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Abstract

Normalizing flows are generative models that provide tractable density estimation
via an invertible transformation from a simple base distribution to a complex target
distribution. However, this technique cannot directly model data supported on an
unknown low-dimensional manifold, a common occurrence in real-world domains
such as image data. Recent attempts to remedy this limitation have introduced
geometric complications that defeat a central benefit of normalizing flows: exact
density estimation. We recover this benefit with Conformal Embedding Flows, a
framework for designing flows that learn manifolds with tractable densities. We
argue that composing a standard flow with a trainable conformal embedding is the
most natural way to model manifold-supported data. To this end, we present a series
of conformal building blocks and apply them in experiments with synthetic and real-
world data to demonstrate that flows can model manifold-supported distributions
without sacrificing tractable likelihoods.

1 Introduction

Deep generative modelling is the task of modelling a complex, high-dimensional data distribution from
a sample set. Research has encompassed major approaches such as normalizing flows (NFs) [16, 59],
generative adversarial networks (GANs) [23], variational autoencoders (VAEs) [36], autoregressive
models [52], energy-based models [18], score-based models [64], and diffusion models [29, 63]. NFs
in particular describe a distribution by modelling a change-of-variables mapping to a known base
density. This approach provides the unique combination of efficient inference, efficient sampling,
and exact density estimation, but in practice generated images have not been as detailed or realistic as
those of those of other methods [7, 10, 29, 32, 68].

One limitation of traditional NFs is the use of a base density with the same dimensionality as the
data. This stands in contrast to models such as GANs and VAEs, which generate data by sampling
from a low-dimensional latent prior and mapping the sample to data space. In many application
domains, it is known or commonly assumed that the data of interest lives on a lower-dimensional
manifold embedded in the higher-dimensional data space [21]. For example, when modelling images,
data samples belong to [0, 1]n, where n is the number of pixels in each image and each pixel has a
brightness in the domain [0, 1]. However, most points in this data space correspond to meaningless
noise, whereas meaningful images of objects lie on a submanifold of dimension m ⌧ n. A traditional
NF cannot take advantage of the lower-dimensional nature of realistic images.

There is growing research interest in injective flows, which account for unknown manifold structure
by incorporating a base density of lower dimensionality than the data space [6, 12, 13, 39, 41].
Flows with low-dimensional latent spaces could benefit from making better use of fewer parameters,
being more memory efficient, and could reveal information about the intrinsic structure of the data.
Properties of the data manifold, such as its dimensionality or the semantic meaning of latent directions,
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can be of interest as well [36, 58]. However, leading injective flow models still suffer from drawbacks
including intractable density estimation [6] or reliance on stochastic inverses [13].

In this paper we propose Conformal Embedding Flows (CEFs), a class of flows that use conformal
embeddings to transform from low to high dimensions while maintaining invertibility and an efficiently
computable density. We show how conformal embeddings can be used to learn a lower dimensional
data manifold, and we combine them with powerful NF architectures for learning densities. The
overall CEF paradigm permits efficient density estimation, sampling, and inference. We propose
several types of conformal embedding that can be implemented as composable layers of a flow,
including three new invertible layers: the orthogonal k ⇥ k convolution, the conditional orthogonal
transformation, and the special conformal transformation. Lastly, we demonstrate their efficacy on
synthetic and real-world data.

2 Background

2.1 Normalizing Flows

In the traditional setting of a normalizing flow [16, 59], an independent and identically distributed
sample {xi} ⇢ X = Rn from an unknown ground-truth distribution with density p⇤x(x) is used to
learn an approximate density px(x) via maximum likelihood estimation. The approximate density
is modelled using a diffeomorphism f : Z ! X which maps a base density pz(z) over the space
Z = Rn, typically taken to be a multivariate normal, to px(x) via the change of variables formula

px(x) = pz
�
f�1(x)

� ��detJf

�
f�1(x)

����1
, (1)

where Jf (z) is the Jacobian matrix of f at the point z. In geometric terms, the probability mass in
an infinitesimal volume dz of Z must be preserved in the volume of X corresponding to the image
f(dz), and the magnitude of the Jacobian determinant is exactly what accounts for changes in the
coordinate volume induced by f . By parameterizing classes of diffeomorphisms f✓, the flow model
can be fitted via maximum likelihood on the training data {xi} ⇢ X . Altogether, the three following
operations must be tractable: sampling with f(z), inference with f�1(x), and density estimation with
the |detJf (z)| factor. To scale the model, one can compose many such layers f = fk � · · · � f1, and
the |detJfi (z)| factors multiply in Eq. (1).

