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Abstract
In Amazon robotic warehouses, the destination-
to-chute mapping problem is crucial for efficient
package sorting. Often, however, this problem is
complicated by uncertain and dynamic package
induction rates, which can lead to increased pack-
age recirculation. To tackle this challenge, we
introduce a Distributionally Robust Multi-Agent
Reinforcement Learning (DRMARL) framework
that learns a destination-to-chute mapping pol-
icy that is resilient to adversarial variations in
induction rates. Specifically, DRMARL relies on
group distributionally robust optimization (DRO)
to learn a policy that performs well not only on av-
erage but also on each individual subpopulation of
induction rates within the group that capture, for
example, different seasonality or operation modes
of the system. This approach is then combined
with a novel contextual bandit-based estimator
of the worst-case induction distribution for each
state-action pair, significantly reducing the cost
of exploration and thereby increasing the learning
efficiency and scalability of our framework. Ex-
tensive simulations demonstrate that DRMARL
achieves robust chute mapping in the presence of
varying induction distributions, reducing package
recirculation by an average of 80% in the simula-
tion scenario.

1. Introduction
In Amazon robotic sortation warehouses, mobile robots
are deployed to transport and sort packages efficiently to
different destinations (Wurman et al., 2008; Azadeh et al.,
2019; Amazon, 2022b;a; 2023). The sorting process be-
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Figure 1: Schematic layout of an Amazon robotic sortation ware-
house featuring robot drives and eject chutes.

gins at induction stations, where packages are loaded onto
mobile robots and subsequently transported to designated
eject chutes based on their destinations (Figure 1). A criti-
cal factor determining the package throughput capacity of
these facilities is the effective allocation of eject chutes to
different destinations. Therefore, the destination-to-chute
mapping policy plays a crucial role in optimizing the overall
throughput performance of the robotic sortation warehouses.

Our previous work (Shen et al., 2023) addresses the des-
tination assignment problem (DAP) (Boysen & Fliedner,
2010) in robotic sortation systems by developing a dynamic
chute mapping policy. This policy determines the optimal
allocation of eject chutes to destinations with the objective
of minimizing the number of unsorted packages. We pro-
posed a model-free reinforcement learning approach that
dynamically adjusts the number of chutes assigned to each
destination throughout the day. Our solution formulates
the chute mapping problem within a Multi-Agent Rein-
forcement Learning (MARL) framework (Lowe et al., 2017;
Sunehag et al., 2017; Samvelyan et al., 2019; Rashid et al.,
2020), where each destination is represented as an agent
that controls its chute allocation at each time step.

While the MARL policy proposed in our previous work
(Shen et al., 2023) demonstrates superior performance com-
pared to traditional reactive chute mapping approaches often
implemented in Amazon robotic sortation warehouses, its
effectiveness assumes that the induction distribution dur-
ing deployment matches the training distribution and that
the daily induction rate remains close to its average value.
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In practice, however, induction patterns exhibit significant
temporal variations, potentially compromising the MARL
policy’s performance when confronted with unexpected dis-
tribution changes.

To enhance robustness against such variations, in this pa-
per, we propose a Distributionally Robust Multi-Agent Re-
inforcement Learning (DRMARL) framework that learns
chute mapping policies capable of maintaining near-optimal
performance across diverse induction distributions. Specif-
ically, we formulate this problem as group DRO problem,
where each group represents a distinct induction distribu-
tion pattern extracted from a subset of a historical dataset.
Our DRMARL framework optimizes policies for the worst-
case induction patterns across these distribution groups. To
address the computational cost of exhaustively evaluating
all distribution groups during training, we introduce a con-
textual bandit (CB)-based worst-case reward estimator for
each state-action pair. Through extensive evaluation, we
demonstrate that our DRMARL framework yields robust
chute mapping policies that not only outperform baseline
MARL policies on out-of-distribution (OOD) induction data
but also maintain consistent performance across varying in-
duction distributions.

Our contributions are twofold: First, we introduce group
distributionally robust optimization in multi-agent reinforce-
ment learning, developing a novel framework to learn poli-
cies that are robust to distribution shifts in the reward func-
tion. Second, we propose an novel contextual bandit-based
method for efficient worst-case reward estimation, signifi-
cantly reducing the computational complexity of DRMARL
training by eliminating the need for exhaustive group explo-
ration to estimate the worst-case reward. To the best of our
knowledge, our framework is the first to integrate contextual
bandits with group DRO and MARL, addressing a well-
known challenge of distributionally robust reinforcement
learning related to its computational cost. Our proposed
framework has broad applicability to various large-scale
industrial applications beyond sortation systems, including
resource allocation, collaborative robotics, and warehouse
automation, where robustness to distribution shifts is cru-
cial.

1.1. Literature Review

Destination Assignment Problems: Mathematical program-
ming has been used to optimize warehouse systems, in-
cluding destination assignment problems (DAP) (Boysen &
Fliedner, 2010) for sorting systems. The destination map-
ping approach in (Fedtke & Boysen, 2017) optimizes pack-
age flow by minimizing travel distances between inbound
and outbound stations in conveyor-based sorting systems,
which leads to improved throughput. (Novoa et al., 2018)
minimizes the worst-case flow imbalance across work sta-

tions on the sortation floor, developing a stochastic approach
with chance and robust constraints. For robotic sorting sys-
tems, (Khir et al., 2021) proposes an integer programming
method to solve DAPs that minimize sortation effort and
satisfy package deadlines. A robust formulation address-
ing demand uncertainty is presented in (Khir et al., 2022).
While these approaches effectively optimize destination as-
signment in sorting systems, they do not account for distri-
butional uncertainty in demand and system dynamics. In
contrast, our proposed DRMARL framework explicitly mod-
els such uncertainties, ensuring robust performance under
varying operational conditions.

MARL for Resource Allocation: MARL has previously been
applied to address resource allocation problems (Nie et al.,
2021; Mei & Wang, 2024; Jun-Han et al., 2025). For exam-
ple, a MARL framework for ocean transportation networks
was proposed in (Li et al., 2019). This framework devel-
oped a multi-agent Q-learning algorithm where the local
Q-networks depend on the joint states (including the lim-
ited shared resources) and the joint actions. However, since
the joint state-action space grows exponentially with the
number of agents, the local Q-networks are hard to learn
and this approach does not scale well in practice. This
limitation was addressed in our previous work (Shen et al.,
2023), where the local Q-networks are only loosely coupled,
enhancing the scalability while still being interconnected
enough to capture the impact of robot congestion on the
sortation floor. Compared to (Li et al., 2019), the method
proposed in (Shen et al., 2023) models resources explicitly
as actions and considers budget constraints when taking
joint actions. However, these MARL-based approaches do
not incorporate distributional robustness, making them sen-
sitive to demand fluctuations and uncertainty, which our
DRMARL framework explicitly addresses to ensure reliable
performance in dynamic sorting environments.

