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Abstract
Despite the impressive numerical performance of quasi-Newton and Anderson/nonlinear-
acceleration methods, their global convergence rates have remained elusive for over 50 years.
This paper addresses this long-standing question by introducing a framework that derives
novel and adaptive quasi-Newton or nonlinear/Anderson acceleration schemes. Under mild
assumptions, the proposed iterative methods exhibit explicit, non-asymptotic convergence
rates that blend those of gradient descent and Cubic Regularized Newton’s method. The
proposed approach also includes an accelerated version for convex functions. Notably,
these rates are achieved adaptively, without prior knowledge of the function’s smoothness
parameter. The framework presented in this paper is generic, and algorithms such as
Newton’s method with random subspaces, finite difference, or lazy Hessian can be seen as
special cases of this paper’s algorithm. Numerical experiments demonstrate the efficiency of
the proposed framework, even compared to the L-BFGS algorithm with Wolfe line search.

1. Introduction

Consider the problem of finding the minimizer x⋆ of the unconstrained minimization problem

f(x⋆) = f⋆ = min
x∈Rd

f(x),

where d is the problem’s dimension, and the function f has a Lipschitz continuous Hessian.

Assumption 1. The function f(x) has a Lipschitz continuous Hessian with a constant L,

∀ y, z ∈ Rd, ∥∇2f(z)−∇2f(y)∥ ≤ L∥z − y∥. (1)

In this paper, ∥.∥ stands for the maximal singular value of a matrix and for the ℓ2 norm
for a vector. Many twice-differentiable problems like logistic or least-squares regression
satisfy Assumption 1.

The Lipschitz continuity of the Hessian is crucial when analyzing second-order algorithms,
as it extends the concept of smoothness to the second order. The groundbreaking work
by Nesterov et al. [52] has sparked a renewed interest in second-order methods, revealing
the remarkable convergence rate improvement of Newton’s method on problems satisfying
Assumption 1 when augmented with cubic regularization. For instance, if the problem is also
convex, accelerated gradient descent typically achieves O( 1

t2 ), while accelerated second-order
methods achieve O( 1

t3 ). Recent advancements have further pushed the boundaries, achieving
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even faster convergence rates of up to O( 1
t7/2 ) through the utilization of hybrid methods [49,

15] or direct acceleration of second-order methods [50, 30, 46].
Unfortunately, second-order methods are not scalable, particularly in high-dimensional

problems common in machine learning. The limitation is that exact second-order methods
require solving a linear system that involves the Hessian of the function f . This motivated
alternative approaches that balance the efficiency of second-order methods and the scalability
of first-order methods, such as Quasi-Newton methods or Nonlinear acceleration methods
(which are equivalent to quasi-Newton methods, see [26]).

Quasi-Newton (qN) methods efficiently minimize differentiable functions by iteratively
updating an approximate Hessian matrix using previous gradient information, effectively
balancing computational efficiency and optimization accuracy. This approach makes them
highly suitable for large-scale optimization problems across diverse fields, providing an
appealing combination of speed and effectiveness in finding optimal solutions. For instance,
ℓ-BFGS is a widely used and effective optimization method for unconstrained functions (for
instance, fminunc from Matlab), and is often considered as a state-of-the-art method in
many applications [1].

1.1. Contributions

Despite the impressive numerical performance of quasi-Newton methods and nonlinear
acceleration schemes, there are currently no satisfying global explicit convergence rates.
In fact, global convergence cannot be guaranteed without using either exact or Wolfe-line
search techniques. This raises the following long-standing question that has remained
unanswered for over 50 years:

What are the non-asymptotic global convergence rates of quasi-Newton
and Anderson/nonlinear acceleration methods?

This paper provides a partial answer by introducing generic updates that are novel quasi-
Newton methods or regularized nonlinear acceleration schemes with cubic regularization.
In particular, to the author’s knowledge, the method presented in this paper is the first to
satisfy those desiderata:

1. The assumptions for the theoretical analysis are simple and verifiable (sec 3.1),

2. The algorithm is suitable for large-scale problems, as for a fixed memory N , its
per-iteration cost is linear in the dimension,

3. The algorithm exhibits explicit, global and non-asymptotic convergence rates
that interpolate the one of first order and second order methods (more details in
appendix D):

• Non-convex problems (Theorem 2): mini≤t ∥∇f(xi)∥ ≤ O(t− 2
3 + t− 1

3 ),
• (Star-)convex problems (Theorems 3 and 4): f(xt)− f⋆ ≤ O(t−2 + t−1),
• Accelerated rate on convex problems (Theorem 5): f(xt)− f⋆ ≤ O(t−3 + t−2),
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4. The algorithm is adaptive to the problem’s constants (algorithms 4 and 7):
both accelerated and classical methods require only an initial estimate of the Lipchitz
constant,

5. Is competitive with l-BFGS (Section 6).
Currently, the l-BFGS algorithm is probably at its peak in terms of engineering achieve-

ment, given its robust and highly efficient performance. The challenge is that further
numerical improvements or finding fast rates without arming the numerical convergence
may be increasingly hard or impossible. Hence, to achieve the previous points, this paper
explores a new paradigm by rethinking from scratch the framework underlying qN methods.
The goal is to ensure a theoretical convergence rate while keeping the incredible numerical
performance of current qN schemes.

Current limitations Some previous work already tempted to find rates for qN methods,
but often violates at least of the previous point: 1) the analysis requires non-verifiable
assumptions, 2) the algorithm is not suitable for large-scale problems as the per-iteration
cost is at least O(d2), 3) the rates are locals or do not interpolate between first and second
order rates, 4) the algorithm requires unknown, critical hyper-parameters. A more in-depth
analysis of previous work can be found in appendix C.

Violates 1: For instance, the ARC method [16, 17] or proximal qN methods [carti, 82,
59] show accelerated rates for quasi-Newton under similar assumptions as this paper. Still,
the authors state that the convergence rate is derived under a non-verifiable assumption,
and their rates do not rely on or exploit the accuracy of second-order approximations.

Violates 2: Recent research on quasi-Newton updates has unveiled explicit and non-
asymptotic rates of convergence [56, 58, 57, 47, 48]. Nonetheless, these analyses suffer from
several significant drawbacks, such as assuming an infinite memory size and/or requiring
access to the Hessian matrix. In addition, the rates are only valid locally.

Violates 3: By using online algorithms and the Monteiro-Svaiter acceleration technique,
[44] achieves accelerated rates O(min{ 1

t2 , 1
t2.5 }) for qN methods, but despite being full-

memory algorithms, they do not match the O(1/t3) accelerated rate of second order method,
and also use a full d× d matrix, which does not scale well in high dimension.

Violates 4: Kamzolov et al. [45] introduced an adaptive regularization technique
combined with cubic regularization, but the method relies on knowing L in Assumption 1.

Note that in most of the previous work, a (wolfe) line search algorithm (often in
addition with other techniques, like secant equation filtering or re-scaling) is required to
ensure global convergence. Without such line search, the performance of qN method is
usually poor or divergent, even on a simple quadratic case in two dimensions [55].

2. Rethinking From Scratch Quasi-Newton Methods

This section presents the sketch of the ideas introduced in this paper. The starting point is
the cubic upper bound on the objective function f , and the quadratic upper bound on the
gradient variation, derived using Assumption 1 [52],

∥∇f(y)−∇f(x)−∇2f(x)(y − x)∥ ≤ L
2 ∥y − x∥2, (2)∣∣∣f(y)− f(x)−∇f(x)(y − x)− 1

2(y − x)T∇2f(x)(y − x)
∣∣∣ ≤ L

6 ∥y − x∥3, (3)
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which holds for all x, y ∈ Rd [52]. Minimizing (3) over y leads to the cubic regularization of
Newton’s method [52].

The main steps to derive this paper’s algorithms are as follows: 1) The minimization
will be contained to a subspace of dimension N ≤ d, reducing the per-iteration computation
cost. 2) As for quasi-Newton methods, the Hessian (in the subspace) will be approximated
using differences of gradients. 3) From the previous points, an upper bound for the objective
function and the gradient norm will be constructed, leading to a type-I and type-II method.
4) To ensure convergence, the direction of the subspace will be chosen such that the direction
spans the gradient (deterministic), or, spans a portion of the gradient in expectation (random
subspace).

Due to space limitation, all the details are presented in appendix A. In the end, at
each iteration t, the algorithm updates a matrix of directions Dt and a matrix of gradient
differences Gt, defined as

Dt =
[

y
(t)
1 − z

(t)
1

∥y(t)
1 − z

(t)
1 ∥2

, . . . ,
y

(t)
N − z

(t)
N

∥y(t)
N − z

(t)
N ∥2

]
, Gt =

[
. . . ,
∇f(y(t)

i )−∇f(z(t)
i )

∥y(t)
i − z

(t)
i ∥2

, . . .

]
, (4)

where y
(t)
i and z

(t)
i have been chosen carefully, such that Dt is orthogonal (see e.g. algorithm 1).

Then, it computes the error vector εt defined as

εt
def= [e(t)

1 , . . . , e
(t)
N ], and e

(t)
i

def= ∥y(t)
i − z

(t)
i ∥+ 2∥z(t)

i − x∥. (5)

This vector estimates the approximation error of estimating the product ∇f(xt)Dt by Gt.
Then, the algorithm constructs the matrix Ht

Ht
def= GT

t Dt+DT
t Gt+IL∥Dt∥∥εt∥

2 ,

which can be viewed as an approximation with finite differences of the Hessian ∇2f(xt) in
the subspace spanned by the column of Dt. Finally, the next iterate xt+1 is obtained as

xt+1 = xt + Dtαt, (6)

where α minimizes the following upper bound, over α ∈ RN , (see algorithms 3 and 4)

f(xt+1) ≤ f(xt) +∇f(xt)T Dtα + αT Htα
2 + L∥Dtα∥3

6 . (Type-I bound)

3. Rates of Convergences for the Type-I method

3.1. Assumptions

This section lists the important assumptions on the function f . Some subsequent results
require an upper bound on the radius of the sub-level set of f at f(x0).
Assumption 2. The radius of the sub-level set {x : f(x) ≤ f(x0)} is bounded by R <∞.

To ensure the convergence toward f(x⋆), some results require f to be star-convex or
convex.
Assumption 3. The function f is star convex if, for all x ∈ Rd and ∀τ ∈ [0, 1],

f((1− τ)x + τx⋆) ≤ (1− τ)f(x) + τf(x⋆).

Assumption 4. The function f is convex if, for all y, z ∈ Rd, f(y) ≥ f(z) +∇f(z)(y − z).
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3.2. Rates of Convergence

When f satisfies Assumption 1, algorithm 3 ensures a minimal function decrease at each
step.
Theorem 1. Let f satisfy Assumption 1. Then, at each iteration t ≥ 0, algorithm 3 achieves

f(xt+1) ≤ f(xt)− Mt+1
12 ∥xt+1 − xt∥3, Mt+1 < max

{
2L ; M0

2t

}
. (7)

Under some mild assumptions, algorithm 3 converges to a critical point for non-convex
functions, and converges to an optimum when the function is star-convex.
Theorem 2. Let f satisfy Assumption 1, and assume that f is bounded below by f∗. Let
Requirements 1b to 3 hold, and Mt ≥ Mmin. Then, algorithm 3 starting at x0 with M0
achieves

min
i=1, ..., t

∥∇f(xi)∥ ≤ max
{

3L

t2/3

(
12f(x0)− f⋆

Mmin

)2/3
;
(

C1
t1/3

)(
12f(x0)− f⋆

Mmin

)1/3}
,

where C1 = δL
(

κ+2κ2

2

)
+ maxi∈[0,t] ∥(I − Pi)∇2f(xi)Pi∥.

Theorem 3. Assume f satisfy Assumptions 1 to 3. Let Requirements 1b to 3 hold. Then,
algorithm 3 starting at x0 with M0 achieves, for t ≥ 1,

f(xt)− f⋆ ≤ 6 f(x0)− f⋆

t(t + 1)(t + 2) + 1
(t + 1)(t + 2)

L(3R)3

2 + 1
t + 2

C2(3R)2

4 ,

where C2
def= δLκ+2κ2

2 + maxi∈[0,t] ∥∇2f(xi)− Pi∇2f(xi)Pi∥.

Finally, the next theorem shows that when algorithm 3 random directions (that satisfies
Requirement 1a), then f(xt) also converges in expectation to f(x⋆) when f is convex.
Theorem 4. Assume f satisfy Assumptions 1, 2 and 4. Let Requirements 1a, 2 and 3 hold.
Then, in expectation over the matrices Di, algorithm 3 starting at x0 with M0 achieves, for
t ≥ 1,

EDt [f(xt)− f⋆] ≤ 1

1 + 1
4

[
N
d t
]3 (f(x0)− f⋆) + 1[

N
d t
]2 L(3R)3

2 + 1[
N
d t
] C3(3R)2

2 ,

where C3
def= δLκ+2κ2

2 + (d−N)
d maxi∈[0,t] ∥∇2f(xi)∥.

For space limitation reasons, the accelerated algorithm 3 is presented in section ap-
pendix B, see algorithms 6 and 7. Indeed, while theoretically more interesting, the algorithm
performs poorly numerically - probably because it trades off some adaptivity for better
worst-case convergence rates.
Theorem 5. Assume f satisfy Assumptions 1, 2 and 4. Let Requirements 1b to 3 hold.
Then, the accelerated algorithm 7 starting at x0 with M0 achieves, for t ≥ 1,

f(xt)− f⋆ ≤C4
(3R)2

(t+3)2 + 9 max {M0 ; 2L}
(

3R
t+3

)3
+

λ̃(1)R2
2 + λ̃(2)R3

6
(t+1)3 .

where λ̃(1) = 0.5 · δ
(
Lκ + M1κ2

)
+ ∥∇2f(x0)− P0∇2f(x0)P0∥, λ̃(2) = M1 + L,

C4 = 30 · κD (δ max{4L, M0}+ maxi=0...t ∥(I − Pi)∇f(xi)Pi)∥)
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Figure 1: Comparison between the type-1 methods proposed in this paper and the optimized
implementation of ℓ-BFGS from minFunc [60] with default parameters, except for
the memory size. All methods use a memory size of N = 25.

The rates in Theorems 2 to 5 combine the ones of cubic regularized Newton’s method
and gradient descent (or coordinate descent, as in Theorem 4) for functions with Lipschitz-
continuous Hessian. As C1, C2, C3, and C4 decrease, the rates approach those of cubic
Newton (See appendix D).

4. Numerical Experiments

This section compares the methods generated by this paper’s framework to the fine-tuned
ℓ-BFGS algorithm from minFunc [60], see creffig:test. More experiments are conducted in
appendix G. The tested methods are the Type-I iterative algorithms (algorithm 3 with the
techniques from appendix A.4). The step size of the forward estimation was set to h = 10−9,
and the condition number κDt is maintained below κ = 109 with the iterates only and
Greedy techniques. The accelerated algorithm 7 is used only with the Forward Estimates
Only technique. The compared methods are evaluated on a logistic regression problem on
the Madelon UCI dataset [37].

Regarding the number of iterations, the greedy orthogonalized version outperforms the
others due to the orthogonality of directions (resulting in a condition number of one) and
the meaningfulness of previous gradients/iterates. However, in terms of gradient oracle calls,
the recommended method, orthogonal forward iterates only, achieves the best performance
by striking a balance between the cost per iteration (only two gradients per iteration) and
efficiency (small and orthogonal directions, reducing theoretical constants). Surprisingly, the
accelerated method’s performance is suboptimal, possibly because it tightens the theoretical
analysis, diminishing its inherent adaptivity.

5. Conclusion, Limitation, and Future work

This paper introduces a generic framework for developing novel quasi-Newton and Ander-
son/Nonlinear acceleration schemes, offering a global convergence rate in various scenarios,
including accelerated convergence on convex functions, with minimal assumptions and design
requirements.
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The current approach requires an additional gradient step for the forward estimate, as
discussed in Section A.4. However, this forward estimate is crucial in enabling the algorithm’s
adaptivity.

In future research, although unsuitable for large-scale problems, the method presented in
this paper can achieve super-linear convergence rates, as with infinite memory, they would be
as fast as cubic Newton methods. Utilizing the average-case analysis framework from existing
literature, such as [54, 65, 24, 19, 53], could also improve the constants in Theorems 2 and 3
to match those in Theorem 4. Furthermore, exploring convergence rates for type-2 methods,
which are believed to be effective for variational inequalities, is a worthwhile direction.
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Algorithm 1 "Orthogonal Forward Estimate Only" Update
Require: First-order oracle f , step-size h, matrices Dt−1, Gt−1, Yt−1, Zt−1, new point xt.

1: If # columns of Dt−1, Gt−1, Yt−1, Zt−1 is larger than N , then remove their first column.
2: Compute gt = ∇f(xt), then compute dt = − d̃

∥d̃∥ , where d̃ = gt −Dt−1(DT
t−1gt).

3: Compute xt+ 1
2

= xt + hdt, the orthogonal forward estimate.
4: Update Yt = [Yt−1, xt+ 1

2
], Zt = [Zt−1, xt], Dt = [Dt−1, dt], Gt = (9), ε = (11) .

5: return ∇f(xt), Dt, Gt, Yt, Zt, εt.

Algorithm 2 "Orthogonal Random Directions" Update
Require: First-order oracle for f , step-size h, memory N , new point xt.

