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ABSTRACT

Imitation learning from large multi-task demonstration datasets has emerged as a
promising path for building generally-capable robots. As a result, 1000s of hours
have been spent on building such large-scale datasets around the globe. Despite
the continuous growth of such efforts, we still lack a systematic understanding
of what data should be collected to improve the utility of a robotics dataset and
facilitate downstream policy learning. In this work, we conduct a large-scale dataset
composition study to answer this question. We develop a data generation framework
to procedurally emulate common sources of diversity in existing datasets (such
as sensor placements and object types and arrangements), and use it to generate
large-scale robot datasets with controlled compositions, enabling a suite of dataset
composition studies that would be prohibitively expensive in the real world. We
focus on two practical settings: (1) what types of diversity should be emphasized
when future researchers collect large-scale datasets for robotics, and (2) how
should current practitioners retrieve relevant demonstrations from existing datasets
to maximize downstream policy performance on tasks of interest. Our study
yields several critical insights – for example, we find that camera poses and spatial
arrangements are crucial dimensions for both diversity in collection and alignment
in retrieval. In real-world robot learning settings, we find that not only do our
insights from simulation carry over, but our retrieval strategies on existing datasets
such as DROID allow us to consistently outperform existing training strategies by
up to 70%. More results at https://mimiclabs-iclr.github.io/

1 INTRODUCTION

Imitation learning from offline datasets has emerged as a promising method to teach robots complex
real-world manipulation tasks. Importantly, prior works have found that robot performance scales
favorably with the dataset size and quality (Mandlekar et al., 2021; Brohan et al., 2022). Consequently,
much efforts have been invested in building large-scale robot datasets that cover diverse tasks and
environments. Recent large-scale efforts such as DROID (Khazatsky et al., 2024) and the Open X
Embodiment datasets (Collaboration et al., 2023) have amassed millions of trajectories for table-top
manipulation tasks. These datasets, while still orders of magnitude smaller than their vision and
language counterparts, can allow robots trained on this data to generalize to different scenarios.

Despite the continuous growth and promising results of these data collection efforts, we still lack a
systematic understanding of what data should be collected to improve the utility of a robotics dataset.
However, gaining this understanding poses significant challenges. Data collection is extremely costly
and time-consuming, often requiring teams of human operators, fleets of robots, and months of
manual effort (Brohan et al., 2022), and the cost is compounded by the time and effort it takes to
evaluate different robot models trained on these datasets. This makes testing the effectiveness of
different dataset compositions intractable. The challenge is exacerbated by the sheer number of
potential variations in dataset composition (e.g., object types, camera angles, lighting conditions),
making it impractical to ask counterfactual questions about dataset composition (“what if the sorting
task is collected with a mug instead of a plush toy”). As a result, current data collection efforts often
rely on intuition rather than systematic analysis, potentially leading to inefficient use of resources.

To this end, we propose to use simulation and synthetic data generation as a testbed to answer critical
questions about the collection and use of large scale datasets We develop a synthetic data generator
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Figure 1: MimicLabs overview. Our framework encompasses: (1) A procedural dataset generator
that creates diverse datasets with controlled composition. (2) A large-scale dataset composition study
to analyze the impact of dataset diversity and alignment inspired by practical settings. (3) Extensive
real-world experiments using existing large-scale robot datasets, based on study insights.

that can procedurally emulate common sources of diversity found in existing datasets, allowing us to
create large-scale robot datasets with precisely controlled composition. Leveraging this capability,
we conduct a suite of dataset composition studies from multiple practical perspectives, aiming to
provide insights into the efficient construction and utilization of large-scale robot datasets in the real
world. Our work makes the following major contributions, as illustrated in Fig.1.

1. Synthetic data generator for controllable dataset composition. We develop a data generator
to procedurally emulate common sources of diversity found in existing datasets, including sensor
placements, object types and textures, and spatial arrangements. Our framework can synthesize
diverse tasks and corresponding demonstration data by using a small set of human demonstrations,
making it possible to generate large-scale datasets with controlled composition and enabling us to
conduct a suite of dataset composition studies that would be prohibitively expensive in the real world.

2. Practitioner-inspired collector and retriever settings. We conduct our analysis from two
practical perspectives. The collector perspective explores which dimensions of variation (DVs)
should be prioritized when building large-scale datasets, focusing on the utility of increasing dataset
diversity on broad skill transfer. The retriever perspective examines how to best utilize existing
datasets for a specific target task, addressing questions such as whether to retrieve only the most
similar demonstrations or train on the dataset in its full diversity. By connecting these two perspectives,
we provide actionable insights on efficient dataset construction and utilization.

3. Dataset composition studies with MimicLabs. Leveraging our synthetic data generator, we
create the MimicLabs dataset, a large-scale dataset comprising nearly 1M trajectories across over 3K
task instances in 8 visually distinct simulation environments. This dataset reflects a realistic scenario
where multiple robotics labs collaborate to collect diverse datasets. Our experiments with MimicLabs
yield several key insights. For example, we find that camera poses and spatial arrangements are
crucial dimensions for both diversity in collection and alignment in retrieval. High diversity in these
dimensions enables better generalization, while alignment significantly boosts performance on target
tasks. Conversely, we discover that object textures have minimal impact on downstream performance,
suggesting that this dimension need not be prioritized in data collection or retrieval strategies.

4. Insights that transfer to real-world settings. Our study resulted in actionable insights readily
applicable to real-world settings. We validate our findings on 7 real-world manipulation tasks, where
both collector and retriever experiments corroborate our simulation-based insights. Particularly
noteworthy are our retriever insights, which we applied to DROID (Khazatsky et al., 2024), an
existing large-scale dataset. Our retrieval strategy, informed by the simulation studies, outperforms
the existing approach of learning from the entire DROID dataset by up to 70% on certain tasks.

2 RELATED WORK

Large-scale Robot Manipulation Datasets. There have been a number of recent efforts on collecting
large-scale robot manipulation datasets. These include real-world datasets covering a broad set of
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Figure 2: Characterizing Co-Training Settings: (a) We consider four co-training settings character-
ized by the diversity of their co-training datasets and their alignment with the target dataset. This is
illustrated with the object spatial DV of the coffee pod. (b) The collectors aim to select and increase
the diversity of selected DV(s) to improve the utility of a dataset. (c) The retrievers aim to extract
a subset from an existing large dataset by aligning specific DVs with their target task in order to
improve the target task performance.

manipulation tasks (Jang et al., 2022; Brohan et al., 2022; Mandlekar et al., 2018; Lynch et al., 2022;
Walke et al., 2023; Bharadhwaj et al., 2023; Fang et al., 2023; Khazatsky et al., 2024)). Similarly,
there have been efforts in collecting (Liu et al., 2023a) and generating (Mandlekar et al., 2023; Dalal
et al., 2023; Nasiriany et al., 2024) data in simulation. In this work, we seek to improve future data
collection and curation efforts by studying how dataset composition and different sources of diversity
impact downstream policy learning.

Study of Dataset Construction and Composition. Recent works examine the role that data quality
and curation play in policy generalization. Using data curation strategies to selectively weight data
based on actions (Belkhale et al., 2023), interventions (Liu et al., 2023b), and datasets (Hejna et al.,
2024) can yield benefits without collecting additional robot data. Other works explicitly focus on the
dimensions of variation present in robot manipulation and study the role that these dimensions play in
policy performance. Notably, Xie et al. (2023) and Pumacay et al. (2024) study policy performance
under distributions shifts across different under fixed data distributions. Gao et al. (2024) compares
policy performance under different data collection strategies with combinatorial variations. While
these works separately study data curation and policy evaluation across different dimensions of
variation, we bring a unified perspective of studying both questions and apply the resulting insights to
improve existing practices in learning from a large-scale dataset (Khazatsky et al., 2024).

