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Abstract

Hallucinations in large language models001
(LLMs) pose significant challenges in tasks re-002
quiring complex multi-step reasoning, such as003
mathematical problem-solving. Existing ap-004
proaches primarily detect the presence of hallu-005
cinations but lack a nuanced understanding of006
their types and manifestations. In this paper, we007
first introduce a comprehensive taxonomy that008
categorizes the common hallucinations in math-009
ematical reasoning tasks into six types. We010
then propose FG-PRM (Fine-Grained Process011
Reward Model), an augmented model designed012
to detect and mitigate hallucinations in a fine-013
grained, step-level manner. To address the limi-014
tations of manually labeling training data, we015
propose an automated method for generating016
fine-grained hallucination data using LLMs.017
Our FG-PRM demonstrates superior perfor-018
mance across two key tasks: 1) Fine-grained019
hallucination detection: classifying halluci-020
nation types for each reasoning step; and 2)021
Verification: ranking multiple LLM-generated022
outputs to select the most accurate solution.023
Our experiments show that FG-PRM excels in024
fine-grained hallucination detection and sub-025
stantially boosts the performance of LLMs on026
GSM8K and MATH benchmarks. These re-027
sults highlight the benefits of fine-grained su-028
pervision in enhancing the reliability and inter-029
pretability of LLM reasoning processes. 1030

1 Introduction031

While considerable progress has been made in en-032

hancing the general capabilities of large language033

models (LLMs), solving complex reasoning tasks034

such as answering mathematical questions remains035

a challenge. Recently, advanced prompting tech-036

niques (Wei et al., 2022; Yao et al., 2024; Hao et al.,037

2023) are proposed to guide LLMs in breaking038

down complex reasoning tasks into simple steps,039

1Codes and datasets are available at: https://anonymous.
4open.science/r/FG-PRM-75BB/

thus improving their performance and the inter- 040

pretability of the reasoning process. Nevertheless, 041

LLMs often produce incorrect or unverifiable state- 042

ments—commonly known as hallucinations—that 043

hinder their ability to solve complex problems that 044

require multiple reasoning steps. 045

Prior methods of mitigating hallucinations in 046

reasoning chains largely focus on detecting their 047

presence, with limited exploration into the distinct 048

types of hallucinations produced. Our research 049

goes beyond this by developing a fine-grained tax- 050

onomy that categorizes hallucinations based on 051

their nature and manifestation (see Figure 1 for 052

an illustration comparing coarse-grained detection 053

with our method). We analyze reasoning steps to 054

pinpoint the emergence of hallucinations and un- 055

cover patterns in their behavior. 056

Training reward models is an effective approach 057

for detecting and mitigating hallucinations, with 058

the two primary categories being Outcome Reward 059

Model (ORM) (Cobbe et al., 2021) and Process 060

Reward Model (PRM) (Lightman et al., 2023). 061

ORMs evaluate the correctness of entire reason- 062

ing chains, while PRMs assess each step. PRMs 063

have demonstrated superior performance in many 064

scenarios (Wang et al., 2023) since they can pro- 065

vide more granular feedback and effectively guide 066

models’ reasoning process. However, collecting 067

data to train PRMs is labor-intensive, particularly 068

for multi-step reasoning tasks, where human anno- 069

tation is costly and prone to bias. To address this, 070

we develop a novel method to automatically gen- 071

erate fine-grained hallucination data using LLMs. 072

Specifically, giving a problem with a ground-truth 073

solution, we first identify reasoning steps suitable 074

for hallucination injection. Next, we utilize an 075

LLM to generate additional reasoning steps incor- 076

porating various hallucination types based on our 077

tailored instructions and demonstrations. The gen- 078

erated hallucinatory steps then serve as negative ex- 079

amples to train task-specific PRMs, each designed 080

1

https://anonymous.4open.science/r/FG-PRM-75BB/
https://anonymous.4open.science/r/FG-PRM-75BB/


Step 1: Subtract 3 from both sides to get: 2x = 8. 

Step 2: Divide both sides by 2 to get: x = 3. So, the 

result of the equation  is x = 3.

Step 1: Subtract 3 from both sides to get: 2x = 8. 

Step 2: Divide both sides by 2 to get: x = 3. So, the 

result of the equation  is x = 3.
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Figure 1: Overview of fine-grained hallucination detection for language model reasoning process. Above is an
example for Calculation Error hallucination.

to detect a particular hallucination type.081

We evaluate our FG-PRM on two widely used082

mathematical benchmarks, GSM8K (Cobbe et al.,083

2021) and MATH (Hendrycks et al., 2021). We val-084

idate the effectiveness of our method by two tasks:085

1) fine-grained hallucination detection, where we086

classify different hallucination types at each rea-087

soning step; and 2) verification, where we rank088

multiple outputs generated by LLMs to select the089

most accurate solution. Our major contributions090

are as follows:091

• We introduce a comprehensive hallucination tax-092

onomy that categorizes common errors in mathe-093

matical reasoning tasks into six distinct types.094

• We propose an automated method for synthesiz-095

ing fine-grained hallucination data across without096

requiring human annotations. Based on this, we097

design FG-PRM to detect and mitigate hallucina-098

tions in a fine-grained, step-level manner.099

• Extensive experiments show that FG-PRM sur-100

passes ChatGPT-3.5 and Claude-3 in the halluci-101

nation detection task for most hallucination types,102

achieving over 5% higher F1 scores. Moreover,103

FG-PRM outperforms PRMs by over 3% in the104

verification task on GSM8K and MATH, surpass-105

ing numerous verifiers trained on human-labeled106

or coarse-grained data.107

2 Fine-grained Hallucination Taxonomy108

Large language models excel at solving tasks that109

require complex multi-step reasoning by generating110

solutions in a step-by-step and chain-of-thought for-111

mat. Nevertheless, even state-of-the-art models are112

prone to inaccuracies, often producing content that 113

is unfaithful, fabricated, inconsistent, or nonsensi- 114

cal. Categorizing and localizing these inaccuracies 115

in reasoning steps is challenging but provides ex- 116

plicit insights into which parts of the model output 117

have specific types of problems. 118

Building upon the prior work Ji et al. (2023), 119

we develop a fine-grained taxonomy for two major 120

categories of hallucinations: intrinsic and extrinsic 121

hallucination, according to whether the hallucina- 122

tion can be verified by the input information or 123

the contents LLMs have previously generated. To 124

describe more complex errors surfacing in LM rea- 125

soning, we further divide the intrinsic hallucination 126

into contextual inconsistency, logical inconsistency 127

and instruction inconsistency, while extrinsic hallu- 128

cinations are divided into calculation error, factual 129

inconsistency, and fabrication. We performed a pi- 130

lot annotation with five NLP experts who have pub- 131

lished at least three papers in related fields to refine 132

our taxonomy, ensuring comprehensive coverage 133

of various hallucination types. The definitions of 134

our proposed categories are elaborated below: 135

(1) Context Inconsistency refers to instances where 136

a reasoning step is inconsistent with the con- 137

textual information provided by the user. 138

(2) Logical Inconsistency refers to the logical contra- 139

dictions or inconsistencies between the current 140

and previous reasoning steps. 141

(3) Instruction Inconsistency refers to instances 142

where a reasoning step does not align with 143

the explicit instructions of the user. 144

(4) Calculation Error refers to instances where a 145

reasoning step makes incorrect calculations, 146
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which should be verifiable by external infor-147

mation or tools.148

(5) Factual Inconsistency refers to instances where149

a reasoning step contains facts that can be150

grounded in real-world information but present151

contradictions.152

(6) Fabrication refers to instances where a rea-153

soning step contains facts that are unverifiable154

against knowledge in the real world or context.155

To illustrate our taxonomy more intuitively, we156

provide examples for each type of hallucination in157

Appendix Table 4, along with corresponding ex-158

planations. Compared to the simplified taxonomy159

proposed in previous work (Golovneva et al., 2022;160

Prasad et al., 2023), our refined taxonomy compre-161

hensively captures the unique complexities of LLM162

hallucinations, offering a structured framework to163

study distinct patterns and enabling more granular164

analyses and targeted mitigation strategies.165

3 Methodology166

In this section, we first introduce two basic types167

of reward models (Section 3.1), the Outcome Re-168

ward Model (ORM) and the Process Reward Model169

(PRM). After that, we describe our automated170

framework for generating hallucination-annotated171

datasets, followed by a detailed explanation of the172

training procedure for our Fine-Grained Process173

Reward Model (FG-PRM) (Section 3.2).174

3.1 Preliminary175

ORM The ORM was introduced by Cobbe et al.176

(2021). Given a question x and its solution y, an177

ORM assigns a sigmoid score ry to the entire so-178

lution, indicating whether y is correct. ORMs are179

typically trained with cross-entropy loss over the180

entire solution. Assume y∗ is the ground-truth la-181

bel of y, y∗ = 1 if y is correct, otherwise y∗ = 0.182

The training objective minimizes the cross-entropy183

between the predicted outcome ry and the ground-184

truth y∗:185

LORM = y∗ log ry + (1− y∗) log(1− ry) (1)186

However, ORM’s coarse-grained feedback limits187

its ability to diagnose errors within individual rea-188

soning steps, as it only evaluates the final solution189

without considering intermediate correctness.190

PRM The PRM was introduced by Lightman191

et al. (2023), addresses the limitations of ORM by192

providing step-level feedback. Instead of assigning193

a single score to the entire solution, PRM assigns 194

a sigmoid score ryi for each reasoning step yi in 195

the solution y. This approach enables the model to 196

evaluate the correctness of each intermediate step, 197

providing more detailed feedback on where the 198

reasoning process succeeds or fails. The training 199

objective for PRM minimizes the sum of cross- 200

entropy losses over all reasoning steps, allowing 201

the model to learn from fine-grained supervision: 202

LPRM =
L∑
i=1

log y∗i log ryi + (1− y∗i ) log(1− ryi)

