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ABSTRACT

Although recommender systems (RS) have been well-developed for various fields of applications,
they suffer from the crisis of platform credibility with respect to RS confidence and fairness, which
may drive users away from the platform and result in the failure of the platform’s long-term suc-
cess. In recent years, a few works have tried to solve either the model confidence or fairness issue,
while there is no statistical guarantee for these methods. Therefore, there is an urgent need to solve
both issues with a unifying framework with statistical guarantees. In this paper, we propose a novel
and reliable framework called Guaranteed User Fairness in Recommendation (GUFR) to dynami-
cally generate prediction sets for users across various groups, which are guaranteed 1) to include
the ground-truth items with user-predefined high confidence/probability (e.g., 90%); 2) to ensure
user fairness across different groups; 3) to have the minimum average set size. We further design
an efficient algorithm named Guaranteed User Fairness Algorithm (GUFA) to optimize the pro-
posed method, and upper bounds of the risk and fairness metric are derived to help speed up the
optimization process. Moreover, we provide rigorous theoretical analysis concerning risk and fair-
ness control and the minimum set size. Extensive experiments also validate the effectiveness of the
proposed framework, which aligns with our theoretical analysis. The code is publicly available at
https://anonymous.4open.science/r/GUFR-76EC.

1 INTRODUCTION

Recommender Systems (RS) (Aggarwal, 2016; Fan et al., 2022; Sharma et al., 2024)are a type of information filtering
system designed to provide suggestions to users based on their preferences. Decades of effort have been devoted to
improving the accuracy of these recommendation models, However, less attention has been paid to model confidence,
affecting users’ trust in the platform’s credibility. In recent years, few recommendation approachesNaghiaei et al.
(2022); KWEON et al. (2024) are developed for model confidence. However, these methods are heuristic modeling
without statistical guarantee. Meanwhile, fairness is another critical issue that could lead to poor user experience on
the platform’s reliability. Some fairness-based recommendation models Li et al. (2023) have been developed in recent
years Han et al. (2023; 2024b). While these papers effectively alleviate fairness issues in recommendation systems,
they are typically empirically validated without statistical guarantees for both the performance and fairness.

As a result, we are motivated to develop a complete and statistically guaranteed recommendation framework that con-
siders both model confidence and fairness issues as a whole in this paper. Our overall goal is to construct set predictors
that can generate the minimum prediction set for each user while being guaranteed to provide model confidence and
ensure user fairness among different groups. Thus, the objectives of our framework are threefold: (1) to construct
prediction sets that cover the true item with a high user pre-defined probability, say 90% (i.e., confidence level); (2) to
guarantee user fairness across different groups; and (3) to guarantee the minimum average set size while ensuring (1)
and (2).

Figure 1: The proposed GUFR Framework. Red check marks indicate the true relevant items.

Inspired by Risk-Controlling Prediction Sets (RCPS) Bates et al. (2021b) - a powerful statistical tool, we propose
a reliable and fair framework called Guaranteed User Fairness in Recommendation (GUFR) to achieve the above-
mentioned objectives. Even though we can directly apply the framework of RCPS to define the coverage guarantee via
the risk of not including the ground-truth item to achieve the first objective. However, it is far from enough to achieve
the rest objectives. There are several challenges remaining to be solved: 1) How to define user fairness among different
groups in a statistical way? 2) How to produce prediction sets with minimum size? 3) How to improve the efficiency
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of constructing prediction set when the search range is so large? 4) How to theoretically guarantee the constructed
prediction sets to meet the risk control and fairness definition as well as the minimum set size? To address these gaps,
we first define an estimator called fairness metric, which is required to meet the fairness-controlling prediction sets
(FCPS) defined in a similar way as that of the risk control. We then build our objective function by minimizing the
average prediction set while making it meet both RCPS and FCPS constraints for all users across different groups.
Subsequently, we derive the upper bounds for both the risk and fairness to accelerate the optimization process for
prediction set construction. Lastly, we provide theoretical analysis to prove the effectiveness of set predictors with
respect to RCPS and FCPS, and the minimum set size. The proposed framework is depicted in Fig: 1.

Our contributions are summarized as follows:

• Firstly, we formulate the recommendation problem from statistically guaranteed perspectives in terms of
the risk control guarantee and fairness control guarantee, and propose a reliable and fair recommendation
framework, i.e., Guaranteed User Fairness in Recommendation (GUFR), which is able to construct minimum
prediction set while ensuring the risk control and fairness guarantee for all users in different groups.

• Secondly, we design an efficient optimization algorithm, i.e., Greedy User Fairness Algorithm (GUFA) to op-
timize the objective function of GUFR. To accelerate the optimization process, we derive the upper bounds for
both the defined expected risk and fairness metric via concentration inequalities in Theorem 1 and Theorem 2
and then make them approach their respective thresholds in a greedy way.

• Thirdly, we establish rigorous theoretical guarantees for the proposed framework GUFR. We prove that the
constructed prediction set can achieve risk control and fairness guarantees in Theorem 3 while achieving
minimal set sizes in Theorem 4, which theoretically verifies the effectiveness of GUFR.

• Finally, we conduct comprehensive experiments on top of five commonly used recommendation models and
various datasets across multiple domains, the results of which demonstrate the effectiveness of the proposed
GUFR empirically, which aligns with our theoretical analysis.

2 RELATED WORKS

2.1 RECOMMENDATION

Recommender systems (Ko et al., 2022; Lu et al., 2015), which are used to help users make decisions via personalized
content or product recommendations, have been thoroughly studied over the past decades by developing recommen-
dation models for different fields of application, such as e-commerce (Schafer et al., 1999), media streaming (Chang
et al., 2017), social networks (He et al., 2024) etc. To ensure the long-term success of digital platforms, credibility
and fairness of recommendation are two crucial factors today that are urgently needed to ensure the satisfaction of
customers. Traditional recommendation models primarily focused on accuracy (Adomavicius & Tuzhilin, 2005; Ricci
et al., 2010), but there is an increasing recognition that model confidence—quantifying the reliability of the recom-
mendations—is equally important. Researchers try to develop recommendation approaches that provide the model
confidence. For example, Kweon et.al. (2024) enhances model confidence by dynamically adjusting recommendation
strategies based on performance metrics, ensuring the model adapts to user interactions and maintains high predictive
accuracy. Naghiaei et al. (2022) proposes a confidence-aware optimization-based re-ranking algorithm that accounts
for calibration confidence based on user profile size. However, these methods are heuristic modeling without statisti-
cal guarantee. Meanwhile, some fairness-based recommendation models have been developed in recent years, which
usually focus on a particular fairness issue in specific fields of application. Fairness in recommendation systems can
be viewed from diverse perspectives Li et al. (2023). One such perspective is Individual fairness and Group fairness.
Individual fairness requires that similar individuals receive comparable treatment. However, defining this similarity
is challenging due to disagreements over task-specific similarity metrics Dwork et al. (2011). Group fairness, on the
other hand, ensures that protected groups receive treatment comparable to that of advantaged groups or the general
population Pedreschi et al. (2009), thus ensuring equitable treatment across predefined groups. Group fairness can be
further classified from the user side or item/platform side. Focusing on User-Side group Fairness, it can be defined
based on sensitive features like age, gender, race, etc. Yao & Huang (2017) utilized gender to distinguish between
advantaged and disadvantaged user groups and measured prediction discrepancies. Another approach utilizes differ-
entiating groups based on user interactions as defined by Li et al. (2021a) and Abdollahpouri et al. (2019). They
defined unfairness between users based on their interaction levels or popular item interactions, labeling the top 5% as
active or advantaged. To ensure fairness, existing works apply several techniques, most commonly in regularization
and constrained optimization Li et al. (2021a); Islam et al. (2021), where fairness is given as a regularization param-
eter. Furthermore, Han et al. (2024a) mitigate unfairness by sharing training samples within and across user groups,
effectively addressing data sparsity. Another work by Han et al. (2024b) proposes a hypergraph-based framework
that models high-order correlations among users to improve training for disadvantaged users. Some other approaches
use Reinforcement Learning by formulating the problem as a Constrained Markov Decision Process Ge et al. (2021;
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2022). To evaluate the fairness, Yao & Huang (2017) introduced four group metrics to evaluate collaborative filtering
recommender models. Fu et al. (2020) employed the Group Recommendation Unfairness (GRU) metric to assess
disparities across these user groups based on performance metrics. They depicted it balances fairness with utility—a
dual improvement noted by Rahmani et al. (2022), under certain conditions. However, to the best of our knowledge,
none of these approaches ensured a statistical guarantee of the fairness problem.