3 MIMICLABS STUDY DESIGN

A common use for large-scale robot datasets is for a practitioner to use them to boost the performance
of a specific task that they would like their robot to perform. The goal of the MimicLabs study is to
understand how dataset composition affects this downstream task performance. We first formalize the
problem of co-training with large-scale multi-task datasets in Sec. 3.1. We then introduce a formalism
for dataset composition in Sec. 3.2 and describe how this allows us to compare multiple datasets.
Finally, Sec. 3.3 discusses how our experiments and analysis can help both future dataset collectors
and current robotics practitioners for making the most out of large-scale robotics datasets.

3.1 PROBLEM FORMULATION

We study a practical scenario where a robotics practitioner trains a robot to perform a specific task of
interest by leveraging a pre-existing, large-scale robot dataset (collected across diverse scenarios)
and a small set of task-specific demonstrations. We refer to the specific task of interest as the
target task. Formally, we denote the target dataset, which is the set of target task trajectories
collected by the practitioner as D̂T = {ξ(i)T }NT

i=1, which are samples from a demonstration distribution
DT . Here, ξ(i)T represents a demonstration trajectory comprised of observation-action pairs. Each
trajectory exhibits a certain behavior that carries out the target task in a well-defined environment
setup. Similarly, we denote the co-training dataset, which is the large collection of available
demonstrations as D̂C = {ξ(i)C }NC

i=1, which are samples from a distribution DC . The practitioner then
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trains a visuomotor policy πθ that learns to act by optimizing for θ as θ∗ = argminθ L
(
D̂T ∪D̂C ; θ

)
,

where L is a behavior cloning (BC) objective. Following prior works (Fu et al., 2024; Khazatsky
et al., 2024), we refer to this strategy of learning from the combined dataset as “co-training.”

3.2 DIMENSIONS OF VARIATION (DVS) AND CO-TRAINING SETTINGS

To characterize dataset composition, we need to formalize a demonstration distribution D. We
introduce the concept of Dimensions of Variations (DVs), which are independent factors that
characterize the variability in the demonstration data. We denote the full set of distributions that
create variation in D as {Z(1), . . . ,Z(K), τ}, where Z(k) is the distribution of variation along a
single DV in the environment, and τ denotes the goal of the task. We consider D to be parameterized
as D(Z(1), . . . ,Z(K), τ). An important criterion for DV selection is that each DV can be measured
in each demonstration of a large heterogeneous dataset such as DROID (Khazatsky et al., 2024). This
allows us to study different dataset compositions on existing robotics datasets by retrieving subsets
of the dataset that might be measurably diverse or aligned with the target distribution. For example,
we study if retrieving demonstrations from DROID that are aligned along the camera pose DV helps
boost downstream performance, where we use the camera extrinsics as the DV measurement. Finally,
we note that our analysis framework and tools are not tied to the specific set of DVs and can be
utilized for any additional DVs of interest.

Given parameterized dataset with DV distributions, we can characterize the relationships between
target (DT ) and co-training (DC) demonstration distributions. In particular, we aim to understand
how the diversity of DC and the alignment between DC and DT impact co-training performances.
We define S(·) as the support of any distribution and |S(·)| as a measure of its size. We say D is
diverse along DV k if |S(Z(k))| is large. Additionally, we say that DT and DC are aligned along
Z(k) if S(Z(k)

T ) ⊂ S(Z(k)
C ). This creates four cases when comparing DT and DC along a DV, as

illustrated in Fig. 2. In our experiments, considering these cases help us understand which DVs need
to be diverse in the co-training dataset, and how important alignment is for target task performance.

3.3 PRACTICAL SETTINGS: THE COLLECTOR AND THE RETRIEVER

We seek to understand the effects of dataset composition through two different lenses inspired by
practical scenarios: a data collector and a data retriever.

Data Collector. We consider collectors as practitioners who are contributing demonstrations to a
large robotics dataset. Since data collection is time-consuming, we seek to understand which DVs
should be prioritized for diversity or alignment during data collection to facilitate downstream task
learning. Instead, in our experiments, we set DT and DC to be fully aligned along all DVs except one.
This allows us to study the impact of a single DV (e.g. k) in DC , by constructing different co-training
datasets D(k)

C where each dataset corresponds to a different choice of distribution for DV k, Z(k)
C .

For example, to study the impact of different camera poses, we would construct DC to be aligned
with DT along spatial arrangements, textures, background, etc. and just create datasets with different
camera pose distributions (Z(k)

C ).

Data Retriever. A data retriever is a practitioner that seeks to use a pre-existing large-scale co-
training dataset D̂C with high variation in several DVs (such as DROID) for their specific task
of interest. In this setting, we aim to retrieve a subset D̂C′ ⊂ D̂C to maximize downstream task
performance, by aligning some DVs from the retrived co-training dataset Z(k)

C′ with those from the
target dataset Z(k)

T . For example, we study whether retrieving demonstrations from DROID that have
aligned camera poses with that of the downstream setup will improve learning performance. In certain
cases it can be difficult or impossible to achieve such alignment – consequently, our experiment also
studies the effect of retaining diversity in DVs (e.g. a DV Z(k)

C′ with large support).

4 PROCEDURAL TASK AND DEMONSTRATION GENERATION

To understand how different data composition choices influence downstream policy learning, we
develop a framework for procedural task and demonstration generation. This framework enables
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Figure 3: MimicLabs Dataset. We use our data generator to create a large-scale, multi-task dataset
to emulate a realistic scenario where multiple labs collaborate to create a dataset with large variations
in diverse DVs. We leverage this dataset to conduct our dataset composition study.

us to generate large multi-task datasets with controlled composition, culminating in the creation of
our MimicLabs dataset (Fig. 3). Our framework consists of two main components: procedural task
generation and procedural demonstration generation. It takes a set of dataset composition factors
as input (DVs, Sec. 3.2) and uses them to generate a diverse set of task instances, followed by
demonstration generation for each instance.

Procedural task specification. To enable controllable data generation for large multi-task datasets,
we require a way to specify tasks that allows for diverse procedural generation. These task instances
should vary along specific Dimensions of Variation (DVs, Sec. 3.2), which allow us to parameterize
the composition of these datasets. To this end, we leverage the Behavior Domain Definition Language
(BDDL) (Ghallab et al., 1998; Srivastava et al., 2021). The BDDL grammar allows for specifying
scenes, objects, their spatial arrangements, and predicates for task initialization and success. We
build upon the parsing framework of LIBERO (Liu et al., 2023a) and generate task specifications
with controllable variation in spatial arrangements of objects and receptacles, camera poses, and
textures. These are combinatorially varied, resulting in a large set of task instances for collecting and
generating demonstrations for our study. Details about the task specification are in Appendix D.

Procedural demonstration generation. To automate demonstration generation on our procedurally
generated task instances, we build upon MimicGen (Mandlekar et al., 2023). Unlike prior studies
that use “scripted” experts (Xie et al., 2023) or rely entirely on human teleoperation (Mandlekar
et al., 2021; Liu et al., 2023a), our approach allows for scalable data generation while preserving
the fine-grained manipulation strategies used in human demonstrations. MimicGen automates data
generation by decomposing source human demonstrations into object-centric manipulation segments,
which are then transformed and stitched together to create new trajectories for novel scenes. Our key
innovation lies in leveraging the BDDL task specification and the state predicates provided by the
simulator to largely automate the process of decomposing tasks into these segments. This automation
significantly reduces the human effort required when scaling to thousands of task instances. By
using MimicGen in conjunction with our BDDL-based task specifications, we can scale from a
small set of human demonstrations to a large, diverse dataset. This approach allows us to generate
demonstrations across wide variations in DVs from a limited set of source demonstrations, and easily
generate demonstrations for new tasks by swapping out the BDDL task specification. For example,
given source demonstrations of a robot picking up a bowl with a fixed texture and putting it in a
basket from a shoulder camera view, our pipeline can create datasets with varying camera poses, bowl
textures and geometries, table textures, and spatial arrangements – all specified using BDDL.