Robust and Distributionally Robust RL: Robust Reinforce-
ment Learning (Robust RL) (Morimoto & Doya, 2005;
Wiesemann et al., 2013; Pinto et al., 2017; Panaganti
& Kalathil, 2021; Moos et al., 2022; Panaganti et al.,
2022; Goyal & Grand-Clement, 2023; Yamagata & Santos-
Rodriguez, 2024) develops policies that maintain perfor-
mance under worst-case conditions through adversarial per-
turbations. Distributionally Robust Reinforcement Learning
(DRRL) (Xu & Mannor, 2010; Smirnova et al., 2019; Hou
et al., 2020; Wang et al., 2023; Ramesh et al., 2024; Zhang
et al., 2024; Lu et al., 2024; Panaganti et al., 2024) extends
this by optimizing across environment distributions rather
than a single worst-case scenario. While traditional DRRL
primarily addresses ambiguity in MDP transition probabili-
ties, this approach inadequately captures induction distribu-
tion changes in Amazon robotic sortation warehouses. Our
problem requires a focus on distributionally robust optimiza-

2



Distributionally Robust Multi-Agent Reinforcement Learning for Dynamic Chute Mapping

tion of reward function distributions, building on (Ren &
Majumdar, 2022; Liu et al., 2022). Recent advances in (Dis-
tributionally) Robust Multi-Agent RL (Zhang et al., 2020;
Bukharin et al., 2024; Shi et al., 2024b;a) have introduced
frameworks like RMGs, ERNIE, and DRNVI to address en-
vironmental uncertainties, adversarial dynamics, and model
uncertainties. While existing methods primarily focus on
robustness in transition dynamics, adversarial interactions,
and general environmental uncertainties, they do not ex-
plicitly address distributional shifts in package induction,
which is a critical challenge in sortation warehouses. Our ap-
proach extends DRMARL to explicitly model and optimize
against uncertainties in induction distributions, ensuring ro-
bust and consistent performance under varying operational
conditions.

Group DRO: Group Distributionally Robust Optimization
aims to enhance model robustness across diverse subpopula-
tions by optimizing for the worst-performing groups rather
than the average performance (Sagawa et al., 2020). This ap-
proach ensures fairness and resilience to distribution shifts,
particularly for underrepresented groups. While initial work
focused on single-agent supervised learning (Hu et al., 2018;
Oren et al., 2019), recent advances have extended these prin-
ciples to more complex settings. Notably, (Soma et al.,
2022) proposed a soft-weighting method on distribution
groups with convergence guarantees, while (Wu & Fu, 2023)
and (Xu et al., 2023) demonstrated the applicability of group
DRO in multi-agent systems and reinforcement learning,
respectively. Our work bridges a critical gap by introduc-
ing group DRO principles to DRMARL. We begin by for-
mulating the distributionally robust Bellman operator and
addressing the computational challenges of exploring all dis-
tribution groups during training. To tackle these challenges,
we provide a DR Bellman operator specifically designed for
MARL and introduce a contextual bandit (CB)-based worst-
case distribution group estimator. This estimator enables
efficient training by adaptively identifying the worst-case
distribution groups.

The remainder of the paper is organized as follows. In
Section 2, we formulate the dynamic chute mapping prob-
lem within a multi-agent reinforcement learning framework.
In Section 3, we extend this formulation by incorporat-
ing group distributionally robust optimization into MARL,
while in Section 4, we present novel contextual bandit-based
worst-case reward estimator to enhance training efficiency.
Finally, in Section 5, we demonstrate the effectiveness of
our proposed framework through extensive simulations.

2. Problem Formulation
In Amazon robotic sortation warehouses, package flow is
modeled using three buffers: induct, laden drive, and recir-
culation, as illustrated in Figure 2. The laden drive buffer

Figure 2: Flow of packages in the Amazon robotic sortation ware-
house.

contains packages actively transported by robots from in-
duct stations to assigned eject chutes. Since the total number
of chutes is limited, contention occurs when multiple desti-
nations require chute capacity simultaneously. When chute
availability is insufficient, excess packages are diverted to
recirculation chutes, entering the recirculation buffer for
another pass through the system. Chutes are reallocated to
different destinations when a destination vehicle reaches ca-
pacity or when its scheduled departure time is reached. The
dynamic chute mapping policy optimizes chute allocations
across destinations in real time to minimize recirculation
and maximize system throughput.

We formulate the dynamic chute mapping problem as a
sequential decision-making problem, specifically as a multi-
agent reinforcement learning (MARL) problem that deter-
mines the optimal chute allocations to minimize package
recirculation at each time step. To this end, we define
a Markov game over N unique destinations, represented
by the tuple

(
N,S, {Oi}Ni=1, {Ai}Ni=1, P, {ri}Ni=1, γ, ρ0

)
,

where S is the joint state space, Oi ⊂ S is the local obser-
vation space for destination i, Ai denotes the action space
(i.e., the number of new chutes acquired) for destination i,
P is the state transition probability, ri is the reward func-
tion, γ ∈ (0, 1) is the discount factor, and ρ0 is the initial
state distribution. While the joint state provides complete
system information, each destination’s observation is lim-
ited to local features relevant to its decision-making. This
partial observability requires destinations to act based on
their own experiences and available information. We refer
to Appendix C.1 for a detailed MARL formulation.

The system operates in discrete time steps, where, at each
step t, individual agents (destinations) make chute allo-
cation decisions. Each agent i employs a local policy
πi : Oi × Ai → [0, 1] that maps local observations oi

to probabilities over possible chute allocation actions. Each
agent i learns its optimal local policy πi,∗ by maximizing the
expected discounted return E[Rit] = E

[∑∞
t′=t γ

t′−trit′
]
,

where rit′ denotes the instantaneous reward at time t′ and
γ is the discount factor. The expectation captures both
the stochastic nature of the policy and the environment dy-
namics. This formulation naturally aligns individual agent
objectives with the global goal of minimizing recirculation

3



Distributionally Robust Multi-Agent Reinforcement Learning for Dynamic Chute Mapping

while maintaining the throughput. The instantaneous reward
function for agent i at time step t is defined as:

rit = −recircit − 2 ait, (1)

where recircit ≥ 0 represents the number of packages
in recirculation for destination i and the action term ait
is included as penalty to prevent the learned policy from
over-allocating chutes to only a few destinations. Due to
the coupled nature of agent decisions, we utilize the joint
action-value function to determine optimal local policies
πi,∗:

Qπ(s, a) = E
[ N∑
i=1

Rit|st = s, at = a
]
, (2)

which evaluates the expected return when taking the joint
action a = (a1, . . . , aN ) in state s and following the joint
policy π thereafter.

