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Abstract

Neural operators have emerged as powerful machine learning models for solving
parametric PDEs. For downstream tasks, it is often essential that trained models re-
main reliable on out-of-distribution samples. However, models trained exclusively
on reference data, without additional guidance, can underperform when applied on
inputs outside the training distribution. In addition, while boundary conditions can
significantly impact PDE solutions, they are often overlooked in existing neural
operator designs. In this work, we focus specifically on the challenge of geometry
generalization in neural operators and introduce the Boundary-Augmented Neural
Operator (BNO), a general framework that incorporates the interaction between the
boundary and the full domain. We validate the proposed BNOs on an airfoil flap
dataset and a new Poisson equation dataset, in comparison with existing neural op-
erator architectures. In particular, we evaluate a special case of BNO that treats the
boundary and full domain separately, thereby retaining efficiency by exploiting the
lower dimensionality of boundaries. Our results show that BNOs achieve greater
robustness to changes in discretization and point distributions while maintaining
high computational efficiency. Furthermore, they handle diverse geometric and
topological variations with improved generalization to unseen geometries.

1 Introduction

Solving parametric partial differential equations (PDEs) often requires computationally expensive
simulations, particularly for high-dimensional problems. To alleviate this computational cost, neural
operators [2 4] have emerged as promising machine learning models for accelerating PDE-based
simulations. Recent advances in neural operator architectures have further extended their applicability
to problems with complex geometries. Deformation-based methods, such as Geo-FNO [33]],
GINO [36L138]], OTNO [32], and others [} [53]], transform input functions defined on the physical
space into a structured latent space where more efficient models can be used. Alternatively, methods
such as GNPs [46, 47], PCNO [54], and others [13}|39]], can operate directly on arbitrary meshes or
point clouds in the physical space. A more comprehensive discussion of relevant works is presented

in Appendix
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Despite these advances, existing frameworks are limited in two key aspects:

1. The input and output functions are always defined on the same computational domain, which
overlooks an important characteristic of many PDEs: in many practical cases, the solution is
significantly influenced by, or inherently dependent on the boundary, rather than the entire domain.

2. Generalization across varying geometries remains challenging. Traditional solvers such as
panel methods [} 14} 44] or boundary element methods (BEM) [10} 49]] naturally accommodate
arbitrary shapes and topological variations, whereas data-driven neural operator approaches often
struggle with out-of-distribution generalization when confronted with unseen geometries. This
limitation poses a significant barrier for downstream tasks such as inverse design, where the
ability to robustly handle diverse boundary conditions and geometric variations is essential.

Proposed Approach. We introduce Boundary-augmented Neural Operators (BNOs), a general
neural operator framework which facilitates the interaction between the boundary and the full
computational domain. Motivated by the theoretical foundations of boundary integral equations, we
consider a special case in which the boundary and full-domain features are treated separately and
coupled via extension and reduction operators. This allows direct prediction of full-field solution
operators from boundary and leverages the lower dimensionality of boundary submanifolds to improve
computational efficiency and reduce memory requirements in large-scale simulations.

We focus especially on evaluating the geometric generalization of neural operators on a fixed PDE
system across previously unseen geometries and topologies, rather than solely on test errors on fixed
classes of geometries. To facilitate systematic benchmarking under varying geometric and topological
conditions, we also construct a new Poisson equation dataset of diverse shapes.

Summary of results. The proposed BNO demonstrates strong robustness to changes in the discretiza-
tion and distribution of points. BNO can effectively handle topological and geometric variations. In
particular, we train BNO models on a relatively small airfoil dataset (with two different topologies,
Airfoil and Airfoil Flap) and Poisson dataset (with four different types of geometries and topologies),
and achieve relative Lo test errors around 2.0% and 1.7%, respectively. In addition, we evaluate the
model’s potential ability to generalize across previously unseen geometries. On the airfoil dataset,
when trained solely on Airfoil and tested on Airfoil Flap, the model still produces physically rea-
sonable solutions. In the Laplace dataset, where the training and testing sets correspond to different
geometries and topologies, the model also generalize well. Moreover, the training process is highly
efficient thanks to the reduction in dimensionality, with the time per epoch being less than half that of
the PCNO baselines.