The MimicLabs Dataset. We can now use our controllable multi-task dataset generation framework
to collect large-scale multi-task datasets by conditioning on different dataset composition choices
(DVs, Sec. 3.2). To fully leverage the power of our framework, we curate a large set of DV ranges that
can be combinatorially varied, including camera poses, objects, receptacles, and their textures and
spatial arrangements, and instantiate over 3000 task instances with language instructions in 8 different
scenes. We then collect ∼500 source human demonstrations for a subset of these task instances and
synthesize over 1M demonstrations using our procedural data generation framework. We refer to our
dataset as the MimicLabs dataset. This dataset is meant to reflect a realistic scenario where multiple
robotics labs collaborate to collect datasets with large amounts of variation in diverse DVs, as prior
work has done in real-world settings (Khazatsky et al., 2024). We illustrate the different scenes
containing objects and receptacles in Fig 3. Our dataset consists of both long- and short-horizon tasks
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varied across multiple DVs that can be used to either learn specific skills, stitched together to train
complex behavior, or used to evaluate new robot policies for their generalization capabilities. See
Appendix C for more details of DV distributions for generating this dataset.

5 CORE RESULTS

We leverage our MimicLabs pipeline for demonstration generation and collect datasets of varying
diversities and relative alignments. We use these datasets to gather takeaways from a data collector
and retriever’s standpoint, and finally validate our findings in both settings through experiments on a
real robot. Training details for all experiments can be found in Appendix F.

5.1 EFFECT OF INDIVIDUAL DVS: COLLECTOR’S PERSPECTIVE

Data collectors are practically limited in the number of trajectories they can collect, hence it is
important to understand where their time is best spent when adding demonstration diversity. We
investigate which DV should be diverse in the co-training dataset to maximize downstream task
success. Our experiments are designed to determine when alignment is necessary for a certain DV to
enable effective co-training and when increasing diversity in certain DVs helps alleviate misalignment
in composed datasets. We construct pairs of target and co-training distributions that are aligned along
all DVs except one, creating misaligned but highly diverse co-training datasets for each DV. We also
include a baseline dataset with low variation but misaligned across all DVs. By co-training each
target setup with these datasets, we identify which DVs are crucial for diverse data collection based
on their ability to alleviate degraded transfer and mitigate misalignment in other DVs. This approach
helps collectors understand where to focus their efforts when adding diversity to their datasets for
optimal downstream performance.

Experimental Setup. We examine a clear table task where the robot must open a cabinet’s
top drawer and place a bowl inside, amidst four distractor objects. This task requires two steps:
openTopDrawer and pickPlaceTopDrawer. We identify and independently vary five DVs:
camera pose (camPose), object texture (objTex), table texture (tableTex), object spatial arrangement
(objSpat), and motion primitive. Our experiments test how co-training diversity in these DVs affects
transfer learning when one DV is misaligned with the target. Additionally, we investigate motion
diversity and alignment effects on two task variants: (1) pickPlaceTopDrawer+push, where
the robot places the bowl in an open drawer and closes it, and (2) pull+pickPlaceTopDrawer,
where the robot opens a closed drawer before placing the bowl inside. For these variants, we maintain
alignment across all other DVs. Results are in Tables 1 and 10, with our findings discussed below.
Additional results on a make coffee task are in Table 9.

Less diverse and misaligned camera poses prevent skill transfer. We found that co-training with a
dataset that has a misaligned camera pose significantly hurts the boost in performance the co-training
dataset could have otherwise offered (see Table 1 for results on target variation in camera pose). In
this setup, we find that increasing the diversity of camera poses in the co-training dataset improves the
transfer, even when the target camera pose distribution is mis-aligned with the co-training distribution.
Specifically for the task considered in this experiment, we see over 40% boost in task performance
when the variation in camera poses was increased. These observations point to the fact that camera
poses are necessary to be aligned between the target and co-training distributions.

Co-training with misaligned object textures, with minimal variation, was sufficient for down-
stream success. We find that simply training with a large set of co-training demos, without any
heed to aligned or even varied object textures, led to successful task completion. Specifically, we see
over 90% success in the target task that had completely misaligned object textures with co-training.
Note that object geometries were consistent between target and co-training, a variation in which we
analyze in a later section.

High diversity in camera poses assists transfer learning with misaligned textures. We find that
co-training datasets with high diversity in camera pose can transfer to target tasks with misaligned
table textures and object textures. Changing camera poses allows the robot to see larger background
variations, potentially leading to this visual robustness. This observation leads us to believe that
camera pose is a crucial DV for data collection.

6
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Table 1: Analyzing the effects of misaligned and diversities in DVs from a collector’s perspective.
Details about baseline variation are in Appendix G.2. Target variations are perturbations to one DV
distribution while others stay fixed. Success rates with co-training variations show how increasing
variation in one DV may help skill transfer from co-training in that DV as well as other DVs.

Target variation
Baseline→Varied

Target only
(Varied) Co-training (mis-aligned) variation

Baseline camPose objTex tableTex objSpat

camPose 16.67 43.33 90 43.33 43.33 30
objTex 30 93.33 96.67 90 90 93.33
tableTex 43.33 66.67 80 63.33 83.33 70
objSpat 10 26.67 46.67 33.33 26.67 56.67

Spatial coverage in co-training is critical to downstream performance. High diversity in spatial
arrangement in the target environment necessitates diversity in the action space of the robot, which is
not covered by any visual DV. We find that adding diversity in the spatial arrangement of objects was
the only way we could significantly boost transfer learning in the presence of misalignment along this
DV (see comparison to the baseline variation). While increasing diversity in camera poses adds some
performance boost, the best-performing co-training is still the one with highest diversity in spatial
arrangements. This leads us to believe that spatial arrangement is both necessary to be aligned and
crucial for diverse data collection.

Co-training with aligned motion primitives and high diversity enables better downstream
performance. We find that when co-training was done with just a single motion primitive, it is
significantly more important to make sure that the motion was aligned with that of the target, or else
performance sometimes degraded (by 20% on the easy variant of clear table). However, this was of
less importance as diversity in motion was increased as we saw a steady increase in success rate. As
we observe in Table 10 for both variations of the target task, the co-training dataset with maximum
coverage of the target motion provided the maximum boost to performance in the target task, leading
us to believe that robot motion is necessary to be aligned.

5.2 EFFECT OF INDIVIDUAL DVS: RETRIEVER’S PERSPECTIVE

Now that we understand which DVs are crucial for transfer learning from a co-training dataset, we
try to understand if these takeaways can help us build strategies for retrieving demonstrations from
large robotics datasets for maximal downstream success (as described in Sec. 3.3). In this section,
we design experiments to analyze each DV that can be independently retrieved from a large robotics
dataset, and try to understand where it matters to have maximal alignment between the target and
co-training distributions. Additionally, we answer counterfactual questions covering scenarios where
good retrieval is not possible, and if heavy variation in all DVs in co-training is the answer to boosting
downstream performance. Overall, we answer the following 2 questions from a retriever’s perspective:
(1) when does it matter to have maximal alignment between target and co-training, and (2) when
alignment is not possible, does having high diversity help?