2.2 RISK-CONTROLLING PREDICTION SETS

We develop uncertainty quantification for the model confidence and fairness based on Risk-Controlling Prediction
Sets (RCPS) Bates et al. (2021b). RCPS is a general framework, not a specific algorithm, for producing predictive sets
that satisfy the risk control in Definition 2.1. Different contexts require different designs of risk or other estimators to
achieve the best performance. For example, in the context of medical diagnosis, if the set S(X) represents plausible
diagnoses based on patient features X and R(S) can be defined as the expected risk of the loss from missing true
diagnoses, then RCPS ensures this risk to remain below α with confidence 1−δ. This enables doctors to automatically
screen for many diseases (e.g., via a blood sample) and refer the patient to relevant specialists. We will apply the
framework of RCPS to the designed risk and fairness in the context of recommendation.
Definition 2.1 (Risk-controlling prediction sets (RCPS) Bates et al. (2021b)). Let S be a random function taking values
in the space of functions X → Y ′ (e.g., a functional estimator trained on data). We say that S is a (α, δ)−RCPS if,
with probability at least 1− δ, we haveR(S) ≤ α.

3 THE PROPOSED FRAMEWORK

In this section, we formulate the objective functions that our framework, i.e., Guaranteed User Fairness in Recom-
mendation (GUFR), aims to achieve. Firstly, we introduce the notations used in the paper. Consider n items, denoted
as i = [i]nj=1, where each item ij is an element of the item space I. Similarly, we have m users, represented by
u = [u]mk=1, where each user uk belongs to the user space U . For brevity, we use u and i for user and item, respec-
tively. The group information G of each user u is known, and following (Li et al., 2021b), we partition users into two
groups, G1 and G2, such that G1 ∩ G2 = ∅ and G1 ∪ G2 = U to ensure exclusivity. Here, G1 and G2 represent the
advantaged and disadvantaged groups, respectively.

The recommendation is conducted via the relevance model m : U × I → [0, 1], which maps a user u and an item
i to an estimate score m(u, i), and items with the highest scores are usually the most relevant recommendations.
However, there is no theoretical guarantee to ensure the confidence of the model’s output, and so the reliability of the
recommended items remains uncertain. In the following, we will follow the framework of risk-controlling prediction
sets (RCPS) Bates et al. (2021a) to solve this gap. We define our set predictor to be ϕ : u → i′, where i′ ⊆ I is a
set-valued output guided by parameter λ. This lambda takes values in a closed set Λ ⊂ R such that ϕ(.) is nested i.e.,

λ1 < λ2 =⇒ ϕλ2(u) ⊂ ϕλ1(u).

We further define the loss function between the relevant item itrue of user u and the prediction set ϕλ(u) to be 0-1 loss
as follows:

L(itrue, ϕλ(u)) =

{
1 if itrue /∈ ϕλ

0 if itrue ∈ ϕλ.
(1)

It is worth noting that L(itrue, ϕλ(u)) also meets the monotonicity (larger set leads to smaller loss), namely,
ϕλ1

(u) ⊂ ϕλ2
(u) =⇒ L(itrue, ϕλ1

(u)) ≥ L(itrue, ϕλ2
(u)). (2)

Based on the above loss function, we define the expected risk of not including a ground-truth item in the prediction set
for all users as follows:

R(λG) = E(L(itrue, ϕλG
(u))). (3)

Subsequently, we require the defined risk to meet the risk-controlling prediction sets (RCPS), which ensures the
probability of the risk lower than a user-specified threshold α is no less than the user-defined confidence level 1 − δ,
namely, the reliability of recommendation. The detailed formulation can be found as follows:

Pr(R(λG) ≤ α)) ≥ 1− δ. (4)

Meanwhile, fairness of users in the advantaged groups and the disadvantaged groups is another tough issue that needs
to be tackled. Thus, we define a fairness metric ∆F (·) via the difference between the normally used recommendation
metric (such as hit rate (HR) and NDCG) of the advantaged group G1 and the disadvantaged group G2, to evaluate
user fairness as follows:

∆F (λG1
, λG2

) :=

∣∣∣∣∣ 1

|G1|
∑
u∈G1

M(ϕλG1
(u))− 1

|G2|
∑
u∈G2

M(ϕλG2
(u))

∣∣∣∣∣ . (5)
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Here, M(·) denotes a generalized function representing a recommendation metric (such as HR or NDCG) that mea-
sures the performance of the recommendation set ϕλG

(u) for any user u.

For example, when we use hit rate (HR) or NDCG as the recommendation metric, we can express them as:

HR(Gi) =
1

|Gi|
∑
u∈Gi

I(relevant item in ϕλGi
(u)),

NDCG(Gi) =
1

|Gi|
∑
u∈Gi

NDCG.(ϕλGi
(u)),

Thus, the fairness metrics can be expressed as:

∆HR = |HR(G1)− HR(G2)| , ∆NDCG = |NDCG(G1)− NDCG(G2)| .

This design makes our proposed framework more flexible by accommodating different types of RS metrics.

Similarly, we require the defined fairness metric to meet the fairness-controlling prediction sets (FCPS), that is, the
probability of the fairness metric lower than a user-specified threshold η is no less than user-pre-defined confidence
level 1− δ̂, namely, the reliability of fairness. The detailed formulation can be expressed as follows:

Pr(∆F (λG1 , λG2) ≤ η) ≥ 1− δ̂. (6)

Moreover, we hope the constructed prediction sets to be as small as possible while they meet the risk-controlling
guarantee as well as the fairness-controlling guarantee. This is because a smaller set size will contribute to less
uncertainty of recommendation and improve the usablity and effectiveness of RS. Therefore, our goal is to find the
optimal (λG1

, λG2
) that minimizes the average size of the recommendation sets, satisfying the risk (coverage) and

fairness guarantees for all users in groups G1 and G2. The objective function can be formulated as follows:

argmin
(λG1

,λG2
)

∑
G∈{G1,G2}

1

|G|
∑
u∈G

|ϕλG
(u)|

s.t. Pr(R(λG) ≤ α)) ≥ 1− δ for all G ∈ {G1, G2},
Pr(∆F (λG1

, λG2
) ≤ η) ≥ 1− δ̂.

(7)

Here, α and η are the user pre-specified risk and fairness thresholds, say 10%; 1− δ and 1− δ̂ are the user pre-defined
confidence level for the risk and fairness, say 90%.

4 THE OPTIMIZATION ALGORITHM

To optimize the objective function in eq. (7), we need to ensure the risk and fairness metric in the constraints are below
decision-makers’ pre-defined value α and η respectively, and finally obtain the optimal prediction set with minimum
size. It is not efficient to directly apply the greedy algorithm as the range of risk and fairness values that approach
the threshold α and η by adjusting the (λG1 , λG2) is very large. If we can derive the upper bounds of both risk and
fairness metric and take values at their corresponding upper bounds R+

G(λG, δ) and ∆F+(λG1
, λG2

, δ̂) respectively,
then it will become more efficient to approach the threshold α and η by adjusting the (λG1

, λG2
). Following the upper

bound strategy to accelerate the optimization procedures in Bates et al. (2021b), we have the optimized risk constraint
as follows:

Pr(R(λG) ≤ R+(λG, δ)) ≥ 1− δ and R+
G(λG, δ) ≤ α for all G ∈ {G1, G2}. (8)

Similarly, the optimized fairness metric constraint can be reformulated as follows:

Pr(∆F (λG1
, λG2

) ≤ ∆F+(λG1
, λG2

, δ̂)) ≥ 1− δ̂ and ∆F+(λG1
, λG2

, δ̂) ≤ η. (9)

Consequently, we can choose λ̂ as the largest value of λ such that the entire confidence region to the left of λ falls
below the target risk level α and η, and the set size will achieve the minimum value. The optimized objective function
can be formulated as follows:

(λ̂G1
, λ̂G2

) = sup
{
λG1

, λG2
∈ [0, 1] : R+(λG, δ) ≤ α, ∆F+(λG1

, λG2
, δ̂) ≤ η

}
. (10)
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Algorithm 1 Greedy User Fairness Algorithm (GUFA)

1: Initialization:
2: Initialize control parameters for the two groups λG1 , λG2

3: Initialize user pre-specified parameters α, η, δ, δ̂
4: Define Loss and Risk as in eqs. (1) and (4)
5: Define Fairness metric as in eq. (5)
6: Adjustment Loop:
7: for users in each group G ∈ {G1, G2} do
8: Calculate R+

G(λG, δ) such that Pr(R(λG) ≤ R+
G(λG, δ)) ≥ 1− δ

9: Compute ∆F (λG1
, λG2

) and calculate ∆F+(λG1
, λG2

, δ̂) such that Pr(∆F (λG1
, λG2

) ≤
∆F+(λG1

, λG2
, δ̂)) ≥ 1− δ

10: if R+
G(λG, δ) > α OR ∆F+(λG1 , λG2 , δ̂) > η then

11: Update λG1 ← λG1 −∆1, λG2 ← λG2 −∆2

12: end if
13: end for
14: λ̂G1

, λ̂G2
← λG1

, λG2
▷ Get the optimal λG1

, λG2

15: Construct Prediction Sets:
16: for each user u in group G do
17: ϕλ̂G

(u)← {i | m(u, i) ≥ λ̂G}
18: end for
19: Output: the optimal solution λ̂G1 , λ̂G2 and prediction sets ϕλ̂G1

(u) and ϕλ̂G2
(u) for all users in different groups.

To optimize the above objective function and output the optimal solution for (λ̂G1
, λ̂G2

) that dominate the validity
of set predictor, we design a novel greedy-strategy-based algorithm called Greedy User Fairness Algorithm. The
complete procedures of the optimization algorithm are summarized in Algorithm 1.

However, it still remains unknown that what the upper bounds of risk and fairness metric look like. In the following
part, we will derive the upper bounds in theorem 1 and theorem 2 respectively.
Theorem 1 ( Upper Bound for Risk). Assume the loss function L(itrue, ϕλG

(u)) follows a Bernoulli distribution, then
the upper bound for the risk R(λG) can be found as follows:

R+(λG, δ) = sup
{
R̂(λG) : BinomCDF(nR̂(λG), n, α) ≤ δ

}
, (11)

where n is the number of samples; G ∈ {G1, G2}; R̂(λG) denotes the empirical risk of R(λG), which can be
calculated as follows:

R(λG) =
1

|G|
∑
u∈G

L(itrue, ϕλG
(u)). (12)

Here, |G| denotes the number of users in group G.

Proof. Proof can be found in Appendix A.2.1.

Theorem 2 (Upper Bound for Fairness Metric). The upper bound for fairness metric ∆F (λG1 , λG2) can be derived
by applying Bernstein inequality Maurer & Pontil (2009) as follows:

∆F+(λG1 , λG2 , δ̂) = ∆F (λG1 , λG2) +

√√√√2σ2
F log

(
2
δ̂

)
+ 2

3 log
(

2
δ̂

)
n1 + n2

, (13)

where n1 and n2 denote the number of samples for group G1 and G2; σ2
F denotes the variance associated with the

fairness metric ∆HR or ∆NDCG. The detailed formulation of the variance can be referred to in Appendix A.1.

Proof. Proof can be found in Appendix A.2.2.

Recommendation After obtaining the optimal (λ̂G1 , λ̂G2) from Algorithm 1, we can recommend items for new
customers. For example, when a new user ut comes, we first decide the group G that they belong to, and then utilize
the corresponding λ̂G to calculate their prediction set via step 17.
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5 THEORETICAL ANALYSIS

In this section, we provide theoretical analysis on the risk and fairness control guarantee in Theorem 3, as well as the
minimum set size guarantee in Theorem 4.
Theorem 3 (Risk and Fairness Control Guarantee). For all group G ∈ {G1, G2} and δ ∈ (0, 1), with probability of
at least 1− δ for risk threshold α, and with probability of at least 1− δ̂ for fairness threshold η, we have:

Pr(R(λ̂G) ≤ α) ≥ 1− δ ∧ Pr(∆F (λ̂G1 , λ̂G2) ≤ η) ≥ 1− δ̂. (14)

Proof. Proof can be found in Appendix A.2.3.

Remark. In Theorem 3, we prove that the optimal λ̂G1
, λ̂G2

obtained from algorithm 1 are indeed able to control
the expected risk to below the decision makers’ defined values of α with confidence 1 − δ, and control the fairness
metric ∆F to below the decision makers’ defined values of η with confidence 1 − δ̂. This theoretically validate the
recommendation reliability and fairness of the proposed GUFR framework.
Theorem 4 (Minimum Set Size Guarantee). Let (ϕλ∗

G1
, ϕλ∗

G2
) be any set predictor and let (ϕλ̂G1

, ϕλ̂G2
) be the

optimal predictor obtained from Algorithm 1 such that R(λ∗
G) ≤ R(λ̂G) and ∆F (λ∗

G1
, λ∗

G2
) ≤ ∆F (λ̂G1

, λ̂G2
). Then

for each G ∈ {G1, G2}, we have:

E
[
|ϕλ̂G

(u)|
]
≤ E

[
|ϕλ∗

G
(u)|

]
. (15)

where |ϕλ̂G
(u)| denotes the predicted set size for any user u in group G.

Proof. Proof can be found in Appendix A.2.4.

Remark. In Theorem 4, we prove that set predictor learned by our algorithm can output the minimal prediction set
size for any user u in group G, which theoretically validate the effectiveness of the proposed GUFR framework.

To sum up, set predictors constructed by Algorithm 1 can modify any black-box recommendation models to output
prediction sets for new customers that are strictly guaranteed to satisfy the risk control as defined in equation 4 and the
fairness control defined in equation 6 while ensuring the minimum prediction sets in equation 7.

6 EXPERIMENTS

In this section, we conduct experiments to validate the effectiveness of the proposed framework (GUFR). We design
experiments to 1) validate whether the framework can provide the desired coverage guarantee in terms of risk, better
performance in terms of average set size, and improved fairness in terms of Hit Rate Difference (Hit Rate Diff.) and
NDCG Difference (NDCG Diff.) across various datasets with sensitive attributes; 2) analyze how the parameters ( i.e.
α, δ, η and δ̂) influence the performance; 3) analyze the time-efficiency of GUFR compared to other fairness baselines.

6.1 DATASETS AND BASE MODELS

We conduct experiments on four datasets with specific sensitive user attributes: (1) AmazonOffice dataset (eCom-
merce) (McAuley et al., 2015) grouped by item interactions; (2) Last.fm dataset (music streaming) (Cantador et al.,
2011) grouped by region (developed and other countries; (3) MovieLens dataset (movie ratings) (Harper & Konstan,
2015) grouped by gender; and (4) Book-Crossing dataset (book ratings) (Ziegler et al., 2005) grouped by age. We
implement the proposed framework on five base recommendation models: DeepFM (Guo et al., 2017), GMF (Koren
et al., 2009), MLP (Zhang et al., 2019), NeuMF (He et al., 2017), and LightGCN (He et al., 2020). Additionally, we
compare our framework GUFR with four fairness baselines: 1) NFCF (Islam et al., 2021) 2)MFCF (Islam et al., 2021)
3) GMF-UFR (Li et al., 2021a) 4) NCF-UFR (Li et al., 2021a). Details of all the datasets, base models, and fairness
baselines can be found in A.3.

6.2 IMPLEMENTATION DETAILS

All base recommender models are trained for 20 epochs with a batch size 256, a learning rate of 0.001, the Adam
optimizer, and Binary Cross Entropy Loss (BCELoss). For the NFCF and MFCF models, we modified the original
code to generalize grouping logic for diverse criteria (e.g., interaction count, age, gender, and geography) and adapted
the debiasing process to compute bias directions dynamically for various groups. For GMF-UFR and NeuMF-UFR,
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to ensure consistency, we reused the score files generated by our base models. To enhance the reproducibility of the
results, we utilized MIP Santos & Toffolo (2020), a free light-weight python library for modeling and optimization
instead of Gurobi Gurobi Optimization, LLC (2024) optimization solver, a commercially licensed software. To ensure
fair and sound comparisons with the base models and fairness baselines, instead of using arbitrary top-k predictions,
we utilized the average optimal prediction set size returned by the GUFR framework on top of the given base recom-
mendation model.