(2)

203

where L is the number of reasoning steps in the 204

solution y and y∗i is the ground-truth label of the 205

i-th step of y. By providing feedback at the step 206

level, PRM offers significant advantages over ORM 207

in tasks requiring complex, multi-step reasoning. 208

3.2 FG-PRM: Fine-grained Process Reward 209

Model 210

In this Section, we introduce our FG-PRM, the 211

Fine-Grained Process Reward Model for halluci- 212

nation detection and mitigation. To reduce the an- 213

notation cost issues associated with PRM, we first 214

introduce an automated process annotation frame- 215

work for step-level fine-grained dataset synthesis. 216

After that, we provide the training details for our 217

FG-PRM on the synthetic dataset. 218

3.2.1 Automated Hallucination Generation 219

Existing step-level datasets with fine-grained anno- 220

tations (Golovneva et al., 2022) are limited in size, 221

and collecting the necessary data for training mod- 222

els with such detailed labels is costly, as it requires 223

human annotators to provide fine-grained feedback 224

for each reasoning step. To overcome the scarcity 225

of human-labeled data, we introduce an automated 226

hallucination annotation framework, as illustrated 227

in Figure 2. We start with the mathematical prob- 228

lems with golden chain-of-thought (CoT) solution 229

dataset. To synthesize the negative reasoning steps, 230

we adopt a two-step process as follows. 231

Step 1: Identify target reasoning steps In our 232

taxonomy, each hallucination type follows a dis- 233

tinct pattern, requiring specific conditions met by 234

the golden reasoning steps for generation. How- 235

ever, not all golden steps can induce the genera- 236

tion of every type of hallucination. For instance, 237

when a reasoning step is exclusively focused on nu- 238

merical calculations, it becomes challenging to in- 239

sert factual inconsistency. To effectively introduce 240
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Step1: Subtract 3 from both sides: 
2x + 3 - 3 = 11 - 3

This simplifies to: 2x = 8

Step3: So, the solution to the
equation is x = 4.

Correct Reasoning Steps Step2: Divide both sides by 2: 2x /
2 = 8 / 2 This simplifies to: x = 4

Feasibility Verification 
(e.g. Can Calculation Error

be injected?)

Hallucination Injection

Yes No

Question: Solve the equation 2x + 3 = 11 step by step. Correct Answer: x = 4

Yes

Subtract 3 from both sides: 
2x + 3 - 3 = 11 - 3

This simplifies to: 2x = 6

Divide both sides by 2: 2x / 2 = 8
This simplifies to: x = 5 Automated Process Annotation

Figure 2: Our automated reasoning process annotation framework involves two steps: First, for each step, we
instruct a language model to verify the feasibility of injecting hallucinations (using Calculation Error as an example
in this figure). Second, for identified steps where hallucinations can be injected, we prompt the language model to
introduce hallucinations by providing instructions and few-shot demonstrations (see in Appendixes G and H).

different hallucination into the reasoning process,241

we need to first identify steps that meet the nec-242

essary conditions for hallucination generation. To243

achieve this, we employ an external large language244

model and develop a set of tailored rules within the245

prompts. These rules guide the language model in246

determining whether a reasoning step in the con-247

text provides the elements required for a specific248

type of hallucination. For example, when evaluat-249

ing whether a step can introduce factual inconsis-250

tency, the language model checks if the reasoning251

step references objects (e.g., quantities, features) or252

named entities. This enables us to manipulate the253

information, allowing for the seamless integration254

of contextual inconsistencies in later steps. The255

complete set of rules for identifying hallucination256

injection position across the six hallucination types257

is detailed in Appendix F.258

Step 2: Hallucinate ground truth reasoning259

steps After confirming the appropriate position260

for injecting the hallucination, we present a mathe-261

matical problem and the correct reasoning history262

to an external large language model, instructing it263

to generate the next reasoning step with the target264

hallucination. To control the distribution of hal-265

lucinations in the generated dataset and improve266

the success rate of incorporating our hallucination267

taxonomy, we prompt the language model to insert268

each type of hallucination separately. We begin269

by inputting specific instructions for each halluci-270

nation type into the system prompt, guiding the271

language model to modify the reasoning process272

and introduce the desired hallucination. Detailed in-273

structions for each hallucination type are provided274

in Appendix G. Next, we employ an in-context275

learning strategy by providing two demonstrations276

for each query. Each demonstration includes an277

example of an injected hallucination, along with an278

explanation how it is introduced. These demonstra- 279

tions can be found in Appendix H. To reduce the 280

financial cost, we delegate the task of hallucinating 281

reasoning steps to the Llama-3-70B model (Dubey 282

et al., 2024). We experimentally found that our 283

method enables the language model to generate 284

hallucinatory reasoning steps efficiently. 285

3.2.2 Model Training 286

After generating six types of hallucination datasets 287

with our automated data annotation method, we 288

train our FG-PRM, denoted as RΦ, which com- 289

prises six PRMs, Rϕ1 . . . Rϕ6 , each corresponding 290

to a specific type of hallucination in our taxonomy. 291

Formally, given an input question x and the 292

corresponding solution y composed of L reason- 293

ing steps {y1, y2, . . . , yL}, we separately train 294

task-specific PRMs Rϕt to detect whether each 295

reasoning step in y contains the hallucination 296

type t. The model input has the format of 297

“question: q, reasoning steps: y1 [sep] y2 298

[sep] . . . yL [sep]”, where each [sep] token rep- 299

resents the classification output at each reason- 300

ing step to indicate whether the previous step 301

yi contains the hallucination type t. We define 302

Rϕt(x, yi) = P ([sep] = 1) to represent the prob- 303

ability that the step yi contains the hallucination 304

type t. To train each PRM Rϕt , we utilize a step- 305

level classification loss as in Eq.2 to each [sep] 306

token before step yi. Overall, our FG-PRM RΦ 307

generates an aggregate reward for the solution y of 308

the input question x: 309

RΦ(x, y) =
6∑

t=1

L∑
i=1

log
(
Rϕt(x, yi)

)
(3) 310

In the verification task(see Appendix B.2), the 311

log-sum of these probabilities is used to aggregate 312

the rewards, resulting in the final reward assigned 313
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by FG-PRM for a solution. Importantly, if a step314