1: Generates N random orthonormal directions, e.g., [Dt, ] = qr(Rand(d, N)).
2: Create matrices Zt = [xt, . . . , xt], Yt = Zt + hDt, then update Gt = (9), ε = [h, . . . , h] .
3: return ∇f(xt), Dt, Gt, Yt, Zt, εt.

Algorithm 3 Generic Iterative Type-I Method
Require: First-order oracle f , initial iterate and smoothness x0, M0, # of iterations T .

for t = 0, . . . , T − 1 do
Update Yt, Zt, Dt, Gt, and εt (see appendix A.4).
xt+1, Mt+1 ← [algorithm 4](f, Gt, Dt, εt, xt, (Mt/2))

end for
return xT

Algorithm 4 Type-I Subroutine with Backtracking Line-search
Require: First-order oracle for f , matrices G, D, vector ε, iterate x, initial smoothness

M0.
1: Initialize M ← M0

2
2: do
3: M ← 2M and H ← GT D+DT G

2 + IN
M∥D∥∥ε∥

2
4: α⋆ ← arg minα f(x) +∇f(x)T Dα + 1

2αT Hα + M∥Dα∥3

6
5: x+ ← x + Dα

6: while f(x+) ≥ f(x) +∇f(x)T Dα⋆ + 1
2 [α⋆]T Hα⋆ + M∥Dα⋆∥3

6
7: return x+, M

Algorithm 5 Type-II Subroutine with Backtracking Line-search
Same as algorithm 4, but minimize and check the upper bound (Type-II bound) instead
of (Type-I bound) on lines 4 and 6.
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Supplementary Materials

Appendix A. Rethinking From Scratch Quasi-Newton Methods.

A.1. First Ingredient: Subspace Approximation

Minimizing the upper bound (3) is costly in high dimension, as this requires an eigenvalue
decomposition of the Hessian ∇2f(x) [52]. Instead, let Dt be some N×d matrix of directions
(the construction of Dt will be defined later in appendix A.4). By constraining the update
xt+1 − xt in the span of directions Dt, i.e.,

xt+1 = xt + Dtαt, (8)

where αt is a vector of N coefficients, the minimization problem simplifies into

αt = arg minα∈RN f(xt) +∇f(xt)Dtα + 1
2(Dtα)T∇2f(xt)Dtα + L

6 ∥Dtα∥3.

The complexity of minimizing this upper bound is only O(N2d + N3) operations, where N
is the number of columns of Dt (see appendix F).

A.2. Second Ingredient: Multisecant Approximation of the Hessian

Typically, (limited-memory) quasi-Newton methods approximate the Hessian using the
properties of the secant equation,

∇2f(xi)(xi − xi−1) ≈ ∇f(xi)−∇f(xi−1),

for the last N pairs of iterates. Usually, the updates are done recursively, i.e., by updating
an approximation of the Hessian one secant equation at a time.

Instead, this paper approximates the Hessian using all the secant equations at once. Let
the directions Dt and their associated normalized gradient difference Gt be defined as

Dt =
[

y
(t)
1 − z

(t)
1

∥y(t)
1 − z

(t)
1 ∥2

, . . . ,
y

(t)
N − z

(t)
N

∥y(t)
N − z

(t)
N ∥2

]
, Gt =

[
. . . ,
∇f(y(t)

i )−∇f(z(t)
i )

∥y(t)
i − z

(t)
i ∥2

, . . .

]
. (9)

where the points y
(t)
i , z

(t)
i are defined as follow:

Yt = [y(t)
1 , . . . , y

(t)
N ], Zt = [z(t)

1 , . . . , z
(t)
N ]. (10)

For instance, l-BFGS uses Yt = [xt−N , . . . , xt−1] and Zt = [xt−N+1, . . . , xt] (which will not
be the case in this paper, see appendix A.4). Intuitively, the matrix Gt is a finite difference
approximation of the Hessian-matrix product ∇2f(x)D. More precisely, the next theorem
states a bound on the approximation error of this product as a function of the error vector
εt,

εt
def= [e(t)

1 , . . . , e
(t)
N ], and e

(t)
i

def= ∥y(t)
i − z

(t)
i ∥+ 2∥z(t)

i − x∥. (11)

Theorem 6. Let the function f satisfy Assumption 1. Let the matrices D, G be defined as
in (10) and vector ε as in (11). Then, for all w ∈ Rd and α ∈ RN

−L∥w∥
2 |α|

T εt ≤ wT (∇2f(x)Dt −Gt)α ≤ L∥w∥
2 |α|

T εt, (12)

∥wT (∇2f(x)Dt −Gt)∥ ≤ L∥w∥
2 ∥εt∥. (13)

15



Quasi-Newton with Global Convergence Rates

Proof sketch The detailed proof can be found in appendix H. The main idea of the proof
is as follows. From (2) with y = yi and z = zi, and Assumption 1, (·(t) is removed for
clarity),

∥∇f(yi)−∇f(zi)−∇2f(x)(yi − zi)∥
∥yi − zi∥

≤ L

2 ∥yi − zi∥+ ∥∇2f(x)−∇2f(z)∥ ≤ L

2 ei.

The first term in ei bounds the error of (2), while the second comes from the distance
between (2) and the current point x where the Hessian is estimated. Then, it suffices to
combine the inequalities with coefficients α to obtain Theorem 6.

A.3. Third Ingredient: Objective Function and Gradient Norm Upper bounds

Since the approximation error between ∇2f(x)D and G can be explicitly bounded, by
carefully replacing the term ∇2f(x)Dα in eqs. (2) and (3) by Gα, alongside with an
appropriate regularization, leads to the type-I and type-II bounds.

Theorem 7. Let the function f satisfy Assumption 1. Let xt+1 be defined as in (8), the
matrices Dt, Gt be defined as in (10) and εt be defined as in (11). Then, for all α ∈ RN ,

f(xt+1) ≤ f(xt) +∇f(xt)T Dtα + αT Htα
2 + L∥Dtα∥3

6 , (Type-I bound)

∥∇f(xt+1)∥ ≤ ∥∇f(xt) + Gtα∥+ L
2

(
|α|T εt + ∥Dtα∥2

)
, (Type-II bound)

where Ht
def= GT

t Dt+DT
t Gt+IL∥Dt∥∥εt∥

2 .

The proof can be found in appendix H. Minimizing eqs. (Type-I bound) and (Type-II
bound) leads to algorithms 4 and 5, respectively, whose constant L is replaced by a parameter
M , found by backtracking line-search. Type-I methods often refer to algorithms that aim to
minimize the function value f(x), while in contrast, type-II methods minimize the gradient
norm ∥∇f(x)∥ [26, 85, 14]. See algorithms 4 and 5 for the implementation details.

Solving the sub-problems In algorithms 4 and 5, the coefficients α are computed by
solving a minimization sub-problem in O(N3 + Nd) ( appendix F), where N is much smaller
than d.

• In algorithm 4, the subproblem can be solved easily by a convex problem in two
variables, which involves an eigenvalue decomposition of the matrix H ∈ RN×N [52].

• In algorithm 5, the subproblem can be cast into a linear-quadratic problem of O(N)
variables and constraints that can be solved efficiently with SDP solvers (e.g., SDPT3).

Link with qN updates and Anderson Acceleration algorithms 4 and 5 are strongly
related to known quasi-Newton methods and Anderson Acceleration technique, see ??.

A.4. Fourth Ingredient: Direction Update Rules

One critical theoretical property in the analysis is how the gradient ∇f(xt) is aligned with
the directions Dt. Since Dt is part of the algorithm design, a careful update can ensure that
Dt satisfy interesting theoretical properties.
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Below are some assumptions on how to update Yt, Zt, Dt, called requirements. While
not overly restrictive, naive methods such as keeping only previous iterates will not satisfy
those.

All convergence results rely on one of these conditions on the projector onto span(Dt),

Pt
def= Dt(DT

t Dt)−1DT
t . (14)

1a. For all t, the projector Pt of the stochastic matrix Dt satisfies E[Pt] = N
d I.

1b. For all t, the projector Pt satisfies Pt∇f(xt) = ∇f(xt).

The first condition guarantees that, in expectation, the matrix Dt spans partially the
gradient∇f(xt), since E[Pt∇f(xt)] = N

d ∇f(xt). The second condition requires the possibility
to move towards the current gradient when taking the step x + Dα.

In addition, it is required that the norm of ∥εt∥ does not grow too quickly, hence the
next assumption.

2. For all t, the relative error ∥εt∥
∥Dt∥ is bounded by δ.

The Requirement 2 is also non-restrictive, as it simply prevents taking secant equations at
yi−zi and zi−xi too far apart. Most of the time, δ satisfies the crude bound δ ≤ O(∥x0−x⋆∥).

Finally, the condition number of the matrix D also has to be bounded.

3. For all t, the matrix Dt is full-column rank,i.e., DT
t Dt is invertible. In addition, its

condition number κDt

def=
√
∥DT

t Dt∥∥(DT
t Dt)−1∥ is bounded by κ.

It is possible to ensure the condition with κ = 1 if the directions are orthogonal.

A.4.1. "Orthogonal Forward Estimate Only" Update Rule (Recommended)

The "Orthogonal Forward Estimate Only" update maintains Dt orthonormal, i.e., DT
t Dt = I

for all t, while ensuring that ∇f(xt) belongs to the span of columns of Dt (see algorithm 1).
Those condition are satisfied thanks to an intermediate iterate xt+ 1

2
that will be used to

estimate ∇2f(xt)∇f(xt), which is called the orthogonal forward estimate,

xt+ 1
2

= xt − h
(
∇f(xt)− D̃t−1

(
D̃T

t−1∇f(xt)
))

,

where h > 0 is a small stepsize, and D̃t−1 is simply the matrix Dt−1 whose first column has
been removed if its number of columns equals N . This forward estimate corresponds to a
step of gradient descent projected onto the orthogonal space spanned by the columns of
D̃t−1. This projection step is cheap since the orthogonality of Dt is maintained over the
iterations.

After computing the forward estimate, it suffices to update the matrices Yt, Zt as,
respectively, a moving history of the previous forward iterates and previous iterates,

Yt = [xt−N+ 3
2
, . . . , xt+ 1

2
], Zt = [xt−N+1, . . . , xt],
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then compute the matrix Dt and Gt following (9), see algorithm 1 for the detailed imple-
mentation.

This method present several advantages: it ensure good theoretical performance, espe-
cially since κ = 1 (see Theorem 8), at the cost of only one extra gradient evaluation.
Theorem 8. The “orthogonal forward estimate only” update described in algorithm 1 satisfies
Requirements 1b and 3 with κ = 1.

A.4.2. "Random Orthogonal Directions" update rule

The "Random Orthogonal Direction" update consists in creating a batch of N random
orthogonal direction at each iteration, such that

E[DtD
T
t ] = N

d
I.

For instance, Dt could be the Q matrix of a qr decomposition of a random N × d matrix
(complexity: O(N2d)), or even simpler, be an aggregation of random canonical vectors (see
e.g. [39]).

Afterward, it remains to update the matrices Yt, Zt, Gt as follow,
Zt = [xt, . . . , xt], Yt = Zt + hDt, Gt = (9).

See algorithm 2 for the detailed implementation. The major advantage of this approach is
that κ = 1 and δ =

√
N · h. However, N additional gradient computations are required to

create the matrix Gt.

A.4.3. Other Matrix Updates: Pruning or Orthogonalization

It is possible to create other kind of matrix updates, for instance, the Iterates only (stores
only the last forward estimate and previous iterates) or Greedy (stores all previous forward
estimates and iterates) strategies, detailed below:

Yt = [xt+ 1
2
, xt, xt−1, . . . , xt−N+2], Zt = [xt, xt−1, . . . , xt−N+1] (Iterates only)

Yt = [xt+ 1
2
, xt, xt− 1

2
, . . . , xt− N+2

2
], Zt = [xt, xt− 1

2
, . . . , xt− N+1

2
] (Greedy)

However, it is impossible to ensure that the directions in Dt will be orthogonal, hence κ in
Requirement 3 might be huge. Nevertheless, it is possible to bound the condition number
by pruning or via an orthogonalization procedure.

Pruning. It suffices to check the condition number of Dt, then prune the columns of
Yt, Zt, Dt, and Gt until κ is sufficiently small, for instance, until κ ≤ 103. Note that, by the
nature of those matrices, their condition number grows quickly [79, 63], hence the number
of resulting column might be small.

Orthogonalization From the matrices Yt, Zt, the matrix Dt is computed as Dt = qr(Zt−
Yt). Then, the rest of the procedure follows the same steps as the "Random Orthogonal
Directions" rule.

The pruning strategy is cheaper than the orthogonalization, at the cost of losing control
on how large the history is. The orthogonalization technique present the same advantages as
the "Random Orthogonal Directions" rule, but the directions taken might me more relevant
than random ones.
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Appendix B. Accelerated Algorithm

This section introduces algorithm 7, an accelerated variant of algorithm 3 for convex functions,
designed using the estimate sequence technique from [50]. It consists in iteratively building
a function Φt(x), that reads

Φt(x) = 1∑t

i=0 bi

(∑t
i=0 bi (f(xi) +∇f(xi)(x− xi)) + λ

(1)
t

∥x−x0∥2

2 + λ
(2)
t

∥x−x0∥3

6

)
.

The parameters bi ≥ 0, λ
(1)
t , λ

(2
t and the iterates Xt are designed by theory to ensure the

following properties,

Btf(xt) ≤ min
x

ϕt(x), ϕ(x) ≤ Btf(x) + λ̃(1) + λ
(1)
t

2 ∥x− x0∥2 + λ̃(2) + λ
(2)
t

6 ∥x− x0∥3,

where Bt = ∑t
i=0 bi and λ̃(1), λ̃(2) are constants determined by the theory.

Once the parameters are set, the accelerated algorithm operates as follow:

1. The accelerated algorithm combines linearly vt, the optimum of Φt, and the previous
iterate xt.

2. It uses a slight modified version of algorithm 4, see algorithm 6.

3. There is a distinction between small and large step sizes, identifying which λ needs to
be updated. The step size is considered "large" if it resembles a cubic-Newton step.

Algorithm 6 Type-I subroutine with backtracking for the accelerated method
Require: First-order oracle f , matrices G, D, vector ε, iterate x, initial smoothness param-

eter M0

Initialize M ← M0
2 , ExitFlag← None

Define γM
def= κD

∥D∥

(
3
2∥ε∥+ 2 (∥I−P )G∥

M

)
do

M ← 2 ·M and Hγ ← GT D+DT G
2 + DT D MγM

2
α∗ ← arg minα f(x) +∇f(x)T Dα + 1

2αT Hγα + M∥Dα∥3

6
x+ ← x + Dα

if 2
33/4

∥∇f(x+)∥3/2
√

M
≤ −∇f(x+)T Dα then

ExitFlag← LargeStep
end if
if ∥∇f(x+)∥2

M(γM +∥Dα∥) ≤ −∇f(x+)T Dα And ∥Dα∥ ≤ (
√

3− 1)γM then
ExitFlag← SmallStep

end if
while ExitFlag is None

return x+, α, M , γM , ExitFlag
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Algorithm 7 Adaptive Accelerated Type-I Iterative Algorithm
Require: First-order oracle f , initial iterate and smoothness x0, M0, number of iterations

T .
λ

(1)
0 ← 0, λ

(2)
0 ← 0

Initialize G0, D0, ε0 (see appendix A.4)
{x1, M1} ← [algorithm 4](f, G0, D0, ε0, x0, M0)
Initialize ℓ

(0)
0 = f(x1), ℓ

(1)
0 = 0

for t = 1, . . . , T − 1 do
Update Gt, Dt, εt (see appendix A.4)
Set bt ← (t+1)(t+2)

2 , Bt ← t(t+1)(t+2)
6 , βt ← 3

t+3 .
Update ℓ

(0)
t ← ℓ

(0)
t−1 + bt−1[f(xt)−∇f(xt)T xt], ℓ

(1)
t ← ℓ

(1)
t−1 + bt−1∇f(xt)

do
ValidBound← True
Set vt ← arg minv ϕt(v) (See proposition 1).
Let yt ← 3

t+3vt + t
t+3xt

{xt+1, αt, Mt+1, γt, ExitFlag} ← [Alg.6](f, Gt, Dt, εt, yt,
Mt

2 )

%% Check if the next ϕ is still a lower bound for Btf(xt+1)
Define ϕ+(x) = ϕt(x) + bt[f(xt+1 +∇f(xt+1)(x− xt+1)].
Set v+ ← arg minv ϕ+(v) (See proposition 1).

if Φ+(v+) ≤ Btf(xt+1) then %% Parameters adjustment if needed
ValidBound← False %% Unsuccessful iteration: ϕt+1(vt+1) ≥ f(xt+1).
if ExitFlag is LargeStep then

If λ
(2)
t = 0 then λ

(2)
t ← 4√

3
b3

t+1
B2

t

Mt+1. Else, λ
(2)
t ← 2λ

(2)
t .

else %% Exitflag is SmallStep

If λ
(1)
t = 0 then

b2
t+1
Bt

Mt+1 (γt + ∥Dtαt∥). Else, λ
(1)
t ← 2λ

(1)
t .

end if
else
{λ(1)

t+1, λ
(2)
t+1} ← {λ

(1)
t , λ

(2)
t } %% Successful iteration

end if
while ValidBound is False

end for
return xT
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Proposition 1. Let vt be the minimizer of

ϕt(v) = ℓ
(0)
t +

[
ℓ

(1)
t

]T
v + λ

(1)
t

2 ∥v − x0∥2 + λ
(2)
t

6 ∥v − x0∥3.

where λ
(1)
t ≥ 0, λ

(2)
t ≥ 0. Let rt = ∥vt − x0∥. Then,

rt = ∥vt − x0∥ =



0 if λ
(1)
t = λ

(2)
t = 0

∥ℓ
(1)
t ∥

λ
(1)
t

if λ
(1)
t > 0 and λ

(2)
t = 0

−λ
(1)
t +

√
[λ(1)

t ]2+2λ
(2)
t ∥ℓk∥

λ
(2)
2

if λ
(2)
t > 0

vt = arg min Φt(x) = x0 − rt
ℓ

(1)
t

∥ℓ
(1)
t ∥
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Appendix C. Related work

C.1. Inexact, Subspace, and Stochastic Newton Methods

Instead of explicitly computing the Hessian matrix and the Newton step, inexact methods
compute an approximation using sampling [3], inexact Hessian computation [32, 22], or
random subspaces [23, 35, 39]. These approaches substantially reduce per-iteration costs
without significantly compromising the convergence rate. The convergence speed in such
cases often represents an interpolation between the rates observed in gradient descent
methods and (cubic) Newton’s method.