2 Problem Setting

2.1 Boundary Value Problem

Let D C R™, and let 2, C D be compact regions parameterized by some o € A. Given partial
differential operators P and R, a class of partial differential equations is given by the boundary
value problem

Pu=f inQg,,
Rou=g ondfd,.

Here, the tangential differential operator R, only acts on w and its partial derivatives with respect to
the normal v,, on the boundary 0f2,, of the domain §2,. A natural interpretation of the input functions
f and g is that they belong to spaces defined on the domain €2, and its boundary OS2, respectively.

We use the notation .% (Y") to denote a class of functions defined on a general set Y. For instance,
one may assume f € L?(Q,) and g € L?(09,). By extending f, g, u using zeros to the entire
domain D, the spaces .# (£),) and .# (0§),,) can be viewed as embedded subspaces of .# (D), which
we denote by Fi,¢ and J,, respectively. Similarly, the solution space is represented by U{. Moreover,
the geometric parameter « can also be represented as a function over D, such as a signed distance
function (SDF) [36] or a density field [32} 54].



Together, this leads to a unified formulation of the solution operator

G iAX Fy x Fo = U, G :(a,f,9) — u (1)

A more general formulation can be obtained without extending the functions, where the solution
operator is formulated as

Gt U (o) x F(2) x Z00) = | F(Q0). G (o fig)vu @)

acA acA

In this paper, we retain the form of equation (2 to emphasize that the functions f and g are defined
on manifolds of different dimensions.

2.2 Boundary Integral Equations

Using the General Green Theorem (see [23) equation (3.5.19)]), we can derive the weak formulation
of the original equation,

/ WP pdy = / of dy + / B(u, ,a) dS(y), 3
Qo Qq Q4

where P* is the adjoint operator of P and B(u, ¢, «) denotes the boundary terms, depending on the
solution u, the parameters «, and a given test function ¢.

For example, for the Laplace equation,

Pu=Au and B(u,¢,a) =u—— — p—),
where v,, denotes the normal on the boundary 0f2,, as before. Furthermore, if P is a uniformly
strongly elliptic differential operator of even order with real coefficients, Lemma 3.6.1 in [23]] shows

that there exists a local fundamental solution G(z, y), such that P*G(z,y) = 6(y — x), and thus the
solution can be expressed as

u(x) :/Q G(z,y)f(y)dy + . B(u, G, a)(y) dS(y) for z € int Q. 4

3 Boundary-Augmented Neural Operators

3.1 General Approach

We formulate the Boundary-augmented Neural Operator (BNO) as a three-stage architecture
consisting of a lifting operator, a sequence of boundary-augmented layers, and a projection operator,

(Lifting) — (uo,vo) = P(f,9) o)
(Boundary-Augmented Layers) (ug,vg) = L(ug,vp) for £=1,...,L (6)
(Projection) (u,v) = Q(ur,vr) )

where f, g are the input features that defines on €2, and 0f1,,, separately. Similarly, u, is defined over
the full domain 2, while vy is defined only on the boundary 012,

The boundary-augmented layers require interactions between wuy and vy, i.e., between the full domain
and boundary. This can be implemented using a boundary encoder that couples the two (see
Appendix [A). However, in the special case considered here, the boundary and full-domain features
are treated separately, which allows to exploit the lower dimensionality of the boundary to improve
computational efficiency while still capturing the essential boundary effects.
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Figure 1: Example of a Boundary-augmented Neural Operator (BNO). The blue part indicates
operators’ action on functions defined on the boundary, while the red part corresponds to the operators
acting on functions over the full domain. The mixed colors of blue and red illustrate that for this
specific BNO architecture, **d and KC°** are interactions between the boundary and the full domain.