To mitigate the exponentially growing policy space, we
assume agents execute actions independently, such that
π =

∏N
i=1 π

i. The optimal policy π∗ is learned using
the Deep Q-Network (DQN) (Mnih et al., 2015), where a
neural network Q(s, a; θ) with parameters θ approximates
the optimal action-value function Qπ

∗
(s, a). The learning

process minimizes the loss:

L(θ;X) = Es,a,r,s′
[
(Q(s, a; θ)− y)2

]
, (3)

where y = EX∼P[r(s, a;X)] + γmaxa′ Q̄(s′, a′; θ̄) ap-
proximates the optimal target values EX∼P[r(s, a;X)] +
γmaxa′ Q

π∗
(s′, a′). Here, r(s, a;X) represents the instan-

taneous reward under the current state-action pair and in-
duction distribution X1. Stability of the learning process is
enhanced through two mechanisms: a target network Q̄ with
periodic parameter updates using the most recent values of
θ, and an experience replay buffer D that stores transition
tuples (s, a, r, s′). The resulting optimal policy takes the
form:

π∗(s, a) =

{
1

|A(s)| if a ∈ A(s),
0 otherwise

(4)

where A(s) = argmaxaQ(s, a; θ∗) and θ∗ =
argminL(θ;X).

To address the scalability of the state-action space and
the computational feasibility of the expectation in (3), we
employ the Value Decomposition Network (VDN) (Shen
et al., 2023) with budget constraints for computing feasi-
ble joint actions, with implementation details provided in
Appendix C.3 and Appendix C.4.

While the above MARL-based chute mapping policy demon-
strates strong performance under standard operating condi-
tions, it exhibits significant performance degradation under

1See Appendix C.2 for details of the induction distribution.

Figure 3: Relative degradation of MARL policy (trained on Year
1) on OOD (Years 2-4) induction data, compared to Year 1.

distribution shifts in package induction patterns (see Fig-
ure 3). This vulnerability to out-of-distribution scenarios
motivates our robust formulation.

In this paper, our objective is to introduce robustness to
distribution shifts in the learned chute mapping policies. We
achieve this by incorporating group DRO into the MARL
framework, giving rise to the proposed DRMARL approach.
Our proposed framework ensures reliable and robust perfor-
mance in Amazon robotic sortation warehouses, even under
unforeseen future induction scenarios.

3. Distributionally Robust Multi-Agent
Reinforcement Learning with Group DRO

In this section, we enhance the MARL chute mapping frame-
work described in Section 2 by incorporating group DRO
to handle uncertainty and variability in package induction
distributions. This approach enables us to develop robust
policies that perform well across diverse induction scenarios,
including previously unseen induction distributions.

Unlike traditional stochastic optimization, which assumes
that the true data-generating distribution is known and fixed,
Distributionally Robust Optimization (DRO) addresses un-
certainty in the underlying distribution by optimizing against
a family of plausible distributions, i.e., the ambiguity set,
constructed from the available data (Delage & Ye, 2010;
Shapiro, 2017; Rahimian & Mehrotra, 2022; Zhen et al.,
2023; Liu et al., 2024; Kuhn et al., 2024; Konti et al., 2024).
Instead of minimizing the expected loss under a single es-
timated distribution, DRO seeks solutions that minimize
the worst-case expected loss over all distributions within
this ambiguity set. This leads to policies that are robust to
distributional shifts, such as those encountered in the chute
mapping problem, where test-time conditions may deviate
from those seen during training.

3.1. Group DRO

In DRO, the ambiguity set that captures uncertainty in the
data-generating distribution can be defined in various ways.
In particular, Group DRO (Hu et al., 2018; Oren et al., 2019)
offers an efficient way to define the ambiguity set using a
finite collection of known distributions. In the context of
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Figure 4: Ambiguity set M in regular DRO (Rahimian & Mehrotra,
2022) (left) versus group DRO (Sagawa et al., 2020) (right).

robotic sortation warehouses, this approach is especially
useful, as the ambiguity set can be constructed from histor-
ical induction data that reflects the variability observed in
real-world operations.

Following (Sagawa et al., 2020), we define the unknown
distribution P̃ as a combination of m distributions Pg , each
indexed by a group g in the set G = {1, 2, . . . ,m}. The
ambiguity set M is then defined as a convex combination of
these groups:

M :=
{
P̃ =

m∑
g=1

qg Pg
∣∣ q ∈ ∆m

}
, (5)

where ∆m denotes the (m − 1)-dimensional probability
simplex (Grünbaum et al., 1967) (see Figure 4).

In the dynamic chute mapping problem, we assume that
past years of operational data from sortation warehouses
provide sufficiently rich historical induction distributions
that can be used to obtain representative distribution groups
G. With this assumption, it is reasonable to expect that
most future induction distributions P̃ can be represented as
combinations of the basis distributions Pg with g ∈ G. As
shown in (Sagawa et al., 2020), evaluating the worst-case
reward over all m groups in G is equivalent to evaluating the
reward for the worst-case distribution within the ambiguity
set M defined in (5).

Lemma 3.1. Consider an ambiguity set M formed by Pgs
as defined in (5). For any state-action pair (s, a) ∈ S ×A,
the worst-case expected reward satisfies:

inf
g∈G

EX∼Pg [r(s, a;X)] = inf
P∈M

EX∼P [r(s, a;X)] , (6)

where G denotes the set of group indices.

The proof of Lemma 3.1 is provided in Appendix A. The
above lemma highlights a key advantage of group DRO:
while general DRO problems are infinite-dimensional and
computationally challenging, group DRO reduces the opti-
mization to a finite-dimensional problem over m groups.
This reduction makes training of distributionally robust
MARL (DRMARL) computationally tractable.

