics, indicating strong consistency on268

unrelated samples across modalities. FT-V and269

VisEdit, which apply edits to the visual modality, 270

naturally preserve the language generation pathway 271

and maintain linguistic locality and overall output 272

quality. In contrast, SERAC leverages a classifier 273

to identify purely textual inputs, which helps main- 274

tain locality on the language side but fails for visual 275

samples. Methods with lower overall performance 276

often exhibit high locality at the expense of reliabil- 277

ity and generality, suggesting that these objectives 278

are difficult to satisfy simultaneously. In contrast, 279

LPEdit demonstrates a more balanced performance: 280

it significantly enhances locality while maintaining 281

competitive reliability and generality. 282

5 Conclusions 283

We present LPEdit, a locality-preserving method 284

using null-space projection for multimodal knowl- 285

edge editing. By constraining parameter updates 286

to directions that minimally affect unrelated knowl- 287

edge, our method achieves accurate edits while 288

preserving model behavior on non-target informa- 289

tion. Experimental results across multiple models 290

and tasks demonstrate its effectiveness and general- 291

ization ability. LPEdit is only a small step towards 292

more general and reliable editing in multimodal sys- 293

tems, and locality-preserving capability is only the 294

beginning. We hope this work encourages further 295

research on knowledge editing techniques across 296

diverse vision-and-language domains. 297
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6 Limitations298

Despite the effectiveness of LPEDIT, our study has299

several limitations. First, we evaluate our method300

on widely adopted VLLMs, but do not include the301

most recent models such as the latest LLaVA vari-302

ants or Qwen2.5-VL, which may exhibit different303

cross-modal behaviors. Second, our experiments304

rely on datasets derived from COCO images, which305

have been extensively used in training and may al-306

ready be memorized by some foundation models.307

As VLLMs continue to evolve, there is a growing308

need for new visual data and pretraining corpora309

that better reflect contemporary content and usage310

patterns. Third, although we introduce controlled311

variations in both visual and textual inputs, our312

evaluation remains grounded in two established313

benchmarks: EVQA and EIC. Recently proposed314

benchmarks target different aspects of multimodal315

reasoning, including new datasets, evaluation pro-316

tocols, and task paradigms. Future work should317

explore whether LPEDIT generalizes well to these318

emerging settings and tasks.319

7 Ethical Statement320

This research follows ethical guidelines in both321

the collection and use of data and the use of open-322

source models. The datasets used in this study,323

including E-VQA and E-IC, are publicly available324

and were used in accordance with their respective325

licenses. We acknowledge that large-scale models326

may inherit and perpetuate biases present in train-327

ing data, and we make efforts to minimize these328

biases by carefully curating the datasets and apply-329

ing appropriate methods for evaluation. All experi-330

ments were conducted in compliance with ethical331

standards, ensuring that no personal or sensitive332

data was used in the analysis. We follow the usage333

protocols and licenses of the open-source models334

we build upon. We are committed to advancing335

research in a manner that promotes fairness, trans-336

parency, and accountability. This work was con-337

ducted during the author’s internship at Bytedance,338

and the authors are required to adhere to the com-339

pany’s regulations. The authors are committed to340

ensuring that no proprietary data is leaked, and the341

codebase will only be made publicly available after342

undergoing a review process. The authors have343

already submitted the code for review, and it is cur-344

rently under evaluation. We expect to release the345

specific code and related information in the next346

phase, following the approval process.347
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A Related Work568