C.2. Nonlinear and Anderson Acceleration

Nonlinear acceleration techniques, including Anderson acceleration [2], have a long standing
history [4, 5, 31]. Driven by their promising empirical performance, they recently gained
interest in their convergence analysis [71, 29, 70, 42, 76, 74, 80, 78, 63, 72, 73, 7, 67, 9, 64].
In essence, Anderson acceleration is an optimization technique that enhances convergence
by extrapolating a sequence of iterates using a combination of previous gradients and
corresponding iterates. Comprehensive reviews and analyses of these techniques can be
found in notable sources such as [42, 8, 41, 40, 6, 20]. However, these methods do not
generalize well outside quadratic minimization and their convergence rate can only be
guaranteed asymptotically when using a line-search or regularization techniques [69, 75, 63].

C.3. Quasi-Newton Methods

Quasi-Newton schemes are renowned for their exceptional efficiency in continuous optimiza-
tion. These methods replace the exact Hessian matrix (or its inverse) in Newton’s step with
an approximation updated iteratively during the method’s execution. The most widely used
algorithms in this category include DFP [21, 28] and BFGS [68, 34, 27, 11, 10]. Most of
the existing convergence results predominantly focus on the asymptotic super-linear rate of
convergence [77, 36, 13, 12, 18, 25, 84, 82, 83]. However, recent research on quasi-Newton
updates has unveiled explicit and non-asymptotic rates of convergence [56, 58, 57, 47, 48].
Nonetheless, these analyses suffer from several significant drawbacks, such as assuming
an infinite memory size and/or requiring access to the Hessian matrix. These limitations
fundamentally undermine the essence of quasi-Newton methods, typically designed to be
Hessian-free and maintain low per-iteration cost through their low memory requirement and
low-rank structure.

C.4. Close Related Work

C.4.1. (Accelerated) Quasi-Newton with Secant Inexactness

Recently, Kamzolov et al. [45] introduced an adaptive regularization technique combined
with cubic regularization, with global, explicit (accelerated) convergence rates for any quasi-
Newton method. Based on the secant inexactness inequality, the technique introduces a
quadratic regularization whose parameter is found by a backtracking line search. However,
this algorithm relies on prior knowledge of the Lipschitz constant specified in Assumption 1.
Unfortunately, the paper does not provide an adaptive method to find jointly the Lipschitz
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constant as well, as it is a priory too costly to know which parameter to update. This aspect
makes the method impractical in real-world scenarios.

C.4.2. ARC: Adaptive Regularization algorithm using Cubics

In [16, 17] is proposed a generic framework for inexact cubic regularized Newton’s steps,

xt+1 = min
x

f(xt) +∇f(xt)(x− xt) + 1
2(x− xt)Ht(x− xt) + Mt

6 ∥x− xt∥3,

where Ht is assumed to be an approximation of the Hessian∇2f(xt). However, the theoretical
analysis presents numerous problems, in particular, the assumption that the norm of the
current step bounds the approximation

∥∇2f(xt)−Ht∥ ≤ C∥xt+1 − xt∥,

for some constant C. Follow up works, such as [81], relaxed this assumption into

∥∇2f(xt)−Ht∥ ≤ C∥xt − xt−1∥,

which is much weaker since it can be verified while computing the step xt+1. Nevertheless,
those are assumptions on the matrix Ht, but those works do not explicitly construct such
a matrix. Even worse - the assumption might not be met in practice, especially if Ht is a
subspace estimation of the matrix ∇2f(xt).

C.4.3. Proximal Quasi-Newton Methods

The work of [59, 33] combined qN methods with proximal schemes and provided sublinear
and accelerated convergence rates. However, the rates in [59] are based on a technical
assumption [59, Assumption 2], for which the authors commented that "Exploring different
conditions on the Hessian approximations that ensure Assumption 2 is a subject of a separate
study", and acknowledge in their conclusion that "Our framework does not rely on or exploit
the accuracy of second-order information, and hence we do not obtain fast local convergence
rates."

In a follow-up work, [33] proposed accelerated convergence rates under similar assump-
tions. However, the authors acknowledge the following: "In our numerical results, we
construct Hk via L-BFGS and ignore condition σk+1Hk+1 ⪯ σkHk, since enforcing it in
this case causes a very rapid decrease in σ. It is unclear, however, if a practical version of
Algorithm 5, based on L-BFGS Hessian approximation, can be derived, which may explain
why the accelerated version of our algorithm does not represent any significant advantage." In
addition, their theoretical convergence results are based on an upper bound on the sequence
σk, which current qN schemes cannot ensure.

C.4.4. Proximal Extragradient Quasi-Newton Methods with Online
Estimation

Based on the technique in [43], [44] developed a novel quasi-Newton method with the global
accelerated rate of convergence of O(min{ 1

t2 ;
√

d log t

t2.5 }). The main ideas are as follows: the
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authors used the framework of inexact proximal method from [49], used an online algorithm
to estimate the Hessian, and then solved a linear system involving this approximation using
conjugate gradients.

The paper focuses on a different regime than this study: [44] explicitly show that it is
possible to break the O( 1

t2 ) barrier for first order methods using full memory qN methods
but this implies storing a full d × d matrix, and using it in a linear system, leading to
per-iteration complexities of at least O(d2).

From a practical point of view, the algorithm requires numerous hyperparameters such
as α1, α2, β,. . ., whose impact on the efficiency is rather unclear. Moreover, numerically,
the algorithm improves over Nesterov’s acceleration but is slower than l-BFGS on toy
experiments.
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Appendix D. Known rates of convergence and Comparison

D.1. (Accelerated) Gradient Descent

This section study the rate of gradient decent when function is smooth (i.e., has Lipschitz
continuous gradients):

f(y) ≤ f(x) +∇f(x)(y − x) + L2 ∥y − x∥2, (15)

Note that the class of functions considered in this paper is not the class of smooth functions.
However, if the function satisfies Assumption 1, the Lipchits constant can be bounded as

L ≤ ∥∇2f(x)∥+ LR for all x ∈ {x : f(x) ≤ f(x0)}. (16)

The rates of plain gradient descent and its accelerated version read [51] (after replacing L)

min
0≤i≤t

∥∇f(xi)∥ ≤
√

[∥∇2f(x)∥+ LR] (f(x0)− f⋆)
t + 1 , (plain, non-convex) (17)

f(xt)− f(x⋆) ≤
[
∥∇2f(x)∥+ LR

] 2
t + 4R2, (plain, convex) (18)

f(xt)− f(x⋆) ≤
[
∥∇2f(x)∥+ LR

] 4
(t + 2)2 R2. (accelerated) (19)

D.2. (Accelerated) Cubic Regularized Newton’s Method

When the function has a Lipschitz-continuous Hessian, the cubic regularized Newton method
and its accelerated version converge with the following rates [52, 50, 39]:

min
0≤i≤t

∥∇f(xi)∥ ≤
16L

9

(3(f(x0)− f⋆)
2tMmin

)2/3
, (plain, non-convex)

(20)

f(xt)− f(x⋆) ≤ 9L
R3

(t + 4)2 , (plain, convex)

(21)

E[f(xt)]− f(x⋆) ≤
(

d−N

N

) L(3R)2

2t
+
(

d

N

)2 L(3R)3

3t2 + O

( 1
t3

)
, (Random Subspace, convex)

(22)

f(xt)− f(x⋆) ≤ L
14R3

t(t + 1)(t + 2) . (accelerated)

(23)

D.3. Relation Between Parameters

Given that this paper does not make the assumption of Lipchitz-continuous gradients, it
becomes necessary to establish connections between various quantities to facilitate the
comparison of rates. To streamline the notation, all numeric constants are substituted with
the big O notation, and the subsequent equations are derived for the "orthogonal forward
estimate only" update rule, hence ∥D∥ = 1 and κ = 1.
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Relation between δ and R. The constant δ represents the upper bound on the relative
error (see Requirement 2):

∀t, ∥εt∥
∥Dt∥

≤ δ.

For a fixed memory, and assuming h small, since ε is the norm between iterates, δ is
upper-bounded as

δ ≤ O(R). (24)

Relation between the different Ci and L The C1, C2, and C4 in Theorems 2, 3 and 5
quantifies the estimation error of DT

t ∇2f(xt)Dt by Ht in (Type-I bound) into two terms:

Ci ≤ O
(
δL + maxi≤t ∥(I − Pi)∇2f(xi)∥

)
.

The first term is the error caused by approximating ∇2f(x)Dt by Gt, and the second is the
subspace approximation error of ∇2f(xt) in the span of the columns of Dt.

Intuitively, the constants Ci can be seen as an approximation of an upper bound on L in
a neighborhood of size δ. This is similar to (16) but the norm of the Hessian is taken in a
subspace, hence the Ci’s are smaller. Indeed, using (24), in the worst case, if all iterates
satisfies ∥xi − x⋆∥ < R,

Ci = O(RL + maxi≤t ∥(I − Pi)∇2f(xi)∥). (25)

Other updates Note that eqs. (24) and (25) are valid only for the "orthogonal forward
estimate only" update rule. If the random orthogonal forward estimate, or the orthogonal-
ization of the "greedy" or "iterates only" update rules were used, the results would have
been

δ = O(h), Ci = O(hL + maxi≤t ∥(I − Pi)∇2f(xi)∥),

where h is small. However, the comparison with gradient descent or Newton’s method
wouldn’t have been fair as the orthogonalization update rules requires N additional gradient
calls.

D.4. Comparing rates of convergence

Non convex The rate from Theorem 2 reads

min
i=1, ..., t

∥∇f(xi)∥ ≤max
{ 3L

t2/3

(
12f(x0)− f⋆

Mmin

)2/3
;
(

C1
t1/3

)(
12f(x0)− f⋆

Mmin

)1/3 }
,

where C1 = 3δL
2 + maxi∈[0,t] ∥(I − Pi)∇2f(xi)Pi∥. In the case where C1 is small, the rate

matches exactly (20). In the other case, using the approximation from (25),

min
i=1, ..., t

∥∇f(xi)∥ ≤
(

O(RL + maxi≤t ∥(I − Pi)∇2f(xi)∥)
t1/3

)(
12f(x0)− f⋆

Mmin

)1/3

which differs significantly from (17), as the rate is O( 1√
t
). However, this might be an artifact

of the theoretical analysis, since the function was not assumed to be smooth.
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Star convex After using the approximation from (25), the rate from Theorem 3 reads

f(xt)− f⋆ ≤ O

(
f(x0)− f⋆

t3

)
+ O

(
LR3

t2

)
+ O

(
[RL + maxi≤t ∥(I − Pi)∇2f(xi)∥]R2

t

)
(26)

The term in t−2 is exactly the one from (21), while the term is t−1 has the same dependency
in R3 compared to (18). However, ∥(I − P )∇2f(xi)∥ could be much smaller than ∥∇2f(x)∥.

Convex with random coordinates or random subspace The rate from Theorem 4
reads

EDt [f(xt)− f⋆] ≤ 1

1 + 1
4

[
N
d t
]3 (f(x0)− f⋆) + 1[

N
d t
]2 L(3R)3

2 + 1[
N
d t
] [O(δL) + (d−N)

d max
i∈[0,t]

∥∇2f(xi)∥](3R)2

2 .

The rate is similar to (22), up to an additional O(δL/t) term. This extra term comes from
the estimation of the Hessian with finite difference, while the method presented in [39] uses
exact Hessian-vector products.

Convex, accelerated rates After using the approximation from (25), and ignoring the
terms λ̃(1), λ̃(2) for clarity, the rate from Theorem 5 reads

f(xt)− f⋆ ≤ [RL + max
i=0...t

∥(I − Pi)∇f(xi)∥]
(3R)2

(t + 3)2 + 9 max {M0 ; 2L}
( 3R

t + 3

)3

The rate is exactly a combination of (23) and (19), but the constant ascociated to the 1/t2

rate is smaller in practice: (24) is a conservative bound and ∥(I − Pi)∇2f(x)∥ ≤ ∥∇2f(x)∥.
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Appendix E. Link with quasi-Newton and Anderson/Nonlinear
Acceleration

This section presents the fundamentals of Anderson/nonlinear acceleration (appendix E.1),
quasi-Newton schemes (appendix E.2), and their relationship with the method proposed in
this paper (appendix E.3).

E.1. Anderson Acceleration and Nonlinear Acceleration

Anderson acceleration, also known as nonlinear acceleration, is a powerful technique that
enhances the convergence speed of fixed point iterations and optimization algorithms. Initially
developed for solving linear systems, Anderson acceleration has gained popularity due to
its effectiveness in accelerating iterative methods, including the ones in optimization. The
method leverages previous iterations to construct an improved estimate of the objective
function’s minimizer.

The Anderson acceleration algorithm employs the following approximation to compute
weights:

∇f

(
N∑

i=0
βixi

)
≈

N∑
i=0

βi∇f(xi),
N∑

i=0
βi = 1.

When the function f is quadratic, this approximation becomes an equality. The underlying
idea is as follows: since the optimum satisfies ∇f(x⋆) = 0,

N∑
i=0

βi∇f(xi) ≈ 0 ⇒ ∇f

(
N∑

i=0
βixi

)
≈ 0 ⇒

N∑
i=0

βixi ≈ x⋆.

The Anderson acceleration steps are thus given by

xt+1 =
N∑

i=0
β⋆

i xt−i+1, β⋆ = arg min
β

∥
N∑

i=0
βi∇f(xt−i+1)∥2

Over the past decades, the ideas behind Anderson acceleration have been refined. For
example, the constraint can be eliminated by considering the step xt+1 − xt instead:

xt+1 − xt =
(

N∑
i=0

βixt−i+1

)
− xt

=
N∑

i=0
β̃ixt−i+1.

The vector β̃i has the property that its sum equals zero. Hence, it can be rewritten as

xt+1 − xt =
N∑

i=1
αi(xt−i+1 − xt−i)

α = arg min
α

∥∥∥∥∥∇f(xt) +
N∑

i=1
αi(∇f(xt−i+1)−∇f(xt−i))

∥∥∥∥∥
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where α ∈ RN has no constraint. By writing di = xt−i+1−xt−i, gi = ∇f(xt−i+1)−∇f(xt−i),
and D = [dt, . . . , dt−N+1], G = [gt, . . . , gt−N+1], the step becomes

xt+1 − xt = Dtα, α = arg min
α

∥∇f(xt) + Gtα∥.

However, this version of Anderson acceleration is non-convergent because there is no con-
tribution from ∇f(xt) in the step xt+1 − xt. The most popular solution to this problem
is introducing a mixing parameter that combines gradient steps, resulting in the following
expression:

xt+1 = xt − h∇f(xt) + (D − hG)α, α = arg min
α

∥∇f(xt) + Gα∥. (AA Type II)

Following a similar idea, recent works have introduced a type I variant of the algorithm
[26, 80, 85, 14] that minimizes the function value instead of the gradient norm:

xt+1 = xt − h∇f(xt) + (D − hG)α, α = arg min f(xt) +∇f(xt)Dtα + 1
2αT DT

t Gtα,

(AA Type I)
By incorporating regularization [63, 14], globalization techniques [85], or performing a

line search on the parameter h, the algorithm converges towards x⋆.

E.2. Single-secant and Multisecant Quasi-Newton Methods

Quasi-Newton methods, such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method,
approximate the Hessian matrix to solve unconstrained optimization problems efficiently.
These methods avoid the expensive computation of the exact Hessian by using iterative
updates based on previous iterates and gradients of the objective function.

This section focuses on other commonly used quasi-Newton methods: the Davidon-
Fletcher-Powell (DFP) and Broyden type-1 and type-2 updates.

E.2.1. The Ideas Behind Single-Secant and Multisecant Hessian
Approximation

In quasi-Newton methods, the Hessian approximation is updated using the secant equation,
which relates the gradients and Hessian at two different points. For a twice continuously
differentiable function, the secant equation is given by:

∇f(y)−∇f(x) = ∇2f(ξ)(y − x),

where ξ is a point on the line segment connecting x and y. This equation serves as the basis
for updating the Hessian approximation.