6.3 EXPERIMENTAL RESULTS

6.3.1 EXPERIMENTAL RESULTS W.R.T PERFORMANCE AND FAIRNESS

We compare the performance and fairness of the GUFR framework with five base recommendation models and four
fairness baselines. We set the predefined risk threshold α = 0.2, fairness threshold η = 0.20 via manual validation.
The error rates δ = 0.1 and δ̂ = 0.1 are representatively set following Bates et al. (2021b). The coverage guarantee is
measured in terms of risk; performance is measured using average set size, and fairness is compared using disparity in
these metrics between user groups (Difference in Hit Rate and Difference in NDCG). The results for the AmazonOffice
dataset (grouped by interactions), MovieLens dataset (grouped by gender), Last.fM dataset (grouped by region) and
Book-Crossing dataset (grouped by age) are provided in Tables 1 to 4 respectively.

Method Group Risk ↓ Average Set Size ↓ Hit Rate NDCG Hit Rate Diff ↓ NDCG Diff ↓

DeepFM 1 0.121

34

0.879 0.418 0.155 0.17
2 0.277 † 0.723 0.248

DeepFM + GUFR 1 0.192 0.808 0.401 0.081 0.103
2 0.111 0.889 0.298

GMF 1 0.149

30

0.851 0.439 0.212 † 0.225 †
2 0.361 † 0.639 0.214

GMF + GUFR 1 0.197 0.803 0.428 0.08 0.168
2 0.117 0.883 0.26

LightGCN 1 0.077

39

0.923 0.477 0.126 0.238 †
2 0.203 † 0.797 0.239

LightGCN + GUFR 1 0.087 0.913 0.474 0.087 0.198
2 0 1 0.276

MLP 1 0.162

26
0.838 0.409 0.219† 0.19

2 0.38 † 0.62 0.219

MLP + GUFR 1 0.197 0.803 0.397 0.013 0.14
2 0.184 0.816 0.257

NeuMF 1 0.155

28

0.845 0.414 0.225 † 0.185
2 0.379 † 0.621 0.229

NeuMF + GUFR 1 0.182 0.818 0.406 0.017 0.143
2 0.199 0.801 0.263

Other Fairness Baselines

NFCF 1 0.196 28 0.804 0.391 0.115 0.134
2 0.261† 0.689 0.257

MFCF 1 0.175 30 0.825 0.402 0.128 0.154
2 0.303 † 0.697 0.248

NeuMF-UFR 1 0.193 28 0.807 0.396 0.153 0.127
2 0.346 † 0.654 0.269

GMF-UFR 1 0.205 † 30 0.795 0.395 0.133 0.157
2 0.368 † 0.662 0.238

Table 1: Performances and fairness comparisons
with base models and fairness baselines on the

AmazonOffice Dataset grouped by the
Interactions in terms of risk, average set size, and

Hit Rate Diff/NDCG Diff, respectively. Bold
indicates the best result, underline indicates the

second best and † marks threshold exceeded cases.

Method Group Risk ↓ Average Set Size ↓ Hit Rate NDCG Hit Rate Diff ↓ NDCG Diff ↓

DeepFM 1 0.2

9

0.8 0.503 0.017 0.022
2 0.183 0.817 0.525

DeepFM + GUFR 1 0.188 0.812 0.504 0.002 0.018
2 0.187 0.813 0.522

GMF 1 0.147

9

0.853 0.538 0.051 0.019
2 0.198 0.802 0.519

GMF + GUFR 1 0.155 0.845 0.526 0.043 0.008
2 0.198 0.802 0.517

LightGCN 1 0.212 †
19

0.788 0.432 0.077 0.043
2 0.289 † 0.711 0.389

LightGCN + GUFR 1 0.128 0.873 0.47 0.001 0.031
2 0.128 0.872 0.44

MLP 1 0.173

7
0.827 0.553 0.016 0.007

2 0.158 0.842 0.56

MLP + GUFR 1 0.151 0.849 0.557 0.014 0.004
2 0.165 0.835 0.553

NeuMF 1 0.199

8

0.802 0.542 0.002 0.015
2 0.198 0.802 0.557

NeuMF + GUFR 1 0.149 0.851 0.556 0.05 0.005
2 0.199 0.801 0.551

Other Fairness Baselines

NFCF 1 0.198 8 0.802 0.539 0.01 0.01
2 0.205 † 0.795 0.549

MFCF 1 0.243 † 9 0.757 0.552 0.002 0.009
2 0.242 † 0.758 0.561

NeuMF-UFR 1 0.216 † 8 0.784 0.528 0.034 0.021
2 0.182 0.818 0.549

GMF-UFR 1 0.215 † 9 0.785 0.527 0.03 0.022
2 0.185 0.815 0.549

Table 2: Performances and fairness comparisons
with base models and fairness baselines on the

MovieLens Dataset grouped by the gender in terms
of risk, average set size, and Hit Rate Diff/NDCG
Diff, respectively. Bold indicates the best result,
underline indicates the second best and † marks

threshold exceeded cases.

The results, presented in Tables 1 to 4 lead us to the following key observations:

• The GUFR framework ensures that all base models generate prediction sets that satisfy both risk control and
fairness guarantees across all datasets.

• The GUFR-enhanced models always meet the risk below the defined thresholds. For the base models, the
minimum risk threshold criteria is frequently not met. For example, in the AmazonOffice Dataset, we notice,
as depicted by †, that the risk thresholds are not met for at least one group, i.e., the disadvantaged group
across all the base models. In fairness baselines, we observe the criteria are not met for both the groups in
most cases across all the datasets, which may be because of their emphasis on trading off performance for
accuracy.

• We also observe that the GUFR-enhanced models can get the best results in average set size on all the
datasets, but the best model varies among different datasets. For example, MLP + GUFR achieves the best
recommendations in terms of average set size on the AmazonOffice dataset and MovieLens dataset, respec-
tively. Similarly, DeepFM + GUFR returns minimum average set sizes for the Last.fM dataset while GMF +
GUFR achieves that for the Book-Crossing dataset, respectively.
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Method Group Risk ↓ Average Set Size ↓ Hit Rate NDCG Hit Rate Diff ↓ NDCG Diff ↓

DeepFM 1 0.171

29
0.829 0.363 0.108 0.111

2 0.279† 0.721 0.252

DeepFM + GUFR 1 0.181 0.819 0.358 0.016 0.016
2 0.197 0.803 0.342

GMF 1 0.186

45

0.814 0.268 0.107 0.071
2 0.293† 0.707 0.197

GMF + GUFR 1 0.156 0.844 0.273 0.019 0.023
2 0.175 0.825 0.25

LightGCN 1 0.217†
33

0.783 0.382 0.026 0.013
2 0.243† 0.757 0.369

LightGCN + GUFR 1 0.164 0.836 0.392 0.03 0.02
2 0.194 0.806 0.39

MLP 1 0.221†
32

0.779 0.328 0.019 0.013
2 0.24† 0.76 0.315

MLP + GUFR 1 0.197 0.803 0.331 0.007 0.008
2 0.19 0.81 0.323

NeuMF 1 0.201 †
30

0.799 0.323 0.068 0.021
2 0.269 † 0.731 0.302

NeuMF + GUFR 1 0.187 0.813 0.330 0.011 0.004
2 0.198 0.802 0.326

Other Fairness Baselines

NFCF 1 0.248 † 30 0.752 0.344 0.024 0.049
2 0.272† 0.728 0.295

MFCF 1 0.231 † 45 0.769 0.269 0.066 0.051
2 0.297† 0.703 0.218

NeuMF-UFR 1 0.213 † 30 0.787 0.306 0.045 0.019
2 0.258 † 0.742 0.287

GMF-UFR 1 0.211 † 45 0.789 0.245 0.067 0.048
2 0.278 † 0.722 0.197

Table 3: Performances and fairness comparisons
with base models and fairness baselines on the

Last.fM Dataset grouped by the Region in terms of
risk, average set size, and Hit Rate Diff/NDCG Diff,
respectively. Bold indicates the best result, underline

indicates the second best and † marks threshold
exceeded cases.