3.2 Special Case: Reduction and Extension

In this special case, we exploit the boundary integral formulation introduced above and focus
specifically on the boundary term B(u, ¢, «) which depends on the solution u, the parameters «, and
any given test function ¢.

As an example, for the 2D Poisson equation Au = f, we can use the notation V¢ = (¢, ¢y),
Vu = (ug, uy), Ovq = (V2,vY) and rewrite the boundary term

0 Ju
(’U,7(b, ) _u% - %
as
B(“’? ¢7a) = ’LL(/wag + u(byyzo/é + ’U/angl/g + uy¢”3
= (¢xa¢ya¢a ) - (uz/gw uvy, ugvy, uyyg)T ®)
E—

where the term ¢ is independent of the geometry, while v depends on the geometry.

More generally, it can be shown (see Appendix [B)) that the boundary term B(u, ¢, @) can be de-
composed into such a geometry-dependent part and a geometry-independent part. Using the same
notations for ¢ and v, equation can be rewritten as

u(z) = A Gz, y)f(y) dy + - Gi(z,y) - v(u,a)(y)dS(y)  for z € int Qu.  (9)

Inspired by the structure of equation (9)), we propose the following special case of BNO, which is
also illustrated in Figure[T}

(Lifting)  (uo,v0) = P(f,9) (10)
(Reduction) vp = J(ngg_l + Kﬁedu(g_l + Wéjv(g_l) for {=1,...,L (11)
(Extension) we = o (Kjug—1 + K + Wjug—y) for £=1,...,L (12)
(Projection) u=Qur, (13)



where f, u, are defined over the full domain €2, and g, vy is defined only on the boundary 0€2,.

In this special case of Boundary-augmented Neural Operators,

* P and ( are pointwise lifting and projection operators to extract and project high-dimensional
features, and W is a pointwise linear operator, as in the traditional structure of neural operators.

* K} and K} correspond to conventional neural operator layers (e.g., Fourier convolution layers)
applied either on the full domain €2, or on the boundary 02, with the dimensions of input and
output space remaining the same.

o Kied: £(Qa;RY) — £(094;R?) is a reduction operator to obtain v as in equation (9), so it
must be a local operator depending solely on the values of u,—1 () in the vicinity of the boundary.
It can be represented by a simple differential operator, such as V or %, since the presence of
multiple layers implies the use of higher-order derivatives. This operator can be computed directly
by least square estimation [54]] or parameterized through a local neural operator [40]].

o K& L(0Qa; RY) — L(Q4;RY) is an extension operator designed to emulate the integral
formulation in equation (9), which is an integral operator that extends a function defined on 92,
to a function defined on 2, which plays a central role in our method.

Here, we follow the common practice in operator learning, and assume that the boundary kernel
admits a low-rank representation

Ga(z,y) = Y _ ckpn(@)er(y), (14)

k

in which case the action of the extension integral operator can be approximated by

kptox Vo) ([ wiatasm ) as)
A GIoN
In practice, the coefficients of v on the boundary 92, can be numerically estimated via
Foo,ok) = [ o)ai) ds) = 3 o) AS ) (16

J

when surface elements AS(y;) are known. In our numerical experiments, we employ a truncated

Fourier basis, namely {gpk(m) =BT ke [-K, K]d} where L > 0 is a learnable scaling

parameter that adapts the frequency resolution to the underlying geometry.

Depending on the problem setting, and in particular on whether the solution depends primarily on
the full field or only on the boundary, different choices can be made for the reduction operator X4,
the extension operator K.°**, or the global operator components X%, K” within this example of BNO.
The main computational cost typically arises from % and from the reduction operator. When the
solution is determined solely by the boundary, as in our numerical experiments, the global operator
K* on €2, can be omitted, which reduces both computational time and memory requirements.

In this paper, we consider two different examples of Boundary-Augmented Neural Operators (BNOs):

¢ GNO-BNO where a Graph Neural Operator (GNO) [34] is used for the reduction step to capture
local effects,

¢ ExtBNO where the reduction operator is omitted entirely to achieve further savings in computa-
tion, leading to a purely extension-based model.