is correct, its probability of correctness is close to315

1, contributing minimally to the aggregated reward.316

This ensures that the length of the answer does317

not influence the final reward score, maintaining318

fairness regardless of the sequence length.319

4 Experiments320

4.1 Settings321

Task description We test our FG-PRM on two322

tasks: fine-grained hallucination detection and mit-323

igation in language models. The detection task324

aims to identify specific types of hallucinations at325

each reasoning step, using precision, recall, and F1326

scores to evaluate performance. The mitigation task327

involves ranking multiple candidate solutions for328

a problem, with a reward model assigning scores329

based on correctness to select the best solution.330

Detailed descriptions are presented in Appendix B.331

Datasets We conduct our experiments on two332

widely used mathematical benchmarks, GSM8K333

(Cobbe et al., 2021) and MATH (Hendrycks et al.,334

2021). GSM8K consists of grade school math prob-335

lems designed to benchmark the reasoning abilities336

of language models. To construct the hallucinatory337

reasoning steps, we employ a meta-dataset and soft-338

ware library (Ott et al., 2023), which collects the339

golden chain-of-thought solutions for problems in340

the GSM8K. MATH, on the other hand, is a large-341

scale dataset designed for probing and improving342

model reasoning, which includes human-written343

step-by-step solutions (Lightman et al., 2023).344

Following (Lightman et al., 2023; Uesato et al.,345

2022; Wang et al., 2023), we randomly sample 700346

instances from the training set and 100 instances347

from the test set for both GSM8K and MATH. We348

refer to these datasets as “Coarse-grained Halluci-349

nations” (CG-H), which include human-annotated350

reasoning chains with each step labeled for cor-351

rectness. Using the two sampled datasets, we aug-352

ment each to 12,000 instances through our auto-353

matic hallucination generation method described in354

Section 3.2.1, covering all types of hallucinations355

mentioned in Section 2 with a balanced halluci-356

nation distribution. These augmented datasets are357

termed “Fine-grained Hallucinations” (FG-H). Fur-358

thermore, we sample 12,000 instances from Math-359

Shepherd (Wang et al., 2023), a dataset consisting360

of automatically constructed process-wise supervi-361

sion data using the Monte Carlo tree search method,362

with each step labeled for correctness.363

For the hallucination detection task, we construct 364

both synthetic and human-annotated datasets based 365

on questions from the MATH dataset. The CG-H 366

(MATH) and FG-H (MATH) datasets are utilized 367

to train PRM and FG-PRM, respectively, and to 368

evaluate their performance. For the hallucination 369

mitigation task, we employed the complete CG- 370

H and FG-H datasets, along with Math-Shepherd, 371

to train various reward models. All experiments 372

maintain a training-to-validation split ratio of 95:5. 373

Models In the fine-grained hallucination detec- 374

tion task, we evaluate the performance of prompt- 375

based and model-based detection. For prompt- 376

based detection, we apply ChatGPT (GPT-3.5- 377

turbo-0125) (Ouyang et al., 2022) and Claude 378

(Claude-3-haiku)2 with carefully designed prompts 379

as baseline methods. For the model-based detec- 380

tion, we compare our FG-PRM with the traditional 381

coarse-grained PRM (Lightman et al., 2023). In 382

the fine-grained hallucination mitigation task, we 383

apply various verifiers to evaluate the correctness 384

of solutions generated by language models. We 385

employ Llama-3-70B (Dubey et al., 2024) as our 386

solution generator, from which we sample 64 can- 387

didate solutions for each test problem. We apply 388

the LongFormer-base-4096 (Beltagy et al., 2020) 389

and Llama-3-8B (Dubey et al., 2024) as our base 390

models due to their strong performance in han- 391

dling long-context reasoning. We keep their main 392

structure unchanged. Specifically, we replace the 393

output layer with an MLP to predict binary halluci- 394

nation labels for reward models. Verifiers include 395

self-consistency (SC), ORM, PRM, CG-PRM, FG- 396

ORM, and FG-PRM. The SC verifier serves as a 397

baseline without specific model training. It ag- 398

gregates multiple reasoning paths and selects the 399

most frequent solution as the final answer. ORMs 400

and PRMs are trained on the CG-H dataset. For 401

CG-PRM, we train a single PRM on the coarsely 402

labeled FG-H datasets, using binary labels like CG- 403

H instead of fine-grained types. For FG-ORM and 404

FG-PRM, we train individual fine-grained ORMs 405

and PRMs for each of six hallucination types on 406

FG-H dataset, respectively. All experiments are 407

performed on four NVIDIA A100 80G GPUs. 408

4.2 Hallucination Detection Results 409

To evaluate the efficacy of our method in detecting 410

fine-grained hallucinations, we conduct two experi- 411

ments on synthetic and human-annotated data. 412

2https://claude.ai/
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Synthetic Reasoning Chain Human-annotated Reasoning Chain

Detector CI LI II CE FI FA Average CI LI II CE FI FA Average

ChatGPT 0.415 0.522 0.453 0.360 0.428 0.900 0.513 0.442 0.552 0.510 0.377 0.487 0.840 0.531
Claude 0.448 0.388 0.493 0.275 0.373 0.963 0.490 0.434 0.460 0.478 0.359 0.428 0.758 0.503

PRM 0.399 0.455 0.467 0.402 0.358 0.565 0.441 0.394 0.493 0.484 0.357 0.403 0.435 0.428
FG-PRM 0.488 0.549 0.529 0.398 0.422 0.608 0.499 0.526 0.575 0.513 0.377 0.426 0.484 0.484

Table 1: Performance of fine-grained hallucination detection across all hallucination types on synthetic data and
human-annotated data. All numbers are F1 scores.

Synthetic Data We utilize the automated anno-413

tation labels from our synthetic dataset, FG-H414

(MATH), as the golden standard for evaluating var-415

ious detectors across six types of hallucination. As416

shown in Table 1, FG-PRM outperforms prompt-417

based detectors in detecting CI , LI , II , and CE ,418

demonstrating FG-PRM has effectively learned the419

patterns of these hallucinations and can detect them420

accurately. Notably, FG-PRM outperforms PRM in421

detecting all types of hallucination, demonstrating422

the advantages of the fine-grained detection man-423

ner. However, prompt-based detectors outperform424

FG-PRM on FI and FA , primarily due to their425

larger model sizes and greater access to fact-based426

knowledge. This reflects the inherent advantage427

of large language models in fact-based verification.428

Moreover, detailed precision and recall results are429

presented in Tables 5 and 6 in Appendix C. Besides430

the six individual verifiers in FG-PRM, we also con-431

duct experiments on a single multi-class verifier,432

which performs worse than FG-PRM. Additional433

results are shown in Appendix D.434

Human-annotated Data We also validate the ef-435

fectiveness of our method on real-world data using436

human-annotated data. Specifically, for each hallu-437

cination type, we first utilize ChatGPT to generate438

step-by-step solutions for 50 problems from the439

MATH dataset. Five NLP experts then manually440

annotate these solutions according to our halluci-441

nation taxonomy, ensuring each selected solution442

includes at least one step exhibiting the target hal-443

lucination type. This process resulted in a human-444

labeled dataset covering six hallucination types,445

each represented by 50 annotated responses cor-446

responding to 50 problems, featuring step-level447

hallucination labels. The annotations achieved a448

Cohen’s Kappa score of 0.79, indicating substantial449

agreement among the annotators.450

In Table 1, results on the human-annotated data451

closely align with the trends observed on the syn-452

thetic data. FG-PRM demonstrates superior perfor-453

mance in detecting CI and LI hallucinations, con-454

Base Model Verifier / Reward Model GSM8K MATH

- Self-Consistency 0.88 0.48

LongFormer

ORM 0.88† 0.51
PRM 0.89 0.53
Math-Shepherd (ORM) 0.90 0.52
Math-Shepherd (PRM) 0.91 0.54

CG-PRM (Ours) 0.89 0.54
FG-ORM (Ours) 0.89 0.53
FG-PRM (Ours) 0.94 0.57

Llama-3-8B

ORM 0.87† 0.52
PRM 0.90 0.53
Math-Shepherd (ORM) 0.89 0.51
Math-Shepherd (PRM) 0.91 0.53

CG-PRM (Ours) 0.90 0.54
FG-ORM (Ours) 0.89 0.53
FG-PRM (Ours) 0.93 0.58

Table 2: Performance of different verifiers on GSM8K
and MATH benchmarks. The evaluation is based on
64 candidate solutions for each problem generated by
Llama3-70B model with greedy decoding. We calculate
the mean of 3 groups of sampling results. Statistical
significance test indicates that most improvements com-
pared to “Self-Consistency” is significant (p < 0.05).
Data marked with † indicate the significant test with
p < 0.05 is not passed.

sistently outperforming all other models in these 455

categories. However, FG-PRM’s performance is 456

slightly below that of strong, non-public LLMs 457

(e.g., ChatGPT and Claude) in detecting FI and 458

FA hallucinations. This discrepancy is largely at- 459

tributable to FG-PRM’s smaller parameter size and 460

limited access to world knowledge. Despite these 461

challenges, FG-PRM performs competitively over- 462

all, particularly in reasoning-related hallucinations. 463

Further analysis on reasoning chain evaluation for 464

various verifiers is presented in Appendix E. 465

4.3 Hallucination Mitigation Results 466

Table 2 presents a performance comparison of var- 467

ious verifiers on GSM8K and MATH. FG-PRM 468

trained on our augmented dataset, FG-H, signifi- 469

cantly outperforms all baselines across both base 470

models. Specifically, after fine-tuning with FG- 471

H, Longformer and Llama3-8B achieve 94% and 472

58% accuracy on GSM8K and MATH, respectively, 473
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Figure 3: Performance of LLama-3-70B across varying candidates on GSM8K and MATH using different verifiers.