3.2. DRMARL with Group DRO

In the MARL framework described in Section 2, the policy
parameters θ are optimized as follows:

θ∗ := argmin
θ∈Θ

EX∼P [L(θ;X)] . (7)

Directly applying group DRO to MARL then leads to:

θ̃ := argmin
θ∈Θ

{
max
g∈G

EX∼Pg
[L(θ;X)]

}
. (8)

However, conventional group DRO approaches are not di-
rectly applicable to MARL problems, as minimizing the
worst-case Bellman error across groups does not necessar-
ily yield a policy that is optimal under worst-case rewards.
This disconnect arises because the worst-case Bellman error
captures the maximum deviation from the target Q-function
across groups, but it does not guarantee convergence to a
robust optimal Q-function. To address this limitation, we
introduce the distributionally robust Bellman operator, for-
mally defined in the following result.

Lemma 3.2. For an ambiguity set M defined in (5) with
group set G, the distributionally robust (DR) Bellman oper-
ator is given by:

T̃G(Q̃)(s, a) = inf
g∈G

EX∼Pg
[r(s, a;X)] + γmax

a′
Q̃(s′, a′),

where Q̃ is the distributionally robust Q-function. Moreover,
the DR Bellman operator T̃G is also a contraction mapping.

The proof of Lemma 3.2 is provided in Appendix A. Ac-
cordingly, the distributionally robust loss is given by

L̃(θ;X) := Es,a,r,a′
[(
Q̃(s, a; θ)

− inf
g∈G

EX∼Pg [r(s, a;X)]− γmax
a′

¯̃Q(s′, a′; θ̄)
)2]

,
(9)

and the distributionally robust parameters θ̃G are obtained
by solving

θ̃G := argmin
θ∈Θ

L̃(θ;X). (10)

4. Contextual Bandit-based Worst-Case
Reward Estimator for DRMARL

Solving the MARL group DRO problem (10) is theoretically
feasible since the worst-case reward can be evaluated for
each (s, a) by exhaustively searching over all distribution
groups G. However, this approach is inefficient when the
number of groups is large and forward simulation in the
environment is costly. This is particularly the case in the
dynamic chute mapping problem, where millions of pack-
ages are sorted across many destinations. Common group
DRO techniques, such as soft reweighting (Sagawa et al.,
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Algorithm 1 CB-based Worst-Case Reward Estimator

1: Input: Learning rate lCB, initial parameters ψ0, induc-
tion distribution groups G, MARL policy with QMARL,
exploration rate εCB

2: Initialize: ψ ← ψ0, replay buffer DCB ← ∅
3: for episode = 1, ..., kCB do
4: Initialize the environment with random group g′ ∈ G

and observe initial state s0
5: for time step t = 0, ..., T do
6: Select action at ← argmaxa∈AQMARL(st, a)
7: With probability εCB, select g′ ∼ Uniform(G);

otherwise, g′ ← argming∈G QCB(st, at, g;ψ)
8: Execute action at, observe reward rt and next state

st+1 using group g′

9: Store transition (st, at, g
′, rt, st+1) in DCB

10: Sample mini-batch from DCB and update ψ:
11: ψ ← ψ − lCB∇ψLCB(ψ)
12: st ← st+1, reduce εCB
13: end for
14: end for
15: Output: Optimized CB estimator parameters ψ∗

2020), may not perform well in MARL because, unlike re-
gression tasks, the data distribution depends on the agent’s
policy. As the policy evolves, the groups that are underrep-
resented or perform poorly will change dynamically. This
dynamic nature of the problem makes it challenging to apply
static or even adaptive reweighting schemes, which assume
a relatively stable data distribution.

To improve training efficiency, we propose a novel contex-
tual bandit-based worst-case reward distribution estima-
tor that learns to identify the worst-case distribution group
g ∈ G for each state-action pair (s, a) by training a con-
textual bandit (CB) model (Li et al., 2010; Russo et al.,
2018).

4.1. CB-based Worst-Case Reward Estimator

The CB treats the current state-action pair (s, a) as context,
and its arms corresponding to the distribution groups in the
set G. The goal is to identify the group g that minimizes the
reward EX∼Pg [r(s, a;X)], which represents the worst-case
reward among all groups. The CB is constructed as follows:

Context space: S × A, where (s, a) ∈ S × A represents
the state and the chute mapping actions at each step.

Action space: G = {1, 2, . . . ,m}, where g ∈ G denotes a
group associated with an induction distribution.

Reward: A reward function r : (S ×A)× G → R, where
r(s, a;X) represents the observed reward for choosing dis-
tribution Pg at the current state-action pair (sa).

Algorithm 2 DRMARL with CB-based Worst-Case Reward
Estimator

1: Input: Learning rate lr, initial parameters θ0, induction
distribution groups G, pre-trained CB-based estimator
QCB, exploration rate ε

2: Initialize: θ ← θ0, replay buffer D ← ∅
3: for episode = 1, ..., k do
4: Initialize the environment with random group g′ ∈ G

and observe initial state s0
5: for time step t = 0, ..., T do
6: With probability ε, select at ∼ Uniform(A); oth-

erwise, at ← argmaxa∈A Q̃(st, a; θ)
7: Estimate worst-case distribution group using CB:

g′ ← argming∈G QCB(st, at, g)
8: Execute at, observe reward rt and next state st+1

using group g′

9: Store transition (st, at, g
′, rt, st+1) in D

10: Sample mini-batch from D and update parameters:
θ ← θ − lr∇θL̃(θ)

11: st ← st+1, reduce ε
12: end for
13: end for
14: Output: Optimized DRMARL policy parameters θ̃G

The CB is represented by a Q-function that approximates the
expected reward of choosing distribution Pg given a context
(s, a). For this purpose, we use an independent DQN (Mnih
et al., 2015):

QCB(s, a, g;ψ) = EX∼Pg
[r(s, a;X)] , (11)

where the reward function r(s, a;X) is observed after run-
ning a single-step forward simulation with (s, a) under the
distribution Pg. The QCB function is learned by minimiz-
ing the following loss (see the detailed training process in
Algorithm 1):

LCB(ψ) :=

Es,a
[(
QCB(s, a, g;ψ)− EX∼Pg [r(s, a;X)]

)2]
.

(12)

In Algorithm 1, the exploration of state-action pairs (s, a) is
guided by the existing MARL policy using QMARL, which
ensures sufficient exploration of the context space for the
chute-mapping problem. For other applications, different
exploration policies can be employed, such as random action
selection, to ensure adequate coverage of the state-action
space.

4.2. DRMARL with CB-based Worst-Case Reward
Estimator

Once the QCB function has been learned, we can rewrite the
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Table 1: Comparison of key sortation metrics across policies,
averaged over m = 9 groups, each evaluated over 100 runs. See
Appendix D.1 for detailed results.