Generally, there is no unifying way to parameterize an arbitrary bijection satisfying these constraints.
Instead, normalizing flow research has progressed by designing new and more expressive component
bijections which can be parameterized, learned, and composed. In particular, progress has been
made by designing invertible layers whose Jacobian determinants are tractable by construction. A
significant theme has been to structure flows to have a triangular Jacobian [16, 59, 37, 17]. Kingma
and Dhariwal [35] introduced invertible 1⇥ 1 convolution layers for image modelling; these produce
block-diagonal Jacobians whose blocks are parameterized in a PLU -decomposition, so that the
determinant can be computed in O(c), the number of input channels. See Papamakarios et al. [54]
for a thorough survey of normalizing flows.

2.2 Injective Flows

The requirement that f be a diffeomorphism fixes the dimensionality of the latent space. In turn,
px(x) must have full support over X , which is problematic when the data lies on a submanifold
M ⇢ X with dimension m < n. Dai and Wipf [14] observed that if a probability model with full
support is fitted via maximum likelihood to such data, the estimated density can converge towards
infinity on M while ignoring the true data density p⇤(x) entirely. Behrmann et al. [5] point out that
analytically invertible neural networks can become numerically non-invertible, especially when the
effective dimensionality of data and latents are mismatched. Correctly learning the data manifold
along with its density may circumvent these pathologies.

Injective flows seek to learn an explicitly low-dimensional support by reducing the dimensionality
of the latent space and modelling the flow as a smooth embedding, or an injective function which is
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Figure 1: A normalized base density in the Z space is mapped by a bijective flow h to a more
complicated density in U . The injective component g maps this density onto a manifold M in X .
For inference, data points from M follow the reverse path through g† and h�1 to the latent space Z

where their densities can be evaluated and combined with the determinant factors in Eq. (4).

diffeomorphic to its image1. This case can be accommodated with a generalized change of variables
formula for densities as follows [22].

Let g : U ! X be a smooth embedding from a latent space U onto the data manifold M ⇢ X . That
is, M = g(U) is the range of g. Accordingly, g has a left-inverse2 g† : X ! U which is smooth
on M and satisfies g†(g(u)) = u for all u 2 U . Suppose pu(u) is a density on U described using
coordinates u. The same density can be described in the ambient space X using x coordinates by
pushing it through g.

The quantity that accounts for changes in the coordinate volume at each point u isq
det

⇥
JT
g (u)Jg(u)

⇤
, where the Jacobian Jg is now a n⇥m matrix [43]. Hence, using the shorthand

u = g†(x), the generalized change of variables formula defined for x 2 M can be written

px(x) = pu (u)
��det

⇥
JT
g (u)Jg(u)

⇤���
1
2 . (2)

While g describes how the data manifold M is embedded in the larger ambient space, the mapping g
alone may be insufficient to represent a normalized base density. As before, it is helpful to introduce
a latent space Z of dimension m along with a diffeomorphism h : Z ! U representing a bijective
NF between Z and U [6]. Taking the overall injective transformation g � h and applying the chain
rule Jg�h = JgJh simplifies the determinant in Eq. (2) since the outer Jacobian Jh is square,

det
⇥
JT
hJ

T
gJgJh

⇤
= (detJh)

2 det
⇥
JT
gJg

⇤
. (3)

Finally, writing z = h�1(u), the data density is modelled by

px(x) = pz (z) |detJh (z)|�1 ��det
⇥
JT
g (u)Jg(u)

⇤���
1
2 , (4)

with the entire process depicted in Fig. 1.

Generating samples from px(x) is simple; a sample z ⇠ pz(z) is drawn from the base density and
passed through g � h. Inference on a data sample x ⇠ px(x) is achieved by passing it through
h�1

� g†, evaluating the density according to pz(z), and computing both determinant factors.

Notably, the learned density px(x) only has support on a low-dimensional subset M of X , as per
the manifold hypothesis. This formulation leads the learned manifold M to be diffeomorphic to
Euclidean space, which can cause numerical instability when the data’s support differs in topology
[11], but we leave this issue to future work.