Method Group Risk ↓ Average Set Size ↓ Hit Rate NDCG Hit Rate Diff ↓ NDCG Diff ↓

DeepFM 1 0.123

39

0.873 0.291 0.302† 0.115
2 0.429† 0.571 0.176

DeepFM + GUFR 1 0.188 0.812 0.251 0.003 0.02
2 0.191 0.809 0.231

GMF 1 0.187

30
0.813 0.277 0.129 0.115

2 0.316† 0.684 0.162

GMF + GUFR 1 0.185 0.815 0.268 0.116 0.05
2 0.199 0.801 0.232

LightGCN 1 0.154

45

0.846 0.189 0.217† 0.031
2 0.371 † 0.629 0.158

LightGCN + GUFR 1 0.18 0.82 0.186 0.019 0.025
2 0.199 0.801 0.161

MLP 1 0.124

34

0.876 0.225 0.192 0.093
2 0.316† 0.684 0.132

MLP + GUFR 1 0.167 0.833 0.194 0.029 0.019
2 0.196 0.804 0.175

NeuMF 1 0.145

39

0.855 0.253 0.214† 0.107
2 0.359† 0.641 0.146

NeuMF + GUFR 1 0.187 0.813 0.227 0.004 0.036
2 0.191 0.809 0.204

Other Fairness Baselines

NFCF 1 0.216 † 39 0.784 0.264 0.095 0.08
2 0.311† 0.689 0.184

MFCF 1 0.248 † 30 0.752 0.252 0.087 0.074
2 0.335† 0.665 0.178

NeuMF-UFR 1 0.183 39 0.817 0.236 0.143 0.041
2 0.326 † 0.674 0.195

GMF-UFR 1 0.195 † 30 0.805 0.265 0.118 0.097
2 0.313 † 0.687 0.168

Table 4: Performances and fairness comparisons
with base models and fairness baselines on the
Book-Crossing Dataset grouped by the Age in

terms of risk, average set size, and Hit Rate
Diff/NDCG Diff, respectively. Bold indicates the

best result, underline indicates the second best and †
marks threshold exceeded cases.

• All GUFR-enhanced models meet the fairness threshold for both the Hit Rate Diff and NDCG Diff across all
datasets. However, the best-performing models vary by dataset. For example, MLP + GUFR achieves the
best fairness on the AmazonOffice dataset, while LightGCN + GUFR performs best on MovieLens dataset
under the Hit Rate Diff; NeUMF + GUFR outperforms all the other models on the Last.fm dataset and MLP
+ GUFR is superior on the Book-Crossing dataset in terms of NDCG Diff. In addition, the base models
do not always achieve the fairness metrics and exceed the fairness threshold marked by †, such as GMF on
the AmazonOffice Dataset and LightGCN on the Book-Crossing Dataset. Meanwhile, the fairness baseline
models do achieve fairness metrics after sacrificing their accuracy, but they are still inferior to the GUFR-
enhanced models.

• Overall, the GUFR framework effectively ensures both recommendation performance and fairness while
guaranteeing risk control, providing valuable insights for real-world applications. We further discuss the
practical applicability in Appendix A.5

6.3.2 PARAMETER ANALYSIS

We further analyze the influence of the pre-defined risk-related parameters α and δ and fairness-related parameters η
and δ̂ on the prediction sets generated by GUFR framework.

Effect of Risk Control Parameters α and δ on Prediction Set Sizes : We first evaluate the impact of error rate α
varying from 0.10 to 0.50 (in increments of 0.05) on average prediction set sizes under fixed risk confidence thresholds
δ = 0.05, 0.10, 0.15 using AmazonOffice dataset, grouped by interactions in Figure 2. It can be easily observed that
as α increases, the average set size across all models decreases. The decreasing trend demonstrates the framework’s
ability to generate valid prediction sets that adapt to the error rate α. Similar trends can be observed on remaining
datasets, see Figures 6 to 8 in Appendix A.4.1.

We further evaluate the effect of varying risk confidence δ from 0.10 to 0.50 (in increments of 0.05) on the average
prediction set sizes under fixed risk thresholds (α = 0.15, 0.20, 0.25) using the Book-Crossing dataset, grouped by age
(see Figure 3). In general, all the models show a decreasing trend which validates the effectiveness of the proposed
framework. Intrestingly, the prediction set sizes do not to seem to fluctuate much for smaller values of δ while
decreasing trend occurs with increasing δ. This is because relaxing the confidence of the risk constraints makes our
predictions less conservative, thereby reducing the number of items included in the prediction set. Similar phenomenon
can be obtained on the other datasets, see Figures 9 to 11 in Appendix A.4.1.

Effect of Fairness Control Parameters η and δ̂ on Prediction Set Sizes : We analyze how varying η, measured
by the Hit Rate Diff. and NDCG Diff. from 0.10 to 0.50 (in increments of 0.05) on the average prediction set
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(a) δ = 0.05 (b) δ = 0.10 (c) δ = 0.15

Figure 2: Analysis of base models after applying the GUFR framework in terms of average set size with varying
α = {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on AmazonOffice dataset grouped by Interactions under different δ.

(a) α = 0.15 (b) α = 0.20 (c) α = 0.25

Figure 3: Analysis of base models after applying the GUFR framework in terms of average set size with varying
δ = {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on Book-Crossing dataset grouped by Age under different α.

sizes under fixed fairness confidence (δ̂ = 0.15, 0.20, 0.25) affects average prediction set sizes, measured on the
MovieLens dataset grouped by gender (Figure 4). With increasing η, the prediction set size decreases, validating
model’s capacity to have smaller prediction sets for less strict η condition. The prediction set sizes usually stabilize
after an initial decrease as η rises, suggesting that the framework’s fairness sensitivity to η diminishes beyond a certain
point. This offers guidance on selecting appropriate fairness thresholds while maintaining usability. Similar results
can be observed on the other datasets, see Figures 12 to 14 in Appendix A.4.1.

Finally, we examine the trends on average prediction set sizes by varying fairness confidence δ̂ from 0.10 to 0.50
(in increments of 0.05) under fixed fairness thresholds (η = 0.15, 0.20, 0.25) measured on Last.fm dataset grouped
by region (Figure 5) . We notice that as the value of δ̂ increases, for a given fairness threshold, the model becomes
less conservative and hence prediction set size decreases. This phenomenon further validates the effectiveness of our
framework in balancing between producing tight average prediction set size and ensuring fairness. Similarly, results
for the other datasets can be found in Figures 15 to 17 in Appendix A.4.1.

To sum up, the above parameter analysis provides a guidance on real-world applications when balance between the
recommendation performance and fairness needs to be considered with a confidence guarantee.

(a) δ̂ = 0.15 (b) δ̂ = 0.20 (c) δ̂ = 0.25

Figure 4: Analysis of base models after applying the GUFR framework in terms of average set size with varying
η = {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on MovieLens dataset grouped by Gender under different δ̂.
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(a) η = 0.15 (b) η = 0.20 (c) η = 0.25

Figure 5: Analysis of base models after applying the GUFR framework in terms of average set size with varying
δ̂ = {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on Last.fm dataset grouped by Region under different η.

Dataset MFCF NFCF GMF-UFR NeuMF-UFR GUFR
AmazonOffice (by interactions) 45 50 25 22 8

MovieLens (by gender) 75 90 49 45 12
Last.fm (by region) 50 58 35 30 8

Book-Crossing (by age) 110 135 68 65 15

Table 5: Training time (mins) comparison of our framework GUFR with four fairness baselines

6.3.3 TIME EFFICIENCY COMPARISON

We analyze the computational cost (training time) of the GUFR framework in comparison with other fairness baselines.
Specifically, for in-processing fairness baselines such as NFCF and MFCF, we consider the fine-tuning step to calculate
the training time. For post-processinng fairness baselines such as NeuMF-UFR and GMF-UFR, we take the re-
reranking step as the training time. For proposed GUFR framework, we take the calibration step as the training time.
We measure the time of GUFR, averaged on top of all the base models. Our experiments are conducted via 10-fold
cross validation to ensure statistical reliability. The results are presented in Table 5.