surpassing PRMs trained on Math-Shepherd. The474

results show that base models mitigated by PRMs475

consistently outperform those mitigated by ORMs,476

consistent with findings from (Uesato et al., 2022;477

Lightman et al., 2023; Wang et al., 2023). On478

GSM8K, most baseline verifiers perform close to479

the self-consistency level due to the simplicity of480

the dataset, where many questions involve only481

basic arithmetic operations. However, the differ-482

ences between verifiers become more evident in483

the more complex MATH dataset, where questions484

and reasoning steps often require LaTeX math ex-485

pressions. Comparing PRM and CG-PRM, increas-486

ing the training size alone does not yield signifi-487

cant improvements. Moreover, the enhancements488

in FG-ORM over ORM and FG-PRM over CG-489

PRM demonstrate the effectiveness of our fine-490

grained approach. Notably, FG-ORM and CG-491

PRM, trained on the same data size as FG-PRM,492

are inferior to FG-PRM. These results indicate that493

the balanced fine-grained step-level supervision494

employed by FG-PRM offers a more robust and ef-495

fective approach to hallucination mitigation, partic-496

ularly in handling complex problem-solving tasks.497

5 Analysis498

Hallucination Mitigation Performance with499

Varying Candidate Solutions Figure 3 illus-500

trates the performance of four verifiers with the501

number of candidate solutions ranging from 1 to502

64 across two benchmarks. This demonstrates that503

FG-PRM consistently outperforms all other veri-504

fiers. With predicted insights, the performance gap505

between FG-PRM and other baseline verifiers will506

increase with the growth of N .507

Out-of-Distribution Dataset Evaluation We508

further conduct out-of-distribution (OOD) evalua-509

tion experiments to assess the robustness and trans-510

ferability of our approach. In these experiments, 511

we train the PRM verifier on CG-H (GSM8K) and 512

FG-PRM verifier on FG-H (GSM8K). For compar- 513

ison, we also train them on CG-H (MATH) and 514

FG-H (MATH). Finally, we test all verifiers on the 515

MATH dataset with 64 candidate solutions for each 516

questions. Notably, the GSM8K dataset contains 517

simple questions, predominantly solvable through 518

basic arithmetic operations, in contrast to the more 519

complex MATH dataset. 520

Figure 4: OOD performance on the MATH benchmark.

As detailed in Figure 4, the performance gap 521

for FG-PRM (+0.01) is slighter than PRM (+0.03). 522

Moreover, the verifiers trained on the FG-H 523

(GSM8K) demonstrate performance closely compa- 524

rable to those trained on the FG-H (MATH) dataset. 525

This indicates that the FG-PRM verifier trained on 526

FG-H can learn to recognize patterns of hallucina- 527

tions and generalize this knowledge to tackle more 528

challenging scenarios effectively. 529

Qualitative Result of Fine-Grained Hallucina- 530

tion Evaluation To illustrate the effect of our 531

FG-PRMs, we demonstrate a case study in Ta- 532

ble 3, comparing the hallucination detection results 533

of FG-PRM and CG-PRM. Our FG-PRM demon- 534

strates remarkable discrimination by precisely de- 535

tect fine-grained types of hallucination in reasoning 536

steps. Notably, Step 7 has a high Logical Inconsis- 537

tency score since the step incorrectly refers to the 538

formula in previous steps. It refers to a = 5 as 539

a = 11, which causes Logical Inconsistency . FG- 540
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Question Each edge length of a rectangular solid is a prime number. If the volume of the rectangular solid is 385 cubic
units, what is the total surface area, in square units, of the rectangular solid?

Answer 334

Reasoning
Steps

Step 1:We know that the volume of this rectangular solid is the product of its three side lengths. FG-PRM:
0.95, CG-PRM: 0.83.
Step 2: Let’s call those side lengths a, b, and c. The volume is abc. FG-PRM: 0.83, CG-PRM: 0.80.
......
Step 6: Let’s plug in the possible values. If a = 5, b = 7, and c = 11, then 2ab + 2bc + 2ac =
2(5)(7) + 2(7)(11) + 2(5)(11) = 74 + 154 + 110 = 338. FG-PRM: 0.87, CG-PRM: 0.72.
Step 7: Which simplifies to 14 · 11+ 22 · 11+ 10 · 11. FG-PRM: Logical Inconsistency 0.07 CG-PRM: 0.80.
Step 8: So the total surface area would be 334. FG-PRM : 0.88 CG-PRM: 0.66.

Table 3: A case study from the MATH dataset. A high CG-PRM score indicates that the step is positive. A low
FG-PRM-TYPE score indicates the step has a high probability of having the TYPE of hallucination.

PRM recognizes it by giving a low score, while541

CG-PRM does not recognize this detail.542

6 Related Work543

Hallucinations in LLM Numerous studies have544

explored the taxonomy of hallucinations in lan-545

guage models. Mishra et al. (2024) identify546

six fine-grained types of factual hallucinations547

in information search scenarios. Zhang et al.548

(2023) classify hallucinations based on conflict549

types: input-conflicting, context-conflicting, and550

fact-conflicting. Huang et al. (2023a) categorize551

hallucinations into factuality and faithfulness types552

and divide them further. Ji et al. (2023) discussed553

intrinsic and extrinsic hallucinations, focusing on554

whether outputs contradict input content. Clos-555

est to our work, Golovneva et al. (2022) propose556

ROSCOE, measuring semantic alignment, similar-557

ity, and language coherence in reasoning chains.558

Unlike ROSCOE that includes many grammati-559

cal errors like grammar, redundancy, and repeti-560

tion, our taxonomy provides detailed distinctions561

between error types for diagnosing complex rea-562

soning errors and improving model outputs.563

Evaluation of Reasoning Chains Depending on564

whether golden references are required, methods to565

evaluate reasoning chains can be roughly divided566

into reference-dependent and reference-free ones.567

For reference-dependent, the reasoning chains can568

be evaluated with LLMs (Ren et al., 2023; Adlakha569

et al., 2023)), or by measuring the discrepancy be-570

tween the vanilla response and reference (Huo et al.,571

2023; Pezeshkpour, 2023). For reference-free met-572

rics, some methods rely on aggregating the indi-573

vidual token probabilities assigned by the LLM574

during generation so that they can reflect reason-575

ing chain uncertainty (Manakul et al., 2023; Huang576

et al., 2023b). In addition to that, many model-577

based methods have emerged to evaluate reasoning578

chains (He et al., 2024; Hao et al., 2024). In this579

work, we focus on model-based reference-free rea- 580

soning chain evaluation from the perspective of 581

hallucination detection. 582

Improving reasoning abilities of LLMs For 583

LLMs that have completed training, prompting 584

techniques are an effective approach to improve 585

the performance of LLMs on reasoning tasks with- 586

out modifying the model parameters (Wei et al., 587

2022; Fu et al., 2022; Yao et al., 2024). Besides, 588

instead of directly improving the reasoning per- 589

formance of LLMs, verifiers, typically the Out- 590

come Reward Model (ORM) and Process Reward 591

Model (PRM), can raise the success rate in solv- 592

ing reasoning tasks by selecting the best answer 593

from multiple decoded candidates. PRM provides 594

a more detailed evaluation by scoring each step. 595

However, training a PRM requires access to ex- 596

pensive human-annotated datasets. Methods such 597

as Math-Shepherd (Wang et al., 2023) and MiPS 598

(Wang et al., 2024) have explored Monte Carlo es- 599

timation to automate the data collection process 600

without human involvement, and OmegaPRM (Luo 601

et al., 2024) proposed a divide-and-conquer style 602

Monte Carlo tree search algorithm for automated 603

process supervision data generation. 604

7 Conclusion 605

In conclusion, we introduce FG-PRM, a nuanced 606

approach for detection and mitigation of hallucina- 607

tions in language model reasoning. We proposed 608

a taxonomy to categorize hallucinations into six 609

types. By leveraging a novel automated data gen- 610

eration method, we significantly reduce the de- 611

pendency on costly human annotations while en- 612

riching the dataset with diverse hallucinatory in- 613

stances. Our empirical results show that FG-PRM, 614

when trained on our synthetic data, significantly 615

enhances the accuracy of hallucination detection, 616

providing an effective approach for improving the 617

LLM reasoning accuracy and faithfulness. 618
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Limitation Our automated data synthesis ap-619

proach depends on ground-truth reasoning step620

datasets, which may pose a constraint for large-621

scale scaling. Additionally, this approach relies on622

running LLM APIs or performing inference using623

GPUs to generate hallucinations. While effective,624

this method is not the most cost-efficient. Future625

work could focus on developing more efficient so-626

lutions to reduce costs and improve scalability.627
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A Examples of Fine-Grained Hallucination 777

Table 4: Examples of various types of LLM hallucinations in our taxonomy. Content marked in Red represents the
hallucinatory output, while content marked in Blue indicates user instruction or provided context that contradicts
the LLM hallucination.

Hallucination
Type

Sub-Type User Input Model Output Explanation

Extrinsic
Hallucinations

Factual
Inconsistency What is the capital of

Australia?
The capital of Australia
is Sydney.

The model incorrectly states that
Sydney is the capital of Aus-
tralia, while the correct capital
of Australia is Canberra. This er-
ror demonstrates factual incon-
sistency as the model’s response
contradicts the real-world fact.

Fabrication What is the population
of Atlantis?

The population of At-
lantis is approximately
1.2 million people.

The model provided a specific
population figure for Atlantis, a
fictional place with no basis in
reality. Since Atlantis does not
exist, there is no verifiable pop-
ulation data.

Calculation
Error If a rectangle has a

length of 4 units and a
width of 3 units, what is
the perimeter of the rect-
angle?