Based on this remarkable identity, quasi-Newton methods update an approximation of
the Hessian Bt or its inverse Ht such that the approximation satisfies

∇f(xt)−∇f(xt−1) = Bt(xt − xt−1), Ht (∇f(xt)−∇f(xt−1)) = xt − xt−1.

What distinguishes the different updates is how to fix the remaining degrees of freedom. For
instance, the simple SR-1 method updates Ht such that

min
H
∥H −Ht−1∥F : H = HT , H (∇f(xt)−∇f(xt−1)) = xt − xt−1. (27)
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Those methods are called single-secant as they update Ht only one secant equation at a
time. Hence, in general, Ht only satisfies the latest secant equation.

Multisecant updates, on the other hand, approximate the Hessian using a batch of
secant equations. By introducing matrices Dt = [xt−N+1 − xt−N , . . . , xt − xt−1] and Gt =
[∇f(xt−N+1)−∇f(xt−N ), . . . ,∇f(xt)−∇f(xt−1)], the multisecant updates satisfy

Gt = BtDt, or HtGt = Dt.

Unfortunately, when imposing symmetry, it is impossible to satisfy multiple secants at a time
[61]. However,it is possible to enforce symmetry while approximating the secant equation in
a least square sense [62, 66].

When symmetry is not imposed, the solution for Bt and Ht can be obtained as:

Bt = Gt[Dt]† + B0(I −DtD
†
t ), Ht = Dt[Gt]† + H0(I −GtG

†
t), (28)

where B0 and H0 are the initial approximations, and [A]† denotes the pseudo-inverse of
matrix A. Different choices of pseudo-inverse lead to different methods.

The inversion of Bt can be computed using the Woodbury matrix identity, which provides
an efficient way to compute the inverse. The update for B−1

t is given by:

B−1
t = B−1

0

(
I −Gt

(
D†

t B−1
0 Gt

)−1
D†

t B−1
0

)
+ Dt

(
D†

t B−1
0 Gt

)−1
D†

t B−1
0 .

This update is equivalent to the update for Ht, given that

B−1
0 = H0, and G†

t =
(
D†

t B−1
0 Gt

)−1
D†

t B−1
0 . (29)

In summary, quasi-Newton methods update the Hessian approximation using the secant
equation. Single-secant methods update the approximation using the secant equation one
by one, while multisecant methods use a batch of secant equations. The choice of updating
strategy and pseudo-inverse affects the behavior of the method.

E.2.2. Davidon-Fletcher-Powell (DFP) Formula

The DFP formula is a Quasi-Newton update rule used to iteratively refine an approximation
of the inverse Hessian matrix. It is defined as follows:

Ht = Ht−1 + dtd
T
t

dT
t gt
− Ht−1gtg

T
t Ht−1

gT
t Ht−1gt

, (30)

In the above equation, gt = ∇f(xt) −∇f(xt−1) represents the difference in gradients,
and dt = xt − xt−1 denotes the difference in parameter values. The DFP formula updates
the matrix Ht using a rank-two matrix such that it remains symmetric and positive definite.

E.2.3. Multisecant Broyden Methods

The multisecant Broyden methods utilize the update equation from (28), where A† is chosen
as the Moore-Penrose pseudo-inverse of A, given by A† = (AT A)−1A. In this equation, B0
and H0 are scaled identity matrices. After simplification, the two types of updates can be
expressed as follows:
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B−1
t = Dt

(
D†

t Gt

)−1
D†

t + B−1
0

(
I −Gt

(
D†

t Gt

)−1
D†

t

)
, (31)

Ht = Dt(GT
t Gt)−1GT

t + H0

(
I −Gt

(
GT

t Gt

)−1
GT

t

)
. (32)

Both updates are quite similar, differing mainly in the choice of the pseudo-inverse of
the matrix G.

E.2.4. Link with Anderson Acceleration

The connection between quasi-Newton methods and Anderson Acceleration is strong, as,
for instance, Broyden methods and Anderson acceleration are equivalent. To illustrate this,
let’s closely examine the update of α in (AA Type I):

xt+1 = xt − h∇f(xt) + (Dt − hGt)α, α = arg min f(xt) +∇f(xt)Dtα + 1
2αT DT

t Gtα

⇔xt+1 = xt − h∇f(xt) + (Dt − hGt)α, α : DT
t ∇f(xt) + DT

t Gtα = 0
⇔xt+1 = xt − h∇f(xt) + (Dt − hGt)α, α : α = −(DT

t Gt)−1DT
t ∇f(xt)

⇔xt+1 = xt − h∇f(xt)− (Dt − hGt)(DT
t Gt)−1DT

t ∇f(xt).

⇔xt+1 = xt −
(
Dt(DT

t Gt)−1DT
t + h

(
I −Gt(DT

t Gt)−1DT
t

))
∇f(xt)

The above step is precisely the quasi-Newton step xt+1 = xt −B−1
t ∇f(xt), where B−1

t

corresponds to the Broyden update given by Equation 31, with B−1
0 = hI. A similar

reasoning can be applied to Equation 32.
When considering the single-secant updates, following the same reasoning as in Section

3 leads to the same conclusion for the SR-1 and DFP updates.
This result is expected since the approximations Ht or B−1

t satisfy the single or multisecant
equation:

HtGt = Dt.

This indicates that the matrix Ht maps vectors from the span of previous gradients to the
span of previous directions. This observation justifies the construction in (8).

E.3. Links with Algorithms 4 and 5

Both Algorithms 4 and 5 can be viewed as quasi-Newton and Anderson/nonlinear acceleration
schemes. The update formulas are

min
α

f(xt) +∇f(xt)T Dtα + αT Htα

2 + M∥Dtα∥3

6 , Ht
def= GT

t Dt + DT
t Gt + IM∥Dt∥∥εt∥

2 .

(Type I)

min
α
∥∇f(xt) + Gtα∥+ M

2
( N∑

i=1
|αi|[εt]i + ∥Dtα∥2

)
, (Type II)
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The resemblance with Anderson/nonlinear acceleration is strong, as the objective function is
similar. If the function is quadratic, L = 0 and therefore M can also be set to 0; hence, the
coefficients α are exactly the type I and type II Anderson steps eqs. (AA Type I) and (AA
Type II).

The same idea holds when compared to quasi-Newton methods. In both cases, the
optimal solution α⋆ can be written implicitly:

α⋆ = −
(

Ht + MDT
t Dt∥Dtα

⋆∥
6

)−1

DT
t ∇f(xt), (Type I - solution)

α⋆ = −
(
GT

t Gt + M̃DT
t Dt

)−1
(

GT
t ∇f(x) + M̃∥εt∥

2 ∂(|α⋆|)
)

, (Type II - solution)

where M̃
def= ∥∇f(xt) + Gtα∥M and ∂(|α⋆|) is a subgradient of |α∗|. The step then reads

xt+1 = xt + Dα⋆ (Generic step)

xt+1 = xt −Dt

(
Ht + MDT

t Dt∥Dtα
⋆∥

6

)−1

DT
t ∇f(xt), (Type I - step)

xt+1 = xt −Dt

(
GT

t Gt + M̃DT
t Dt

)−1
(

GT
t ∇f(x) + M̃∥εt∥

2 ∂(|α⋆|)
)

, (Type II - step)

Type I is a quasi-Newton step with a symmetrization of GT D and a regularization. In
contrast, the type II step can be seen as a quasi-Newton method with a regularization on
G†, with a correction term on the gradient. Therefore the Hessian approximation reads

B−1
t = Dt

(
Ht + MDT

t Dt∥Dtα
⋆∥

6

)−1

DT , Ht = Dt

(
GT

t Gt + M̃DT
t Dt

)−1
GT

t .

Again, when the objective function is quadratic, L = 0 and therefore M = 0. Moreover,
when f is quadratic, the matrix multiplication DT G satisfies DT G + GT D = 2DT G as DT G
becomes symmetric. Hence,

xt+1 = xt −Dt

(
DT

t Gt

)−1
DT

t ∇f(xt), (Type I - quadratic)

xt+1 = xt −Dt

(
GT

t Gt

)−1
GT

t ∇f(xt), (Type II quadratic)

The steps are exactly the type I and type II multisecant Broyden methods from eqs. (31)
and (32), with the only difference that there is no initialization H0 or B0.
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Appendix F. Solving the sub-problems

Solving the Type 1 Subproblem The Type 1 subproblem is a well-studied problem
that involves minimizing a specific objective function. A method proposed by [52] has proven
to be efficient for solving this problem. The method utilizes eigenvalue decomposition on
a matrix to find the optimal solution. In this paper, the matrix involved in this problem
is relatively small, therefore eigenvalue decomposition is not a concern even for large-scale
problems. The subproblem aims to determine the norm of the solution, and this can be
achieved through solving one nonlinear equation using bisection or secant method.

Solving the Type 2 Subproblem The Type 2 subproblem can be formulated as a
Second-Order Cone Program (SOCP). The objective function of this subproblem consists of
three terms: a norm term, a sum of absolute values term, and a quadratic term. The norm
term can be transformed using singular value decomposition, and the sum of absolute values
term can be expressed as with linear constraints. The quadratic term can be simplified
using a rotated quadratic cone. By utilizing these techniques, the Type 2 subproblem can
be effectively solved using existing SOCP solvers.

F.1. Solving the Type 1 Subproblem

The Type 1 subproblem can be expressed as follows:

min
α
∇f(x)Dα + 1

2αT Hα + M

6 ∥Dα∥3,

where H is symmetric but not necessarily positive definite. This problem has been
well-studied, and [52] proposed an efficient method to solve it using eigenvalue decomposition
on the matrix H. Although eigenvalue decomposition may be challenging for large-scale
problems, it is not a concern here since H ∈ RN×N , with a relatively small N (e.g., N = 25
in the experiments).

In essence, the subproblem involves determining the norm of the solution r = ∥α∥.
This can be accomplished through a simple bisection on the following system of nonlinear
equations: (

H + MDT Dr

2 I

)
α = −Dt∇f(x), ∥α∥ = r, r ≥ −λmin(H). (33)

Interestingly, this problem is equivalent to the following formulation, as shown in
Proposition 2:

(
Λ + Mr

2 I

)
α̃ = −V T (DT D)−1/2Dt∇f(x), ∥α∥ = r, r ≥ −λmin(H), α̃ = V T (DT D)1/2α,

(34)
which involves the eigenvalue decomposition (DT D)−1/2H(DT D)−1/2 = V ΛV T .

Proposition 2. Problems (33) and (34) are equivalent.
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Proof. The first step is to split DT D = (DT D)1/2(DT D)1/2 and then employ an eigenvalue
decomposition on (DT D)−1/2H(DT D)−1/2 = V ΛV T (where V is orthonormal due to the
symmetry of the matrix):(

H + MDT Dr

2 I

)
α = −Dt∇f(x)

⇔(DT D)1/2
(

(DT D)−1/2H(DT D)−1/2 + Mr

2 I

)
(DT D)1/2α = −Dt∇f(x)

⇔(DT D)1/2V

(
Λ + Mr

2 I

)
V T (DT D)1/2α = −Dt∇f(x)

⇔
(

Λ + Mr

2 I

)
V T (DT D)1/2α = −V T (DT D)−1/2Dt∇f(x)

⇔
(

Λ + Mr

2 I

)
α̃ = −V T (DT D)−1/2Dt∇f(x).

Once the eigenvalue decomposition is performed, the subproblem (34) becomes relatively
simple since it involves solving a diagonal system of equations for a fixed value of r. The
main objective is to find an interval [rmin, rmax] that encompasses the optimal value r = ∥α∥.
Once this interval is identified, a straightforward bisection or secant method can be employed
to obtain the optimal solution.

Finding initial bounds Starting with rmin = max{0,−λmin(H)} and rmax = max{2rmin, 1},

do rmax ← 2rmax while ∥α̃∥ ≥ rmax.

where α̃ = −
(
Λ + Mrmax

2 I
)−1

V T (DT D)−1/2Dt∇f(x). Increasing rmax increases the regu-
larization, hence reduces the norm of α̃.

Finding α After r⋆ has been found such that |r⋆ − ∥α̃∥| is sufficiently small, the best α is
simply

α = (DT D)−1/2V α̃ = −(DT D)−1/2V

(
Λ + Mr⋆

2 I

)−1
V T (DT D)−1/2Dt∇f(x).

In the case where the diagonal matrix is not invertible, which happens when r⋆ = rmin, it
suffices to use the pseudo-inverse instead.

Note that DT D is an N ×N matrix, where N is small, therefore, computing its inverse
is inexpensive. Moreover, when D is orthogonal, DT D = I, therefore there is no need to
invert it. In addition, (Λ + Mr⋆

2 I)−1 can be computed in O(N) complexity since the matrix
is diagonal.

F.2. Solving the Type 2 Subproblem

The Type 2 subproblem is given by:

34



Quasi-Newton with Global Convergence Rates

min
α
∥∇f(x) + Gα∥︸ ︷︷ ︸

(a)

+L

2
( N∑

i=1
|αi|εi︸ ︷︷ ︸
(b)

+ ∥Dα∥2︸ ︷︷ ︸
(c)

)
. (35)

Although it may not be immediately apparent, this subproblem can be formulated as a
Second-Order Cone Program (SOCP) with O(N) variables and constraints.

F.2.1. Fundamentals of SOCP

SOCP solvers handle the following conic problems:

min
x,ti,ωi

c0x +
∑

i

ci[ti; ωi] subject to

A0x +
k∑

i=1
Ai[ti; ωi] = b (SOCP Standard Matrix Form)

x ≥ 0
(ti, ωi) ∈ Ki ⇔ ti ≥ ∥ωi∥, t ≥ 0.

Here, k represents the number of cones, and the cone K refers to the second-order cone,
also known as the Lorenz cone.

A useful transformation is the rotated quadratic cone, defined as follows:

[a, b, c] ∈ Kq ⇔ 2ab ≥ ∥c∥2.

The rotated quadratic cone can be reformulated as a second-order cone using a linear
transformation:

if

a
b
c

 =


1√
2

1√
2 0

1√
2 − 1√

2 0
0 0 IK


 t

ω(0)

ω

 then (t, [ω(0); ω]) ∈ K ⇔ [a, b, c] ∈ Kq.

Thanks to this transformation, the rotated quadratic cone can be included in SOCP
solvers.

F.2.2. SOCP Formulation of the Type 2 Subproblem

The SOCP of (35) is composed of the three terms a, b, and c.

Term (a) Let UGΣGV T
G be the singular value decomposition of G. Write PG = UGUT

G as
the projector onto the columns of G. Then,
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∥∇f(x) + Rα∥ = ∥PG∇f(x) + PGGα + (I − PG)∇f(x)∥

=
√
∥PG∇f(x) + Rα∥2 + ∥(I − PG)∇f(x)∥2

=
√∥∥UG

(
UT

G∇f(x) + ΣGV T
G α

)∥∥2 + ∥(I − PG)∇f(x)∥2

=
√∥∥UT

G∇f(x) + ΣGV T
G α

∥∥2 + ∥(I − PG)∇f(x)∥2

Let the vector ω1 =
[
UT

G∇f(x) + ΣGV α; ∥(I − PG)∇f(x)∥
]
. Hence,

∥∇f(x) + Gα∥ = min
t1, α, ω1

t1 : (t1, ω1) ∈ KL, ω1 =
[
UT

G∇f(x) + ΣGV α; ∥(I − PG)∇f(x)∥
]

.

Term (b) This term is standard in linear programming. Let α = α+−α−, with α+, α− ≥ 0,

N∑
i=1
|αi|εi =

N∑
i=1

(α+ + α−)εi.

Term (c) Let UDΣDV T
D be the singular value decomposition of D. Using the rotated

cone, the constraint can be written as

2t3b ≥ ∥UDΣDVDα∥2 = ∥ΣDVDα∥2, b = 1
2 .

Using the transformation into a Lorenz cone, this is equivalent to

1 0 0
0 1 0
0 0 ΣDV T

D


t3

b
α

 =


1√
2

1√
2 0

1√
2 − 1√

2 0
0 0 Ik


 t2

ω
(0)
2

ω2

 , b = 1
2 , (t2, [ω(0)

2 , ω2]) ∈ K.

Simplification. Note that, since b = 1
2 , the value can be immediately replaced. Same

idea with t3: the constraint is written as

t3 = t2 + ω
(0)
2√

2
, t3 ≥ 0.

Since, by construction, t2 ≥ ω
(0)
2 and t2 ≥ 0, t3 always satisfies the condition, which

means both t3 and its constraint can be removed. The constraints thus simplify into

[
1
2
0

]
+
[

0
ΣDV T

D

] [
α
]

=
[ 1√

2 − 1√
2 0

0 0 Ik

] t2

ω
(0)
2

ω2

 , (t2, [ω(0)
2 , ω2]) ∈ K.
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Final formulation Gathering all terms, the final SOCP formulation reads

minimize t1 + L

2
(
(α+ + α−)T ε + t2

)
subject to ω1 =

[
UT

G∇f(x) + ΣGV T
G α ; ∥(I − PG)∇f(x)∥

]
,

α+, α− ≥ 0
α = α+ − α−

[
01×N − 1√

2
1√
2 0

ΣDV T
D 0N×1 0N×1 −IN

]
α
t2

ω
(0)
2

ω2

 =

 0
−1

2
0N×1


(t1, ω1) ∈ K, (t2, [ω(0)

2 ; ω2]) ∈ KL, t2 ≥ 0.