From the results, we can observe that our proposed framework GUFR is significantly more time-efficient than the
other fairness baselines, which indicates the scalability of our method. This is because in-processing methods like
NFCF and MFCF involves model refitting which substantially increases the computational cost. By contrast, GUFR
operates independently of the training phase, eliminating this overhead. Additionally, GUFR is substantially faster than
NeuMF-UFR and GMF-UFR, other post-processing methods, because these models involve solving a constrained and
complex optimization problem, whereas GUFR employs a simple yet effective greedy-based algorithm.

7 CONCLUSION

This paper investigates two principle issues that affect the credibility of RS with respect to confidence and fairness.
We integrate the two factors into a unified framework called Guaranteed User Fairness in Recommendation (GUFR),
which dynamically outputs prediction sets that are guaranteed to have the risk and fairness below a threshold with pre-
specified high confidence, such as 90%, while retaining the minimum average size. We conduct theoretical analysis
and empirical studies, which are consistent in validating the effectiveness. It is noteworthy that the efficiency of
optimizing the GUFR also depends on the tightness of the derived upper bounds for our risk and fairness, thus, we
leave the question whether there exists tighter upper bounds for the future work. Moreover, the proposed framework
can work on top of any recommendation model by taking them as black-box, which offers a robust foundation for
advancing fairness and reliability in RS, paving the way for future research and development in this field.
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A APPENDIX

A.1 ASSUMPTIONS

Assumption A.1. In theorem 2, we assume that the groups G1 and G2 are mutually independent and that hit rates
or NDCG scores are independently distributed within each group. Under these assumptions, the variances for the
fairness metrics are calculated as follows:

σ2
hit =

p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
,

σ2
NDCG =

s21
n1

+
s22
n2

,

where p̂1 and p̂2 are the observed hit rates, and s21 and s22 are the sample variances of NDCG scores for groups G1

and G2, respectively.

This assumption ensures that the application of Bernstein’s inequality is valid, allowing us to derive the Upper Confi-
dence Bound (UCB) for fairness metrics as shown in 13.
Assumption A.2. Throughout the theorem 3, we make a mild assumption on λmin, i.e., the minimum value the param-
eter λ can take, as follows:

Pr(RG(λ
min
G ) ≤ α) ≥ 1− δ ∧ Pr(∆F (λmin

G1
, λmin

G2
) ≤ η) ≥ 1− δ

where λmin
G is the group-specific minimum value of the parameter for risk control, and λmin

G1
and λmin

G2
are the minimum

values for fairness control across the groups.

This assumption depicts the belief that we can control any user-defined risk α and fairness ϵ by taking valid λ values
in a closed set Λ ⊆ R2 ∪ {±∞}.

A.2 PROOFS

A.2.1 PROOF OF THEOREM 1

Proof. We focus on finding some R̂+
G such that out of n samples, R̂G yields atmost k = nR̂G successes (where

success is defined as observing a risk) with a significance level of atleast 1− δ. The CDF of the binomial distribution
is given by:

P (Binom(n, p) ≤ k) =

k∑
i=0

(
n

i

)
pi(1− p)n−i.

Let us assume we know R̂+
G and we seek R̂G such that:

P (Binom(n, R̂+
G) ≤ nR̂G) ≥ 1− δ.

Replacing R̂+
G with the user-defined risk value α, the equation becomes:

P (Binom(n, α) ≤ nR̂G) ≥ 1− δ

or
P (Binom(n, α) ≤ nR̂G) ≤ δ

which can be reformulated as:
BinomCDF(nR̂G, n, α) ≤ δ.

To solve for R̂G, we find the root of this equation which is also the UCB at α: i.e.,

BinomCDF(nR̂G, n, α)− δ = 0

Formally,

R̂+
G = sup

{
R̂G : BinomCDF(nR̂G, n, α) ≤ δ

}
Hence Proved.

13
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A.2.2 PROOF OF THEOREM 2

Proof. Bernstein’s inequality for a sum of independent random variables Xi with mean µ, variance σ2, and bounded
by U states:

P

(∣∣∣∣∣ 1n
n∑

i=1

(Xi − µ)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−

1
2nt

2

σ2 + 1
3Ut

)
, (16)

where n is the number of observations, Xi is the i-th random variable, t is the deviation threshold, σ2 is the variance
of Xi, and U is the upper bound on the range of Xi.

Analogously, we consider, with some decision-maker confidence value δ̂, that the empirical fairness metric differs
from the true fairness metric by the threshold t. This can be mathematically represented as:

δ̂ = 2 exp

(
−

1
2nt

2

σ2
F + 1

3Ut

)
,

which rearranges to:

log

(
2

δ̂

)
=

1
2nt

2

σ2
F + 1

3Ut
,

solving for t gives:

t =

√√√√2σ2
F log

(
2
δ̂

)
+ 2

3U log
(

2
δ̂

)
n

.

Assuming U = 1 conservatively and n = n1 + n2, we obtain the UCB as:

∆F+(λG1
, λG2

, δ̂) = ∆F (λG1
, λG2

) +

√
2σ2

F log(
2
δ̂
) + 2

3 log(
2
δ̂
)

n1 + n2
.

A.2.3 PROOF OF THEOREM 3

Proof. Let λ∗
G be the highest parameter value for each group G ∈ {G1, G2} such that the expected risk of not including

truly relevant items and the fairness metric is less than α and η respectively, i.e.,

λ∗
G = max{λG ∈ [λmin,G, λmax,G] :

RG(λG) ≤ α ∧∆FG(λG1
, λG2

) ≤ η}
(17)

Assume for a parameter value λ̂G, we have RG(λ̂G) > α or ∆F (λ̂G1
, λ̂G2

) > α.

Then by the definition of λ∗
G, we have,

RG(λ
∗
G) ≤ α ∧∆F (λ∗

G1
, λ∗

G2
) ≤ η

which implies,
RG(λ

∗
G) ≤ α < RG(λ̂G) ∨∆F (λ∗

G1
, λ∗

G2
) ≤ η < ∆F (λ̂G1 , λ̂G2)

Given that the risk RG and fairness ∆F are monotonic, we conclude,

λ̂G > λ∗
G

Since λ̂G and λ∗
G are within the range of real numbers, consider some ξ > 0 such that

(λ∗
G + ξ) ≥ λ̂G,

Utilizing the definition of λ∗
G and λ̂G in Equation 17, we get,

R+
G(λ

∗
G + ξ, δ) ≤ α < RG(λ

∗
G + ξ)

∨∆F+(λ∗
G1

, λ∗
G2

+ ξ, δ) ≤ η < ∆F (λ∗
G1

, λ∗
G2

+ ξ)
(18)
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According to the principles of Upper Confidence Bound (UCB), i.e., eq. 10, the events R+
G(λ

∗
G + ξ, δ) ≤ α or

∆F+(λ∗
G1

, λ∗
G2

+ ξ, δ̂) ≤ η can only occur with probabilities not exceeding δ and δ̂ respectively. Specifically, the
UCB ensures that the probability of observing RG(λ̂G) > α is bounded by δ, or the probability of ∆F (λ̂G1

, λ̂G2
) > η

is bounded by δ̂.

Therefore, with complementary probability condition, under Assumption 1 and the defined ranges of δ and δ̂, we can
conclude with confidence that:

Pr(RG(λ̂G) ≤ α) ≥ 1− δ ∧
Pr(∆F (λ̂G1

, λ̂G2
) ≤ η) ≥ 1− δ̂.

(19)

This validates the assertions of Theorem 3, thereby formally proving the theorem.

A.2.4 PROOF OF THEOREM 4

Proof. Since RG(ϕλ∗,G) ≤ RG(ϕλ̂G
) and ∆F (ϕλG1

,λ∗
G2

) ≤ ∆F (ϕ ˆλG1
,λG2

), this relationship is expressed through
the sum of relevance scores m(u, i) over the items in the respective prediction sets for users:∑

u∈G

∑
i∈ϕλ∗

G
(u)

m(u, i) ≥
∑
u∈G

∑
i∈ϕλ̂G

(u)

m(u, i),

indicating that the accumulated scores of included items in ϕλ∗
G

are greater.