A.1 Vision Language Models569

Recent advances in large language models (LLMs)570

have catalyzed the growing interest in integrating571

vision modalities into language systems to form vi-572

sion language large language models (VLLMs). A573

typical architecture involves coupling a pre-trained574

visual encoder, most commonly a Vision Trans-575

former (ViT)(Dosovitskiy et al., 2021), with a576

frozen or lightly tuned LLM decoder. These sys-577

tems are trained in a two-stage pipeline. The first578

phase involves aligning the image features with the579

token space of the LLM via lightweight feedfor-580

ward adapters or more structured modules, such581

as the resampler (Li et al., 2024b). The second582

stage involves task-specific fine-tuning across a583

broad range of multimodal tasks such as visual584

question answering (Antol et al., 2015) and caption585

correction dataset (Cheng et al., 2023), adapted to586

interactive vision-language scenarios.587

VLLMs can be broadly categorized by their588

modality fusion strategies into Modal Deep Fusion589

(MDF) and Modal Early Fusion (MEF) architec-590

tures (Du et al., 2022a). MDF approaches, such as591

ViLBERT (Lu et al., 2019) and Flamingo (Alayrac592

et al., 2022), incorporate visual information into593

the intermediate layers of the LLM through cross-594

modal attention. In contrast, MEF methods project595

image features into the input space of the LLM596

before language processing begins. For instance,597

BLIP-2 (Li et al., 2024b) and MiniGPT-4 (Zhu598

et al., 2024) employ a Q-Former module for visual599

compression, while LLaVA (Liu et al., 2023b) uses600

a single MLP layer to perform alignment. Due to its601

modular design and scalability, MEF has emerged602

as a more extensible and popular framework for603

building VLLMs.604

Model Editing for LLMs: Model editing for605

large language models (LLMs) can be broadly cat-606

egorized into approaches that either preserve or607

modify the model’s internal parameters. Methods608

in the first category avoid changing the model by609

incorporating external mechanisms. For example,610

IKE (Zheng et al., 2023) adjusts model outputs611

via in-context demonstrations without any gradi-612

ent updates, while SERAC (Mitchell et al., 2022c)613

isolates the editing process using a counterfactual614

model. T-Patcher (Huang et al., 2023) introduce615

additional neurons to correct specific errors or en-616

code new knowledge. MELO (?) leverages a vec-617

tor database to dynamically activate LoRA blocks618

based on retrieval. Similarly, GRACE (Hartvigsen 619

et al., 2023) maintains an external codebook for se- 620

quential knowledge updates. In contrast, parameter- 621

modifying approaches directly update the internal 622

weights to embed new knowledge. LTE (Jiang 623

et al., 2024)adapts LLMs through fine-tuning to 624

enable them to execute editing instructions effec- 625

tively. KE and MEND (Mitchell et al., 2022a) use 626

hypernetworks trained via meta-learning to predict 627

targeted weight changes efficiently. ROME (Meng 628

et al., 2022) locates factual knowledge in specific 629

layers using causal tracing and applies precise ed- 630

its, while MEMIT (Meng et al., 2023) extends this 631

to batch editing of multiple facts. AlphaEdit (Fang 632

et al., 2025) introduces a novel approach that al- 633

lows for precise and targeted modifications while 634

preserving the model’s overall performance. 635

B Experiments setting details 636

B.1 Dataset details 637

The E-VQA dataset, introduced by Cheng et al. 638

(2023), is designed to fine-tune VLLMs by ad- 639

dressing errors found in samples from the VQA-v2 640

benchmark (Goyal et al., 2019). It contains 6,345 641

examples for training and 2,093 for testing. In this 642

task, the model is given an image along with a rele- 643

vant question and must generate an accurate textual 644

response based on both visual and linguistic cues. 645

Similarly, the E-IC dataset, also from Cheng et al. 646

(2023), focuses on correcting mistakes in image 647

captioning using samples from the COCO Caption 648

dataset (Chen et al., 2015). This collection includes 649

2,849 training and 1,000 testing instances. The 650

image captioning task requires the model to inter- 651

pret the image content and produce a coherent and 652

informative textual description. Due to some am- 653

biguities in the inherent meaning of certain image 654

captions and issues arising from prompt genera- 655

tion, some responses were incorrectly classified as 656

correct. To address this, we performed a selective 657

removal of the problematic examples in both the E- 658

VQA and E-IC datasets. The final datasets used for 659

our experiments consist of the samples that passed 660

this cleaning process, with incorrect or ambiguous 661

examples removed. 662

Each instance in these datasets comprises one 663

core edit example, two for evaluating modality 664

and textual generality, and two targeting modal- 665

ity and textual locality. To construct the gener- 666

ality examples, alternate versions of the original 667

images and questions are produced using Stable 668
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Diffusion (Zhang et al., 2025) and ChatGLM (Du669