Standard matrix formulation The SOCP can be written under the standard matrix
form (SOCP Standard Matrix Form). Let the variables

α+, α− ≥ 0, (t1, ω1) ∈ K1, (t2, [ω(0)
2 ω2]) ∈ K2,

where t1, t2, and ω
(0)
2 are scalars, ω2, α+, and α− are vectors of size N , and ω1 is a

vector of size N + 1. The SOCP matrices read

c0 =
[

LεT

2
LεT

2

]
c1 =

[
1 01×N+1

]
c2 =

[
L

2
√

2
L

2
√

2 01×N

]
A0 =

−ΣGV T
G ΣGV T

G

02×N 02×N

ΣDV T
D −ΣDV T

D


A1 =

[
0N+1×1 IN+1×N+1
0N+1×1 0N+1×N+1

]

A2 =

0N+1×1 0N+1×1 0N+1×N

− 1√
2

1√
2 01×N

0N×1 0N×1 −IN×N


b =

[
∇f(x)T UG ∥(I − PR)∇f(x)∥ −1

2 0N×1
]T

.

This completes the SOCP formulation of the type 2 subproblem.
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Appendix G. Additional Numerical Experiments

This section presents additional numerical experiments.

Methods The methods compared are the type 1 and type 2 steps with the following
strategies: Iterate only, Forward estimate only, Greedy (refer to appendix A.4), and the
accelerated type 1 method with the strategy forward estimate only. The batch methods are
not included as they perform poorly regarding the number of Oracle calls. The baseline is
the l-BFGS method from minFunc [60].

Method parameters In all experiments, the memory of the methods is set to N = 25
and the h for the forward estimates is set to h = 10−9. The parameters of the l-BFGS are
left untouched except for the memory. The initial point is x0 = ∇f(0d).

Functions The minimized problems are square loss with cubic regularization, logistic
loss with small quadratic regularization, and the generalized Rosenbrock function. The
regularization parameter of the square loss is set to 1e− 3 times the norm of the Hessian,
and the regularization of the logistic loss is set to 1e − 10 times the square norm of the
feature matrix.

Dataset The datasets for the square and the logistic loss are Madelon [37], Sido0 [38], and
Marti2 [38] datasets.

Post-processing The dataset matrix is normalized by its norm, then a vector of ones is
concatenated to the data matrix.

G.1. Initial Parameter for the Backtracking Line search

The backtracking line search was used in all experiments. The estimation of the initial value
M0 (see (36)) is based on the following observation. Since the function satisfies Assumption 1,

∥∇f(y)−∇f(x)−∇2f(x)(y − x))∥ ≤ L

2 ∥y − x∥2,

for some x, y. Hence, the parameter L can be estimated as

L ≈ 2∥∇f(y)−∇f(x)−∇2f(x)(y − x))∥
∥y − x∥2

.

Now, define

sh
def= h∇f(x0),

for some small h and τ > 1, and let x = x0 and y = x0 + sτh. Indeed, if h is small, then

τ [∇f(x0 + sh)−∇f(x0)] ≈ τ∇2f(x)sh = ∇2f(x)sτh.

Therefore,

∥∇f(x0+sτh)−∇f(x0)−τ [∇f(x0 + sh)−∇f(x0)] ∥ ≈ ∥∇f(x0+sτh)−∇f(x0)−∇2f(x)sτh∥,
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and hence, the Lipchitz constant can be estimated as

M0 = 2
∥sτh∥2

∥∇f(x0 + sτh)−∇f(x0)− τ [∇f(x0 + sh)−∇f(x0)] ∥. (36)

In the experiments, h is the same as the algorithm, and τ = 10. Various choices of τ, h have
been tested without significantly impacting the numerical convergence.
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G.2. Scalability w.r.t. Dimension and Memory
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Figure 2: Scaling of the Type 1 method with the "orthogonal forward estimates only"
updates rules w.r.t. N and d to minimize a random logistic regression function.
As predicted by the theory, the scaling is linear in the dimension and quadratic
w.r.t. N . The proposed method is suitable for large-scale problems, as it can
quickly solve problems with d ≈ 106.
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Figure 3: Distribution of the per-iteration time for three methods. The memory parameter
of l-BFGS and the type I method is set to (left to right) N = 5, 25, 100. The
time required by the l-BFGS algorithm increases slightly when N grows, and the
per-iteration computation time is approximately two times faster than the type I
method. Surprisingly, the total computation time of the type-1 method remains
constant for different N because the condition in the backtracking line search is
more often satisfied. Note that the ×2 factor between l-BFGS and the type 1
method is expected since the type 1 method requires at least 2 gradient calls.

G.3. Influence of h
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Figure 4: Influence of the step size h to compute the forward estimate x+ 1
2

in the "orthogonal
forward estimates only" updates rules on the Madelon dataset to minimize a (left)
quadratic and (right) a logistic loss. The range of acceptable h is rather large.
For instance, this range is [10−9, 10−1] when minimizing the logistic loss.

G.4. Impact of the memory parameter N
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Figure 5: Impact of the memory size N on the convergence rate of the type 1 method
with the "Orthogonal forward estimate" update rule to minimize a logistic loss
on the Madelon dataset. Left: number of iterations versus suboptimality, right:
time versus suboptimality. Overall, it is always better to increase the memory
parameter in terms of the number of iterations, but there is an effect of diminishing
returns.

G.5. Nonconvex optimization
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Figure 6: Comparison of type 1 methods on the Generalized Rosenbrock function in R100.
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Figure 7: Comparison of type 2 methods on the Generalized Rosenbrock function in R100
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G.6. Comparison of Type 1 Methods on Convex Problems

G.6.1. Square loss and cubic regularization
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Figure 8: Comparison of type 1 methods: Square loss and cubic regularization on Madelon
dataset
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Figure 9: Comparison of type 1 methods: Square loss and cubic regularization on sido0
dataset
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Figure 10: Comparison of type 1 methods: Square loss and cubic regularization on marti2
dataset
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G.6.2. Logistic regression
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Figure 11: Comparison of type 1 methods: Logistic loss and cubic regularization on Madelon
dataset
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Figure 12: Comparison of type 1 methods: Logistic loss and cubic regularization on sido0
dataset
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Figure 13: Comparison of type 1 methods: Logistic loss and cubic regularization on marti2
dataset
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G.7. Comparison of Type 2 Methods on Convex Problems

The type-2 method was not the focus of this study. Its prototypical implementation is rather
slow, hence, the time VS suboptimality graph are not showed.

G.7.1. Square loss and cubic regularization
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Figure 14: Comparison of type 2 methods: Square loss and cubic regularization on Madelon
dataset
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Figure 15: Comparison of type 2 methods: Square loss and cubic regularization on sido0
dataset
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Figure 16: Comparison of type 2 methods: Square loss and cubic regularization on marti2
dataset
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G.7.2. Logistic regression
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Figure 17: Comparison of type 2 methods: Logistic loss and cubic regularization on Madelon
dataset

0 100 200 300 400 500

10
-10

10
-5

10
0

0 100 200 300 400 500

10
-10

10
-5

10
0

Figure 18: Comparison of type 2 methods: Logistic loss and cubic regularization on sido0
dataset
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Figure 19: Comparison of type 2 methods: Logistic loss and cubic regularization on marti2
dataset
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Appendix H. Missing proofs

In this section, when not needed, the subscript t has been removed for clarity. The following
definitions simplify the notations:

D† = (DT D)−1DT , (37)
DT

† = D(DT D)−1, (38)
κD = ∥D†∥∥D∥, (39)

Note that the pseudo inverse D† exists under Requirement 3. Note that

D†D = I, DD† = PD = P.

H.1. Technical Result: Hessian Approximation

This section presents technical results related to the approximation of the Hessian ∇2f(x).
To simplify notations, let the matrices H0 and H̃0 be

H0 = DT R + RT D

2 , H̃0 = DT
† H0D† =

PGD† + DT
† GT P

2 . (40)

Intuitively, H̃0 is the Hessian approximation, while H0 is the approximation of the quadratic
form DT∇2f(x)D.

Proposition 3 (Subspace Hessian Approximation Error). Assume D satisfies Require-
ment 1b. Then, the following holds:∥∥∥(H̃0 − P∇2f(x)P

)
Dα

∥∥∥ ≤ L

2 ∥D†∥∥ε∥∥Dα∥

Proof. Since DT D† = DT
† DT = P , D†D = I, PD = D, ∥P∥ = 1, and using (40),∥∥∥∥∥

[
PGD† + DT

† GT P

2 − P∇2f(x)P
]

Dα

∥∥∥∥∥
≤ 1

2
( ∥∥∥(PGD† − P∇2f(x)P )Dα

∥∥∥+
∥∥∥(DT

† GT P − P∇2f(x)P )Dα
∥∥∥ )

≤ 1
2
( ∥∥∥Gα−∇2f(x)Dα

∥∥∥+ ∥D†∥
∥∥∥(GT −DT∇2f(x))Dα

∥∥∥ )

Using inequality (12) for the first term and (13) for second gives∥∥∥∥∥
[

PGD† + DT
† GT P

2 − P∇2f(x)P
]

Dα

∥∥∥∥∥ ≤ 1
2

(
L

2 |α|
T ε + ∥D†∥

L∥Dα∥
2 ∥ε∥

)
Because |α|T ε ≤ ∥α∥∥ε∥ ≤ ∥D†∥∥Dα∥∥ε∥,∥∥∥∥∥

[
PGD† + DT

† GT P

2 − P∇2f(x)P
]

Dα

∥∥∥∥∥ ≤ L

2 ∥D†∥∥ε∥∥Dα∥.
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Proposition 4. [Out-of-subspace Error Estimation] Let the function f satisfy Assumption 1.
Let the matrices D, G be defined as in (10) and vector ε as in (11). Then, for all α ∈ RN ,

∥(I − P )∇2f(x)Dα∥
∥Dα∥

≤ (∥(I − P )G∥+ L∥ε∥) κD

∥D∥
.

Proof. Indeed, using (13),

∥(I − P )∇2f(x)Dα∥ = ∥(I − P )(G−G +∇2f(x)D)α∥
≤ ∥(I − P )(∇2f(x)D −G)α∥+ ∥(I − P )Gα∥
≤ ∥(∇2f(x)D −G)α∥+ ∥(I − P )Gα∥
≤ ∥∇2f(x)D −G∥∥α∥+ ∥(I − P )Gα∥

≤
(

L∥ε∥
2 ∥α∥+ ∥(I − P )Gα∥

)

Hence,
∥(I − P )∇2f(x)Dα∥

∥Dα∥
≤

(
L∥ε∥

2 ∥α∥+ ∥(I − P )Gα∥
)

∥Dα∥
.

Moreover,

∥(I − P )∇2f(x)Dα∥
∥Dα∥

≤
(

L∥ε∥
2 + ∥(I − P )G∥

)
∥α∥.

≤
(

L∥ε∥
2 + ∥(I − P )G∥

) ∥α∥
∥Dα∥

≤ max
α

(
L∥ε∥

2 + ∥(I − P )G∥
) ∥α∥
∥Dα∥

=
(

L∥ε∥
2 + ∥(I − P )G∥

)
σ−1

min(D).

The desired result follows from the fact that κD = ∥D∥
σmin(D) .

H.2. Technical Results: Cubic Subproblem

This section presents results on the properties of the solution of the cubic subproblem

α⋆ def= arg min
α

∇f(x)T (Dα) + 1
2(Dα)T H̃Γ(Dα) + M

6 ∥Dα∥3, x+ = x + Dα⋆ (41)

where H̃Γ ∈ Rd×d is a rank N matrix such that

H̃ = DT
† HγD†, ⇔ H = DT H̃ΓD, Hγ = RT D + DT R + Γ

2 , (42)

and Γ is a N ×N matrix. For instance, setting Γ = M∥ε∥∥D∥I gives the H in algorithm 4.
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Proposition 5. The first-order and second-order conditions of the subproblem (41) read

DT∇f(x) + HΓα + M

2 DT Dα∥Dα∥ = 0, (43)

HΓ + M

2 DT D∥Dα∥ ⪰ 0. (44)

Proof. See [50], equation (3.3), and [52], equation (2.7).

Proposition 6. Let f satisfies Assumption 1 and B ∈ Rd×d be any matrix. Assume the
matrix D satisfies Requirement 1b, and α satisfies the first-order condition (43). Let H̃Γ be
defined in (42). Then,

∥∇f(x) + BDα−∇f(x+)∥ = ∥(H̃Γ −B + M∥Dα∥
2 )Dα +∇f(x+)∥ (45)

≤ L

2 ∥Dα∥2 + ∥[B −∇2f(x)]Dα∥. (46)

Then, the following equation follows from the optimality condition multiplied by D(DT D)−1,
writing P = DD† = DT

† DT , assuming P∇f(x) = ∇f(x),

∇f(x) + (H̃Γ + M∥Dα∥
2 )Dα = 0.

Replacing ∇f(x) gives

∥∇f(x) + BDα−∇f(x+)∥ = ∥ − (H̃Γ + M∥Dα∥
2 )Dα + BDα−∇f(x+)∥,

which is the desired result.

Proof. The inequality follows directly from (2),

∥∇f(x) + BDα−∇f(x+)∥ ≤ ∥∇f(x) +∇2f(x)Dα−∇f(x+)∥+ ∥BDα−∇2f(x)Dα∥

≤ L

2 ∥Dα∥2 + ∥[B −∇2f(x)]Dα∥.

Proposition 7. Assume D satisfies Requirement 1b. Let H̃ be defined in (42). Then, for
all Γ̃, if

B = H̃Γ −
1
2D†Γ̃DT

†

in proposition 6, the following holds:∥∥∥∥(1
2D†Γ̃DT

† + M∥Dα∥
2

)
Dα +∇f(x+)

∥∥∥∥ ≤ L

2 ∥Dα∥2 + ∥[B −∇2f(x)]Dα∥, (47)

where

∥[B −∇2f(x)]Dα∥ ≤ ∥Dα∥
(

L

2 ∥D†∥∥ε∥+ ∥(I − P )∇2f(x)Dα∥
∥Dα∥

+ 1
2
∥∥∥D†(Γ− Γ̃)D†

∥∥∥)
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Proof. From proposition 6,

∥(H̃Γ −B + M∥Dα∥
2 )Dα +∇f(x+)∥ ≤ L

2 ∥Dα∥2 + ∥[B −∇2f(x)]Dα∥.

Replacing B in the left-hand-side gives

∥(H̃Γ −B + M∥Dα∥
2 )Dα +∇f(x+)∥ = ∥(

D†ΓDT
†

2 + M∥Dα∥
2 )Dα +∇f(x+)∥

Since
∇2f(x)Dα = P∇2f(x)PDα + (I − P )∇2f(x)PDα,

where P = D(DT D)−1DT , and because PD = D, the inequality becomes

∥[B −∇2f(x)]Dα∥ =∥
[
H̃Γ −

1
2D†Γ̃DT

† −∇2f(x)
]

Dα∥ (48)

=∥[P + (I − P )]
[
H̃Γ −

1
2D†Γ̃DT

† −∇2f(x)
]

PDα∥ (49)

≤
∥∥∥(H̃0 − P∇2f(x)P

)
Dα

∥∥∥ (50)

+
(

1
2
∥∥∥DT

† (Γ− Γ̃)D†
∥∥∥+

∥∥(I − P )∇2f(x)Dα)
∥∥

∥Dα∥

)
∥Dα∥ (51)

Corollary 1 (Bound depending on Γ̃). In proposition 7,

• if Γ̃ = 0 and Γ = M∥D∥∥ε∥I,∥∥∥∥M∥Dα∥
2 Dα +∇f(x+)

∥∥∥∥ ≤ L

2 ∥Dα∥2 + ∥Dα∥
( ∥ε∥
∥D∥

(
L + MκD

2

)
κD + ∥(I − P )∇2f(x)P∥

)
(52)

• if Γ̃ = Γ,∥∥∥∥(1
2D†ΓDT

† + M∥Dα∥
2

)
Dα +∇f(x+)

∥∥∥∥ ≤ L

2 ∥Dα∥2 + ∥Dα∥
(

L

2
∥ε∥
∥D∥

κD + ∥(I − P )∇2f(x)Dα∥
∥Dα∥

)
(53)

• If Γ̃ = D(M∥Dα∥)DT and Γ = M∥D∥∥ε∥I,

∥∇f(x+)∥ ≤ L + M

2 ∥Dα∥2 + ∥Dα∥
( ∥ε∥
∥D∥

(
L + MκD

2

)
κD + ∥(I − P )∇2f(x)P∥

)
(54)
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H.3. Technical Results: Decrease Guarantees

This section presents two technical results on the minimal decrease of the function f .

Proposition 8. Let Assumption 1 and Requirements 1b to 3 hold. Then, ∀y ∈ Rd, algo-
rithm 4 ensures

f(x+) ≤ f(y) + M + L

6 ∥y − x∥3 + ∥y − x∥2

2

(
∥∇2f(x)− P∇2f(x)P∥+ δ

Lκ + Mκ2

2

)

Proof. The output of algorithm 4 ensures that

f(x+) ≤ min
α

f(x) +∇f(x)T Dα + 1
2(Dα)T∇2f(x)Dα + 1

2αT
(
H −DT∇2f(x)D

)
α + M

6 ∥Dα∥3

However, by the definition of H (Type-I bound),

1
2αT

(
H −DT∇2f(x)D

)
α

≤1
2

(
αT

(
GT D + DT G

2 −DT∇2f(x)D
)

α + ∥α∥2 M∥D∥∥ε∥
2

)

≤1
2

(
αT

(
GT D + DT G

2 −DT∇2f(x)D
)

α + ∥D†∥2∥Dα∥M∥D∥∥ε∥
2

)

=1
2

(
(Dα)T

(
G−∇2f(x)D

)
α + ∥D†∥2∥Dα∥M∥D∥∥ε∥

2

)
.