Table 1: Relative Lo error (%) and training time per epoch for different models. The top row specifies
the training and testing types of airfoil. "Mixed" denotes a combination of the two types of airfoil.

Training Data  Mixed (500 x 2) Airfoil (1000) Airfoil+ Flap (1000)

Testing Data Mixed Airfoil - Airfoil+Flap  Airfoil  Airfoil+Flap ™€
ExtBNO 2.07 1.58 11.21 10.86 1.63 17s
GNOBNO 2.03 1.56 10.92 9.97 1.58 24s
PCNO 1.87 1.58 21.74 10.94 1.64 96s
PCFNO 1.86 1.52 26.10 12.47 1.63 37s

4 Numerical Experiments

In this section, we evaluate the performance of Boundary-Augmented Neural Operators, and more
specifically of GNO-BNO and ExtNO, on two PDE problems: (1) the transonic Euler equations on
airfoils with and without flaps, and (2) the Laplace equation with Dirichlet boundary conditions over
four different types of geometries.

As baselines, we consider the Point Cloud Neural Operator (PCNO) [54], which learns operators
directly on unstructured point clouds and incorporates gradient features. We also include PCFNO, a
simplified variant of PCNO without gradient features, which can also be regarded as a point-cloud
implementation of the Fourier Neural Operator (FNO) [17, 35].

4.1 Airfoil With Flap
The Airfoil-Flap dataset of [54] consists of simulations of the following 2D Euler equations

V(p’U) :07
V-(pv®v+pl)=0, (17)
V- ((E+pv)=0,

over two types of shapes with different topologies, a single airfoil (Airfoil), and a main airfoil with
an additional flap (Airfoil+Flap), as depicted in Figure[2] The steady-state solution is determined
by the airfoil surface. Therefore, predicting the pressure field can be viewed as mapping from a 1D
submanifold (the surface) to the full field, which is well-suited for BNOs.

C >,

Figure 2: Left: Airfoil example. Right: Airfoil+Flap example.

We first train ExtBNO and GNOBNO on a mixed dataset comprising 500 samples from Airfoil
and 500 samples from Airfoil+Flap. The resulting relative L2 test errors of the models are 2.07%
and 2.03%, respectively, slightly higher than those reported for PCNO. We then train the models
separately on 1,000 samples of either Airfoil or Airfoil+Flap, and results are reported in Table|l} We
find that when trained only on Airfoil and tested on Airfoil+Flap, BNOs demonstrate significantly
better generalization performance, capturing the shock over the main airfoil, whereas PCNO fails to
produce physically consistent predictions, as shown in Figure 4]



Table 2: Relative Ly error (%) and training time per epoch. The left column indicates the training
dataset, where "Mixed" denotes a combination of all four types of shape. The top row indicates the
test type of shape.

Train\Test Low-Freq High-Freq Double Hole Time per Epoch

Mixed (512 x 4) 1.45 2.07 2.02 1.42 61s
Mixed (128 x 4) 3.30 3.58 4.30 291 18s
Low-Freq (512) 2.80 10.44 5.42 7.51 18s
High-Freq (512) 7.88 2.95 7.03 11.64 18s
Double (512) 4.92 8.72 4.09 5.39 18s
Hole (512) 9.96 10.36 8.21 2.48 18s

4.2 Laplace Equation
The Laplace equation with Dirichlet boundary conditions can be expressed as

Au =0,

(18)

u|89 =9,
where the solution w is determined by the shape of the domain and the boundary values. Four types
of geometries in 2D Euclidean space as shown in Figure [3]are considered:

1. Low-Freq, a simple connected boundary with low-frequency features,
2. High-Freq, a simple connected boundary with high-frequency features,
3. Double, two low-frequency boundaries connected together,

4. Hole, a shape with a hole.

For each type of geometry, we generate 1024 different random shapes, along with corresponding
random functions g. More details regarding the dataset are provided in Appendix [D.1]

Figure 3: The shapes considered for the Laplace equation. The shapes from left to right correspond
to Low-Freq, High-Freq, Double, and Hole geometries.