This is equivalent to: ∑
u∈G

∑
i∈ϕλ∗

G
(u)\ϕλ̂G

(u)

m(u, i) ≥
∑
u∈G

∑
i∈ϕλ̂G

(u)\ϕλ∗
G
(u)

m(u, i).

For some items i ∈ ϕλ∗
G
(u) \ ϕλ̂G

(u), m(u, i) < λ̂G, and for all items i ∈ ϕλ̂G
(u) \ ϕλ∗

G
(u), m(u, i) ≥ λ̂G, based on

Algorithm 1.

This condition is satisfied if:
|ϕλ∗

G
(u)| ≥ |ϕλ̂G

(u)|.
Thus, the expected size of the set using ϕλ̂G

is optimized to be minimal, i.e.,

E
[
|ϕλ̂G

(u)|
]
≤ E

[
|ϕλ∗

G
(u)|

]
, (20)

thereby proving the theorem.

A.3 DETAILED EXPERIMENATION DETAILS

A.3.1 DATASETS AND GROUPING METHODS

In the main paper, we introduced four user grouping strategies to evaluate the fairness and performance of our frame-
work: (1) grouping based on interaction count with items, (2) grouping based on user age, (3) grouping based on
user gender, and (4) grouping based on geographic categorization into developed and other countries. These strategies
were applied to the AmazonOffice, Book-Crossing, MovieLens, and Last.fm datasets, respectively. Below, we provide
further details on the grouping methodology:

• Grouping by interaction count: Following Li et al. (2021a), users were initially evenly split into two groups,
with 50% assigned to each group. The groups were then dynamically adjusted to ensure that the minimum
interaction count in the advantaged group exceeded the maximum count in the disadvantaged group by at
least one.

• Grouping by age: Users were divided into two age groups: younger users (≤ 60 years) and older users (> 60
years).

• Grouping by gender: Users were grouped into binary categories based on identified gender (male and
female).

• Geographic categorization: Users were categorized based on their country of origin into developed (e.g.,
USA, UK, Europe, Japan etc.) and other countries.
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Furthermore, we conducted an additional grouping experiment on the Last.fm dataset. We extended the interaction
count-based grouping to incorporate interactions with popular items, following Abdollahpouri et al. (2019). The
results of this experiment are provided in Appendix A.4.2.

A.3.2 SAMPLING AND DATA SPLITTING

We followed the following sampling and splitting method:

• Negative sampling: Following Ma et al. (2024), we selected 50 non-interacted items per user through nega-
tive sampling for training, validation, and testing.

• Data splitting: We employed the Leave-One-Out (LOO) strategy (He et al., 2017; Han et al., 2023) to
partition the dataset into training, calibration, and testing sets. Specifically, for each user, one interaction was
isolated for calibration and testing, while the remaining interactions were used for training.

• Multiple trials: To account for variability in sampling and splitting, we repeated the experiments over 20
independent trials. For each trial, random negative samples were drawn for training, validation, and testing.
The results were averaged across all the trials.

A.3.3 MODEL CONFIGURATIONS AND FAIRNESS BASELINES

To evaluate the effectiveness of our framework, we implemented it on top of the five base recommender models
specified in the main paper. Here, we provide specific architectural and training details of the models used:

Base Recommendation Models

• DeepFM: Combines 8 latent factors with deep layers of [50, 25, 10] and ReLU activation.

• GMF: Utilizes an embedding size of 8 for capturing linear interactions between user and item embeddings.

• MLP: Employs layers of [64, 32, 16] with ReLU activation for modeling non-linear interactions.

• NeuMF: Integrates GMF and MLP with a GMF embedding size of 8 and MLP layers of [64, 32, 16], using
ReLU activation.

• LightGCN: Configured with an embedding size of 8 and 3 graph convolution layers.

To validate our framework further, we compared it with four fairness baseline approaches. The baselines are based on
the most commonly adopted methods in fairness literature i.e. in-processing and post-processing methods (Li et al.,
2023) :

Fairness Baselines

• NFCF and MFCF(In-processing) (Islam et al., 2021): The authors utilize a pre-training and fine-tuning
approach to induce user-sided group fairness. Initially, the user embeddings are learned from non-sensitive
interactions, followed by a de-biasing step to mitigate the embedding bias. Finally, the models are fine-tuned
on sensitive item recommendations with a fairness penalty to reduce systemic bias in predictions.

• Neumf-UFR AND GMF-UFR (Post-processing) Li et al. (2021a): This post-hoc re-ranking approach uti-
lizes an integer programming solver to balance fairness and utility disparity between advantaged and disad-
vantaged user groups. The method optimizes preference scores while enforcing a fairness constraint, ensuring
that recommendation quality differences (e.g., NDCG@10, F1@10) between groups remain below a specified
threshold.

A.4 ADDITIONAL EXPERIMENTS

A.4.1 PARAMETERS ANALYSIS -CONTINUED

Effect of Risk Control Parameters α and δ on Prediction Set Sizes.

Figures 6 to 8 illustrate the trends in the average prediction set size as α varies from 0.10 to 0.50 (in increments of
0.05), while keeping the risk confidence thresholds fixed at δ = 0.05, 0.10, 0.15, using the Book-Crossing, MovieLens,
and Last.fm datasets respectively. Similarly, Figures 9 to 11 present the trends in the average prediction set size as δ
varies from 0.10 to 0.50 (in increments of 0.05), while keeping the confidence thresholds fixed at α = 0.15, 0.20, 0.25,
using the AmazonOffice, MovieLens, and Last.fm datasets respectively.
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The observed trends in Figures 6 to 8 (variation in α) and Figures 9 to 11 (variation in δ) are consistent with the
observations reported in Figure 2 (AmazonOffice dataset) and Figure 3 (Book-Crossing dataset) in the main paper.
These results reinforce the consistency of our framework’s behavior across different datasets and grouping methods.

(a) δ = 0.05 (b) δ = 0.10 (c) δ = 0.15

Figure 6: Analysis of base models after applying the GUFR framework in terms of average set size with varying
α = {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on Last.fm dataset grouped by Region under different δ.

(a) δ = 0.05 (b) δ = 0.10 (c) δ = 0.15

Figure 7: Analysis of base models after applying the GUFR framework in terms of average set size with varying
α = {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on Book-Crossing dataset grouped by Age under different δ.

(a) δ = 0.05 (b) δ = 0.10 (c) δ = 0.15

Figure 8: Analysis of base models after applying the GUFR framework in terms of average set size with varying
α = {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on MovieLens dataset grouped by Gender under different δ.

Effect of Fairness Control Parameters η and δ̂ on Prediction Set Sizes Figures 12 to 14 illustrate how the average
prediction set size changes as η varies from 0.10 to 0.50 (in increments of 0.05), while holding the fairness confidence
thresholds fixed at δ̂ = 0.15, 0.20, 0.25. These results are based on the AmazonOffice dataset, Book-Crossing and
Book-Crossing datasets respectively.

In contrast, Figures 15 to 17 display the trends in prediction set size as δ̂ ranges from 0.10 to 0.50 (in increments
of 0.05), with fixed thresholds of η = 0.15, 0.20, 0.25. These findings are based on AmazonOffice, MovieLens and
Last.fm datasets respectively.

These results further validate variations in η and δ̂ exhibit consistent patterns, emphasizing our framework’s ability to
adapt prediction set sizes effectively based on fairness constraints.

A.4.2 GENERALIZABLITY OF GROUPING METHODS

We validate if GUFR is adaptable to practitioners’ demands for customized user groups based on specific biases or
fairness concerns relevant to their context. Specifically, we test our framework using different grouping techniques on

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) α = 0.15 (b) α = 0.20 (c) α = 0.25

Figure 9: Analysis of base models after applying the GUFR framework in terms of average set size with varying
δ = {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on AmazonOffice dataset grouped by Interactions under different α.