et al., 2022b), respectively. For locality evaluation,670

unrelated images and questions are drawn from the671

OK-VQA dataset (Antol et al., 2015) and the Natu-672

ral Questions (NQ) dataset (Mitchell et al., 2022b),673

ensuring a robust assessment of model specificity.674

B.2 VLLMs details675

BLIP2 (Li et al., 2024b) introduces a visual query676

transformer, Q-Former, which is learned through a677

two-stage pre-training process to capture key visual678

information and bridge the gap between the frozen679

visual encoder and the frozen language model. In680

this paper, we follow Cheng et al. (2023) and ex-681

periment with the BLIP2-OPT1 variant. LLaVA682

(Liu et al., 2023a) uses GPT-4 (OpenAI, 2023) to683

create an instruction tuning dataset for VLLM pre-684

training, aligning visual and linguistic representa-685

tions by training only a two-layer MLP between686

the visual encoder and the LLaMA language model687

(Touvron et al., 2023). While BLIP2 compresses688

visual representations using Q-Former, LLaVA pro-689

cesses the entire visual input, preserving all visual690

information but at the cost of reduced inference691

efficiency.692

B.3 Baseline methods693

We include several representative baselines in our694

evaluation. For fine-tuning strategies, FT-V refers695

to fine-tuning the visual encoder of the VLLM on696

the edit sample, while FT-L fine-tunes only the fi-697

nal layer of the language model. IKE (Zheng et al.,698

2023) uses in-context learning with constructed699

demonstrations to steer the model’s responses to-700

ward the desired edits. SERAC (Mitchell et al.,701

2022c) trains both a classifier and a counterfac-702

tual language model, redirecting inputs related to703

the edit sample to the counterfactual model for in-704

ference. MEND (Mitchell et al., 2022a) employs705

an MLP to predict parameter offsets for the FFN706

layer, conditioned on gradients from backpropaga-707

tion with respect to the edit sample. TP (Huang708

et al., 2023) augments the model with a new neuron709

in the FFN layer that is trained specifically for the710

edit sample. LTE (Jiang et al., 2024) fine-tunes the711

language model to follow explicit editing instruc-712

tions prepended to the input query. VisEdit (Chen713

et al., 2025) introduces a novel VLLM editor that714

effectively corrects knowledge by editing interme-715

diate visual representations in regions important to716

the edit prompt based on attribution analysis.717

B.4 Model setting and Training details 718

To maximize the extraction of visual information 719

in VLLMs, our method is inserted prior to the high- 720

contribution layers identified through our analy- 721

sis. Specifically, our approach is applied at high- 722

contribution layers from layer 19 in BLIP-OPT and 723

from layer 18 in LLaVA-V1.5, resulting in 21M 724

and 33M trainable parameters, respectively. The 725

null-space threshold is set to 0.02. The learning 726

rate is set to η = 1 × 10−4, with a batch size of 727

B = 4 and a maximum of 200,000 training iter- 728

ations. We save a model checkpoint every 500 729

iterations and select the checkpoint with the low- 730

est loss for evaluation. We conduct our training 731

on two Nvidia HGX H20 Enterprise 96GB. All re- 732

ported results are averaged over five independent 733

runs with different random seeds while keeping all 734

other hyperparameters fixed. 735

C Method Details 736

C.1 SVD 737

Singular Value Decomposition (SVD) is a widely 738

used technique for matrix factorization. Given any 739

real matrix A′ ∈ Rn×d, SVD decomposes A′ as 740

A′ = (u1,u1 · · · ,uk)W


v1

T

v2
T

...
vk

T


A′ = σ1u1v1

T + σ2u2v2
T + · · ·+ σkukvk

T

741

where σ1, . . . , σk are the singular values of the ma- 742

trix. where ui ∈ Rn are the left singular vec- 743

tors, vi ∈ Rd are the right singular vectors, and 744

σi are the singular values for i = 1, . . . , k, with 745

k = min(n, d). Plus, W ∈ Rk×k is a diagonal 746

matrix defined as 747

W =

σ1 0
. . .