Experimental Setup. We analyze two tasks: microwave mug and clear table. These tasks are
challenging enough to benefit from co-training, as evidenced by low success rates with just 10 expert
demos. For each DV, we create three co-training datasets: fully aligned with the target distribution,
misaligned and low diversity, and misaligned with high diversity. We compare these against a baseline
dataset with full combinatorial variation in all DVs, including the target variation. All experiments
use 10 target demos and 1000 co-training demos. This setup includes two additional cases not in the
collector’s setup: full alignment and large diversity in co-training that supersets the target distribution.
We include highlight results in Table 2, with full results in Fig. 13.

Camera pose alignment and diversity significantly impact performance. Aligning camera poses
in the retrieved dataset substantially boosts transfer learning, as it provides the robot with relevant
examples for the target viewpoint. Our results show a large performance gap when camera poses
were aligned with the target (shoulder-left/right) compared to when they were completely misaligned
(agent-front). When perfect alignment is impossible, high diversity in camera poses can still improve
performance by preventing overfitting to specific hand-eye coordinations. This suggests that data
collectors should prioritize camera pose variation to enable effective retrieval for downstream tasks

7
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Table 2: Retriever’s Perspective. Task success when co-training using various retrieval strategies,
including counterfactual cases (i.e., misaligned retrieval).

Target task Target only Full variation Camera pose Object texture Table texture

microwave mug 6.67 60 70 46.67 53.33 66.67 73.33 70 70 40 43.33

clear table 13.33 30 36.67 30 20 33.33 26.67 30 36.67 23.33 40

Object spatial Receptacle spatial

microwave mug 70 56.67 46.67 16.67 20

clear table 40 26.67 30 23.33 30

Table 3: MimicLabs Retrieval. Task success in the MimicLabs benchmark when co-training using
various retrieval strategies.Results in bold are best co-training within the sub-experiment, but only if
performance boost ≥ 5% than target only. We provide the number of demonstrations retrieved for
each experiment in Table 4.

Target task #demos Target
only Retrieving relevant object/skill Missing relevant object/skill

✓ obj/skill + camPose + objSpat + recepSpat + all ✗ obj/skill + camPose + objSpat + recepSpat + all

bin carrot 10 50 70 96.67 86.67 83.33 90 30 40 53.33 43.33 56.67
bin bowl 10 33.33 50 70 53.33 63.33 73.33 36.67 60 50 40 46.67

clear table 10 23.33 20 20 20 20 23.33 20 23.33 20 20 16.67
20 36.67 43.33 46.67 43.33 43.33 40 33.33 33.33 23.33 43.33 30

microwave teapot 10 23.33 20 23.33 16.67 13.33 16.67 10 10 6.67 13.33 20
20 30 33.33 50 33.33 36.67 33.33 20 36.67 26.67 33.33 23.33

make coffee 10 13.33 10 23.33 6.67 13.33 6.67 3.33 13.33 6.67 6.67 6.67
50 33.33 33.33 36.67 30 36.67 33.33 30 30 30 30 40

top-3 labs 50 33.33 30 53.33 40 40 40 36.67 36.67 43.33 30 40

Object texture alignments have limited impact in retrieval. We find that in our setup object texture
did not matter at all for either alignment or diversity. That is to say that the target demonstrations
were enough for the model to understand what texture it needs to attend to and hence is something of
minimal importance to a data collector or a retriever.

Spatial arrangement alignment and diversity are crucial for performance. Aligning spatial
arrangements between co-training and target datasets significantly boosts downstream performance
for both objects and receptacles. This is because spatial variations directly impact the robot’s action
space coverage. When perfect alignment is not possible, high variation in spatial arrangements can
still improve performance, especially when target arrangements aren’t fully covered. Conversely, low
variation in misaligned spatial arrangements can lead to overfitting and poor skill transfer.

5.3 RETRIEVER STUDY WITH MIMICLABS

Having built some understanding of which DVs matter for downstream success when collecting data
and retrieving it in a pedagogical setup, we now use those takeaways to build strategies for retrieving
data from large simulated robotics datasets. As described in Sec. 4, we created a dataset containing
combinatorially varied object and spatial arrangements, camera poses, and tasks, in 8 different scenes,
simulating a real-world setup where mutliple labs contribute to form a large composite dataset that
each lab uses to boost downstream performance for a target task they care about. We consider 5 target
tasks in the MimicLabs benchmark for this experiment (increasing order of hardness): bin carrot, bin
bowl, clear table, microwave teapot, and make coffee. Details are in Appendix G.1.

Retrieval Strategies. We perform 2 kinds of retrievals on the MimicLabs dataset for each target
task: (1) retrieving demos that contain the target object or skill (such as grasping a bowl, pulling a
drawer), and (2) a counterfactual retrieval that ignores any demos that might contain them. The latter
simulates a situation where a retriever may not find any skill that is useful for their target task but
still might try to use this dataset in the hopes of some performance boost. In either case, we do a
subsequent retrieval on camera poses and spatial arrangements to show performance boost that the
retriever might gain by aligning along these DVs. We summarize these results in Table 3.

Retrieving skills for co-training, even in the presence of overall heterogeneity, significantly
boosts downstream performance. For every target task we considered in this benchmark, we
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bin can serve snack put marker in cupbakingstore screwdriver wipe boardpour

Figure 4: Real World Tasks. We leverage our insights from the simulation study to conduct
experiments with 7 manipulation tasks in the real world.

find that retrieving and aligning skills with co-training had a significant impact on downstream task
performance. This difference was significantly large for the easier tasks with a single atomic subtask
(40% performance jump for bin carrot) which shows that the model was able to significantly make
use of the required skill when there was little heterogeneity in target motion. Moreover, this also tells
us that diversity in object geometries during data collection, which allows for eventual skill retrieval,
should be a useful dimension of variation for a data collector.

Aligning camera poses enables better transfer of skills. For almost all co-training experiments
where skills were aligned between target and co-training, the dataset with aligned camera poses gave
a further boost to co-training. It was also the best-performing co-training for make coffee with 20%
boost over target-only performance compared to just partial skill alignment (picking and placing
coffee pod) which showed no performance boost.

Quality often matters over quantity in co-training data. Retrieving skills in our dataset usually
resulted in 1

10 th the amount of data than when skills could not be retrieved (O(100k) demos to O(10k)
demos). However, it almost always resulted in better downstream performance. Even more, a full
retrieval along camera poses and object/receptacle spatial arrangements resulted in O(1k) demos,
and still sometimes outperformed other strategies. This proves that visuomotor policies are inherently
prone to unstable training in the presence of heterogeneous data, highlighting the importance of
diversity in data collection and subsequent retrieval.

5.4 REAL WORLD EXPERIMENTS

Here, we seek to demonstrate that the findings from our simulation study transfer over to real-world
settings. We replicate the collector and retriever experiments in the real world. Notably, we perform
retriever experiments on an existing large Dataset (DROID) and compare full-dataset co-training as
adopted in prior works and our alignment-based co-training strategy.

Experimental Setup. We design our hardware setup to match that of DROID (Khazatsky et al.,
2024) – a Franka robotic arm with a Robotiq gripper, mounted on a mobile platform, with several
externally mounted cameras (details in Appendix H). All real-world policies are trained with Diffusion
Policy (Chi et al., 2023) and evaluated across 20 rollouts (details in Appendix F). We evaluated seven
different tasks across the collector and retriever perspectives of analyses. One of these tasks - store
screwdriver was only used for collector experiments. Two tasks - bin can and baking were used for
both collector and retriever while four other tasks - serve snack, pour, wipe board, and put marker
in cup were used only for retriever. The tasks were chosen to represent a variety of manipulation
capabilities including high-precision manipulation, non-prehensile manipulation, and large spatial
generalization. We designed our retriever tasks around objects with sufficient demos in DROID. For
instance, DROID includes 4,500 task instances that involve markers. Full details in Appendix G.3.