(a) α = 0.15 (b) α = 0.20 (c) α = 0.25

Figure 10: Analysis of base models after applying the GUFR framework in terms of average set size with varying
δ = {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on Last.fm dataset grouped by Region under different α.

a single dataset i.e. Last.fm by grouping users based on item interactions and grouping by both item interactions and
interactions with popular items on the Last.fm dataset. The results could be found in Table 6 and Table 7. The results
demonstrate that the GUFR framework can dynamically generate prediction sets for users grouped by any condition.
This is particularly useful in real-world scenarios, where different applications may have different definitions of fair-
ness. By allowing any grouping method, the framework can support dynamic fairness criteria that can evolve with
changing societal norms or organizational policies, thereby allowing practitioners to define user groups based on the
specific biases or fairness concerns relevant to their context.

A.5 PRACTICAL APPLICABILITY OF THE FRAMEWORK

We now analyze the practical applicability of our framework. In real-world recommendation systems, prediction sets
are often fixed to a specific size k and applied uniformly across all users. This fixed size is typically determined
heuristically or through trial and error, aiming to maximize the likelihood of including items that users may interact
with while prioritizing and ranking items by relevance. However, this heuristic approach has several limitations:

• Fixed-size sets can lead to cognitive overload for users when the size is too large or fail to meet individual
user needs when the size is too small.

• They do not account for disparities in user engagement or group fairness, potentially disadvantaging certain
user groups.

• Recommending unnecessary items results in resource inefficiencies for platforms.

Our framework addresses these challenges by dynamically determining the minimum prediction set size for each user,
satisfying fairness and performance guarantees with statistical confidence (e.g., 95%). This complements the existing
recommender systems as we can employ an appropriate aggregation method (for example, mean) to compute global
k. This global k, obtained with the theoretical guarantees, can then be applied to unseen users, ensuring that fairness
and performance guarantees hold across the system.

For example, in e-commerce platforms such as Amazon, instead of heuristically fixing k = 10 for all users, our frame-
work identifies an optimal k (e.g., k = 7) that balances fairness and accuracy, reducing unnecessary recommendations
and enhancing user satisfaction while optimizing platform resources. Similarly, in streaming services like Netflix,
dynamically adjusting k in cold-start scenarios ensures concise and personalized recommendations, preventing user
overwhelm and aligning with platform resource constraints.
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(a) α = 0.15 (b) α = 0.20 (c) α = 0.25

Figure 11: Analysis of base models after applying the GUFR framework in terms of average set size with varying
δ = {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on MovieLens dataset grouped by Gender under different α.

(a) δ̂ = 0.15 (b) δ̂ = 0.20 (c) δ̂ = 0.25

Figure 12: Analysis of base models after applying the GUFR framework in terms of average set size with varying
η = {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on AmazonOffice dataset grouped by Interactions under different δ̂.

Additionally, the calculated k can serve as a benchmark to fine-tune recommendation models, enabling iterative im-
provements that enhance fairness and accuracy across diverse user groups. By tailoring prediction set sizes dynami-
cally, our framework provides a practical, scalable solution for modern recommendation systems.

.
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(a) δ̂ = 0.15 (b) δ̂ = 0.20 (c) δ̂ = 0.25

Figure 13: nalysis of base models after applying the GUFR framework in terms of average set size with varying
η = {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on Book-Crossing dataset grouped by Age under different δ̂.

(a) δ̂ = 0.15 (b) δ̂ = 0.20 (c) δ̂ = 0.25

Figure 14: Analysis of base models after applying the GUFR framework in terms of average set size with varying
η = {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on Last.fM dataset grouped by Region under different δ̂.

(a) η = 0.15 (b) η = 0.20 (c) η = 0.25

Figure 15: Analysis of base models after applying the GUFR framework in terms of average set size with varying
δ̂ = {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on AmazonOffice dataset grouped by Interactions under different η.

(a) η = 0.15 (b) η = 0.20 (c) η = 0.25

Figure 16: Analysis of base models after applying the GUFR framework in terms of average set size with varying
δ̂ = {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on Book-Crossing dataset grouped by Age under different η.
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(a) η = 0.15 (b) η = 0.20 (c) η = 0.25

Figure 17: Analysis of base models after applying the GUFR framework in terms of average set size with varying
δ̂ = {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on MovieLens dataset grouped by Gender under different η.

Method Group Risk↓ Average Set Size ↓ Hit Rate NDCG Hit Rate Diff↓ NDCG Diff↓
Grouped by number of interactions

DeepFM 1 0.183

16

0.817 0.494 0.073 0.035
2 0.255 0.745 0.458

DeepFM + GUFR 1 0.177 0.823 0.494 0.013 0.022
2 0.19 0.81 0.472

GMF 1 0.163

13

0.837 0.567 0.08 0.066
2 0.243 † 0.757 0.501

GMF + GUFR 1 0.183 0.817 0.56 0.001 0.045
2 0.183 0.817 0.515

LightGCN 1 0.179

12
0.821 0.547 0.18 0.089

2 0.359† 0.641 0.458

LightGCN + GUFR 1 0.201 0.799 0.492 0.003 0.066
2 0.198 0.802 0.426

MLP 1 0.192

15

0.808 0.44 0.077 0.076
2 0.269 † 0.731 0.364

MLP + GUFR 1 0.151 0.849 0.448 0.041 0.067
2 0.192 0.808 0.38

NeuMF 1 0.151

16

0.849 0.58 0.087 0.081
2 0.238 † 0.762 0.499

NeuMF + GUFR 1 0.142 0.858 0.581 0.027 0.067
2 0.169 0.831 0.513

Other Fairness Baselines

NFCF a 1 0.248 † 16 0.822 0.569 0.039 0.053
2 0.272† 0.783 0.516

MFCFa 1 0.231 † 13 0.815 0.529 0.042 0.021
2 0.297† 0.773 0.508

NeuMF-UFRb 1 0.213 † 16 0.827 0.546 0.045 0.031
2 0.258 † 0.782 0.515

GMF-UFRb 1 0.211 † 13 0.819 0.536 0.047 0.019
2 0.278 † 0.772 0.517

Table 6: Performance and fairness comparisons
with base models and fairness baselines on the

Last.fM Dataset grouped by the Item Interactions
in terms of risk, average set size, and Hit Rate

Diff/NDCG Diff, respectively. Bold indicates the
best result, underline indicates the second best and †

marks threshold exceeded cases.

Method Group Loss Average Set Size Hit Rate NDCG Hit Rate Diff NDCG Diff
Grouped by number of total interactions & popular items interactions

DeepFM 1 0.078

30

0.922 0.56 0.22† 0.226 †
2 0.298† 0.702 0.334

DeepFM + GUFR 1 0.162 0.838 0.54 0.162 0.151
2 0 1 0.389

GMF 1 0.063

30

0.937 0.603 0.112 0.231
2 0.176 0.824 0.372

GMF + GUFR 1 0.163 0.837 0.578 0.163 0.174
2 0 1 0.405

LightGCN 1 0.076

45

0.924 0.627 0.119 0.24†
2 0.195 0.805 0.387

LightGCN + GUFR 1 0.126 0.874 0.585 0.03 0.106
2 0.156 0.844 0.479

MLP 1 0.057

31

0.943 0.522 0.152 0.239 †
2 0.209† 0.791 0.283

MLP + GUFR 1 0.143 0.857 0.5 0.143 0.179
2 0 1 0.322

NeuMF 1 0.07

29
0.93 0.661 0.147 0.263 †

2 0.217 † 0.783 0.398

NeuMF + GUFR 1 0.154 0.846 0.64 0.154 0.198
2 0 1 0.442

Other Fairness Baselines

NFCF 1 0.115 29 0.885 0.629 0.08 0.208†
2 0.195 0.805 0.421

MFCF 1 0.137 30 0.863 0.549 0.109 0.051
2 0.243† 0.757 0.44

NeuMF-UFR 1 0.111 29 0.889 0.588 0.077 0.166
2 0.188 0.812 0.428

GMF-UFR 1 0.121 30 0.879 0.566 0.057 0.198
2 0.178 0.822 0.368

Table 7: Performance, and fairness comparisons
with base models and fairness baselines on the

Last.fM Dataset grouped by the Item Interactions
& Interaction with Popular Items in terms of risk,

average set size, and Hit Rate Diff/NDCG Diff,
respectively. Bold indicates the best result, underline

indicates the second best and † marks threshold
exceeded cases.
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