We first train our model on a mixture of all four shape types. For each type, we use 512 samples for
training and 100 samples for testing. The resulting test relative Lo error is 1.74%, indicating that
the model’s expressive power is sufficient to handle diverse geometries. We then train the model on
each type of shape respectively to investigate the generalization properties of the model. The testing
errors are shown in Table 2] For the cases where the training and testing datasets are completely
disjoint, the model also generalizes well. It is also noteworthy that the model still exhibits potential
generalization between the Hole shapes and the other shapes, even though the Hole geometry is not
topologically homeomorphic to the simply connected ones. Some samples from different training
settings are shown in[D.2]



5 Discussion

The experiments show that by separating the processes of reduction and extension and leveraging the
lower dimensionality of the boundary, the considered BNOs achieve much higher efficiency when
the solution strongly depends on the boundary. These BNOs also capture the interaction between
the boundary and the full domain, leading to improved generalization across unseen topologies and
geometries. Several interesting future avenues for research include:

1. Our experiments have been limited to 2D settings. Extending BNOs to 3D large-scale simulations,
including time-dependent problems, could be an important next step.

2. Constructing a broader training dataset with a wider variety of shapes would allow the model
to encounter more diverse geometries during training and could also serve as a standardized
benchmark for future studies.

3. Investigate the structure of interactions between boundary and full domain. Our current design
separates reduction and extension, and a direction is to devise coupling mechanisms that preserve
the boundary’s lower dimensionality while enabling richer mixing with domain features.
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A Related Methods

Neural Operators. Neural operators extend the neural network paradigm to learn mappings
between infinite-dimensional functions [2, 4], making them particularly well-suited for approximating
PDE solution operators. They have a universal approximation property for nonlinear operators [28]],
accept input functions on any discretization, and output functions that can be queried consistently at
arbitrary resolutions. This flexibility improves data efficiency by supporting training with data of
varying discretization and fidelity. Kossaifi et al. [27] maintain a comprehensive open-source library
for learning neural operators in PyTorch.

Neural operator architectures such as the Spherical Fourier Neural Operator (SFNO) [6]] and Optimal
Transport Neural Operator (OTNO) [32] focus solely on the surface. While these approaches
are computationally efficient, they cannot produce predictions over the full domain. In contrast,
methods like the Geometry-Informed Neural Operator (GINO) [36]] and Point-Cloud Neural
Operator (PCNO) [54] can handle the boundary and the full domain together. However, since their
computations are performed over the entire domain, their efficiency is reduced.

Boundary Element Methods By letting ¢(y) = G(z,y). In equation (@), when z — 99, we
obtain

c(z)u(x) = / G(z,y)f(y)dy + B(u, G, a)(y) dS(y) for x € 09, (19)
. 904

where ¢(z) = % if 910, is smooth. To solve the corresponding PDEs, boundary element methods
(BEMs) [10, 49] reduce the dimensionality by only discretizing only the boundary rather than the
entire domain. But they are also limited to the problem where an explicit form of fundamental
solution is known.

Boundary Encoders. A straightforward approach to incorporating boundary information for
solving PDE:s is to use encoders that extract features from the boundary. Multiple architectures, such
as GCN [26], MeshCNN [21]], or pre-trained models [15} 46], can serve as the encoder. Various
strategies can then be employed to integrate these boundary features. For example, attention-based
mechanisms are used in [9} 12} 51]], DeepONet architectures are employed in [16, 42]. However,
these feature vectors often lose the underlying geometric structure, which limits their ability to
generalize across varying geometries.