The perimeter for-
mula of a rectangle
is: Perimeter = 2 ×
(length + width). The
length is 4 units and the
width is 3 units. So, the
perimeter would be 2
× (4 + 3) = 16. So the
answer is 16 units.

In the red reasoning step, the
model incorrectly calculates 2
× (4 + 3) = 16, which should be
14. The error should be verified
by external tools like calculators,
which matches the definition of
Calculation Error hallucination.

Intrinsic
Hallucination

Instruction
Inconsistency Please calculate the quo-

tient of 25 divided by
100 and represent the re-
sult as a fraction.

The quotient of 25 di-
vided by 100 is 0.25.

Although the model correctly
calculates the result 0.25, it fails
to follow the “as a fraction” in-
struction in the user input.

Context
Inconsistency Given that I have 5 ap-

ples and I give 2 to my
friend, how many ap-
ples do I have left?

Considering the infor-
mation provided, if you
initially had 5 apples
and you gave 3 to your
friend, you would have
2 apples left.

In the red reasoning step, the
model incorrectly refers to the
number of apples in the context.
The user stated that they gave
2 apples to their friend, but the
model incorrectly refers to it as
3.

Logical
Inconsistency How many hours are

there in a week if each
day has 24 hours?

There are 7 days in a
week. Since each day
has 24 hours, a week
would have 6 days times
24 hours, which equals
144 hours.

The model correctly states that
there are 7 days in a week but
then incorrectly calculates the
number of hours by multiplying
6 days by 24 hours to get 144
hours. This shows a contradic-
tion between the days in a week
referred and a failure to main-
tain internal logical consistency
in the reasoning process.
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B Task Formulation778

In this section, we elaborate on the two primary tasks of fine-grained hallucination detection and mitigation.779

B.1 Task 1: Fine-Grained Hallucination Detection780

This task aims to detect hallucinations in language model reasoning output at a granular level, focusing on781

individual reasoning steps. Specifically, the detector is tasked with identifying fine-grained hallucinations782

in the output of a language model by assigning reward scores for each intermediate step in a reasoning783

chain. The objective is to classify hallucination types at the step level, determining whether a specific784

hallucination type is present.785

Given a question x and its solution y consisting of L reasoning steps, we assume the ground-truth786

annotations for hallucination types are available. These annotations, denoted as y∗ti ∈ {TRUE,FALSE},787

provide a binary label for each hallucination type t at the i-th step, indicating whether the hallucination t788

is present (TRUE) or absent (FALSE). The detector models predict yti , where yti is the model’s predicted789

label for the i-th step and hallucination type t. We evaluate the model’s performance using standard790

metrics for classification as in previous work (Feng et al., 2023; Mishra et al., 2024): precision and recall.791

For each hallucination type t, the precision measures the proportion of correct predictions out of all792

predictions where the model indicated the presence of a hallucination at a step, while recall measures793

the proportion of actual hallucination steps that the model correctly identified. These are computed as794

follows:795

Precisiont =

∑
i∈L I

[
yti = y∗ti

]∑
i∈L I [yti = TRUE]

(4)796

Recallt =

∑
i∈L I

[
yti = y∗ti

]∑
i∈L I [y∗ti = TRUE]

(5)797

Here, I [·] is an indicator function that returns 1 if the condition is true and 0 otherwise. Precision798

indicates the proportion of correctly predicted hallucinations for type t, while recall indicates how many799

of the true hallucinations were detected by the model.800

To assess the overall performance across all hallucination types, we calculate the F1 score, which is the801

harmonic mean of precision and recall. The F1 score is computed for each hallucination type and then802

averaged across all types E :803

F1 Score =
1

|E|
∑
t∈E

2× Precisiont×Recallt

Precisiont+Recallt
(6)804

Thus, fine-grained hallucination detection can be framed as a set of binary classification tasks, where805

the system predicts whether each reasoning step si contains a specific hallucination type. By evaluating806

precision, recall, and F1 score across different hallucination types, we gain a comprehensive understanding807

of the model’s ability to detect and categorize hallucinations within complex reasoning processes.808

B.2 Task 2: Fine-Grained Hallucination Mitigation809

The verification task (Lightman et al., 2023) assesses a model’s ability to evaluate and rank multi-810

ple candidate solutions for a given problem. In this task, a generator produces N possible solutions811

{y1, y2, . . . , yN} for a problem x, which are then evaluated by a reward model (Section 3.1). The reward812

model assigns a score to each candidate solution based on its correctness, with the goal of selecting the813

best solution among the candidates.814

This task follows the best-of-N selection method, where the solution with the highest score is chosen815

as the final answer. A well-performing reward model improves the likelihood of selecting the correct816

solution, thereby enhancing the overall problem-solving accuracy. By providing meaningful feedback817

on each candidate solution, the verification task helps ensure that the reasoning process is grounded in818

correctness and consistency.819
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C Detailed Fine-grained Hallucination Detection Results 820

The precision and recall of the fine-grained detection results for the Llama3-70B generation are reported 821

in Table 5 and 6, respectively. 822

Hallucination Type

Detector CI LI II CE FI FA Average

ChatGPT 0.403 0.488 0.450 0.424 0.412 0.890 0.511
Claude-3 0.417 0.368 0.490 0.248 0.357 0.952 0.472

PRM 0.393 0.421 0.443 0.324 0.374 0.527 0.414
FG-PRM 0.428 0.513 0.528 0.413 0.403 0.589 0.479

Table 5: Precision for fine-grained hallucination detection across different categories.

Hallucination Type

Detector CI LI II CE FI FA Average
ChatGPT 0.440 0.600 0.460 0.541 0.477 0.920 0.573
Claude-3 0.525 0.433 0.500 0.334 0.416 0.990 0.533

PRM 0.415 0.498 0.493 0.541 0.352 0.615 0.486
FG-PRM 0.571 0.597 0.560 0.546 0.462 0.635 0.562

Table 6: Recall for fine-grained hallucination detection across different categories.

D Compact FG-PRM Verifier 823

Besides six individual binary classifier verifiers in our FG-PRM, we train a single multi-class verifier on a 824

Longformer model, denoted as FG-PRM (compact). For this reward model, we replace the output layer 825

with an MLP layer that produces seven category outputs, covering six types of hallucinations and a "no 826

error" category. As shown in Tables 7 and 8, the performance of our separate FG-PRMs surpasses that of 827

the compact experimental setting in both the hallucination detection and mitigation tasks. 828

Our findings indicate a tendency for the model to predict the "no error" label. This bias is primarily 829

due to the imbalance in the training data. Instances with a specific type of hallucination account for only 830

one-sixth of the entire dataset. Additionally, in the multi-step reasoning process, only a few steps display 831

specific hallucinations. As a result, models can achieve high accuracy by predominantly predicting "no 832

error." 833

Hallucination Type

Detector CI LI II CE FI FA Average

FG-PRM (Compact) 0.402 0.493 0.481 0.378 0.371 0.574 0.450
FG-PRM 0.488 0.549 0.529 0.398 0.422 0.608 0.499

Table 7: F1 for fine-grained hallucination detection across different categories.
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Verifier / Reward Model GSM8K MATH
Self-Consistency 0.88 0.48
FG-PRM (Compact) 0.90 0.54
FG-PRM (Ours) 0.93 0.58

Table 8: Performance of FG-PRM and FG-PRM Compact verifiers on GSM8K and MATH benchmarks. The
evaluation is based on 64 candidate solutions generated by Llama3-70B model with greedy decoding for each
problem. Each result is the mean of results from 3 groups of sampling results.

E Reasoning Step Hallucination Evaluation834

We utilize our model to evaluate hallucination issues in the generated outputs of large language models.835

Each generation is assigned six scores corresponding to hallucination types. The score under each halluci-836

nation type for a model is calculated based on the proportion of correct reasoning steps in generations.837

Specifically, score = 1
N

∑N
i=1

# of correct step
# of total step , where N is the total number of generations in the test set. A838

model with high scores indicates fewer hallucination issues in its generation.839

Similar to the hallucination mitigation task, we apply our verifiers on Llama3-70B to help it select the840

best generation among 64 options. The performance is shown in Figure 5. Llama3-70B, with help from841

verifiers, performs better than itself. The performance trend under each hallucination type aligns well842

with the results in Table 2 that FG-PRM performs the best among all verifiers.

0.250

0.350

0.450

0.550

0.650

CE CI II LI FA FI Average

Llama3-70B Llama3-70B+SC Llama3-70B+PRM Llama3-70B+FG-PRM

Figure 5: Hallucination evaluation performance on various models with verifiers.