In practice, there will be off-manifold points during training or if g(u) cannot perfectly fit the data, in
which case the model’s log-likelihood will be �1. Cunningham et al. [13] remedy this by adding

1Throughout this work we use “embedding” in the topological sense: a function which describes how a
low-dimensional space can sit inside a high-dimensional space. This is not to be confused with other uses for the
term in machine learning, namely a low-dimensional representation of high-dimensional or discrete data.

2† denotes a left-inverse function, not necessarily the matrix pseudoinverse.
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an off-manifold noise term to the model, but inference requires a stochastic inverse, and the model
must be optimized using an ELBO-like objective. Other work [6, 9, 39] has projected data to the
manifold via g � g† prior to computing log-likelihoods and optimized g using the reconstruction loss
Ex⇠p⇤

x
||x � g(g†(x))||2. We prove in App. A that minimizing the reconstruction loss brings the

learned manifold into alignment with the data manifold.

When computing log-likelihoods, the determinant term log det
⇥
JT
gJg

⇤
presents a computational

challenge. Kumar et al. [41] maximize it using an approximate lower bound, while Brehmer and
Cranmer [6] and Kothari et al. [39] circumvent its computation altogether by only maximizing the
other terms in the log-likelihood. In concurrent work, Caterini et al. [9] optimize injective flows using
a stochastic estimate of the log-determinant’s gradient. They are also able to optimize log det

⇥
JT
gJg

⇤

exactly for smaller datasets, but this procedure involves the explicit construction of Jg, which would
be memory-intensive to scale to larger data such as CelebA. In line with research to build expressive
bijective flows where detJf is tractable, our work focuses on designing and parameterizing injective
flows where log det

⇥
JT
gJg

⇤
as a whole is efficiently computable. In contrast to past injective flow

models, our approach allows for straightforward evaluation and optimization of log det
⇥
JT
gJg

⇤
in

the same way standard NFs do for log |detJf |. As far as we can find, ours is the first approach to
make this task tractable at scale.

3 Conformal Embedding Flows

In this section we propose Conformal Embedding Flows (CEFs) as a method for learning the low-
dimensional manifold M ⇢ X and the probability density of the data on the manifold.

Modern bijective flow work has produced tractable log | detJf | terms by designing layers with
triangular Jacobians [16, 17]. For injective flows, the combination JT

gJg is symmetric, so it is
triangular if and only if it is diagonal. In turn, JT

gJg being diagonal is equivalent to Jg having
orthogonal columns. While this restriction is feasible for a single layer g, it is not composable. If g1

and g2 are both smooth embeddings whose Jacobians have orthogonal columns, it need not follow
that Jg2�g1 has orthogonal columns. Additionally, since the Jacobians are not square the determinant
in Eq. (2), det

⇥
JT
g1
JT
g2
Jg2Jg1

⇤
, cannot be factored into a product of individually computable terms

as in Eq. (3). To ensure composability we propose enforcing the slightly stricter criterion that
each JT

gJg be a scalar multiple of the identity. This is precisely the condition that g is a conformal
embedding.

Formally, g : U ! X is a conformal embedding if it is a smooth embedding whose Jacobian satisfies
JT
g (u)Jg(u) = �2(u)Im , (5)

where � : U ! R is a smooth non-zero scalar function, the conformal factor [43]. In other words,
Jg has orthonormal columns up to a smoothly varying non-zero multiplicative constant. Hence g
locally preserves angles.

From Eq. (5) it is clear that conformal embeddings naturally satisfy our requirements as an injective
flow. In particular, let g : U ! X be a conformal embedding and h : Z ! U be a standard
normalizing flow model. The injective flow model g � h : Z ! X satisfies

px(x) = pz (z) |detJh (z)|�1 ��m(u) . (6)

We call g � h a Conformal Embedding Flow.

CEFs provide a new way to coordinate the training dynamics of the model’s manifold and density.
It is important to note that not all parameterizations g of the learned manifold are equally suited to
density estimation [9]. Prior injective flow models [6, 39] have been trained sequentially by first
optimizing g using the reconstruction loss Ex⇠p⇤

x
kx � g(g†(x))k2, then training h for maximum

likelihood with g fixed. This runs the risk of initializing the density pu (u) in a configuration that is
challenging for h to learn. Brehmer and Cranmer [6] also alternate training g and h, but this does not
prevent g from converging to a poor configuration for density estimation. Unlike previous injective
flows, CEFs have tractable densities, which allows g and h to be trained jointly by optimizing the
loss function

L = Ex⇠p⇤
x

⇥
� log px(x) + ↵kx� g(g†(x))k2

⇤
. (7)