Physics-Informed Losses. Physics-informed loss functions can be used to solve PDEs, as demon-
strated in physics-informed neural networks (PINNs) [48]] and physics-informed neural operators
(PINOs) [20, 37, 38]]. Many variants of PINNs [19, 30, 143} 150] leverage physics-informed losses to
enforce boundary conditions. More explicitly, letting ug := Go(f, g, ), these approaches penalize
deviations away from the PDE equations and boundary conditions via the PDE residual loss

Lpae = ||Pug — in?(QQ) + AM[Raug — 9||i2(szu) . (20)
or the boundary integral loss
2
Ly, = ||cug — / Gz, y)f(y)dy — B(ug, G, a)(y) dS(y) 21
Qu GIeN L2(094)

However, these physics-informed losses often require careful tuning of collocation points and can be
sensitive to discretization, making training challenging for complex geometries or high-dimensional
boundary value problems.
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B Boundary Integral Equations

The differential operator for linear PDEs can be written as

Alkly

e T ——— 22
ax]fl o Ol 22)

Pu= Z a(x)

[k|<m

Assume that the test function ¢ and ay, are smooth enough, for example, ¢, ap € C>°(Q), by General
Green Theorem (see equation (3.5.19) in [23]]), we can derive the weak formulation of the original
equation.

/ uP*ngdx:/ fodx + B(u, ¢, ) dS, (23)
Qo Qa CION

where
a\klam
At ... Qkr

P g Y (—DH

|k|<m

(24)

is the adjoint operator of P. B(u, ¢, &) denotes boundary terms, B can be derived from repeatedly
applying the divergence theorem

[ opu= 3 [ ae oMu__,
o, U= o ay, 81:’1“ o T

[k|<m
dayd 9lkl=1y,
|k|<m Q, 973 89311 8.%]171 . Oghn
QlkI=1 _
*/ app—————— v dS
02 Oxyt---Oxt T Oxyn
- o oM " 25)
|mgnL*Lxaxﬁaxﬂz8%?---8xﬁi*1~-8x25*1~-ax%1
glkl=1y, )
+/ kP — — il dS
% dakt . gx T ke
Oa 9lkI=2y, .
+/ kqs k kj, —1 ko —1 A Vglz ds
(21979 ale 82E11 '-.8xjf1 ...an272 s Oxpm

Therefore we can write the boundary term as B(u, ¢, ) = >_, S;(u)T;j(¢)N;(vo) which allows us
to separate T'(¢), as it does not depend on the shape parameter .

For example, in the 2D Poisson equation,

Blusgva) = ugt — 2"
Denoting
vo= (@) o= i) 2= ()
we have
uvy
Blu,6.0) = by + udyvl + uadvi + uyovh = (60,0:6.9) | | 26
Uy,
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C Details about the Airfoil Experiment

C.1 Airfoil with Flap

The Airfoil-Flap dataset, originally generated in [54]], is designed with the following far-field boundary
conditions
Poo = 1.0, poo =10, My =0.38. 27

Both the main airfoil and the flap are derived from NACA four-digit profiles. The flap positioned at
(—0.015,0.05) relative to the main airfoil. The chord length of the main airfoil is 1.0 and the chord
length of the flap is 0.2. Additional design parameters are summarized in Table 3]

Table 3: Geometric parameters for the shapes generated in Airfoil-Flap dataset (extracted from [54])

Design variable Range
Camber-to-chord ratio 0% ~ 9%
Max camber location 20% ~ 60%

Main airfoil
Thickness-to-chord ratio | 5% ~ 30%
Angle of attack —5°% ~ 20°
Camber-to-chord ratio 0% ~ 9%
Max camber location 20% ~ 60%
Flap

Thickness-to-chord ratio | 10% ~ 20%
Relative angle of attack 5% ~ 40°

C.2 Some Results

Ground Truth Prediction

Figure 4: A comparison when the model is trained on Airfoil but tested on Airfoil+Flap. The top row
shows the PCNO sample with the lowest loss, the middle row shows the ExtBNO sample with the
median loss, and the bottom row shows the ExtBNO sample with the highest loss.
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D Details about the Laplace Equation

D.1 Laplace Equation

The Laplace equation with Dirichlet boundary condition can be expressed as
Au =0,

(28)
U|aQ =g

To investigate generalization capabilities, we consider a variety of geometric configurations by
sampling domain shapes from a Gaussian process defined over polar coordinates. Specifically, the
boundary 0 of each domain is parameterized as

(z(0),y(0)) = (r(0) cos 0, r(0) sin 6) (29)

where the radial function r(6) is sampled from a Gaussian process.