The last equality comes from the fact that

αT
(
DT G

)
α = αT

(
DT G + GT D

2 + DT G−GT D

2

)
α = αT

(
DT G + GT D

2

)
α.

Now, using (12) with w = Dα gives

1
2αT

(
H −DT∇2f(x)D

)
α ≤ L∥Dα∥

4

N∑
i=1
|αi|εi + ∥D†∥2∥Dα∥M∥D∥∥ε∥

4 .

Finally, since
N∑

i=1
|αi|εi ≤ ∥α∥∥ε∥ ≤ ∥D†∥∥Dα∥∥ε∥,

the inequality becomes

1
2αT

(
H −DT∇2f(x)D

)
α ≤ ∥Dα∥2

4
(
L∥D†∥∥ε∥+ M∥D†∥2∥D∥∥ε∥

)
= ∥Dα∥2

4
∥ε∥
∥D∥

(
LκD + Mκ2

D

)
.
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All together,

f(x+)

≤min
α

f(x) +∇f(x)T Dα + 1
2(Dα)T∇2f(x)Dα + 1

2αT
(
H −DT∇2f(x)D

)
α + M

6 ∥Dα∥3

≤min
α

f(x) +∇f(x)T Dα + 1
2(Dα)T∇2f(x)Dα + ∥Dα∥2

4
∥ε∥
∥D∥

(
LκD + Mκ2

D

)
+ M

6 ∥Dα∥3

Now, by Requirement 3, for all y, one can find α such that

Dα = P (y − x) = DD†(y − x).

Indeed, multiplying both sides by D† gives

α = D†(y − x).

Therefore, the minimum can be written as a function of y instead of α,

f(x+) ≤ min
y∈Rd

f(x) +∇f(x)T P (y − x) + 1
2(P (y − x))T∇2f(x)P (y − x)

+ ∥P (y − x)∥2
4

∥ε∥
∥D∥

(
LκD + Mκ2

D

)
+ M

6 ∥P (y − x)∥3. (55)

Since P∇f(x) = ∇f(x) by Requirement 1b, and using the crude bound ∥P (y−x)∥ ≤ ∥y−x∥,

f(x+) ≤ min
y∈Rd

f(x) +∇f(x)T (y − x) + 1
2(y − x)T∇2f(x)(y − x)

+ 1
2(y − x)

[
∇2f(x)− P∇2f(x)P

]
(y − x)

+ ∥y − x∥2

4
∥ε∥
∥D∥

(
LκD + Mκ2

D

)
+ M

6 ∥y − x∥3.

Using the lower bound (3),

f(x) +∇f(x)T (y − x) + 1
2(y − x)T∇2f(x)(y − x)− L

6 ∥y − x∥3 ≤ f(y),

the crude bound (y − x)
[
∇2f(x)− P∇2f(x)P

]
(y − x) ≤ ∥∇2f(x)− P∇2f(x)P∥∥y − x∥2,

and Requirements 2 and 3 lead to the desired result,

f(x+) ≤ f(y) + M + L

6 ∥y − x∥3 + ∥y − x∥2

2

(
∥∇2f(x)− P∇2f(x)P∥+ δ

Lκ + Mκ2

2

)

Proposition 9. Let Assumption 1 and Requirements 1a, 2 and 3 hold. Then, ∀y ∈ Rd,
algorithm 4 ensures

Ef(x+) ≤
(

1− N

d

)
f(x) + N

d
f(y) + N

d

(M + L)
6 ∥y − x∥3

+ N

d

∥y − x∥2

2

(
δ

Lκ + Mκ2

2 + (d−N)
d

∥∇2f(x)∥
)
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Proof. The proof is the same as for proposition 8, until equation (55),

f(x+) ≤ min
y∈Rd

f(x) +∇f(x)T P (y − x) + 1
2(P (y − x))T∇2f(x)P (y − x)

+ ∥P (y − x)∥2
4

∥ε∥
∥D∥

(
LκD + Mκ2

D

)
+ M

6 ∥P (y − x)∥3.

With Requirement 1a, the following relations hold (see [39, lemma 5.7])

E[∥P (y − x)∥2] = (y − x)TE[P ](y − x) = N

d
∥y − x∥2, (56)

E[∥P (y − x)∥3] ≤ E[∥P (y − x)∥2]∥y − x∥ = N

d
∥y − x∥2, (57)

E[(y − x)T P∇2f(x)P (y − x)] ≤ N2

d2 (y − x)∇2f(x)(y − x) + N(d−N)
d2 ∥∇2f(x)∥∥y − x∥2

(58)

Hence, removing the minimum and taking the expectation of (55) gives

Ef(x+) ≤f(x) + N

d
∇f(x)T (y − x)

+ 1
2

(
N2

d2 (y − x)∇2f(x)(y − x) + N(d−N)
d2 ∥∇2f(x)∥∥y − x∥2

)

+ N

d

∥y − x∥2

4
∥ε∥
∥D∥

(
LκD + Mκ2

D

)
+ N

d

M

6 ∥y − x∥3.

Using the lower bound from (3)
1
2(y − x)∇2f(x)(y − x) ≤ f(y) + L

6 ∥y − x∥3 − f(x)−∇f(x)(y − x)

in the inequality over the expectation gives

Ef(x+) ≤f(x) + N

d
∇f(x)T (y − x)

+ N2

d2

(
f(y) + L

6 ∥y − x∥3 − f(x)−∇f(x)(y − x)
)

+ 1
2

N(d−N)
d2 ∥∇2f(x)∥∥y − x∥2

+ N

d

∥y − x∥2

4
∥ε∥
∥D∥

(
LκD + Mκ2

D

)
+ N

d

M

6 ∥y − x∥3.

After simplification,

Ef(x+) ≤
(

1− N2

d2

)
f(x) + N2

d2 f(y) + N

d

(
1− N

d

)
∇f(x)T (y − x)

+ 1
2

N(d−N)
d2 ∥∇2f(x)∥∥y − x∥2

+ N

d

∥y − x∥2

4
∥ε∥
∥D∥

(
LκD + Mκ2

D

)
+
(

N2L

6d2 + NM

6d

)
∥y − x∥3.
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To simplify the expression, since N ≤ d,(
N2L

6d2 + NM

6d

)
∥y − x∥3 ≤ N(M + L)

6d
∥y − x∥3.

Finally, since the function is convex,
N

d

(
1− N

d

)
∇f(x)T (y − x) ≤ N

d

(
1− N

d

)
(f(y)− f(x)).

From this last relation, Requirement 2 and Requirement 3 comes the desired result,

Ef(x+) ≤
(

1− N

d

)
f(x) + N

d
f(y) + N(M + L)

6d
∥y − x∥3

+ ∥y − x∥2

2

(
N

d
δ

Lκ + Mκ2

2 + N(d−N)
d2 ∥∇2f(x)∥

)

H.4. Technical Results: Accelerated Algorithm

Notations The following functions define the estimate sequence,

ℓt(x) =
t∑

i=2
bi−1 (f(xi) +∇f(xi)(x− xi)) , (59)

ϕt(x) = f(x1) + ℓt(x) + λ
(1)
t

2 ∥x− x0∥2 + λ
(2)
t

6 ∥x− x0∥3 (60)

Φt(x) = ϕt(x)
Bt

, (61)

where λ
(1,2)
t are non-negative and increasing, and the sequences bt, Bt are

Bt = t(t + 1)(t + 2)
6 =

t∑
i=1

bi, (62)

bt = (t + 1)(t + 2)
2 = Bt+1 −Bt. (63)

(64)

Moreover, the following quantities will be important later,

vt = arg min
x

ϕt(x) = arg min
x

Φt(x), (65)

βt = bt

Bt+1
, (66)

yt = (1− βt)xt + βtvt. (67)

Lemma 1. From [50, Lemma 4]. The Bregman divergence of the function ∥x∥i satisfies,
for i ≥ 2,

∥x∥i − ∥y∥i −∇(∥y∥i)(x− y) ≥ 1
2i−2 ∥x− y∥i.
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Proposition 10. The function ϕt is lower-bounded by

ϕt ≥ ϕt(vt)︸ ︷︷ ︸
=ϕ⋆

t

+λ
(1)
t

2 ∥x− vt∥2 + λ
(2)
t

12 ∥x− vt∥3 (68)

where vt = arg minx ϕt(x).

Proof. The first order condition on ϕt reads,

ℓ′
t +∇

(
λ

(1)
t

2 ∥vt − x0∥2 + λ
(2)
t

6 ∥vt − x0∥3
)

= 0.

Multiplying both sides by (x− vt) gives

ℓ′
t(x− vt) +∇

(
λ

(1)
t

2 ∥vt − x0∥2 + λ
(2)
t

6 ∥vt − x0∥3
)

(x− vt) = 0.

Note that, since ℓt is an affine function, ℓ′
t(x− vt) = ℓt(x)− ℓt(vt). Hence,

ℓt(x)− ℓt(vt) +∇
(

λ
(1)
t

2 ∥vt − x0∥2 + λ
(2)
t

6 ∥vt − x0∥3
)

(x− vt) = 0.

Finally, adding λ
(1)
t
2 ∥x− x0∥2 + λ

(2)
t
6 ∥x− x0∥3 on both sides and after reorganizing the terms,

ϕt(x) = ℓt(vt)+ λ
(1)
t
2 ∥x−x0∥2 + λ

(2)
t
6 ∥x−x0∥3−∇

(
λ

(1)
t
2 ∥vt − x0∥2 + λ

(2)
t
6 ∥vt − x0∥3

)
(x−vt).

(69)
From lemma 1 with x = x− x0, y = vt − x0, and after reorganizing the terms,

∥x− x0∥i −∇(∥vt − x0∥i)(x− vt) ≥
1

2i−2 ∥x− vt∥i + ∥vt − x0∥i.

Therefore, using the previous inequality with i = 2 and i = 3, (69) becomes

ϕt(x) ≥ ℓt(vt) + λ
(1)
t

2 ∥vt − x0∥2 + λ
(2)
t

6 ∥vt − x0∥3 + λ
(2)
t

2 ∥vt − x∥2 + λ
(3)
t

12 ∥vt − x∥3

By definition of ϕ⋆
t = ϕt(vt),

ϕt(x) ≥ ϕ⋆
t + λ

(1)
t

2 ∥vt − x∥2 + λ
(2)
t

12 ∥vt − x∥3.

Proposition 11. Let
γ = κD

∥D∥

(3
2∥ε∥+ 2∥(I − P )G∥

M

)
.

Then, under the assumptions of proposition 4 the condition

∥f(x+)∥2
M (γ + ∥Dα∥) ≤ −∇f(x)T Dα

is guaranteed as long as M ≥ 2L.
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Proof. The starting point is (53) combined with proposition 4:∥∥∥∥(1
2D†ΓDT

† + M∥Dα∥
2

)
Dα +∇f(x+)

∥∥∥∥ ≤ L

2 ∥Dα∥2 + ∥Dα∥
(

L

2
∥ε∥
∥D∥

κD + ∥(I − P )∇2f(x)Dα∥
∥Dα∥

)

≤ L

2 ∥Dα∥2 + ∥Dα∥
(

L

2
∥ε∥
∥D∥

κD + (∥(I − P )G∥+ L∥ε∥) κD

∥D∥

)
≤ L

2 ∥Dα∥2 + ∥Dα∥
(3L

2
∥ε∥
∥D∥

κD + |(I − P )G∥ κD

∥D∥

)
To simplify, let Γ = MDγDT . Hence,∥∥∥∥M (∥Dα∥+ γ

2

)
Dα +∇f(x+)

∥∥∥∥ ≤ L

2 ∥Dα∥2 + ∥Dα∥
(3L

2
∥ε∥
∥D∥

κD + ∥(I − P )G∥ κD

∥D∥

)
Elevating to the square this inequality gives(

M

(
γ + ∥Dα∥

2

))2
∥Dα∥2 + ∥∇f(x+)∥2 + 2

(
M

(
γ + ∥Dα∥

2

))
∇f(x+)T Dα

≤ ∥Dα∥2
(

L

2 ∥Dα∥+ L

2
∥ε∥
∥D∥

κD + ∥(I − P )∇2f(x)Dα∥
∥Dα∥

)2

.

The desired result holds if the following condition is satisfied,(
M

(
γ + ∥Dα∥

2

))2
∥Dα∥2 ≥ ∥Dα∥2

(
L

2 ∥Dα∥+ 3L

2
∥ε∥
∥D∥

κD + ∥(I − P )G∥κD

∥D∥

)2
.

After simplification of the squares,

M
γ + ∥Dα∥

2 ≥ L

2 ∥Dα∥+ 3L

2
∥ε∥
∥D∥

κD + ∥(I − P )G∥κD

∥D∥
.

Replacing γ by its value gives

M
∥Dα∥+ κD

∥D∥

(
3
2∥ε∥+ 2∥(I−P )G∥

M

)
2 ≥ L

2 ∥Dα∥+ 3L

2
∥ε∥
∥D∥

κD + ∥(I − P )G∥κD

∥D∥
.

The condition is simplified into

(M − L)∥Dα∥
2 + (M − 2L)3

2
∥ε∥κD

∥D∥
≥ 0.

This condition is implied by M ≥ 2L.

Proposition 12. Under the same assumptions as proposition 7, if M ≥ 2L, and if

γ = κD

∥D∥

(3
2∥ε∥+ 2∥(I − P )G∥

M

)
≤ (
√

3− 1)∥Dα∥
4 ,

then
2

33/4
∥∇f(x+)∥3/2
√

M
≤ −∇f(x+)T Dα.
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Proof. The starting point is (53),∥∥∥∥M ∥Dα∥
2 Dα +∇f(x+)

∥∥∥∥ ≤ L

2 ∥Dα∥2 + ∥Dα∥
(

L

2
κD∥ε∥
∥D∥

+ Mγ

2 +
∥∥(I − P )∇2f(x)Dα

∥∥
∥Dα∥

)

Therefore, to obtain∥∥∥∥M ∥Dα∥
2 Dα +∇f(x+)

∥∥∥∥ ≤M

(∥Dα∥
4 + γ

)
∥Dα∥,

The following is sufficient,

M

(∥Dα∥
4 + γ

)
∥Dα∥ ≥ L

2 ∥Dα∥2 + ∥Dα∥
(

L

2
κD∥ε∥
∥D∥

+ Mγ

2 +
∥∥(I − P )∇2f(x)Dα

∥∥
∥Dα∥

)
.

Using proposition 4, the condition can be strengthened into

M

2

(∥Dα∥+ γ

2

)
∥Dα∥

≥ L

2 ∥Dα∥2 + ∥Dα∥
(

L

2
κD∥ε∥
∥D∥

+ Mγ

2 + (∥(I − P )G∥+ L∥ε∥) κD

∥D∥

)
= L

2 ∥Dα∥2 + ∥Dα∥
(3L

2
κD∥ε∥
∥D∥

+ Mγ

2 + ∥(I − P )G∥ κD

∥D∥

)
Defining

γ

2 =
(

3
4

κD∥ε∥
∥D∥

+
∥(I − P )G∥ κD

∥D∥
M

)
simplifies the condition into

M

(∥Dα∥
4 + γ

)
∥Dα∥ ≥ L

2 ∥Dα∥2 + ∥Dα∥
(

Mγ +
3(L− M

2 )
2

κD∥ε∥
∥D∥

)

which is satisfied when M > 2L. Now, assume that

γ ≤ (
√

3− 1)∥Dα∥
4 .

Then, ∥∥∥∥M ∥Dα∥
2 Dα +∇f(x+)

∥∥∥∥ ≤ √3M∥Dα∥2

4 .

Elevating both sides to the square gives

∥∇f(x+)∥2 + 3M2∥Dα∥4

16 ≤ −M∥Dα∥∇f(x+)T Dα

Writing r = ∥Dα∥,
∥∇f(x+)∥2

Mr
+ 3Mr3

16 ≤ −∇f(x+)T Dα.
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Using
c1
r

+ c2r3 ≥ 4c
1/4
2

(
c1
3

)3/4
,

the inequality becomes

−∇f(x+)T Dα ≥ M1/4

2
∥∇f(x+)∥3/2

M3/4
4

33/4

= 2
33/4
∥∇f(x+)∥3/2
√

M
.

Proposition 13 (Termination of algorithm 6). Let f satisfies Assumption 1. Assume that
Requirements 1b to 3 holds. Then, once M ≥ 2L, algorithm 6 terminates with ExitFlag
equals to either SmallStep or LargeStep. Moreover, if M0 ≤ L, then the algorithm ter-
minates with M ≤ 4L. Moreover, if the algorithm terminates with ExitFlag equals to
SmallStep, then

∥Dα∥ ≤ 4γM√
3− 1

, γM = κD

∥D∥

(3
2∥ε∥+ 2∥(I − P )G∥

M

)
.

Proof. Let
γM = κD

∥D∥

(3
2∥ε∥+ 2∥(I − P )G∥

M

)
.