0 σk

 , 748

In our method, we perform SVD on the uncen- 749

tered covariance matrix of the layer input (i.e., 750

C = X⊤X) to obtain its singular values and sin- 751

gular vectors. The directions corresponding to 752

near-zero singular values (i.e., the singular vec- 753

tors in the approximate null space) are then used to 754

construct projection matrices for parameter update 755

constraints. This decomposition is efficiently com- 756

puted with standard linear algebra libraries such as 757

NumPy or PyTorch. 758
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C.2 Closed-Form Derivation of Null-Space759

Projected Update760

As a theoretical supplement to the null space pro-761

jection method described in the main paper, we762

derive a closed-form expression for the projected763

parameter update. This establishes a principled764

basis for ensuring that updates remain within the765

approximate null space while staying close to the766

original gradient.767

To further formalize the update process, we aim768

to find a projected parameter update ∆wnull that769

not only lies in the approximate null space spanned770

by U2, but also minimally deviates from the uncon-771

strained gradient direction. We define the following772

objective:773

J =
∥∥∥U2U

⊤
2 ∆w − g

∥∥∥2 + λ
∥∥∥U2U

⊤
2 ∆w

∥∥∥2 ,774

where g is the original unconstrained gradient up-775

date and λ is a regularization coefficient. The first776

term encourages the projected update to follow the777

original direction g, while the second term penal-778

izes large steps in the null space.779

Taking the derivative of J with respect to ∆w780

and setting it to zero yields the following first-order781

condition:782

(1 + λ)U2U
⊤
2 ∆w = U2U

⊤
2 g.783

Solving for ∆w, we obtain the optimal uncon-784

strained update before projection:785

∆w∗ =
1

1 + λ
U2U

⊤
2 g.786

Finally, the null-space-constrained update is787

given by projecting ∆w∗ back into the null space:788

∆wnull = U2U
⊤
2 ∆w∗ =

1

1 + λ
U2U

⊤
2 g.789

This closed-form solution ensures that the up-790

date remains within the approximate null space791

while staying close to the gradient signal, thereby792

preserving the model’s behavior on unrelated in-793

puts. Plus, this derivation follows the structure794

of projection-based constrained optimization and795

adapts to the multimodal representation space via796

null-space projection from input covariance.797

D Visualization and Examples798

D.1 Visual examples799

Figure 5 illustrates two editing samples and their800

corresponding unrelated samples in visual form.801

Figure 3: The visualization of editing samples in
VLLMs.

In editing sample (1), the prompt is “What is 802

the animal on the road? It is”, with the 803

expected answer being “elephant”. In editing 804

sample (2), the prompt is “What is the person 805

holding? It is”, with the expected answer being 806

“cell phone”. These samples serve as our targets 807

for multimodal knowledge editing. 808

To assess whether our method maintains locality, 809

we further present two unrelated examples. In the 810

first unrelated sample, the prompt is “What animal 811

is on the track? It is”, with the correct an- 812

swer “horse”. In the second, the prompt is “What 813

color are the flowers in the vase? It is”, 814

and the answer is “yellow”. 815

From the heatmaps shown in both the Original 816

and Revised visualizations, we observe that the 817

model correctly focuses on the relevant visual re- 818

gions specified in the prompt. Notably, even after 819

editing, the model continues to attend to the correct 820

visual cues in the unrelated examples. This indi- 821

cates that our method not only succeeds in perform- 822

ing effective knowledge editing for the intended 823

visual-textual pairs, but also preserves the model’s 824

behavior on unrelated inputs. 825

These visualizations provide qualitative evi- 826

dence that our method enables consistent and local- 827

ized multimodal editing in vision-language models 828

(VLLMs), supporting the quantitative results re- 829

ported in the main text. 830

D.2 Textual examples 831

To better illustrate the structure and intent of each 832

task, we provide two representative examples for 833

each of the two tasks: E-VQA and E-IC. These 834

examples serve as concrete references to help read- 835

ers understand how the prompts and target outputs 836

10



Figure 4: The two examples of VQA

Figure 5: The two examples of IC

are formulated in each setting. By examining these837

instances, one can gain clearer insight into how the838

multimodal task is formed during editing.839
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