5.4.1 COLLECTOR’S PERSPECTIVE (REAL WORLD)

Similar to our collector experiments in simulation, we evaluate models that are co-trained on various
distributions of a single misaligned DV, while the rest of the DVs are fully aligned. To validate our
collector experiments in simulation, we focus on three DVs - camPose , objSpat , and objTex , and
evaluate whether these DVs have a similar impact on real-world policy learning results. Results are
presented in Table 13 in Appendix K across three different tasks. See Appendix I for task details.

Main findings. Our experiments reveal several key insights about co-training effects across different
Dimensions of Variation (DVs). Camera pose alignment proves crucial, with performance improve-
ments of 25-50% when the co-training dataset matches the target camera distribution. Interestingly,
co-training with misaligned textures can still enhance performance by 40-65%. This aligns with our
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simulation findings and suggests that models learn relevant motions and skills without necessarily
focusing on exact object colors. Additionally, increasing the diversity of spatial distributions in both
target and co-training datasets significantly boosts performance, as exemplified by the ’bin can’ task
where performance improved from 30% with a small spatial distribution to 60% with a large one.
This corroborates our simulation results, demonstrating that broader spatial coverage expands the
action space, leading to improved task execution.

5.4.2 RETRIEVER’S PERSPECTIVE (REAL WORLD) USING DROID

To validate whether our study insights are broadly useful, we apply insights from the retrieval setting
to the DROID dataset (Khazatsky et al., 2024), a large-scale dataset collected across several robotics
labs, and use it for specific manipulation tasks on our robot setup.

Figure 5: Retriever results on a real robot. We compare
the performance of models trained on retrieved datasets with
those co-trained on the entirety of DROID.

Target task #demos Target only DROID obj/skill +camPose +objTex +objSpat

serve snack 20 5 0 65 70 35 85

bin can 20 60 0 15 85 65 85

pour 20 50 0 35 75 60 65

wipe board 20 55 0 45 55 55 65

baking 20 40 0 40 55 40 35

put marker in cup 50 30 0 20 35 15 20

Retrieval from DROID. To facili-
tate structured retrieval from DROID,
we pre-processed the dataset by fil-
tering demos with language instruc-
tions, labeling manipulated objects,
annotating object colors using a VLM,
and marking object positions based on
gripper actions (details in Appendix J).
We evaluated retrieval strategies align-
ing specific DVs, comparing them
against models trained on target de-
mos only and those co-trained with
the entire DROID dataset. Results are
presented in Figure 5.

Aligned retrieval can significantly improve performance. For all of our evaluated tasks, we see
that co-training with retrieval outperforms models trained on Target only demos, ranging from a 5%
to 80% boost in performance. The highest increases in performance always came from retrievals that
aligned camera poses or spatial locations of the target objects. For instance, for the pour task, we
see a 25% increase in performance when containing with aligned camera poses, with the success
rate decreasing by 15% when retrieving only the relevant object without aligning camera poses or
spatial locations. Qualitatively, we found that models co-trained with aligned retrieval had more
robust retrying behavior and better precision.

Random co-training with a large dataset can hurt performance. All of the models we co-trained
with all of DROID failed to learn the tasks, showing that too much diversity in co-training datasets
can potentially lead to unstable training and diminished performance. Qualitatively, we find that
models co-trained on all of DROID had erratic movement and were not precise enough to complete
the target tasks. We believe this happens as co-training on a large dataset might cause a model to
learn motions and features that are unnecessary for completing the target task.

Retrieval is a promising direction and standardization of dataset metadata will be beneficial.
We had to design and create our own metadata in addition to what was found in DROID, which is a
non-trivial effort. When collecting large numbers of robot demonstrations, it is probably beneficial
to include detailed task descriptions and metadata, and a way to query this, to facilitate easy and
accurate retrieval for future robot learning researchers.

6 CONCLUSION

Our study offers valuable insights for both collectors and users of large-scale robotics datasets. For
data collectors, we highlight the importance of prioritizing diversity in camera poses and spatial
arrangements, while suggesting that extensive variation in object textures may be less critical. For
practitioners, we demonstrate the benefits of strategic data retrieval, showing that aligning critical
dimensions between co-training and target task distributions can significantly boost performance,
often outperforming training on entire diverse datasets. These findings can inform more effective
data collection and utilization strategies in the community.
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A OVERVIEW

The Appendix contains the following content.

• Defining the four cases of dataset distributions (Appendix B): this section describes the 4
different cases of target and co-training distributions considered in this study.

• Description of each dimension of variation (DV) in MimicLabs (Appendix C): this
section describes the different dimensions of variation we consider in our combinatorial data
generation pipeline as well as for our study.

• Task Specification via BDDL (Appendix D): this section specifies details about the param-
eterization for different procedurally generated DVs in MimicLabs.

• Training and Evaluation Details (Appendix F): this section lists out the policy hyperpa-
rameters for BC-RNN and Diffusion Policy, as well as other co-training specific details.

• Task Descriptions (Appendix G): this section provides descriptions of different target tasks
we experimented on in MimicLabs and on a real robot.

• Real Experiment Setup (Appendix H): this section describes our hardware and setup for
the real-world experiments.

• Real Collector Datasets (Appendix I): this section elaborates on the data collection for the
real-world collector experiments.

• DROID Retrieval and Metadata Processing (Appendix J): describes how retrieval was
performed on DROID for the different DVs.

• Additional Results (Appendix K): this section provides additional results.
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B DEFINING THE FOUR CASES OF DATASET DISTRIBUTIONS

Given target and co-training demonstration distributions DT and DC , S(·) representing the support
of a distribution and |S(·)| the measure of its size, we define four cases comparing the supports of
these distributions and sizes:

1. not-diverse and misaligned: |S(Z(k)
C )| ≈ |S(Z(k)

T )| and S(Z(k)
T ) ∩ S(Z(k)

C ) = ϕ

2. diverse and misaligned: |S(Z(k)
C )| ≫ |S(Z(k)

T )| and S(Z(k)
T ) ∩ S(Z(k)

C ) = ϕ

3. diverse and aligned: |S(Z(k)
C )| ≫ |S(Z(k)

T )| and S(Z(k)
T ) ⊂ S(Z(k)

C )

4. not-diverse and aligned (perfect alignment): |S(Z(k)
C )| ≈ |S(Z(k)

T )| and S(Z(k)
T ) ⊂

S(Z(k)
C )

We illustrate these cases comparing DT and DC along a DV in Fig. 2, 1-4 starting from top-left going
in clockwise order. As shown in our experiments, cases 1 and 2 (diverse or not, with misalignment)
are important cases to study from a collector’s perspective where the goal is to find out which DV the
collector should add diversity in given the worst-possible scenario i.e. misalignment. Cases 3 and 4
are important from a retriever’s perspective given the assumption that large-scale robotics datasets
contain high diversity along all DVs. Subsequently, our study seeks to understand if retrieving
datasets with perfect alignment between target and co-training datasets is essential for boosting
performance in the target domain.
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C DESCRIPTION OF EACH DIMENSION OF VARIATION (DV) IN MIMICLABS

Camera Pose (camPose): in the MimicLabs dataset we vary the camera pose anchored at the center
of the table and also such that it always points towards the center of the table while its position is
varied in spherical coordinates (physics convention). Camera positions are grouped into 5 possible
bins: shoulder-left and shoulder-right w.r.t the robot, and agent-left, agent-right, agent-front w.r.t. an
agent. Each bin in the MimicLabs dataset is comprised of a variation of 15 degrees in the polar angle
and 30 degrees in the azimuthal angle.