This mixed loss provides more flexibility in how g is learned, and is unique to our model because it
is the first for which log px(x) is tractable.
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3.1 Designing Conformal Embedding Flows

Having established the model’s high-level structure and training objective, it remains for us to design
conformal embeddings g which are capable of representing complex data manifolds. For g to be
useful in a CEF we must be able to sample with g(u), perform inference with g†(x), and compute the
conformal factor �(u). In general, there is no unifying way to parameterize the entire family of such
conformal embeddings (see App. B for more discussion). As when designing standard bijective flows,
we can only identify subfamilies of conformal embeddings which we parameterize and compose to
construct an expressive flow. To this end, we work with conformal building blocks gi : Ui�1 ! Ui

(where U0 = U and Uk = X ), which we compose to produce the full conformal embedding g:

g = gk � · · · � g1 . (8)

In turn, g is conformal because

JT
gJg =

�
JT
g1

· · ·JT
gk

�
(Jgk · · ·Jg) = �2

1 · · ·�
2
kIm . (9)

Our goal in the remainder of this section is to design classes of conformal building blocks which can
be parameterized and learned in a CEF.

3.1.1 Conformal Embeddings from Conformal Mappings

Consider the special case where the conformal embedding maps between Euclidean spaces U ✓ Rd

and V ✓ Rd of the same dimension3. In this special case gi is called a conformal mapping. Liouville’s
theorem [27] states that any conformal mapping can be expressed as a composition of translations,
orthogonal transformations, scalings, and inversions, which are defined in Table 1 (see App. B.1 for
details on conformal mappings). We created conformal embeddings primarily by composing these
layers. Zero-padding [6] is another conformal embedding, with Jacobian Jg = (Im 0)T , and can be
interspersed with conformal mappings to provide changes in dimensionality.

Table 1: Conformal Mappings

TYPE FUNCTIONAL FORM PARAMS INVERSE �(u)

Translation u 7! u+ a a 2 Rd v 7! v � a 1

Orthogonal u 7! Qu Q 2 O(d) v 7! QTv 1

Scaling u 7! �u � 2 R v 7! �
�1v �

Inversion u 7! u/kuk2 v 7! v/kvk2 kuk�2

SCT u 7! u�kuk2b
1�2b·u+kbk2kuk2 b 2 Rd v 7! v+kvk2b

1+2b·v+kbk2kvk2 1�2b · u+kbk2kuk2

Stacking translation, orthogonal transformation, scaling, and inversion layers is sufficient to learn any
conformal mapping in principle. However, the inversion operation is numerically unstable, so we
replaced it with the special conformal transformation (SCT), a transformation of interest in conformal
field theory [15]. It can be understood as an inversion, followed by a translation by �b, followed
by another inversion. In contrast to inversions, SCTs have a continuous parameter and include the
identity when this parameter is set to 0.

The main challenge to implementing conformal mappings was writing trainable orthogonal layers.
We parameterized orthogonal transformations in two different ways: by using Householder matrices
[67], which are cheaply parameterizable and easy to train, and by using GeoTorch, the API provided
by [44], which parameterizes the special orthogonal group by taking the matrix exponential of
skew-symmetric matrices. GeoTorch also provides trainable non-square matrices with orthonormal
columns, which are conformal embeddings (not conformal mappings) and which we incorporate to
change the data’s dimensionality.

To scale orthogonal transformations to image data, we propose a new invertible layer: the orthogonal
k⇥ k convolution. In the spirit of the invertible 1⇥ 1 convolutions of Kingma and Dhariwal [35], we

3We consider conformal mappings between spaces of dimension d > 2. Conformal mappings in d = 2 are
much less constrained, while the case d = 1 is trivial since there is no notion of an angle.
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note that a k⇥ k convolution with stride k has a block diagonal Jacobian. The Jacobian is orthogonal
if and only if these blocks are orthogonal. It suffices then to convolve the input with a set of filters
that together form an orthogonal matrix. Moreover, by modifying these matrices to be non-square
with orthonormal columns (in practice, reducing the filter count), we can provide conformal changes
in dimension. It is also worth noting that these layers can be inverted efficiently by applying a
transposed convolution with the same filter, while a standard invertible 1⇥ 1 convolution requires a
matrix inversion. This facilitates quick forward and backward passes when optimizing the model’s
reconstruction loss.