Assume that M ≥ 2L. If γM ≤ (
√

3−1)∥Dα∥
4 , then, by proposition 12, the following condition

is satisfied:
2

33/4
∥∇f(x+)∥3/2
√

M
≤ −∇f(x+)T Dα.

In this case the algorithm terminates with ExitFlag = LargeStep. In any case, by propo-
sition 11, the following conditions is always satisfied when M ≥ 2L:

∥f(x+)∥2
M (γ + ∥Dα∥) ≤ −∇f(x)T Dα.

Then, if γM ≥ (
√

3−1)∥Dα∥
4 , the algorithm terminates with ExitFlag = SmallStep (otherwise

the algorithm would have been terminated with ExitFlag = LargeStep).
Since the algorithm doubles M until one of the two condition is satisfied, in the worst

case, M = 4L.

Proposition 14. If λ
(1)
t and λ

(2)
t satisfy

λ
(1)
t ≥

b2
t+1
Bt

Mt+1 (γt + ∥Dtαt∥) , λ
(2)
t ≥ 4√

3
b3

t+1
B2

t

Mt+1,

where γt = κDt
∥Dt∥

(
3
2∥εt∥+ 2∥(I−Pt)Gt∥

Mt+1

)
. Then, the function ϕ satisfies

Btf(xt) ≤ ϕt(x), ϕt(x) ≤ Btf(x) + λ
(1)
t + λ̃(1)

2 ∥x− x0∥2 + λ
(2)
t + λ̃(2)

6 ∥x− x0∥3,
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where
λ̃(1) = ∥∇f(x0)− P0∇f(x0)P0∥+ δ

(
Lκ + M1κ2

2

)
, λ̃(2) = M1 + L.

Proof. The result is proven by recursion. At t = 1, the condition Btf(xt) ≤ ϕt(x) is obviously
satisfied since

f(x1) ≤ min
v

ϕ1(v) = f(x1).

On the other hand, by proposition 8,

f(x1) ≤ min
x

f(x) + λ̃(2)

6 ∥x− x0∥3 + λ̃(1)

2 ∥x− x0∥2

≤ f(x) + λ̃(2)

6 ∥x− x0∥3 + λ̃(1)

2 ∥x− x0∥2.

Therefore, the second condition holds by definition of ϕ,

ϕt = f(x1) + λ
(1)
t

2 ∥x− x0∥2 + λ
(2)
t

6 ∥x− x0∥3

≤ λ
(1)
1 + λ̃(1)

2 ∥x− x0∥2 + λ
(2)
1 + λ̃(2)

6 ∥x− x0∥3.

Now, assume t > 1, and Btf(xt) ≤ ϕt(x). Hence,

min
x

ϕt+1(x)

= min
x

ℓt(x) + bt [f(xt+1) +∇f(xt+1)(x− xt+1)] +
λ

(1)
t+1
2 ∥x− x0∥2 +

λ
(2)
t+1
6 ∥x− x0∥3

= min
x

ϕt(x) + bt [f(xt+1) +∇f(xt+1)(x− xt+1)]

+
λ

(1)
t+1 − λ

(1)
t

2 ∥x− x0∥2 +
λ

(2)
t+1 − λ

(2)
t

6 ∥x− x0∥3

≥min
x

ϕt(x) + bt [f(xt+1) +∇f(xt+1)(x− xt+1)]

(68)
≥ min

x
ϕ⋆

t + λ
(1)
t

2 ∥x− vt∥2 + λ
(2)
t

12 ∥x− vt∥3 + bt [f(xt+1) +∇f(xt+1)(x− xt+1)]

≥min
x

Btf(xt) + λ
(1)
t

2 ∥x− vt∥2 + λ
(2)
t

12 ∥x− vt∥3 + bt [f(xt+1) +∇f(xt+1)(x− xt+1)]
A.4
≥ min

x
Btf(xt+1) +∇f(xt+1)(xt − xt+1) + bt [f(xt+1) +∇f(xt+1)(x− xt+1)]

+ λ
(1)
t

2 ∥x− vt∥2 + λ
(2)
t

12 ∥x− vt∥3

= min
x

Bt+1f(xt+1) +∇f(xt+1)(Btxt + btx−Bt+1xt+1) + λ
(1)
t

2 ∥x− vt∥2 + λ
(2)
t

12 ∥x− vt∥3

(67)= min
x

Bt+1f(xt+1) + Bt+1∇f(xt+1)(yt − xt+1)

+ bt∇f(xt+1)(x− vt) + λ
(1)
t

2 ∥x− vt∥2 + λ
(2)
t

12 ∥x− vt∥3

61



Quasi-Newton with Global Convergence Rates

The inequality is satisfied if either

(a) 0 ≤ Bt+1∇f(xt+1)(yt − xt+1) + bt∇f(xt+1)(x− vt) + λ
(2)
t

12 ∥x− vt∥3, or

(b) 0 ≤ Bt+1∇f(xt+1)(yt − xt+1) + bt∇f(xt+1)(x− vt) + λ
(1)
t

2 ∥x− vt∥2.

It remains now to find sufficient condition such that one of the previous inequalities hold.
Define xt+1 to be the output of algorithm 6 starting from yt, hence yt − xt+1 = −Dtαt.

The algorithm guarantees that

(a) −∇f(xt+1)T Dtαt ≥
2

33/4
∥∇f(xt+1)∥3/2
√

Mt+1
and or (70)

(b) −∇f(xt+1)T Dtαt ≥
∥f(xt+1)∥2

Mt+1 (γt + ∥Dtαt∥)
(71)

Combining the expressions (a) and (b) leads to the following sufficient conditions:

0 ≤ Bt+1
2

33/4
∥∇f(xt+1)∥3/2
√

Mt+1
+ bt∇f(xt+1)(x− vt) + λ

(2)
t

12 ∥x− vt∥3, (72)

0 ≤ Bt+1
∥f(xt+1)∥2

Mt+1 (γt + ∥Dtαt∥)
+ bt∇f(xt+1)(x− vt) + λ

(1)
t

2 ∥x− vt∥2. (73)

Case 1: equation (72). Starting from the first order condition of the minimum of (72)
over x,

bt∇f(xt+1) + λ
(2)
t

4 ∥x− vt∥(x− vt) = 0. (74)

Multiplying (74) by (x− vt) gives

bt∇f(xt+1)(x− vt) = −λ
(2)
t

4 ∥x− vt∥3

Hence, when x satisfies (74),

bt∇f(xt+1)(x− vt) + λ
(2)
t

12 ∥x− vt∥3 = −λ
(2)
t

6 ∥x− vt∥3. (75)

Going back to (74), after isolating x− vt,

(x− vt) = − 4bt

λ
(2)
t

∇f(xt+1) 1
∥x− vt∥

Therefore, after taking the norm and changing the power,

∥x− vt∥3 =
(

4bt

λ
(2)
t

∥∇f(xt+1)∥
)3/2

,

⇔ λ
(2)
t

6 ∥x− vt∥3 = λ
(2)
t

6

(
4bt

λ
(2)
t

∥∇f(xt+1)∥
)3/2

= 4

3
√

λ
(2)
t

(bt∥∇f(xt+1)∥)3/2 .
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After using (75) and injecting the minimal value makes the condition (72) stronger:

0 ≤ Bt+1
2

33/4
∥∇f(xt+1)∥3/2
√

Mt+1
− 4

3
√

λ
(2)
t

(bt∥∇f(xt+1)∥)3/2 .

Hence, if λ
(2)
t satisfies

Bt+1
2

33/4√Mt+1
≥ 4

3
√

λ
(2)
t

b
(3/2)
t ⇔ λ

(2)
t ≥ 4√

3
b3

t

B2
t+1

Mt+1, (76)

then (72) is satisfied.

Case 2: equation (73). Starting from the first order condition of the minimum of (73)
over x,

bt+1∇f(xt+1) + λ
(1)
t (x− vt). (77)

Hence,
(x− vt) = −bt∇f(xt+1)

λ
(1)
t

.

Injecting the value back in (73) gives

Bt+1
∥f(xt+1)∥2

M (γt + ∥Dtαt∥)
− b2

t

∥∇f(xt+1)∥2

λ
(1)
t

+ 1
2b2

t

∥∇f(xt+1)∥2

λ
(1)
t

.

Therefore, if the following condition holds,

Bt+1
2Mt+1 (γt + ∥Dtαt∥)

≥ b2
t

λ
(1)
t

⇔ λ
(1)
t ≥ b2

t

2Bt+1
Mt+1 (γt + ∥Dtαt∥) ,

then (73) is satisfied.

Proposition 15. Let f satisfies Assumption 1. Then, under Requirements 1b to 3, λ
(1)
t and

λ
(2)
t in algorithm 7 are bounded by

λ
(1)
t ≤ 30 · b2

t+1
Bt

κD

(
δ max{4L, M0}+ max

i=0...t
∥(I − Pi)∇f(xi)Pi)∥

)
(78)

λ
(2)
t ≤ L

2 δ + max
i=0...t

∥(I − Pi)∇f(xi)Pi)∥. (79)

Proof. Since algorithm 7 doubles λ
(1)
t , λ

(2)
t until ϕ⋆

t ≥ f(xt+1), then by proposition 14, both
λ

(1)
t , λ

(2)
t achieves at most

λ
(1)
t ≤ 2 · b2

t+1
Bt

Mt+1 (γt + ∥Dtαt∥) , λ
(2)
t ≤ 2 · 4√

3
b3

t+1
B2

t

Mt+1.

There are three cases to distinguish:

1. The algorithm finishes with ExitFlag = LargeStep,

2. The algorithm finishes with ExitFlag = SmallStep.
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Case 1. In this case, λ
(2)
t+1 may be updated. By proposition proposition 13, Mt ≤ 4L

(unless M0 ≥ 4L). Hence, λ
(2)
t is bounded by

λ
(2)
t ≤ 2 · 4√

3
b3

t+1
B2

t

max{M0, 4L} ≤ 5b3
t+1
B2

t

max{M0, 4L}.

Case 2. In this case, λ
(1)
t+1 may be updated. By proposition 13, and by Requirements 2

and 3,

Mt+1 (γt + ∥Dtαt∥) ≤
√

3 + 1√
3− 1

Mt+1γt

=
√

3 + 1√
3− 1

κDt

∥Dt∥

(3
2∥εt∥Mt+1 + 2∥(I − Pt)Gt∥

)
,

≤
√

3 + 1√
3− 1

(3
2δκD max{4L, M0}+ 2κD

∥(I − Pt)Gt∥
∥Dt∥

)
.

In addition, by Theorem 6 and Requirement 2,

∥(I − Pt)Gt∥
∥Dt∥

≤ ∥(I − Pt)(Gt −∇f(xt)Dt)∥+ ∥(I − Pt)∇f(xt)Dt)∥
∥Dt∥

≤
L
2 ∥εt∥+ ∥(I − Pt)∇f(xt)Dt)∥

∥Dt∥
,

=
L
2 ∥εt∥+ ∥(I − Pt)∇f(xt)PtDt)∥

∥Dt∥
,

≤ L

2 δ + max
i=0...t

∥(I − Pi)∇f(xi)Pi)∥.

Hence,

Mt+1 (γt + ∥Dtαt∥)

≤
√

3 + 1√
3− 1

(3
2δκD max{4L, M0}+ 2κD

(
L

2 δ + max
i=0...t

∥(I − Pi)∇f(xi)Pi)∥
))

,

≤
√

3 + 1√
3− 1

(7
4δκD max{4L, M0}+ 2κD max

i=0...t
∥(I − Pi)∇f(xi)Pi)∥

)
.

≤ 7.5κD

(
δ max{4L, M0}+ max

i=0...t
∥(I − Pi)∇f(xi)Pi)∥

)
.

Therefore,

λ
(1)
t ≤ 2 · b2

t+1
Bt

Mt+1 (γt + ∥Dtαt∥)

≤ 30 · b2
t+1
Bt

κD

(
δ max{4L, M0}+ max

i=0...t
∥(I − Pi)∇f(xi)Pi)∥

)
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H.5. Missing proofs from Sections A and 3

Theorem 6. Let the function f satisfy Assumption 1. Let the matrices D, G be defined as
in (10) and vector ε as in (11). Then, for all w ∈ Rd and α ∈ RN

−L∥w∥
2 |α|

T εt ≤ wT (∇2f(x)Dt −Gt)α ≤ L∥w∥
2 |α|

T εt, (12)

∥wT (∇2f(x)Dt −Gt)∥ ≤ L∥w∥
2 ∥εt∥. (13)

Proof. Using Cauchy-Schwartz with (2) gives that, for all v,

vT
(
∇f(y)−∇f(z)−∇2f(z)(y − z)

)
≤ L∥v∥

2 ∥y − z∥2.

Let v = vi, y = yi, and z = zi. By the definition of Y, Z, D, G in (10),

vT
i

(
gi −∇2f(zi)di

)
≤ L∥vi∥

2 ∥di∥2.

Introducing ∇2f(x) gives

vT
i

(
gi −∇2f(zi)di

)
= vT

i

(
gi −∇2f(x)di

)
+ vT

i (∇2f(zi)−∇2f(x))di.

Since the Hessian is L-Lipchitz-continuous Assumption 1, (∇2f(zi)−∇2f(x))di ≤ L∥di∥∥zi−
x∥. Therefore, by the definition of εi,

vT
i

(
gi −∇2f(x)di

)
≤ L∥vi∥εi

2 . (80)

Let vi = sign(αi)w. Summing all inequalities multiplied by |αi| gives the first desired result:

wT
(
G−∇2f(x)D

)
α ≤ L∥w∥

∑N
i=1 εi|αi|
2 .

The second result is rather straightforward, since (80) with vi = w gives

wT
(
gi −∇2f(x)di

)
≤ L∥w∥εi

2 .

Therefore,√√√√ N∑
i=1

(wT (gi −∇2f(x)di))2 ≤ ∥w∥

√√√√ N∑
i=1
∥gi −∇2f(x)di∥2 ≤ ∥w∥

√√√√ N∑
i=1

Lε2
i ≤

L∥w∥∥ε∥
2 .

Theorem 7. Let the function f satisfy Assumption 1. Let xt+1 be defined as in (8), the
matrices Dt, Gt be defined as in (10) and εt be defined as in (11). Then, for all α ∈ RN ,

f(xt+1) ≤ f(xt) +∇f(xt)T Dtα + αT Htα
2 + L∥Dtα∥3

6 , (Type-I bound)

∥∇f(xt+1)∥ ≤ ∥∇f(xt) + Gtα∥+ L
2

(
|α|T εt + ∥Dtα∥2

)
, (Type-II bound)

where Ht
def= GT

t Dt+DT
t Gt+IL∥Dt∥∥εt∥

2 .
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Proof. The inequality (Type-II bound) is a direct consequence of (2) (with y = x+, z = x)
combined with (13),

∥∇f(x+)−∇f(x)−∇2f(x)Dα∥ ≤ L

2 ∥Dα∥2

⇔ wT
(
∇f(x+)−∇f(x)−∇2f(x)Dα

)
≤ L∥w∥

2 ∥Dα∥2

⇔ wT∇f(x+) ≤ L∥w∥
2 ∥Dα∥2 + wT

(
∇f(x) +∇2f(x)Dα

)
⇔ wT∇f(x+)

(12)
≤ L∥w∥

2

(
∥Dα∥2 +

N∑
i=1
|αi|εi

)
+ wT (∇f(x) + Gα)

⇔ wT∇f(x+) ≤ ∥w∥
(

L

2

(
∥Dα∥2 +

N∑
i=1
|αi|εi

)
+ ∥∇f(x) + Gα∥

)

Setting w = ∇f(x+) gives (Type-II bound).
The inequality (Type-I bound) instead comes from (3) combined with (13). Indeed,

f(x+) ≤ f(x) +∇f(x)Dα + 1
2(Dα)T∇2f(x)(Dα) + L

6 ∥Dα∥3

(13)
≤ f(x) +∇f(x)Dα + 1

2

(
(Dα)T Gα + L∥Dα∥

2

N∑
i=1
|αi|εi

)
+ L

6 ∥Dα∥3

It remains to use the followings bounds:

N∑
i=1
|αi|εi = αT (sign(α)⊙ ε) ≤ ∥α∥∥ε∥,

∥Dα∥ ≤ ∥D∥∥α∥.

All together,

f(x+) ≤ f(x) +∇f(x)Dα + 1
2(Dα)T Gα + L

4 ∥α∥
2∥D∥∥ε∥+ L

6 ∥Dα∥3

Finally, since (Dα)T Gα is a quadratic form, only the symmetric counterpart of DT G counts.
That means, (Dα)T Gα = αT DT G+GT D

2 α. Hence, writing H = DT G+GT D
2 + IL

2 ∥D∥∥ε∥ gives
the desired result,

f(x+) ≤ f(x) +∇f(x)Dα + αT Hα

2 + L

6 ∥Dα∥3.

Theorem 1. Let f satisfy Assumption 1. Then, at each iteration t ≥ 0, algorithm 3 achieves

f(xt+1) ≤ f(xt)− Mt+1
12 ∥xt+1 − xt∥3, Mt+1 < max

{
2L ; M0

2t

}
. (7)
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Proof. Using (43), at each iteration, after the while loop, the first-order condition of the
subroutine algorithm 4 reads

DT
t ∇f(xt) + Htαt+1 + Mt+1

2 DT
t Dtαt+1∥Dtαt+1∥ = 0. (81)

The subscript t is dropped for clarity. After multiplying by α,

∇f(xt)T Dα + αT Hα + M

2 ∥Dα∥3 = 0.