Policy Recirculation
Rate (↓) Throughput (↑) Recirculation

Amount (↓)
MARL 2.16%± 2.35% 11740.98 259.02
DRMARL (random) 1.56%± 1.45% 11812.77 187.23
DRMARL (with QCB) 0.56%± 0.18% 11932.21 67.79
DRMARL (exhaustive) 0.55%± 0.13% 11933.68 66.32
MARL (group-specific) 0.53%± 0.14% 11936.60 63.40

distributionally robust loss (9) as:

L̃(θ;X) = Es,a,r,a′
[(
Q̃(s, a; θ)

− EX∼Pg′ [r(s, a;X)]− γmax
a′

¯̃Q(s′, a′; θ̄)
)2]

,
(13)

where g′ = argming∈G QCB(s, a, g) is the index of the
distribution group with the estimated worst-case reward.

The training procedure of DRMARL is shown in Algo-
rithm 2. The key difference compared to MARL training is
that DRMARL aims to train a DQN that estimates the worst-
case return across all groups, while MARL aims to estimate
the observed return only for a specific induction distribution.
Moreover, in contrast to traditional group DRO, the index of
the worst-case distribution g′ in DRMARL is not obtained
via exhaustive search; instead, it is estimated by QCB given
the state-action pair (s, a). The independent Q-network
QCB is learned beforehand using Algorithm 1 and remains
unchanged during DRMARL training. While it may seem
counterintuitive that QCB estimates the worst-case group
after Q̃ selects an action, this design enables QCB to provide
the worst-case expected return for each (s, a) pair, thereby
enabling the learning of a robust policy.

5. Numerical Experiments
In this section, we demonstrate the effectiveness of the
proposed DRMARL policy under OOD induction changes
in both a simplified simulation and a large-scale Amazon
robotic sortation warehouse simulation environment.

5.1. Simplified Robotic Sortation Warehouse Simulation

In the simplified simulation environment, there are 10 eject
chutes, one recirculation chute, and 20 unique destinations.
Packages arrive at the sortation warehouse according to the
induction data X generated from an induction distribution
P. When packages exceed the capacities of eject chutes,
they are sent to the recirculation chute. One training or
testing episode consists of 5 hours, with each time step
being 30 minutes long, after which the environment is reset.
An eject chute can be reallocated at each time step. The
implementation details are provided in Appendix B.
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Figure 5: Training efficiency comparison in simplified warehouse.
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Figure 6: Training recirculation rate estimation loss (12) for CB in
simplified robotic sortation warehouse.

We train the DRMARL policy over 300 episodes using
training data generated from 9 distinct induction distribution
groups. Similarly, the regular MARL policies are trained for
300 episodes, each on one of the same groups. Due to the
stochastic nature of the induction-generating distributions,
the induction data varies across simulation trials.

Key metric comparisons are shown in Table 1. DRMARL
with QCB achieves the best performance across all met-
rics. For reference, the last row shows the theoretical upper
bound achieved by group-specific MARL policies, trained
and evaluated on the same group. DRMARL performs
only marginally below this oracle baseline, highlighting its
strong balance between individual performance and robust-
ness. Compared to random group selection and exhaustive
worst-case search, QCB efficiently identifies challenging
groups during training and achieves comparable robustness
with significantly lower computational cost. These results
demonstrate that QCB enables DRMARL to focus on worst-
case distributions effectively, yielding robust policies with-
out sacrificing efficiency. We refer to Appendix D.1 for a
detailed discussion of these results.

Figure 6 shows the training progress of QCB, with clear
reductions in both average and maximum recirculation rate
estimation errors over time. Training efficiency compar-
isons across methods are shown in Figure 5. DRMARL
with QCB converges in under 300 seconds, while exhaus-
tive worst-case search exceeds 2900 seconds due to its full
traversal of all groups. In contrast, QCB achieves compa-
rable robustness at significantly lower computational cost,

7
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Table 2: Relative improvement (↑) of DRMARL over MARL
baseline, averaged across m = 21 groups.

Policy Recirc Rate
Reduction

Throughput
Increase

Recirc Amount
Reduction

DRMARL 79.97% 5.62% 33.64%
MARL
(group-specific) 85.42% 9.80% 40.50%

validating its ability to efficiently identify worst-case groups.
Although DRMARL with random group selection converges
faster, it lacks the worst-case guarantees provided by QCB.
Group-specific MARL converges fastest overall, reflecting
the simplicity of its single-group training setup.

5.2. Large-Scale Robotic Sortation Warehouse
Simulation

5.2.1. IMPLEMENTATION DETAILS

In the large-scale simulation environment, there are 187
eject chutes, one recirculation chute, and 120 unique destina-
tions. Packages arrive at the sortation warehouse according
to the corresponding induction data X generated from the
induction distribution P2. When packages exceed chute ca-
pacities or miss departure transportation schedules, they are
sent to the recirculation chute and added to the queue of new
packages at the next time step. One training/testing episode
lasts 11 hours, with each time step lasting five minutes, after
which the environment is reset. Every five minutes, des-
tinations are assigned to chutes that become available for
reallocation

We train the DRMARL policy over 200 episodes using
training data generated from 21 distinct induction distribu-
tion groups spanning several years. Similarly, the regular
MARL policy is trained for 200 episodes using induction
data from Year 4. For testing, we evaluate both policies on
newly generated induction data from 21 distinct distribution
groups, conducting five experiments per group. Due to the
stochastic nature of the induction-generating distributions,
the test induction data remains unseen during training for
both policies.

5.2.2. ROBUSTNESS OF THE CHUTE MAPPING POLICY

Table 2 presents the average relative performance improve-
ment of DRMARL across all 21 distribution groups, us-
ing MARL as the baseline. DRMARL demonstrates ro-
bust performance across all induction groups, consistently
outperforming the baseline MARL policy. For reference,

2Due to common industry confidentiality practices, we cannot
disclose the specific data source and report only relative perfor-
mance improvements. The data represents realistic package flow
patterns typical of Amazon robotic sortation facilities.

Figure 7: Recirculation rate improvement of DRMARL over two
equally-performing MARL policies trained on distributions inside
and outside M.

Table 3: Relative reduction (↑) in CVaR, worst-case recirculation
amount, and average recirculation rate across different Robust RL
approaches.