3.1.2 Piecewise Conformal Embeddings

To make the embeddings more expressive, the conformality condition on g can be relaxed to the
point of being conformal almost everywhere. Formally, the latent spaces Z and U are redefined
as Z = {z : g is conformal at h(z)} and U = h(Z). Then g remains a conformal embedding on
U , and as long as {x : g is nonconformal at g†(x)} also has measure zero, this approach poses no
practical problems. Note that the same relaxation is performed implicitly with the diffeomorphism
property of standard flows when rectifier nonlinearities are used in coupling layers [17] and can be
justified by generalizing the change of variables formula [38].

Table 2: Piecewise Conformal Embeddings

TYPE FUNCTIONAL FORM PARAMS LEFT INVERSE �(u)

Conformal

ReLu
u 7! ReLU

2

4 Qu

�Qu

3

5 Q 2 O(d)

2

4v1

v2

3

5 7! QT (v1 � v2) 1

Conditional

Orthogonal
u 7!

(
Q1u if kuk < 1

Q2u if kuk � 1
Q1,Q2 2 O(d) v 7!

(
QT

1 u if kvk < 1

QT
2 u if kvk � 1

1

We considered the two piecewise conformal embeddings defined in Table 2. Due to the success of
ReLU in standard deep neural networks [50], we try a ReLU-like layer that is piecewise conformal.
conformal ReLU is based on the injective ReLU proposed by Kothari et al. [39]. We believe it to be
of general interest as a dimension-changing conformal nonlinearity, but it provided no performance
improvements in experiments.

More useful was the conditional orthogonal transformation, which takes advantage of the norm-
preservation of orthogonal transformations to create an invertible layer. Despite being discontinuous,
it provided a substantial boost in reconstruction ability on image data. The idea behind this transfor-
mation can be extended to the other parameterized mappings in Table 1. For each type of mapping
we can identify hypersurfaces in Rn such that each hypersurface is mapped back to itself; i.e., each
hypersurface is an orbit of its points under the mapping. Applying the same type of conformal
mapping piecewise on either side remains an invertible operation as long as trajectories do not cross
the hypersurface, and the result is conformal almost everywhere. The conditional orthogonal layer
was the only example of these that provided performance improvements.

4 Related Work

Flows on prescribed manifolds. Flows can be developed for Riemannian manifolds M ✓ X

which are known in advance and can be defined as the image of some fixed � : U ! X , where
U ✓ Rm [22, 48, 54]. In particular, Rezende et al. [60] model densities on spheres and tori with
convex combinations of Möbius transformations, which are cognate to conformal mappings. For
known manifolds � is fixed, and the density’s Jacobian determinant factor may be computable in
closed form. Our work replaces � with a trainable network g, but the log-determinant still has a
simple closed form.

Flows on learnable manifolds. Extending flows to learnable manifolds brings about two main
challenges: handling off-manifold points, and training the density on the manifold.
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When the distribution is manifold-supported, it will assign zero density to off-manifold points. This
has been addressed by adding an off-manifold noise term [12, 13] or by projecting the data onto the
manifold and training it with a reconstruction loss [6, 39, 41]. We opt for the latter approach.

Training the density on the manifold is challenging because the log-determinant term is typically
intractable. Kumar et al. [41] use a series of lower bounds to train the log-determinant, while Brehmer
and Cranmer [6] and Kothari et al. [39] separate the flow into two components and train only the low-
dimensional component. Caterini et al. [9] maximize log-likelihood directly by either constructing the
embedding’s Jacobian explicitly or using a stochastic approximation of the log-determinant’s gradient,
but both approaches remain computationally expensive for high-dimensional data. Our approach
is the first injective model to provide a learnable manifold with exact and efficient log-determinant
computation.

Conformal networks. Numerous past works have imposed approximate conformality or its special
cases as a regularizer [4, 31, 56, 57, 70], but it has been less common to enforce conformality
strictly. To maintain orthogonal weights, one must optimize along the Stiefel manifold of orthogonal
matrices. Past work to achieve this has either trained with Riemannian gradient descent or directly
parameterized subsets of orthogonal matrices. Riemannian gradient descent algorithms typically
require a singular value or QR decomposition at each training step [26, 30, 53]. We found that
orthogonal matrices trained more quickly when directly parameterized. In particular, Lezcano-Casado
and Martínez-Rubio [45] and Lezcano-Casado [44] parameterize orthogonal matrices as the matrix
exponential of a skew-symmetric matrix, and Tomczak and Welling [67] use Householder matrices.
We used a mix of both.