In addition, multiplying both times by α the second-order condition (44) gives

αT Hα ≥ −M

2 ∥Dα∥3.

which gives, after replacing it in (81),

∇f(xt)T Dα ≤ −M

2 ∥Dα∥3 + M

2 ∥Dα∥3 = 0. (82)

Injecting eqs. (81) and (82) into the while condition of algorithm 4 gives the desired result:

f(x+) ≤ f(x) +∇f(x)T Dα + 1
2αT Hα + M∥Dα∥3

6 , (83)

= f(x)− 1
2∇f(x)T Dα− M∥Dα∥3

12

≤ f(x)− M∥Dα∥3

12 .

Where (83) is guaranteed if M > L. Therefore, in the worst case, M < 2L. Finally, after
t iterations, the number of total gradient calls is bounded by 2t + log2

(
M0
L

)
as shown in

[52].

Theorem 2. Let f satisfy Assumption 1, and assume that f is bounded below by f∗. Let
Requirements 1b to 3 hold, and Mt ≥ Mmin. Then, algorithm 3 starting at x0 with M0
achieves

min
i=1, ..., t

∥∇f(xi)∥ ≤ max
{

3L

t2/3

(
12f(x0)− f⋆

Mmin

)2/3
;
(

C1
t1/3

)(
12f(x0)− f⋆

Mmin

)1/3}
,

where C1 = δL
(

κ+2κ2

2

)
+ maxi∈[0,t] ∥(I − Pi)∇2f(xi)Pi∥.

Proof. The starting inequality is (54):

∥∇f(x+)∥ ≤ L + M

2 ∥Dα∥2 + ∥Dα∥
( ∥ε∥
∥D∥

(
L + MκD

2

)
κD + ∥(I − P )∇2f(x)P∥

)
.

The result is obtained by decomposing the inequality using a maximum,

∥∇f(x+)∥

≤ max
{

(L + M)∥Dα∥2 ; 2∥Dα∥
( ∥ε∥
∥D∥

(
L + MκD

2

)
κD + ∥(I − P )∇2f(x)P∥

)}
.
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In the first case,

∥Dα∥ ≥

√
∥∇f(x+)∥

L + M
, (84)

while in the second case,

∥Dα∥ ≥ ∥∇f(x+)∥
∥ε∥
∥D∥

(
L+MκD

2

)
κD + ∥(I − P )∇2f(x)P∥

.

Let Ct be defined as

Ct = ∥εt∥
∥Dt∥

(
L + Mt+1κDt

2

)
κDt + ∥(I − Pt)∇2f(xt)Pt∥.

Then, using Requirements 2 and 3, and since M < 2L by Theorem 1,

Ct ≤ C = δL

(1 + 2κ

2

)
κ + max

t
∥(I − Pt)∇2f(xt)Pt∥

Therefore,
∥Dα∥ ≥ ∥∇f(x+)∥

C
. (85)

At each iteration t, combining eqs. (84) and (85) into Theorem 1 gives

f(xt)− f(xt+1) ≥ Mt+1
12 ∥xt+1 − xt︸ ︷︷ ︸

=Dtαt

∥3 ≥ Mt+1
12 min

{(∥∇f(x+)∥
L + Mt+1

)3/2
;
(∥∇f(x+)∥

C

)3}

Therefore,

f(x0)− f⋆ ≥ f(x0)− f(xt)

=
t−1∑
i=0

f(xi)− f(xi+1)

≥
t−1∑
i=0

(
Mi+1

12 ∥xi+1 − xi∥3
)

≥
t−1∑
i=0

min
t

Mi+1
12

{(∥∇f(xi+1)∥
L + Mi+1

)3/2
;
(∥∇f(xi+1)∥

C

)3}

≥ t min
i∈[0,t−1]

Mi+1
12 min

{(∥∇f(xi+1)∥
L + Mi+1

)3/2
;
(∥∇f(xi+1)∥

C

)3}

≥ t
Mmin

12 min
{

min
i∈[1,t]

(∥∇f(xi)∥
3L

)3/2
; min

i∈[1,t]

(∥∇f(xi)∥
C

)3}

After analyzing separately each case of the minimum, either min
i∈[1,t]

∥∇f(xi)∥

3L


3/2

≤ 12f(x0)− f⋆

tMmin
or

 min
i∈[1,t]

∥∇f(xt+1)∥

C


3

≤ 12f(x0)− f⋆

tMmin
.
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It remains to simplify to obtain the desired result,

min
i=1...t

∥∇f(xi)∥ ≤ max
{

3L

t2/3

(
12f(x0)− f⋆

Mmin

)2/3
;
(

C

t1/3

)(
12f(x0)− f⋆

Mmin

)1/3}
.

Theorem 3. Assume f satisfy Assumptions 1 to 3. Let Requirements 1b to 3 hold. Then,
algorithm 3 starting at x0 with M0 achieves, for t ≥ 1,

f(xt)− f⋆ ≤ 6 f(x0)− f⋆

t(t + 1)(t + 2) + 1
(t + 1)(t + 2)

L(3R)3

2 + 1
t + 2

C2(3R)2

4 ,

where C2
def= δLκ+2κ2

2 + maxi∈[0,t] ∥∇2f(xi)− Pi∇2f(xi)Pi∥.

Proof. Starting from the inequality in proposition 8,

f(xt+1) ≤ f(y) + Mt+1 + L

6 ∥y − xt∥3 + ∥y − xt∥2

2 C
(t)
2 ,

where
C

(t)
2 = ∥∇2f(xt)− Pt∇2f(xt)Pt∥+ δ

Lκ + Mt+1κ2

2 ,

and setting y = (1− βt)xt + βtx
⋆ and f(x⋆) = f⋆ gives

f(xt+1)− f⋆ ≤ f((1− βt)xt + βtx
⋆)− f⋆ + Mt+1 + L

6 β3
t ∥xt − x⋆∥3 + β2

t ∥xt − x⋆∥2

2 C
(t)
2 .

Because the function is star-convex,

f(xt+1)− f⋆ ≤ (1− βt)(f(xt)− f⋆) + Mt+1 + L

6 β3
t ∥xt − x⋆∥3 + β2

t ∥xt − x⋆∥2

2 C
(t)
2 .

Since algorithm 4 ensure a decrease in the function value, the iterate xt satisfies

xt ∈ {x : f(x ≤ f(x0))},

and therefore, ∥xt − x⋆∥ ≤ R by Assumption 2. In addition, M < 2L by Theorem 1. The
inequality now becomes

(f(xt+1)− f⋆) ≤ (1− βt)(f(xt)− f⋆) + β3
t

LR3

2 + β2
t

R2C
(t)
2

2 . (86)

Finally, since M < 2L, the scalar Ct
2 is bounded over time by C2:

C
(t)
2 ≤ C2

def= δL
κ + 2κ2

2 + max
t
∥∇2f(xt)− Pt∇2f(xt)Pt∥.

Now, let

• Bt = t(t+1)(t+2)
6 ,

69



Quasi-Newton with Global Convergence Rates

• bt : Bt = Bt−1 + bt, hence bt = t(t+1)
2 , and

• βt = bt+1
Bt+1

.

Therefore, for t ≥ 1,

1 = Bt

Bt
= Bt−1

Bt
+ bt

Bt
= Bt−1

Bt
+ βt−1 ⇒ 1− βt−1 = Bt−1

Bt
.

Injecting those relations in (86) gives

(f(xt+1)− f⋆) ≤ Bt

Bt+1
(f(xt)− f⋆) +

(
bt+1
Bt+1

)3 LR3

2 +
(

bt+1
Bt+1

)2 R2C2
2 ,

hence the recursion

Bt+1(f(xt+1)− f⋆) ≤ Bt(f(xt)− f⋆) + b3
t+1

B2
t+1

LR3

2 + b2
t+1

Bt+1

R2C2
2

≤ B0(f(xt)− f⋆) +
t∑

i=0

b3
i+1

B2
i+1

LR3

2 +
t∑

i=0

b2
i+1

Bi+1

R2C2
2 .

(f(xt+1)− f⋆) ≤ B0
Bt+1

(f(xt)− f⋆) +

∑t
i=0

b3
i+1

B2
i+1

Bt+1

LR3

2 +
∑t

i=0
b2

i+1
Bi+1

Bt+1

R2C2
2 .

Therefore, the rate reads By the definition of bt and Bt,

b3
i+1

B2
i+1

= 36
8

(i + 1)3(i + 2)3

(i + 1)2(i + 2)2(i + 3)2 = 9
2

(i + 1)(i + 2)
(i + 3)2 ≤ 9

2 ,

b2
i+1

Bi+1
= 6

4
(i + 1)2(i + 2)2

(i + 1)(i + 2)(i + 3) = 3
2

(i + 2)
(i + 3)(i + 1) ≤ 3

2(i + 1).

Hence,

∑t
i=0

b3
i+1

B2
i+1

Bt+1
≤

9
2(t + 1)

(t+1)(t+2)(t+3)
6

≤ 27
(t + 2)(t + 3) ,

∑t
i=0

b2
i+1

Bi+1

Bt+1
≤
∑t

i=0
3
2(i + 1)

(t+1)(t+2)(t+3)
6

=
3
4(t + 2)(t + 1)
(t+1)(t+2)(t+3)

6
= 9

2(t + 3) .

Shifting from t + 1 tp t gives the desired result,

(f(xt)− f⋆) ≤ 6 f(xt)− f⋆

t(t + 1)(t + 2) + 1
(t + 1)(t + 2)

L(3R)3

2 + 1
t + 2

C2(3R)2

4 .
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Theorem 4. Assume f satisfy Assumptions 1, 2 and 4. Let Requirements 1a, 2 and 3 hold.
Then, in expectation over the matrices Di, algorithm 3 starting at x0 with M0 achieves, for
t ≥ 1,

EDt [f(xt)− f⋆] ≤ 1

1 + 1
4

[
N
d t
]3 (f(x0)− f⋆) + 1[

N
d t
]2 L(3R)3

2 + 1[
N
d t
] C3(3R)2

2 ,

where C3
def= δLκ+2κ2

2 + (d−N)
d maxi∈[0,t] ∥∇2f(xi)∥.

Proof. The proof technique is similar to [39]. Starting from proposition 9 with x = xt,

Ef(xt+1) ≤
(

1− N

d

)
f(xt) + N

d
f(y) + N

d

(Mt+1 + L)
6 ∥y − xt∥3

+ N

d

∥y − xt∥2

2

(
δ

Lκ + Mt+1κ2

2 + (d−N)
d

∥∇2f(xt)∥
)

,

where the expectation is taken with D0, . . . , Dt−1 fixed. Using the inequality Mt+1 ≤ 2L
gives

Ef(xt+1) ≤
(

1− N

d

)
f(xt) + N

d

(
f(y) + ∥y − xt∥2

2 C3 + L

2 ∥y − xt∥3
)

where
C3

def=
(

δL
κ + 2κ2

2 + (d−N)
d

max
i∈[0,t]

∥∇2f(xi)∥
)

.

Let y = βtx
⋆ + (1− βt)xt, βt ∈ [0, 1]. After using Assumption 4 and Assumption 2,

Ef(xt+1) ≤
(

1− N

d

)
f(xt) + N

d

(
f
(
βtx

⋆ + (1− βt)xt
)

+ β2
t

C3R2

2 + β3
t

LR3

2

)

≤
(

1− N

d

)
f(xt) + N

d

(
βtf(x⋆) + (1− βt)f(xt) + β2

t

C3R2

2 + β3
t

LR3

2

)

=
(

1− N

d

)
f(xt) + N

d

(
βtf(x⋆) + (1− βt)f(xt) + β2

t

C3R2

2 + β3
t

LR3

2

)
,

=
(

1− βt
N

d

)
f(xt) + N

d

(
βtf(x⋆) + β2

t

C3R2

2 + β3
t

LR3

2

)
.

Hence, the recursion

(Ef(xt+1)− f⋆) ≤
(

1− βt
N

d

)
(f(xt)− f⋆) + N

d

(
β2

t

C3R2

2 + β3
t

LR3

2

)
.

Now, define

bt = t2,

Bt = B0 +
t∑

i=0
bi, B0 = 4

3

(
d

N

)3

βt = d

N

bt+1
Bt+1

⇒ 1− N

d
βt = Bt

Bt+1
.
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Replacing those relations in the recursion gives

Bt+1 (Ef(xt+1)− f⋆)

≤Bt(f(xt)− f⋆) + N

dBt+1

((
d

N

bt+1
Bt+1

)2 C3R2

2 +
(

d

N

bt+1
Bt+1

)3 LR3

2

)

=Bt(f(xt)− f⋆) + d

N

b2
t+1

Bt+1

C3R2

2 + d2

N2
b3

t+1
B2

t+1

LR3

2
Expanding the inequality gives

Bt+1 (Ef(xt+1)− f⋆) ≤ B0(f(x0)− f⋆) + d

N

t+1∑
t=0

b2
i+1

Bi+1

C3R2

2 + d2

N2

t+1∑
t=0

b3
i+1

B2
i+1

LR3

2

Since

Bt = B0 +
t∑

i=1
≥ B0 +

∫ t

0
x2dx = B0 + t3

3
t∑

i=0

b2
t

Bt
≤

t∑
i=0

i4

B0 + i3/3 ≤ 3t2,

t∑
i=0

b3
t

B2
t

≤
t∑

i=0

i6

(B0 + i3/3)2 ≤ 9t,

the bound becomes

Bt+1 (Ef(xt+1)− f⋆) ≤ B0(f(x0)− f⋆) + d

N
3t2 C3R2

2 + d2

N2 9t
LR3

2
Dividing both sides by Bt+1 gives

Ef(xt+1)− f⋆ ≤ B0

B0 + (t+1)3

3
(f(x0)− f⋆) + d

N

3(t + 1)2

B0 + (t+1)3

3

C3R2

2 + d2

N2
9(t + 1)

B0 + (t+1)3

3

LR3

2 .

After the following simplifications,
B0

B0 + (t + 1)3/3 = 1
1 + (t+1)3

3B0

= 1

1 + 1
4

(
N
d (t + 1)

)3 ,

3(t + 1)2

B0 + (t + 1)3/3 = 3
B0

(t + 1)3

1 + (t+1)3

3B0

1
t + 1 ≤

3
B0

3B0
1

t + 1 = 9
t + 1 ,

9(t + 1)
B0 + (t+1)3

3
= 9

B0

(t + 1)3

(t+1)3

3B0

1
(t + 1)2 ≤

9
B0

3B0
1

(t + 1)2 = 27
(t + 1)2 ,

the inequality finally becomes (after shifting from t + 1 to t),

Ef(xt)− f⋆ ≤ 1

1 + 1
4

[
N
d t
]3 (f(x0)− f⋆) + 1[

N
d t
]2 L(3R)3

2 + 1[
N
d t
] C3(3R)2

2 .
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Theorem 5. Assume f satisfy Assumptions 1, 2 and 4. Let Requirements 1b to 3 hold.
Then, the accelerated algorithm 7 starting at x0 with M0 achieves, for t ≥ 1,

f(xt)− f⋆ ≤C4
(3R)2

(t+3)2 + 9 max {M0 ; 2L}
(

3R
t+3

)3
+

λ̃(1)R2
2 + λ̃(2)R3

6
(t+1)3 .

where λ̃(1) = 0.5 · δ
(
Lκ + M1κ2

)
+ ∥∇2f(x0)− P0∇2f(x0)P0∥, λ̃(2) = M1 + L,

C4 = 30 · κD (δ max{4L, M0}+ maxi=0...t ∥(I − Pi)∇f(xi)Pi)∥)

Proof. By construction of ϕt(x), from proposition 14 and Assumption 2,

Btf(xt) ≤ min
x

ϕt(x) (87)

≤ ϕt(x⋆) (88)

≤ Btf(x⋆) + λ
(1)
t + λ̃(1)

2 ∥x⋆ − x0∥2 + λ
(2)
t + λ̃(2)

6 ∥x⋆ − x0∥3 (89)

≤ Btf(x⋆) + λ
(1)
t + λ̃(1)

2 R2 + λ
(2)
t + λ̃(2)

6 R3 (90)

⇒ f(xt)− f⋆ ≤ λ
(1)
t + λ̃(1)

2Bt
R2 + λ

(2)
t + λ̃(2)

6Bt
R3. (91)

By proposition 15, the following bounds holds:

λ
(1)
t ≤ 30 · b2

t+1
Bt

κD

(
δ max{4L, M0}+ max

i=0...t
∥(I − Pi)∇f(xi)Pi)∥

)
,

λ
(2)
t ≤ 5b3

t+1
B2

t

max{M0, 4L}.

Since bt+1
Bt

= 3
(t+3) ,

b3
t+1
B3

t

= 33

(t + 3)3 ,
b2

t+1
B2

t

= 32

(t + 3)2 . (92)

Therefore,

f(xt)− f⋆ ≤30 · κD

(
δ max{4L, M0}+ max

i=0...t
∥(I − Pi)∇f(xi)Pi)∥

) (3R)2

(t + 3)2

+ 5 max{M0, 4L}
( 3R

t + 3

)3

+
λ̃(1)R2

2 + λ̃(2)R3

6
(t + 1)3 .
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