Let r ~ GP(0,C(6,6")), with covariance kernel

1 1
C(6,0) = 50— 02 —7(0—0)+ §7r2, 6—6 €0,2n] (30)
whose Fourier eigenvalues decay as A\, = k% This yields the following Karhunen-Loeve expansion
1,
r@= > %zkelke, 2 ~ CN(0,1) i.i.d. (31)
kez\{0}

For numerical implementation, the series is truncated at frequency K, resulting in
1 .
re(0) = > %zkelke, 2 ~ CN(0,1) i.i.d. (32)
—K<k<K,k#0
To ensure stability and prevent degeneracy near the origin, we normalize the radial function as
1
Fre=1+ 25, Sg=2 Y = 33)
Sk k
1<k<K

and the resulting normalized process is denoted by Gaussian process is denoted as GP .

The following four types of domain geometries are considered:

¢ Low Frequency: A single simply connected domain generated by r ~ 1 + GP i 19, resulting in
a smooth boundary with low-frequency features.

¢ High Frequency: A single simply connected domain generated by  ~ 1 + GP x—150, leading to
a highly oscillatory boundary with rich high-frequency features.

* Double: A single connected domain formed by joining two independently sampled boundaries
ri,7e ~ 1+ GPg_19. 72 is then resclaed by a ~ U(0.5,1). The two components are posi-
tioned to avoid overlap and are smoothly connected at the origin using a spline-based interpolation.

* Hole: A domain consisting of an outer and an inner boundary. The outer boundary is sampled
from r ~ 1+ GP g—10, as in the simply connected case. A random scaling ratio 3 is then sampled
form 8 ~ 0.4+ 0.1GP i —5 to define the inner boundary as a scaled version of the outer boundary,
centered within it.
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In addition to varying domain geometries, g is drawn from another Gaussian process defined over the
spatial domain, with a radial basis function (RBF) kernel given by

lz—y|?

Cla,y) =e =222 (34)

where L > 0 denotes the length scale parameter that controls the smoothness of the samples. For
numerical implementation, periodic boundary conditions are imposed, allowing us to represent the
process using a truncated KL expansion. The corresponding eigenvalues are given by

Ak = QWLQe_%I%FLQ (35)
and the truncated expansion takes the form
up(@)= Y Ve T (36)
— K <kg,ky <K

where K = 10,7 = 4.

To ensure comparability across different length scales, each sample is normalized as

- ur,
-z 7
ur or2mL? 37

where o7, is a scaling factor chosen such that E[max @] — E[min %] = 1 and is approximated using

200 samples of the process. In our setup, the length scale of g is fixed at L, = % 2.

o
|- 8 _.
|" .y - |-

Figure 5: Illustration of the case with L, = 1—10\/§ From left to right: realizations of the Gaussian
random field, corresponding boundary values and the Laplace equation solutions.
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D.2 Additional Results Figures

The following figures present the results obtained under different training shape configurations. For
each setting, we visualize the test sample that achieves the median L5 error.
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Figure 6: Model trained solely on Low-Freq shapes and evaluated on all other shape families. The
visualized cases are those attaining the median Lo error.
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Figure 7: Model trained solely on High-Freq shapes and evaluated on all other shape families. The
visualized cases are those attaining the median Lo error.
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Figure 8: Model trained solely on Double shapes and evaluated on all other shape families. The
visualized cases are those attaining the median Lo error.
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Figure 9: Model trained solely on Double shapes and evaluated on all other shape families. The
visualized cases are those attaining the median Lo error.
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