5 Experiments

To implement CEFs, we worked off of the nflows github repo [20], which is derived from the code
of Durkan et al. [19]. Our code is available at https://github.com/layer6ai-labs/CEF. Full
model and training details are provided in App. C, while additional reconstructions and generated
images are presented in App. D.

5.1 Spherical Data

To demonstrate how a CEF can jointly learn a manifold and density, we generated a synthetic dataset
from a known distribution with support on a spherical surface embedded in R3 as described in App.
C. The distribution is visualized in Fig. 2, along with the training dataset of 103 sampled points.

We trained the two components of the CEF jointly, using the mixed loss function in Eq. (7) with an
end-to-end log-likelihood term. The resulting model density is plotted in Fig. 2 along with generated
samples. It shows good fidelity to the true manifold and density.

(a) (b) (c) (d)

Figure 2: (a) A density p⇤x(x) with support on the sphere, and (b) 103 samples comprising the training
dataset {xi}. (c) The density learned by a CEF, and (d) 103 generated samples.

5.2 Image Data

We now evaluate manifold flows on image data. Our aim is to show that, although they represent
a strict architectural subset of mainstream injective flows, CEFs remain competitive in generative
performance [6, 39]. In doing so, this work is the first to include end-to-end maximum likelihood
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Table 3: Synthetic CIFAR-10 Ship Manifolds

MODEL
64 DIMENSIONS 512 DIMENSIONS

RECON FID DENSITY COV RECON FID DENSITY COV

J-CEF 0.000695 36.5 0.0491 0.0658 0.000568 76.2 0.398 0.266
S-CEF 0.000717 35.3 0.0548 0.0640 0.000627 74.7 0.421 0.251
S-MF 0.000469 28.7 0.0756 0.1103 0.000568 53.6 0.570 0.446

Figure 3: Synthetic 512-dimensional Ship Manifold Reconstructions. From top to bottom:
groundtruth samples, joint CEF, sequential CEF, and sequential MF.

training with an injective flow on image data. Three approaches were evaluated on each dataset: a
jointly trained CEF, a sequentially trained CEF, and for a baseline a sequentially trained injective
flow, as in Brehmer and Cranmer [6], labelled manifold flow (MF).

Injective models cannot be compared on the basis of log-likelihood, since each model may have
a different manifold support. Instead, we evaluate generative performance in terms of fidelity and
diversity [61]. The FID score [28] is a single metric which combines these factors, whereas density
and coverage [49] measure them separately. For FID, lower is better, while for density and coverage,
higher is better. We use the PyTorch-FID package [62] and the implementation of density and
coverage from Naeem et al. [49].

Synthetic image manifolds. Before graduating to natural high-dimensional data, we test CEFs on
a high-dimensional synthetic data manifold whose properties are better understood. We generate
data using a GAN pretrained on CIFAR-10 [40] by sampling from a selected number of latent space
dimensions (64 and 512) with others held fixed. Specifically, we sample a single class from the
class-conditional StyleGAN2-ADA provided by Karras et al. [33]. This setup reflects our model
design in that (1) the true latent dimension is known and (2) since a single class is used, the resulting
manifold is more likely to be connected. On the other hand, the GAN may not be completely injective,
so its support may not technically be a manifold. Results are shown in Table 3, Figs. 3 and 4, and
App. D.

Figure 4: Uncurated Synthetic 512-dimensional Ship Manifold Samples. From top to bottom: joint
CEF, sequential CEF, and sequential MF.
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Table 4: Natural Image Data

MODEL
MNIST CELEBA

RECON FID DENSITY COV RECON FID DENSITY COV

J-CEF 0.003222 38.5 0.0725 0.1796 0.001016 118 0.05581 0.00872
S-CEF 0.003315 37.9 0.0763 0.1800 0.001019 171 0.00922 0.00356
S-MF 0.000491 16.1 0.5003 0.7126 0.000547 142 0.02425 0.00576

Figure 5: MNIST Reconstructions. From top to bottom: groundtruth samples, joint CEF, sequential
CEF, and sequential MF.

All models achieve comparable reconstruction losses with very minor visible artifacts, showing that
conformal embeddings can learn complex manifolds with similar efficacy to state-of-the-art flows,
despite their restricted architecture. The manifold flow achieves better generative performance based
on our metrics and visual clarity. Between the CEFs, joint training allows the learned manifold to
adapt better, but this did not translate directly to better generative performance.