843

F Tailored Rules for Judging Hallucination Types844

We provide a prompt template for a language model to judge if the reasoning history of a given question845

can be incorporated into a specific type of hallucination:846
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Prompt Template for Hallucination Verification

[Question]
{question}
[Reasoning Steps]
{correct reasoning steps}
[Instruction]
{output instruction}

847

In the following, we provide the rules for judging different type of hallucination: 848

Judgment Rules for Factual Inconsistency Hallucination

The above are step-wise reasoning steps to answer the question. Please help me determine whether
the last reasoning step refers factual information not mentioned before the step. All factual
information should be gounded in real-world information, including:
- Known Geographic Facts: the step should include widely accepted and verifiable facts in its
original format or name. For example, state the fact that “The Eiffel Tower is located in Paris.",
“Mount Everest, the tallest mountain in the world, is located in the Himalayas.", etc.
- Historical Events: the step should refer historical events with correct dates or details. For example,
mention that “The American Civil War ended in 1865."
- Factual Scientific Data or Statistics: the step should include correct real-world data or statistics.
But, basic calculation process should not be counted as factual information.For example, a step
can state that “According to the 2020 census, the population on earth is over 7.5 billion.", “There
is 7 days a week.", “The pythagorean theorem is a2 + b2 = c2.", etc.
In the output, there should be explanation whether the last reasoning step has factual information
and output the facutal information first. Then, in the new line, please only output “Yes" if the last
reasoning step has factual information. Otherwise, please only output “No".

849

Judgment Rules for Context Inconsistency Hallucination

The above are step-wise reasoning steps to answer the question. Please help me determine whether
the last reasoning step refers question information. Referred content in the last reasoning step
should be the same as it mentioned in the question. Contents indirectly related to the referred
content, such as derived or concluded by the referred contents, should not be counted as question
information.
In the output, there should be an explanation whether the last reasoning step refers question
information, output the extact referred question information in both the last reasoning step and
question first. Then, in the new line, please only output “Yes" if the last reasoning step refers
question information. Otherwise, please only output “No".

850
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Judgment Rules for Calculation Error Hallucination

The above are step-wise reasoning steps to answer the question. Please help me determine whether
the last reasoning step involves calculation processes, including mathematical calculations or
formulas:
- Mathematical Calculations: the step should have at least one calculation process. The calculation
processes should include numbers (3, 5, 10 etc.) or mathematical symbols (sin, cos, x, y, π, etc.),
and they should be like “The sum of 45 and 15 is 60", “30*4+5=125", “sin(x)+cos(x)", etc.
- Formulas: the step should include mathematical principles, laws of physics, or other data
processing operations. Formulas may be in latex format. They can be simply stated in the
step and do not have equal symbols. For example, formula can be “Pi*radius2", “2*Pi*radius",
“[sin(x)+cos(x)]", etc.
In the output, there should be explanation whether the last reasoning step has calculation process
first. Then, in the new line, please only output “Yes" if the last reasoning step has calculation
process. Otherwise, please only output “No".

851

Judgment Rules for Logical Inconsistency Halluciantion

The above are step-wise reasoning steps to answer the question. Please help me determine whether
the last reasoning step involves reasoning process. Referred content in the last reasoning step
should be the same as it mentioned in the previous reasoning steps but not in the question. Contents
indirectly related to the referred content, such as derived or concluded by the referred contents,
should not be counted as previous information.
In the output, there should be an explanation whether the last reasoning step refers information in
previous reasoning steps but not in the question, output the extact referred previous information in
both the last reasoning step and previous step first. Then, in the new line, please only output "Yes"
if the last reasoning step refers those information. Otherwise, please only output "No".
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G Prompts for Synthesizing Hallucination Dataset 853

We provide a system prompt template for a language model that is used to guide the larger model 854

through the task of generating each type of hallucination. This template consists of a description of the 855

hallucination generation task and instructions for producing a particular type of hallucination. 856

System Prompt

Please generate the next reasoning step to incorrectly continue the reasoning process based on a
question and a series of correct reasoning steps. The next reasoning step you generate does not
necessarily result in an instant final answer. And you should follow the hallucination generation
instruction below to generate the next reasoning step.
{Instruction}

857

In the following, we present the instructions for generating each type of hallucination: 858

Instruction for Generating Fabrication Hallucination

# Instruction for Generating Fabrication Hallucination
When generating the next reasoning step, you should intentionally introduce fabrications by in-
cluding facts that are unverifiable against established real-world knowledge or context information.
These fabrications should be plausible within the context but should not be verifiable through any
external sources. Follow these guidelines:
- Unverifiable Facts: Introduce facts that cannot be verified through established real-world knowl-
edge. For example, mention a historical event that did not happen, or a scientific theory that does
not exist.
- Fictitious Entities: Refer to people, places, or organizations that are entirely made up. For
example, mention a “Dr. John Smith of the International Institute of Quantum Studies," which
does not exist.,
- Imaginary Data or Statistics: Provide data or statistics that are fictional. For example, state that
“according to a 2023 study by the Global Health Organization, 75% of people prefer digital books
over physical ones," when no such study exists.’,
# Example Guidelines
- Introduce a Fabricated Historical Event: For instance, state that “In 1875, the Grand Treaty of
Lisbon established the first international postal system," even though no such treaty exists.
- Mention Nonexistent Scientific Theories or Discoveries: For example, reference “Dr. Eleanor
Rigby’s groundbreaking work on temporal physics, which suggests that time travel is theoretically
possible," when no such work or scientist exists.
- Provide Fictitious Data or Statistics: Include statements like “A recent survey by the National
Institute of Sleep Studies found that 60% of adults dream in black and white," even though such an
institute or survey does not exist.
# Constraints
- Plausibility: The fabricated content should be plausible within the context but should not be
verifiable.
- Consistency: The rest of the generated content should be consistent and coherent, without
introducing contradictions or errors in logic.
- No Contradiction to Known Facts: Avoid contradicting widely accepted and easily verifiable facts.
The fabrication should be in areas that are less likely to be immediately recognized as false.
- Maintain Context: Ensure that the fabricated information fits smoothly into the surrounding
context, making it less likely to be immediately questioned.

859
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Instruction for Generating Factual Inconsistency Hallucination

# Instruction for Generating Factual Inconsistency Hallucination
When generating the next reasoning step, you should intentionally introduce factual inconsistencies
by including facts that can be grounded in real-world information but present contradictions. These
inconsistencies should be subtle and should not be immediately obvious. Follow these guidelines:
- Contradict Known Facts: Introduce information that contradicts widely accepted and verifiable
facts. For example, state that “The Eiffel Tower is located in Berlin," contradicting the well-known
fact that it is in Paris.
- Inconsistent Historical Events: Reference historical events with incorrect dates or details. For
example, mention that “The American Civil War ended in 1870," when it actually ended in 1865.
- Conflicting Data or Statistics: Provide data or statistics that conflict with established information.
For example, state that “According to the 2020 census, the population of New York City is 2
million," when the actual population is significantly higher.
# Example Guidelines
- Contradict Known Geographic Facts: For instance, state that “Mount Everest, the tallest mountain
in the world, is located in the Andes mountain range," when it is actually in the Himalayas.
- Inconsistent Historical Dates: For example, claim that “The Declaration of Independence was
signed on July 4, 1800," when it was actually signed in 1776.
- Conflicting Scientific Information: Include statements like “Water boils at 110 degrees Celsius at
sea level," when it actually boils at 100 degrees Celsius.
# Constraints
- Plausibility: The inconsistent content should be subtle and not immediately obvious to the reader.
- Consistency: The rest of the generated content should be consistent and coherent, without
introducing contradictions or errors in logic beyond the intended inconsistencies.
- Grounded in Real-World Information: The fabricated inconsistencies should still be based on
real-world information but presented inaccurately.
- Maintain Context: Ensure that the inconsistent information fits smoothly into the surrounding
context, making it less likely to be immediately questioned.

860

Instruction for Generating Instruction Inconsistency Hallucination

# Instruction for Generating Instruction Inconsistency Hallucination
When generating the next reasoning step, you should intentionally introduce inconsistencies by not
aligning the output with the specific instructions given by the user. These instruction inconsistencies
should be subtle but clear enough to be identified. Follow these guidelines:
- Ignore Specific Instructions: Generate text that contradicts or disregards explicit instructions
given in the prompt. For example, if asked to list developed countries in Europe, list all developed
countries in the world.
- Alter the Requested Target: Change the target requested by the user. For example, if asked to list
developed countries in the world, list all undeveloped countries in the world instead.
- Misinterpret the Instructions: Deliberately misinterpret the instruciton so that the output does
not respond directly to the user’s request. For example, if asked for “Japan’s capital city", answer
“Japan’s largest city is Tokyo", even though Tokyo is the largest city in Japan.
# Constraints
- Faithful: You cannot fabricate something that doesn’t appear in the context.
- Coherence: The rest of the generated content should remain coherent and logical, without
introducing contradictions or errors beyond the intended inconsistencies.
- Contextual Fit: Ensure that despite the inconsistency, the response still fits smoothly within the
broader context of the conversation or text, making it less likely to be immediately questioned.