Figure 6: Illustrating camera distributions in MimicLabs discretized into 5 bins.

Object Texture (objTex): Each task has a target object and we vary the object color / texture procedu-
rally using generated fractal noise.

Table Texture (tableTex): We vary the color/texture of the table surface procedurally using fractal
noise.

Target Object Spatial Arrangement (objSpatial): The placement of the target object is randomly
initialized on the table and we vary the size of this reset range.

Receptacle Spatial Arrangement (recepSpatial): For tasks that involve placement of an object into a
receptacle, we randomly initialize the location of the receptacle. We vary the size of this reset range.

Background Scene (scene): Simulation tasks take place in 1 of 8 visually distinct lab environments.
Target tasks for real world experiments take place in one lab is co-trained on DROID (Khazatsky
et al., 2024) data from 52 buildings.

Motion Primitives (motion): Different tasks are composed of different motions - we segment these as
pick, place, push and pull in the data composition experiments from the collector’s perspective.
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D TASK SPECIFICATION VIA BDDL

Our task specification in the MimicLabs dataset follows the following parameterization for sampling
multiple DVs at initialization:

• spatial arrangements: specified using a union of multiple bounding boxes on a table-top.
These bounding boxes are represented as a 4-tuple specifying the start and end (x,y) locations
in the robot’s base frame.

• camera poses: specified using a union of ranges in spherical coordinates (physics convention)
in a coordinate frame with the origin at the center of the table. Each range is represented as a
6-tuple specifying the (r, θ, ϕ) (i.e. radial, polar, azimuthal) ranges for the camera placement
in a frame anchored at the center of the table.

• textures: specified as HSV ranges to either jitter a base texture retrieved from a file into the
specified range (used for table), or fully generated as a fractal noise within the specified
HSV range (used for objects).

D.1 TEXTURES IN THE MIMICLABS DATASET

(b) Procedurally-generated fractal textures used in Collector’s and Retriever’s analysis.

(c) Sample irregular textures available to use in MimicLabs.

(a) Controllable texture generation in MimicLabs (red hue).
sigma=5 sigma=10 sigma=20

Figure 7: Procedural texture generation in MimicLabs. Fractal textures were used in the Collector’s
and Retriever’s analysis when controllably generating target and co-training datasets with varying
object textures. We also provide various other irregular textures that can be used for fabric, cookware,
appliances, etc. for creating diverse scenes and tasks within MimicLabs.
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E NUMBER OF CO-TRAINING DEMOS FOR RETRIEVAL EXPERIMENTS ON
MIMICLABS

Table 4: Number of demonstrations retrieved for each retrieval experiment on the MimicLabs dataset.

Target task Retrieving relevant object/skill Missing relevant object/skill
obj/skill + camPose + objSpat + recepSpat + all no-obj/skill + camPose + objSpat + recepSpat + all

bin carrot 24000 4800 6000 12000 1200 153800 30400 38600 77200 7600

bin bowl 28000 5600 7000 14000 1400 154200 30400 38800 77000 7600

clear table 46000 9200 22000 23000 3000 161800 32400 40600 81200 8000

microwave teapot 42200 8000 7400 14800 800 166600 32800 41400 82800 8200

make coffee 28000 5600 14000 14000 1400 158200 31400 79200 79000 7800
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F TRAINING AND EVALUATION DETAILS

Simulation Policy Training. All our co-training experiments used 10 target demonstrations and 1000
co-training demonstrations (unless otherwise specified). We use BC-RNN Mandlekar et al. (2021) to
train imitation learning policies in our experiments, and use ResNet18 as the visual backbone. We also
condition our policies on language instructions using FiLM layers in the vision backbone. We train
all models for simulation for 500 epochs (250k gradient steps) using the Adam optimizer (Kingma &
Ba, 2014) using learning rate 1e− 4. We evaluate checkpoints every 50 epochs and report the peak
success rate. Each evaluation is obtained by rolling out the policy 30 times.

Table 5: BC-RNN Policy Hyperparameters for Simulation Experiments

batch size 32
sequence length 10
optimizer Adam
learning rate 1e-4
image encoder ResNet18
image resolution (128, 128)

Table 6: BC-Transformer Policy Hyperparameters for Simulation Experiments

batch size 32
context length 10
embed dim 512
num layers 6
num heads 8
embedding dropout 0.1
attention dropout 0.1
optimizer Adam
learning rate 1e-4
image encoder ResNet18
image resolution (128, 128)

Real-World Policy Training and Evaluation Details. We use diffusion policy for all our experiments.
Our low-dimensional observations for all models were the end-effector position and orientation
(represented as a quaternion). For our collector experiments, we used a single camera (out of the four
external options) for the image observations and for the retriever experiments, we used both of the
shoulderview cameras. We use random cropping on our image observations before passing them
into a ResNet-18 visual encoder and apply a Spatial Softmax (Levine et al., 2016) on the encoder
outputs. These features are concatenated with the low-dim observations, processed by an additional
observation processing MLP and passed into a U-Net diffusion head which predicts actions. The
hyperparameters for our model are listed in Table 7.

Table 7: Diffusion Policy Hyperparameters for Real Robot Experiments

batch size 128
observation horizon (To) 2
action horizon (Ta) 8
prediction horizon (Tp) 16
diffusion method DDIM
optimizer Adam
learning rate 1e-4
image encoder ResNet18
image resolution (128, 128)

For evaluation, we trained our models for 600 epochs for the collector experiments and for 300
epochs for the retriever experiments. Empirically, we found no difference in performance between
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models trained for 300 epochs and those trained for 600. We perform 20 rollouts with each model
and report the success rates.

F.1 DATASET RE-BALANCING

Throughout our study, we assume NC ≫ NT , i.e. the number of co-training demonstrations is
much larger than that collected by the practitioner for the target environment and task. Training
a BC policy using a naive combination of these two datasets could cause the policy to ignore the
target dataset altogether while still minimizing its training objective (Hejna et al., 2024), resulting in
unstable training and bad downstream performance (Du et al., 2023). Therefore, we instead create
a dataset that samples from the distribution DT,C(ω) ≜ ωDT + (1 − ω)DC where ω ∈ [0, 1]. We
implement this using a sampler that creates training batches by retrieving demonstration trajectories
with probability ω from D̂T and (1− ω) from D̂C . We represent this weighted combined dataset as
D̂T,C(ω). For all our experiments, we keep ω = 0.5 and try ablations with ω = 0.3 and ω = 0.7 on
the retriever experiment (see Fig. 13).
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G TASK DESCRIPTIONS

G.1 MIMICLABS TASKS

The MimicLabs dataset contains over 3000 task instances encompassing different motion primitives
for solving different tasks, varying camera poses, objects, table textures, spatial arrangements, and
background scenes. We summarize the tasks included in the benchmark below:

1. pick X and place it in the bin (7 instances per lab)
2. open Y (2 instances per lab)
3. close Y (2 instances per lab)
4. open X, pick Y and place it in X (14 instances per lab)
5. pick X, place it in Y and close Y (14 instances per lab)
6. turn on stove
7. turn off stove
8. make coffee

where X can be replaced by one of 7 distinct objects available in each lab for data collection and
policy evaluation, Y can be a drawer or a microwave, distinct instances of which are available in each
lab. In total, there are ∼290 unique task instances in each lab, with skill-level overlap designed to
test positive retrieval strategies. Additionally, for each task instance, we created multiple variations
in camera poses (5), object and spatial arrangements (∼90 combinations), which create 450 task
instances in each lab, totaling to over 3000 instances across 8 labs.