Natural image data. We scale CEFs to natural data by training on the MNIST [42] and CelebA
[46] datasets, for which a low-dimensional manifold structure is postulated but unknown. Results are
given in Table 4, Figs. 5 and 6, and App. D.

As expected, since the MF’s embedding is more flexible, it achieves smaller reconstruction losses
than the CEFs. On MNIST, this is visible as faint blurriness in the CEF reconstructions in Fig. 5, and
it translates to better sample quality for the MF as per the metrics in Table 4. Interestingly however,
the jointly-trained CEF obtains substantially better sample quality on CelebA, both visually (Fig.
6) and by every metric. We posit this is due to the phenomenon observed by Caterini et al. [9] in
concurrent work: for complex distributions, the learned manifold parameterization has significant
influence on the difficulty of the density estimation task. Only the joint training approach, which
maximizes likelihoods end-to-end, can train the manifold parameterization to an optimal starting
point for density estimation, while sequential training optimizes the manifold solely on the basis
of reconstruction loss. CelebA is the highest-dimensional dataset tested here, and its distribution is
presumably quite complex, so one can reasonably expect joint training to provide better results. On
the other hand, the sequentially trained CEF’s performance suffers from the lack of both joint training
and the expressivity afforded by the more general MF architecture.

6 Limitations and Future Directions

Expressivity. Just as standard flows trade expressivity for tractable likelihoods, so must injective
flows. Our conformal embeddings in particular are less expressive than state-of-the-art flow models;
they had higher reconstruction loss than the neural spline flow-based embeddings we tested. The con-
formal embeddings we designed were limited in that they mostly derive from dimension-preserving
conformal mappings, which is a naturally restrictive class by Liouville’s theorem [27]. Just as early
work on NFs [16, 59] introduced limited classes of parameterizable bijections, which were later im-
proved substantially (e.g. [19, 35]), our work introduces several classes of parameterizable conformal
embeddings. We expect that future work will uncover more expressive conformal embeddings.
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Figure 6: Uncurated CelebA Samples. From top to bottom: joint CEF, sequential CEF, and sequential
MF.

Manifold learning. Strictly manifold-supported probability models such as ours introduce a bi-
objective optimization problem. How to balance these objectives is unclear and, thus far, empirical [6].
The difference in supports between two manifold models also makes their likelihoods incomparable.
Cunningham et al. [13] have made progress in this direction by convolving the manifold-supported
distribution with noise, but this makes inference stochastic and introduces density estimation chal-
lenges. We suspect that using conformal manifold-learners may make density estimation more
tractable in this setting, but further research is needed in this direction.

Broader impact. As deep generative models become more advanced, researchers should carefully
consider some accompanying ethical concerns. Large-scale, natural image datasets carry social biases
which are likely to be codified in turn by the models trained on them [65]. For instance, CelebA does
not accurately represent the real-world distribution of human traits, and models trained on CelebA
should be vetted for fairness before being deployed to make decisions that can adversely affect people.
Deep generative modelling also lends itself to malicious practices [8] such as disinformation and
impersonation using deepfakes [69].

Our work seeks to endow normalizing flows with more realistic assumptions about the data they
model. While such improvements may invite malicious downstream applications, they also encode a
better understanding of the data, which makes the model more interpretable and thus more transparent.
We hope that a better understanding of deep generative models will synergize with current lines of
research aimed at applying them for fair and explainable real-world use [3, 51].

7 Conclusion

This paper introduced Conformal Embedding Flows for modelling probability distributions on low-
dimensional manifolds while maintaining tractable densities. We showed that conformal embeddings
naturally match the framework of normalizing flows by providing efficient sampling, inference, and
density estimation, and they are composable so that they can be scaled to depth. Furthermore, it
appears conformality is a minimal restriction in that any looser condition will sacrifice one or more of
these properties. As we have reviewed, previous instantiations of injective flows have not maintained
all of these properties simultaneously.

Normalizing flows are still outperformed by other generative models such as GANs and VAEs in the
arena of realistic image generation. Notably, these two alternatives benefit from a low-dimensional
latent space, which better reflects image data’s manifold structure and provides for more scalable
model design. By equipping flows with a low-dimensional latent space, injective flow research has
made progress towards VAE- or GAN-level performance. The CEF paradigm is a way to match these
strides while maintaining the theoretical strengths of NFs.
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