861
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Instruction for Generating Context Inconsistency Hallucination

# Instruction for Generating Context Inconsistency Hallucination
When generating the next reasoning step, you should introduce inconsistencies by intentionally
modifying information to contradict the user’s provided contextual information. These context
inconsistencies should be subtle but clear enough to be identified. Follow these guidelines:
- Contradict Provided Facts: Introduce information that directly contradicts the facts given in the
user’s prompt. For example, if the user states that “Bob was born in England," you may contradict
it by stating that “Bob was born in France."
- Alter Specific Details or Data: Change specific details or data provided by the user. For example,
if the user mentions that “Bob has three books and two pens in his backpack,“ you might alter it by
stating that “Bob has two books and four pens in his backpack."
- Misattribute Quotes or Data: Attribute quotes or data to the wrong source. For example, if the
user states that “Bob likes apples while Jane likes bananas." you might contradict it by stating
“Jane likes apples" or “Bob likes bananas".
# Constraints
- Subtlety: The context inconsistencies should be subtle and not immediately obvious to the reader.
- Coherence: The rest of the generated content should remain coherent and logical, without
introducing contradictions or errors beyond the intended inconsistencies.
- Contextual Fit: Ensure that the inconsistent information fits smoothly within the broader context
of the conversation or text, making it less likely to be immediately questioned.

862

Instruction for Generating Logical Inconsistency Hallucination

# Instruction for Generating Logical Inconsistency Hallucination
When generating the next reasoning step, you should introduce logical inconsistencies by incor-
rectly referring to or copying content from previous reasoning steps. These logical inconsistencies
should be subtle but clear enough to be identified. Follow these guidelines:
- Incorrect Reference: Refer to a previous reasoning step incorrectly, such as misinterpreting or
misrepresenting the calculations or conclusions. For example, if a previous step states “Bob is an
undergraduate," you may incorrectly refer back to this by stating “Since Bob is a graduate..."
- Copying Errors: Copy content from a previous reasoning step but alter it in a way that introduces
an error, such as changing numbers or relationships. For example, if the reasoning involves steps
for calculating a total cost and one step states “Item A costs 5 * 2 =10," you might incorrectly
copy this as “Since item A costs 5 * 3 =15..." in the next step.
- Make logical leaps or conclusions that do not follow from the previous steps, leading to an
incorrect answer.
# Constraints
- Subtlety: The logical inconsistencies should be subtle and not immediately obvious to the reader.
- Coherence: The rest of the generated content should remain coherent and logical, without
introducing contradictions or errors beyond the intended inconsistencies.
- Contextual Fit: Ensure that the inconsistent information fits smoothly within the broader context
of the conversation or text, making it less likely to be immediately questioned.
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Instruction for Generating Calculation Error Hallucination

# Instruction for Generating Calculation Error Hallucination
When generating the next reasoning step, you should intentionally introduce calculation error by
including incorrect numerical calculations or data processing. These errors should be subtle but
clear enough to be identified. Follow these guidelines:
- Perform Erroneous Mathematical Calculations: Make intentional mistakes in mathematical
calculations. For example, state that “The sum of 45 and 15 is 70", when it is actually 60.
- Include Incorrect Data Processing: Misapply mathematical principles, laws of physics, or other
data processing operations. For example, when asked to calculate the area of a circular, compute
the perimeter formula 2*Pi*radius instead of the area formula Pi*radius2.
- Generates responses with unsupported claims, including numerical assertions that have no basis
in the provided context or input.
# Constraints
- The values you use must be consistent with the context given, but the final calculation should be
intentionally miscalculated.
- You must not fabricate what does not appear in the context or contradict widely accepted and
easily verifiable facts.
- Ensure that despite the errors, the response still fits smoothly within the broader context of the
conversation or text.

864

20



H Hallucination Demonstration Examples 865

We provide demonstrations for generating each type of hallucination. Each demonstration includes two 866

examples of an injecting hallucination, along with an explanation of how it is produced. 867

Demonstrations for Fabrication Hallucination

[Question]
What are the primary components of DNA?
[Correct Reasoning Steps]
Step 1: DNA is structured as a double helix composed of nucleotides.
Step 2: Each nucleotide consists of a sugar (deoxyribose), a phosphate group, and a nitrogenous
base.
Step 3: The four nitrogenous bases are adenine (A), thymine (T), cytosine (C), and guanine (G).
{output format}
[Explanation]
The user is asking about the primary components of DNA. The correct approach is to describe the
structure of DNA and its components, including the nucleotides and the four nitrogenous bases.
The Next Reasoning Step here introducesFabrication Hallucination by mentioning a "recent study
by the Molecular Genetics Institute in Zurich" that identified a fifth nitrogenous base, "neomine
(N)," which does not exist. This reasoning step remains coherent and logical, correctly describing
the structure of DNA and its primary components, but introducing a fictitious base and study that
is not supported by established scientific knowledge.
[Next Reasoning Step with Fabrication Hallucination]
Step 4: Additionally, a recent study by the Molecular Genetics Institute in Zurich has identified a
rare fifth base, neomine (N), which appears to play a role in DNA repair mechanisms.
[Question]
What are the main causes of the decline of the Roman Empire?
[Correct Reasoning Steps]
Step 1: One of the major causes of the decline of the Roman Empire was economic trouble, which
included heavy taxation and inflation.
Step 2: Additionally, the overreliance on slave labor created economic stagnation.
Step 3: Military overspending further strained the empire’s resources.
{output format}
[Explanation] The user is asking about the main causes of the decline of the Roman Empire. The
correct approach is to identify a combination of internal weaknesses and external pressures that
contributed to the empire’s fall, along with key events that marked its decline. The Next Reasoning
Step here introduces Fabrication Hallucination by mentioning the “Great Plague of 330 AD,"
which did not actually occur, and the Roman historian “Lucius Marcellus," who is not a verifiable
historical figure. This reasoning step remains coherent and logical, offering a plausible explanation
for the decline of the Roman Empire, but introducing a fictitious event and historian that can not
verified by known historical facts.
[Next Reasoning Step with Fabrication Hallucination]
Step 4: A significant but lesser-known factor was the Great Plague of 330 AD, which decimated
the population and weakened the military. This pandemic, documented by the Roman historian
Lucius Marcellus, is believed to have killed nearly a quarter of the empire’s population.
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Demonstrations for Context Inconsistency Hallucination

[Question]
Ann’s favorite store was having a summer clearance. For $75 she bought 5 pairs of shorts for $7
each and 2 pairs of shoes for $10 each. She also bought 4 tops, all at the same price. How much
did each top cost?
[Correct Reasoning Steps]
Step 1: She bought 5 shorts at $7 each so 5*7=$35
Step 2: She bought 2 pair of shoes at $10 each so 2*10=$20
Step 3: The shorts and shoes cost her 35+20 = $55
Step 4: We know she spent 75 total and the shorts and shoes cost $55 which left a difference of
75-55 = $20
{output format}
[Explanation]
The user is asking about how much each top cost based on the total amount spent. The correct
approach is to calculate the total cost of shorts and shoes first, then determine the remaining amount
spent on tops, and finally find the cost per top by dividing the remaining amount by the number of
tops. The Next Reasoning Step here introduces Context Inconsistency Hallucination by incorrectly
stating that Ann bought 5 tops instead of the 4 tops mentioned in the user’s provided context,
which creates a context inconsistency by altering the specific detail about the number of tops. This
reasoning step maintains coherent and logical in its structure, providing a plausible answer for the
price of each top, but introduces a subtle context inconsistency in the number of tops that affects
the final answer.
[Next Reasoning Step with Context Inconsistency Hallucination]
Step 5: Since she bought 5 tops for a total of $20, so each top cost 20/5 = $4
[Question]
There are 16 dolphins in a water park. One quarter of them are gray dolphins, and there are twice
as many white dolphins as gray dolphins. How many white dolphins are in the water park?
[Correct Reasoning Steps]
Step 1: We know one quarter of the dolphins are gray, we calculate this by dividing the total
number of dolphins by 4, 16/4 = 4
{output format}
[Explanation]
The user is asking about the number of white dolphins in the water park, given the total number of
dolphins and the proportion of gray dolphins. The correct approach is to determine the number
of gray dolphins first, then use the given ratio to find the number of white dolphins. The Next
Reasoning Step here introduces Context Inconsistency Hallucination by incorrectly stating that
there are twice as many gray dolphins as white dolphins, instead of correctly stating that there are
twice as many white dolphins as gray dolphins. This creates a context inconsistency by altering the
specific relationship between the number of gray and white dolphins. This reasoning step remains
coherent and logical in its structure, providing a plausible method to find the number of white
dolphins, but introduces a subtle context inconsistency in the relationship between the number of
gray and white dolphins that contradict provided facts.
[Next Reasoning Step with Context Inconsistency Hallucination]
Step 2: Since there are twice as many grey dolphins as white dolphins, we divide the number of
gray dolphins by 2 to get the number of white dolphins: 4/2=2.
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Demonstrations for Instruction Inconsistency Hallucination