The following tasks from MimicLabs were used for experiments in Section 5.3, in increasing order of
hardness:

• bin carrot: easy binning task with a non-precise object.
• bin bowl: binning task with harder and multi-modal grasping strategy in expert demos.
• clear table: the robot should pull open the top drawer of the cabinet and pick-place

the bowl in it.
• microwave teapot: the robot should pick-place a teapot into the microwave and close

the microwave door.
• make coffee: the robot should pick up the coffee pod and place it in the coffee machine

and close its lid; only one lab has a coffee machine and so we cannot retrieve any skills
pertaining to placing the pod in the coffee machine or closing its lid.

Table 8: Task instances evaluated in the MimicLabs benchmark results with corresponding camera
pose and spatial arrangement configs.

Task camPose objSpat recepSpat

bin carrot shoulder-left left 20cm×20cm right

bin bowl shoulder-right right 20cm×20cm left

clear table agent-front left 20cm×20cm right

microwave teapot shoulder-right right 20cm×20cm left

make coffee shoulder-right center 20cm×20cm left

G.2 TASK DETAILS FOR COLLECTOR’S EXPERIMENT IN SIMULATION

When analyzing dataset composition from a collector’s perspective, we construct multiple variations
of the clear table task. The baseline variation in the task consisted of a fixed agent-front camera pose,
single hue (red) object textures, single hue (wooden/beige) table texture, and small (10cm×10cm)
spatial arrangement for the object around the center of the table.
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G.3 REAL ROBOT TASKS

bin can baking serve snack

pour put marker in cup wipe

Figure 8: The green and red bounding boxes define the reset distributions for the object and the
receptacle in each retriever task.

For our real-world experiments, we evaluate a variety of challenging and diverse table-top manip-
ulation tasks that comprise multiple motion primitives and task horizons. Our goal was to ensure
that our takeaways were broadly applicable to different end-to-end robot learning tasks. The reset
distributions for the different objects in our retriever experiments are shown in Figure 8. During data
collection, we uniformly distributed the object and the receptacle in their respective reset distributions.
In evaluation, we uniformly sampled 20 poses for the objects and fixed these poses for testing all
variations of each task. Below, we provide the descriptions and success criteria for each real-world
task:

store screwdriver: this medium-horizon task consists of picking up a screwdriver, placing it in a
drawer and closing the drawer. The location of the screwdriver varies but the drawer is fixed. Success
is defined as the screwdriver in the drawer and the drawer closed.

bin can: this task involves one motion primitive where the robot must pick up a can from the table
and place it in a bin. The location of the can varies, and the location of the bin is fixed. Success is
defined as the can sitting upright in the bin.

baking: this is a challenging long-horizon task where the robot has to pick up a bowl and place it
inside a toaster oven, push the oven tray, and close the oven. The location of the bowl varies but the
oven is fixed. Success is defined as the bowl on the tray and the oven completely closed.

serve snack: the robot must pick up a red snack packet and put it on a plate. The locations of both
the snack and the plate vary. Success is defined as the snack completely on the plate.

pour: the robot has to pick up a bowl containing beans, pour them onto a plate, and return the bowl
to the workspace. Success is defined as all beans in the plate and the empty bowl being returned to
the workspace.

put marker in cup: for this task, the robot should pick up a marker and place it in a cup. The locations
of both the marker and the cup vary. Success is defined as the marker in the cup.

wipe board: the robot should pick up a cloth towel and use it to wipe off a 5cm mark on a whiteboard.
The location of the towel varies, but the whiteboard and the mark are fixed. Success is defined as
having at least half of the mark erased.
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H REAL EXPERIMENT SETUP

We design our hardware setup to match that of DROID (Khazatsky et al., 2024) – a Franka robotic
arm with a Robotiq gripper, mounted on a mobile platform, with several externally mounted cameras.
Notably, our specific robot setup did not participate in the DROID dataset collection, minimizing
the chance of data pollution. We use a Franka Research 3 7-DoF robotic arm with a Robotiq 2F-85
gripper. The robot is mounted on a mobile, height-adjustable platform. As illustrated in Figure 9,
attached to the platform are two Zed 2 stereo cameras, and we also attach a Zed Mini camera to the
wrist of the robot. Additionally, for our collector experiments, we attached two RealSense D435
cameras to the robot workspace for a total of four external cameras and one eye-in-hand camera.
During data collection, all five camera streams are recorded and synchronized to the robot’s actions.
We additionally record robot proprioceptive information which includes joint positions, gripper
positions, and end effector poses. The action space of the robot consists of an end-effector position
(3-dimensional), rotation encoded in axis angles (3-dimensional), and gripper action (open/close). For
teleoperating the robot and providing demonstrations, we use a Meta Quest 2 headset and controller.

Figure 9: Hardware setup. The red circles show the camera set-up in the real experiment.
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I REAL COLLECTOR DATASETS

# Co-training and target demos: for the bin can and baking tasks, we used 20 target demos for
every model while for store screwdriver we used 10 target demos. All models were co-trained with
100 demos.

Baseline dataset: the baseline co-training dataset had minimal variation in each DV, namely, it
consisted of a single camera view, a single texture of the target object, and a small reset distribution
(25x25cm).

Co-training dataset construction: the co-training datasets were created by sampling evenly from
the ranges of a particular DV. For example, in a camPose experiment where the co-training dataset
was comprised of two cameras that are not target camera, the co-training dataset would be constructed
by selecting 50 demos from one camera and 50 from the other, for a total of 100.

The per-DV variation for our collector experiments is:

1. camPose : we select one of the 4 external cameras as the target camera during evaluation
and co-train models using various combinations of the cameras.

2. objTex : we pick one color of the target object for evaluation, and co-train models with
demos of varying target object textures.

3. objSpat : we pick a spatial distribution for the target object during evaluation and co-train
models with demos where the target object has varying spatial distributions. The different
co-training spatial distributions are concentric boxes that increase in size until they cover
the target spatial distribution completely.

DV data collection: to build the datasets for each DV, we had to vary the setup during demonstration
collection. Specifically, for:

1. camPose : we collected 100 demos of the task, with a small reset distribution and a single
texture. Since all four external cameras were streaming simultaneously, we could build
co-training datasets with combinations of the different cameras through post-processing.

2. objTex : we used the data collected in 1. for our baseline dataset. We then collected an
additional 50 demos with a second color to build our second co-training dataset (50 from
each) and so on with a third color. All demos were collected with a small spatial distribution.

3. objSpat : again, we used the data collected in 1. for our baseline dataset. We then collected
enough demos to cover a medium reset distribution of 38x38cm and even more demos to
cover a large reset distribution of 50x50cm. Each co-training dataset (small, medium, large)
consisted of demos sampled evenly from each distribution. The color of the target object
remained fixed and we trained and evaluated on a single camera pose.
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J DROID RETRIEVAL AND METADATA PROCESSING

In order to perform retrieval on DROID, we had to create additional metadata that would allow
querying along specific DVs. Here we explain the creation of this metadata:

• Target Object: DROID has up to three different language instructions describing the task
executed in each demonstration. To identify the target object from the language instructions,
we first merged the multiple instructions into a single coherent command for each demo.
After combining the instructions, we applied syntactic parsing, focusing specifically on
the direct and indirect objects of the action verbs in the combined instruction. Once the
direct and indirect objects were extracted, we performed agglomerative clustering, using
cosine similarity between the word embeddings of these objects. The object with the highest
similarity within the primary cluster was designated as the target object. If multiple objects
were mentioned, priority was given to the first occurrence in the instruction.