Method CVaR
Reduction

Worst-case Recirc
Reduction

Recirc Rate
Reduction

Adversarial Agent 61.11% 53.57% 66.19%
Adversarial Environment 58.48% 23.68% 77.09%
Robustified Reward 58.97% 60.23% 70.43%
DRMARL 77.09% 76.61% 79.97%

the bottom row shows the theoretical optimal performance
achieved by training and testing group-specific MARL poli-
cies on each individual group. As expected, DRMARL
performs marginally below these group-specific MARL
policies, illustrating the trade-off between robustness and
individual group performance. Detailed results are provided
in Appendix D.2.

As more production data becomes available, the distribution
groups can be expanded to better capture year-to-year shifts
without increasing the training complexity of DRMARL. To
assess robustness beyond the ambiguity set M, we evaluate
the learned policy on induction distributions P′ where P′ /∈
M. As shown in Figure 7, the robust policy generalizes well
to these out-of-distribution settings. Notably, the Type-1
Wasserstein distance between P′ and the closest distribution
in M is 818.19, compared to an average intra-group distance
of 542.96 within M.

We also compare DRMARL against three robust RL base-
lines, with results summarized in Table 3: (i) an adversarial
agent that deliberately blocks available chutes (Mandlekar
et al., 2017); (ii) an adversarial environment with perturbed
transition dynamics (Pinto et al., 2017); and (iii) a robust
MDP formulation that uses a worst-case reward function
over an uncertainty set (Wiesemann et al., 2013). We evalu-
ate performance using three metrics: cumulative recircula-
tion over the 11-hour simulation; worst-case instantaneous
recirculation; and Conditional Value-at-Risk (CVaR) at the
5% level (Rockafellar & Uryasev, 2000). To compute CVaR,
we collect instantaneous recirculation values at all time
steps and estimate their empirical distribution. CVaR at
5% corresponds to the expected recirculation conditional on
exceeding the 95th percentile, capturing the expected sever-
ity of the worst-case recirculation (higher values are more
undesirable). While some robust RL approaches achieve

8
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Figure 8: QCB estimation loss for recirculation percentage, aver-
aged over 25 test simulations.

cumulative recirculation comparable to DRMARL, only
DRMARL consistently improves the worst-case recircula-
tion performance by explicitly optimizing for it. DRMARL
outperforms all robust RL baselines due to its distributional
awareness, which yields more accurate worst-case reward
estimation and robust action-value functions. This robust-
ness is critical in practice, as sudden surges in recirculation
can lead to robot congestion and delays in the sorting pro-
cess. Since robot congestion is not explicitly modeled in
the simulator, the real-world advantage of DRMARL over
standard robust RL methods is likely even greater.

5.2.3. CB-BASED WORST-CASE REWARD ESTIMATOR

Following Section 4, we train an independent Q-network,
QCB, to estimate the worst-case recirculation (reward) for
all state-action pairs (s, a) across groups G. The trained
QCB achieves high accuracy, with estimation errors below
1% of the recirculation rate, enabling reliable identification
of worst-case scenarios among the groups g ∈ G.

During each day’s 11-hour simulation, as illustrated in Fig-
ure 8, the estimation accuracy improves substantially after
the first hour. Although initially suboptimal, QCB’s perfor-
mance remains sufficient for DRMARL training, since the
impact of the worst-case distributions on recirculation be-
comes more pronounced in later stages when fewer chutes
are available.

5.2.4. EFFICIENT TRAINING WITH CB-BASED
WORST-CASE REWARD ESTIMATOR

The CB-based worst-case reward estimator, QCB, substan-
tially improves training efficiency by eliminating the need
for exhaustive group evaluation at each time step, reducing
the computational complexity of the worst-case group iden-
tification fromO(m) toO(1). As demonstrated in Figure 9,
training with QCB achieves significantly faster convergence
compared to exhaustive evaluation over G, which requires
approximately 924 hours on a cloud instance with 64 vCPUs
(Intel Xeon Scalable 4th generation) and 128 GB RAM. The
lightweight Q-network updates enabled CPU-only training,
with most of the computation time spent on environment
simulation. This efficiency advantage becomes even more

Figure 9: Training computational efficiency comparison in large-
scale Amazon robotic sortation warehouse simulation environ-
ments.

pronounced when dealing with complex environments or
larger group sets.

Figure 9 also compares the training efficiency of differ-
ent approaches. The group-specific MARL, which trains
on group #20, shows the fastest convergence due to its
simplified learning objective. Among distributionally ro-
bust approaches, DRMARL with random group selection
(g′ ← random(G)) initially converges faster than other ro-
bust variants but achieves suboptimal robustness, since it
may miss critical worst-case scenarios. DRMARL withQCB
strikes a balance between training speed and performance,
converging significantly faster than exhaustive search while
maintaining near-optimal worst-case performance guaran-
tees. As expected, DRMARL with exhaustive search over
all distribution groups requires the longest training time,
though it serves as a valuable baseline for validating the
efficiency of our QCB-based approach.

6. Conclusion
In this paper, we introduced DRMARL, a framework that
integrates group DRO into MARL to enhance policy robust-
ness against OOD distribution shifts in warehouse sortation
systems. To address the computational cost of identifying
the worst-case group, we developed a CB-based estima-
tor that significantly reduces the complexity of worst-case
identification from O(m) to O(1). Experimental results
from both simplified and large-scale warehouse environ-
ments demonstrate that DRMARL achieves robust and near-
optimal performance across all distribution groups while
maintaining computational efficiency. The framework also
shows strong generalization to distributions outside the train-
ing set, and its design principles can be extended to other
MARL applications where distributional robustness is cru-
cial.
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Appendix

A. Proofs of Theoretical Results
A.1. Proof of Lemma 3.1

Recall the definition of M in (5) and for any probability distribution P ∈M, we have

EX∼P
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)]
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(14)

Then, taking the infimum on both sides yields:

inf
P∈M

EX∼P
[
r
(
s, a;X

)]
= inf
q∈∆m

m∑
g=1

qgEX∼Pg

[
r
(
s, a;X

)]
= inf
g∈G

EX∼Pg

[
r
(
s, a;X

)]
,

(15)

since optimum of a linear program over simplex ∆m is obtained at vertices. ■

A.2. Proof of Lemma 3.2

In order to find the group distributionally robust action-value function Q̃, we consider the worst-case immediate reward at
each state-action pair (s, a) as:

r̃(s, a) = min
g∈G

EX∼Pg [r(s, a;X)] ≤ EX∼P [r(s, a;X)] , (16)

for all unknown distribution P ∈M. Then, the worst-case return is given by:

R̃t =

∞∑
k=0

γk r̃(s, a) ≤
∞∑
k=0

γk EX∼Pk
[rt+k+1(s, a;X)], (17)

where γ ∈ [0, 1] is the discount factor and the inequality holds for all possible sequences {Pk}∞k=0 with Pk ∈M. Then, the
worst-case action-value function under policy π can be expressed as:

Q̃π(s, a) = Eπ
[
r̃(s, a) + γQ̃π(st+1, at+1)

∣∣ st = s, at = a
]

= Es′∼P (·|s,a)

[
r̃(s, a) + γEa′∼π(·|s′)Q̃π(s′, a′)

]
,

(18)

and the optimal worst-case action-value function satisfies the Bellman optimality equation:

Q̃∗(s, a) = r̃(s, a) + γ Es′∼P (·|s,a)

[
max
a′

Q̃∗(s′, a′)
]
. (19)

Following the result from (Liu et al., 2022), the distributionally robust Bellman Operator with ambiguity sets P and R is
given by

T̃P,R(Q̃)(s, a) = inf
ps,a∈P
rs,a∈R

{
Ers,a [r(s, a)] + γ Eps,a

[
max
a′

Q̃(s′, a′)
]}

, (20)

where ps,a and rs,a denote the distributions of state transitions probabilities and reward functions respectively, with their
corresponding ambiguity sets P and R. Since the distribution shift in the random variable X only affects the reward, i.e.,
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the distribution of the reward function rs,a, we have:

T̃R(Q̃)(s, a) = inf
rs,a∈R

{
Ers,a [r(s, a)] + γ

[
max
a′

Q̃(s′, a′)
]}

= r̃(s, a) + γ max
a′

Q̃(s′, a′)

= inf
g∈G

{
EX∼Pg [r(s, a;X)]

}
+ γ max

a′
Q̃(s′, a′) = T̃G(Q̃)(s, a).

(21)

We further show the distributionally robust Bellman operator is a contraction mapping under the ℓ∞ norm. Consider two
arbitrary robust action-value functions Q̃1 and Q̃2 such that

T̃G(Q̃1)(s, a) = r̃(s, a) + γ max
a′

Q̃1(s
′, a′)

T̃G(Q̃2)(s, a) = r̃(s, a) + γ max
a′

Q̃2(s
′, a′).

(22)

Finding the difference yields

|T̃G(Q̃1)(s, a)− T̃G(Q̃2)(s, a)| ≤ γmax
s′,a′
|Q̃1(s

′, a′)− Q̃2(s
′, a′)|, (23)

and taking the maximum over all feasible state-action pair (s, a) implies

∥T̃G(Q̃1)− T̃G(Q̃2)∥ℓ∞ ≤ γ∥Q̃1 − Q̃2∥ℓ∞ . (24)

Since γ ∈ [0, 1], this establishes that DR Bellman operator is a contraction mapping under the ℓ∞ norm. By Banach’s
Fixed Point Theorem (Rudin, 2021), there exists a unique fixed point Q̃∗ such that T̃G(Q̃∗) = Q̃∗. Consequently, iteratively
applying the operator ensures convergence to Q̃∗, proving the stability of the robust Q-learning algorithm. This contraction
property of the DR Bellman operator was also addressed in (Iyengar, 2005) when the ambiguity set is defined for transition
probability. ■

B. Implementation Details for Simplified Robotic Sortation Warehouse
We define a Markov game for N agents (representing unique destinations) by the tuple(
N,S, {Oi}Ni=1, {Ai}Ni=1, P, {ri}Ni=1, γ, ρ0

)
, where:

(a) Agents: The set of N agents, each corresponding to a unique destination.

(b) State Space: S denotes the joint state space.

(c) Observation Space: For each agent i, Oi ⊂ S represents its local observation at each time step, consisting of:

– The total number of assignable chutes (uniform across all agents)
– The number of chutes currently assigned to agent i

(d) Action Space: For each agent i, Ai ⊂ [0, 1] represents its action space, where each action determines if a new chute
will be allocated. An action value of 1 indicates the assignment of a new chute to destination i. The joint action space
is defined as A =

∏N
i=1Ai.

(e) Transition Probability: P : S ×A× S → [0, 1] specifies the probability of transitioning between states, representing
the likelihood of packages being either successfully sorted or diverted to the recirculation buffer.

(f) Reward Function: For each agent i, ri : S ×A×X → R defines the reward function, which penalizes the number of
packages in the recirculation buffer resulting from the current chute allocation.

The model is completed with discount factor γ ∈ (0, 1) and initial state distribution ρ0. In Section 5.1, we employ the Value
Decomposition Network (VDN) (Shen et al., 2023) combined with budget constraints in computing joint actions.

15



Distributionally Robust Multi-Agent Reinforcement Learning for Dynamic Chute Mapping

In the simplified robotic sortation environment, we fix the total induction volume at each time step to 1200 packages. The
number of incoming packages for each destination i = 1, . . . , N follows an unknown normal distribution N (µ, σ). For
each destination i, the probability that an incoming package is assigned to destination i is given by:

P
{

incoming package belongs to i
}
=

Φ( i−µσ )− Φ( i−1−µ
σ )

Φ(N−µ
σ )− Φ(−µσ )

, (25)

where Φ(z) = 1√
2π

∫ z
−∞ e−

t2

2 dt is the cumulative distribution function of the standard normal distribution. This formulation

ensures
∑N
i=1 P{incoming package belongs to i} = 1. The distribution of packages across destinations is then determined

by sampling 1200 packages according to the probabilities defined in (25) at each time step.

In Section 5.1, we assume the destination transportation vehicle has infinite capacity, meaning packages enter the recirculation
buffer only when incoming packages are destined for a location without an assigned eject chute. In this example, we
construct the ambiguity set as:

M :=
{
P̃ =

m∑
g=1

qg Pg | q ∈ ∆m

}
, (26)

where each Pg represents a normal distribution N (µg, σ) with different µgs. For our simulation, we construct the ambiguity
set using m = 9 groups with means µg ∈ {−4,−3, . . . , 0, . . . , 4}, standard deviation σ = 2, and index set G =
{1, 2, . . . , 9}.

C. Implementation Details for Large-Scale Robotic Sortation Warehouse
C.1. MARL Structure

We define a Markov game over N agents (unique destinations) by the tuple
(
N,S, {Oi}Ni=1, {Ai}Ni=1, P, {ri}Ni=1, γ, ρ0

)
,

where:

(a) Agents: N agents, each corresponding to a unique destination.