[Question]
Adam bought 3 kilograms of nuts and 2.5 kilograms of dried fruits at a store. One kilogram of nuts
costs $12 and one kilogram of dried fruit costs $8. How much did his purchases cost?
[Correct Reasoning Steps]
Step 1: For the nuts Adam paid 3 * 12 =36.
Step 2: And for dried fruits Adam paid 2.5 * 8 =20.
{output format}
[Explanation]
The user is asking for the total cost of Adam’s purchases. The correct next reasoning step should
add the costs of the nuts and dried fruits to find the total cost. The Next Reasoning Step here
introduces Instruction Inconsistency Hallucination by calculating the average cost of the purchases
instead of finding the total cost, altering the requested target. Despite the inconsistency, this
reasoning step introduces no contradictions or errors in logic, and still fits smoothly within the
broader context of the conversation.
[Next Reasoning Step with Instruction Inconsistency Hallucination]
Step 3: To find the average cost of Adam’s purchases, we can add the cost of nuts and dried fruits
and divide by 2: ($36 + $20) / 2 = $28.
[Question]
Abigail is trying a new recipe for a cold drink. It uses 14 of a cup of iced tea and 1 and 14 of a cup
of lemonade to make one drink. If she fills a pitcher with 18 total cups of this drink, how many
cups of lemonade are in the pitcher?
[Correct Reasoning Steps]
Step 1: Each drink uses 1.5 cups because 14 cup + 1 and 14 cup = 1.5 cups
Step 2: The pitcher contains 12 total drinks because 18 1.5 = 12
{output format}
[Explanation]
The user is asking the number of cups of lemonade in the pitcher. The next correct reasoning
step should calculate the total cups of lemonade by multiplying the number of drinks by the
amount of lemonade per drink. The Next Reasoning Step here introduces Instruction Inconsistency
Hallucination by suddenly changing the unit of measurement from cups to ounces, ignoring the
specific instruction to find the number of cups. Despite the inconsistency, this reasoning step
introduces no contradictions or errors in logic, and still fits smoothly within the broader context of
the conversation.
[Next Reasoning Step with Instruction Inconsistency Hallucination]
Step 3: Since each drink uses 1 and 1/4 cups of lemonade, and there are 8 ounces in a cup, the
total ounces of lemonade in the pitcher are 12 * (1 and 1/4) * 8 = 96 ounces.
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Demonstrations for Logical Inconsistency Hallucination

[Question]
Annie, Bob, and Cindy each got some candy. Annie has 6 candies, Bob has 2 candies more than
half of Annie’s candies, and Cindy has 2 candies less than twice Bob’s candies. Which of the three
of them has the least amount of candy?
[Correct Reasoning Steps]
Step 1: Annie has 6 candies.
Step 2: Bob has 2 candies more than half of Annie’s candies. Half of Annie’s candies is ( 6 / 2 = 3
). So, Bob has ( 3 + 2 = 5 ) candies.
Step 3: Cindy has 2 candies less than twice Bob’s candies. Twice Bob’s candies is ( 2 * 5 = 10 ).
So, Cindy has ( 10 - 2 = 8 ) candies.

{output format}
[Explanation] The user is asking which of Annie, Bob, and Cindy has the least amount of candy.
The correct approach is to calculate the number of candies each person has and then compare these
amounts to determine who has the least. According to the previous steps: 1. Annie has 6 candies;
2. Bob has 5 candies; 3. Cindy has 8 candies. The Next Reasoning Step here introduces Logical
Inconsistency Hallucination by incorrectly concluding that Annie has the least amount of candy,
whereas the correct conclusion should be that Bob has the least amount of candy with 5 candies.
This creates a logical inconsistency by failing to accurately reference the correct comparative
amounts of candies, contradicting the previous reasoning steps.
[Next Reasoning Step with Logical Inconsistency Hallucination]
Step 4: Since Annie only has 6 candies, Anne has the least amount of candy.
[Question]
Annie, Bob and Cindy each buy personal pan pizzas cut into 4 pieces. If Bob eat 50% of his pizzas
and Ann and Cindy eat 75% of the pizzas, how many pizza pieces are left uneaten?
[Correct Reasoning Steps]
Step 1: In total, there are 3 * 4 = 12 pizza pieces. Step 2: Bob eats 4 * 50% = 2 pieces. Step 3:
Annie and Cindy eat 2 * 4 * 75% = 6 pieces. Step 4: The three of them eat 2 + 6 = 8 pieces.
{output format]}
[Explanation]
The user is asking how many pizza pieces are left uneaten after Annie, Bob and Cindy each
eat a portion of their pizzas. The correct approach is to calculate the total number of pizza
pieces, determine how many pieces each person eats, and then find the remaining uneaten pieces.
According to the previous steps: 1. In total, there are 12 pizza pieces; 2. Bob eats 2 pieces; 3.
Annie and Cindy together eat 6 pieces; 4.Therefore, the three of them eat 2 + 6 = 8 pieces. The
Next Reasoning Step here introduces Logical Inconsistency Hallucination by incorrectly copying
that 10 pieces of pizza were eaten and by incorrectly referencing the total number of pizza pieces
as 16, whereas the correct calculation should be based on the total number of 12 pizza pieces
and the remaining uneaten pieces should be 12 - 8 = 4. This creates a logical inconsistency by
incorrectly referencing the number of eaten pieces as 10 and the total number of pizza pieces as 16,
contradicting the previous reasoning steps.
[Next Reasoning Step with Logical Inconsistency Hallucination]
Step 5: Since 10 pizza pieces were eaten, there are 16 - 10 = 6 pizza pieces uneaten.
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Demonstrations for Calculation Error Hallucination

[Question]
Abigail is trying a new recipe for a cold drink. It uses 0.25 of a cup of iced tea and 1.25 of a cup of
lemonade to make one drink. If she fills a pitcher with 18 total cups of this drink, how many cups
of lemonade are in the pitcher?
[Correct Reasoning Steps]
Step 1: Each drink uses 1.5 cups because 0.25 cup + 1 and 1.25 cup = 1.5 cups
Step 2: The pitcher contains 12 total drinks because 18 / 1.5 = 12
{output format}
[Explanation]
The user is asking for the total cups of lemonade in the pitcher. The correct calculation involves
finding the total number of drinks and then multiplying it by the amount of lemonade per drink. The
Next Reasoning Step here introduces Calculation Error Hallucination by incorrectly calculating
the total cups of lemonade as 12 * 1.25 = 17 cups when it is actually 12 * 1.25 = 15 cups. Despite
the incorrect calculation, this reasoning step correctly identifies the values to be multiplied, and
still fits smoothly within the broader context of the conversation.
[Next Reasoning Step with Calculation Error Hallucination]
Step 3: Since each drink uses 1.25 cups of lemonade, multiply the total drinks by the amount of
lemonade per drink: 12 * 1.25 = 17 cups of lemonade.
[Question]
Queenie earns $150 a day as a part-time clerk. She earns an additional $5 per hour as overtime pay.
How much will Queenie receive for working 5 days with 4 hours overtime?
[Correct Reasoning Steps]
Step 1: Queenie will earn $150 * 5 = $750 for working 5 days Step 2: She will receive an additional
$5 * 4 = $20 for overtime pay.
{output format}
[Explanation]
The user is asking for Queenie’s total earnings for working 5 days with 4 hours of overtime. The
correct calculation involves adding her daily earnings to her overtime pay. The Next Reasoning
Step here introduces Calculation Error Hallucination by incorrectly adding $750 and $20 as $7800
when it is actually $770. Despite the incorrect calculation, this reasoning step correctly identifies
the values to be added, and still fits smoothly within the broader context of the conversation.
[Next Reasoning Step with Calculation Error Hallucination]
Step 3: Then, add her daily earnings and overtime pay to get her total earnings: $750 + $20 =
$7800.
[Question]
What is the volume of a cylinder with a radius of 3 units and a height of 5 units?
[Correct Reasoning Steps]
Step 1: The volume of a cylinder is calculated using the formula Volume = π × radius2 × height.
Step 2: For a cylinder with a radius of 3 units and a height of 5 units, first calculate π × 32 = 9π.
{output format}
[Explanation]
The user is asking for the volume of a cylinder. The correct formula involves multiplying π by the
square of the radius and then by the height. Given the radius is 3 units and the height is 5 units,
the volume should be calculated asπ × 32 × 5 = 45π. The Next Reasoning Step here introduces
Calculation Error Hallucination by incorrectly calculating 9π multiplied by 5 as 18π when it is
actually 45π. Although the final result is miscalculated, this reasoning step correctly identifies the
values to be multiplied, and still fits smoothly within the broader context of the conversation.
[Next Reasoning Step with Calculation Error Hallucination]
Step 3: Then multiply by 5, and the volume is 9π × 5 = 18π cubic units.
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