• Object Spatial: to get the location of the manipulated object, we used the gripper state of
the robot as a heuristic. We determined when the gripper closed and used the position of the
end-effector at this timestep as the position of the manipulated object. If the gripper closed
and opened multiple times during the demo, we used the first gripper close for the position
of the object. The gripper state was averaged over a window of 15 timesteps to filter out
accidental gripper closes/opens.

• Object Colors: to classify the color of the target object in the demos, we first saved the
initial image frame from each demo. We then used the LLaVA v1.5 7b model (Liu et al.,
2024) to detect the color of the target object from this image. The prompt provided to the
model was: "USER: What’s the color of the <target object> in the image? Answer in just
one adjective word. ASSISTANT:".

The different types of retrieval we performed on DROID are: obj/skill, obj/skill + camPose , obj/skill
+ objTex , and obj/skill + objSpat . The process of retrieving these DVs is as follows:

• obj/skill: using the language instructions in DROID, we filtered out demos where our target
object was being manipulated.

• obj/skill + camPose : from demos containing the target object, we further filter the demos
where the camera positions are within 20cm of the target camera in the X- and Y-axes, and
10cm in the Z-axis. This is done using the per-demo camera extrinsic metadata provided in
DROID.

• obj/skill + objTex : after filtering out demos with the target object, we further filter by
selecting only demos where the color is the same as our testing setup.

• obj/skill + objSpat : from demos containing the target object, we select the demos where
the spatial distribution of the object is a 60x60x30cm cuboid centered at the middle of our
testing distribution. The maximum size of our testing distribution was 50x50x1cm so the
retrieved spatial distributions would always cover the testing distributions.

Examples of demos after retrieval are shown in Figures 10, 11, and 12.
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Target Retrieved

Figure 10: Retrieved cotraining demos for the wipe board task with the camera pose aligned.
We can see that the spatial locations and textures of the objects in the demos are not necessarily
aligned with our target object. However, the camera pose is the same.

Target Retrieved

Figure 11: Retrieved cotraining demos for the serve snack task with the object spatial location
aligned. The camera poses and textures seen in the demos are not the same as our target task, but the
location of the object (in front of the robot and level with its base) is similar.

Target Retrieved

Figure 12: Retrieved cotraining demos for the pour task with the object texture aligned. The
camera poses and spatial locations of the target object are not the same, but the color is aligned.
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K ADDITIONAL RESULTS

Table 9: Analyzing the effects of misaligned and diversities in DVs from a collector’s perspective.
Success rates on the make coffee task with different variations in co-training distributions. Target
variations are perturbations to one DV while others stay fixed and perfectly-aligned with the baseline
distribution. Success rates highlighted when boost in performance is ≥ 10% compared to baseline.

Target variation
Baseline→Varied

Target only
(Varied) Co-training (mis-aligned) variation

Baseline camPose objTex tableTex objSpat

camPose 10 16.67 43.33 3.33 3.33 16.67
objTex 10 6.67 6.67 36.67 36.67 43.33
tableTex 10 16.67 10 26.67 30 33.33
objSpat 16.67 10 10 10 20 26.67

Table 10: Motion diversity in co-training. We tested two variations of the clear table task: easy
(put the bowl in the drawer and close it) and hard (open the drawer and put the bowl in it). The easy
variant requires learning the push and pickPlaceTopDrawer motion primitives, while the hard
variant requires pull and pickPlaceTopDrawer. Co-training datasets (left to right) are ordered
in increasing order of motion diversity they bring for co-training (500 demos per primitive), with
the most diverse dataset covering all the motion primitives needed to solve the target task but with
increased heterogeneity in robot motion.

Target variation Target only Co-training with different motion primitives
pull push pull+ push+ pull+push+pickPlaceBasket+

pickPlaceBasket pickPlaceBasket pickPlaceTopDrawer

pickPlaceTopDrawer+
push

63.33 43.33 56.67 63.33 63.33 83.33

pull push pull+ push+ pull+push+pickPlaceBasket+
pickPlaceBasket pickPlaceBasket pickPlaceTopDrawer

pull+
pickPlaceTopDrawer

23.33 43.33 16.67 36.67 43.33 50
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Table 11: MimicLabs Retrieval. Task success in the MimicLabs benchmark when co-training using
various retrieval strategies, using BC-Transformer policy. Success rates averaged over 30 rollouts,
and max across 500 epochs of training. Results in bold are best co-training within the sub-experiment.
We provide the number of demonstrations retrieved for each experiment in Table 4.

Target task #demos Target
only Retrieving relevant object/skill Missing relevant object/skill

✓ obj/skill + camPose + objSpat + recepSpat + all ✗ obj/skill + camPose + objSpat + recepSpat + all

bin carrot 10 53.33 90 93.33 83.33 93.33 93.33 50 43.33 53.33 73.33 40

bin bowl 10 36.67 56.67 50 50 63.33 56.67 53.33 53.33 36.67 43.33 30

clear table 20 30 40 53.33 33.33 23.33 43.33 13.33 23.33 23.33 23.33 33.33
microwave teapot 20 10 13.33 13.33 20 16.67 30 16.67 23.33 6.67 3.33 10

make coffee 50 6.67 10 20 10 16.67 13.33 10 20 3.33 3.33 13.33

Table 12: MimicLabs retrieval in a pretrain-finetune setup. Task success in the MimicLabs bench-
mark when pre-training using various retrieval strategies and fine-tuning on the target dataset.Success
rates averaged over 30 rollouts, and max across 500 epochs of training. Results in bold are best
co-training within the sub-experiment. We provide the number of demonstrations retrieved for each
experiment in Table 4.

Target task #demos Target
only Retrieving relevant object/skill Missing relevant object/skill

✓ obj/skill + camPose + objSpat + recepSpat + all ✗ obj/skill + camPose + objSpat + recepSpat + all

bin carrot 10 50 76.67 80 83.33 86.67 83.33 60 73.33 80 63.33 76.67

bin bowl 10 33.33 76.67 73.33 66.67 66.67 83.33 60 66.67 66.67 73.33 60

clear table 20 36.67 23.33 60 20 20 46.67 43.33 30 26.67 46.67 50

Table 13: Evaluating the importance of alignment and diversity when co-training for a target
task in the collector setup (real-world). The grey circles above each column represent the entire
possible distribution for that DV. The green circle is the target distribution and the red circles are
the distributions found in the cotraining datasets. For the camPose setup, this involves co-training
with 1 or 2 cameras that are not the target camera and then co-training with all the cameras as well as
only the target camera. For objTex experiments, we cotrain with 1/2/3 colors that are all different
from the target color. For the objSpat experiments, we increase the reset distribution of the object in
the co-training datasets (small < medium < large) until the co-training dataset covers all of the target
reset distribution.

Task camPose objTex objSpat

bin can 50 60 40 55 75 50 90 95 90 10 40 50 70
store screwdriver 10 55 50 50 60 5 25 20 70 5 15 45 30

baking 40 70 70 80 85 60 95 100 95 45 75 80 85
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Figure 13: Results showing success rates on two tasks using BC-RNN and Diffusion Policy for
different retrieved datasets along all considered DVs. The DVs (left to right) are camera pose, object
texture, table texture, object spatial, and receptacle spatial arrangements. The three bars (left to right)
for each experiment are using ω = 0.7, ω = 0.5, and ω = 0.3 respectively.
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