(b) State Space: S denotes the joint state space.

(c) Observation Space: For each agent i, Oi ⊂ S represents its local observation at each time step, consisting of:

– Number of packages recirculated until time t for agent i
– Total number of available chutes that can be assigned (uniform across all agents)
– Number of chutes currently assigned to agent i

(d) Action Space: For each agent i,Ai represents its action space, determining the number of new chutes required. Actions
take values in [0, 10], where an action value a indicates the assignment of a new chutes to agent i at that time step. The
joint action space is defined as A =

∏N
i=1Ai.

(e) Transition Probability: P : S × A × S × X → [0, 1] specifies the probability of packages being either sorted by
chutes or sent to the recirculation buffer. In the large-scale robotic sortation warehouse setting, the transition probability
is a function of the induction distribution P with random variable X ∈ X , which is addressed in detail in Appendix C.5.

(f) Reward Function: For each agent i, ri : S ×A× X → R defines the reward function, penalizing both the number of
allocated chutes and the number of packages in the recirculation buffer. The recirculation is a function of the induction
distribution, which is defined in Appendix C.2.

The model is completed with discount factor γ ∈ (0, 1) and initial state distribution ρ0.

C.2. Induction Distribution

For a given sortation warehouse with D destinations and T time intervals (e.g., hours or minutes) in a day, we consider the
random vector X = {X1, . . . , XDT } ∈ RDT , where each Xi ≥ 0 denotes the number of packages inducted for a specific
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Figure 10: A realization of the random variable X . The values are synthetic and do not represent actual Amazon induction volumes.

destination-time pair (d, t) ∈ {1, . . . , D} × {1, . . . , T}. That is, X(d,t) represents the number of packages inducted for
destination d during time interval t. A realization of the random variable X is shown in Figure 10.

We model the daily induction pattern as a random variable X drawn from an unknown distribution P, which we refer to as
the induction generating distribution. We assume that the total daily induction volume is fixed at V across all days, as the
MARL chute mapping policy is primarily influenced by the spatial-temporal distribution pattern rather than variations in
total volume. The daily induction is thus generated by sampling a realization of X from P.

Definition C.1 (Induction Generating Distribution). We define the induction generating distribution as a multinomial
distribution

X = (X1, . . . , Xk) ∼M
(
V, p1, . . . , pk

)
,

where V ∈ N is the total number of packages inducted in a day, and the probability vector (p1, . . . , pk) satisfies pi ≥ 0 and∑k
i=1 pi = 1. The support of X is the set {

(z1, . . . , zk) ∈ Nk0

∣∣∣∣ k∑
i=1

zi = V

}
.

Its probability mass function is given by

P(X1 = z1, . . . , Xk = zk) =
n!

z1!z2! · · · zk!
pz11 · · · p

zk
k ,

for all (z1, . . . , zk) in the support.

For induction random variables X corresponding to temporally proximate dates (e.g., within the same week), we assume
they share a common induction generating distribution P =M(V, p1, . . . , pDT ). In practice, this distribution is estimated
via the Sample Average Approximation (SAA) method (Kim et al., 2015) using historical induction data from the relevant
dates. Specifically, we collect historical induction records from Years 1-4 and partition them into 21 groups based on
week numbers. For each group g, we construct an empirical induction generating distribution Pg via SAA, modeled as a
multinomial distribution using all induction observations within that group.

The group ambiguity set M in (5) is then formed from the collection {P1,P2, . . . ,P21}. The probability pj of assigning an
incoming package to the j-th destination-time pair is estimated from the corresponding empirical multinomial distribution
Pg . Given a total volume of V packages, the daily induction is generated by a single sample from this distribution.

Amazon has publicly reported double-digit Year-over-Year (YoY) growth in retail sales in its Q4 earnings press releases
over multiple consecutive years (Amazon.com, Inc., 2022; 2023; 2024). This sustained growth translates directly to the
package sortation context, resulting in significant YoY increases in induction volumes. In practice, package volume and its
spatial distribution exhibit substantial variability across both seasonal and annual timescales. Seasonal effects introduce
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Table 4: Average Type-1 Wasserstein distances for each week compared to Week 1
of the same year.

Year Week 2 Week 3 Week 4 Week 5

Year 1 76.87 202.96 147.17 241.80
Year 2 36.46 70.47 301.25 123.45
Year 3 25.81 23.87 72.91 78.82
Year 4 72.99 45.04 24.92 62.39

Table 5: Average Type-1 Wasserstein distance to
Year 1 (↓).

Year 2 Year 3 Year 4

1172.85 585.98 288.86

predictable fluctuations driven by major sales events and holidays (e.g., Black Friday, Cyber Monday, and year-end gifting),
while annual trends reflect more gradual changes due to evolving customer behavior, shifts in logistics strategies, and overall
business expansion.

We further quantify these distributional changes using the empirical Type-1 Wasserstein distance (Villani et al., 2008),
as shown in Table 4 and Table 5. Specifically, Table 4 compares four representative weeks to Week 1 within each year,
revealing substantial seasonal variation in induction distributions. Additionally, we find that the Wasserstein distance
between consecutive days is typically on the order of 20, indicating moderate short-term variability. Table 5 illustrates yearly
distributional shifts by comparing the same temporal slices across different years to the baseline in Year 1. These results
highlight that inter-annual changes tend to be even more pronounced than intra-annual seasonal effects, posing significant
challenges for policies that rely on static assumptions or historical averages.

C.3. Dimension Reduction of the State-Action Space

To manage the dimensionality of the state-action space, we decompose the joint Q-network into a sum of local Q-networks.
Each local network captures the expected return of an individual agent’s chute mapping actions, while the joint network
represents the expected return of the complete chute assignment across all agents. Specifically, we express the joint
Q-network as:

Q(s, a, θ) =
∑N

i=1
Q′(i, si, ai; θ), (27)

where the input space scales linearly with the number of agents. While this decomposition is similar to that proposed in
(Shen et al., 2023), our approach learns a single shared Q′ network for all agents, rather than separate networks for each
agent, resulting in improved computational efficiency.

C.4. Feasibility of Joint Actions

In unconstrained settings, agents would simply select actions that maximize their individual Q-networks, with the joint
action being the collection of these individual choices. However, the chute mapping problem introduces resource constraints,
as agents must share a limited number of available chutes. This necessitates coordination to allocate resources optimally
among the agents based on their state-action values.

Given a budget constraint M on the joint actions, such that
∑N
i=1 ai ≤M , we formulate the following integer program to

determine the optimal joint action that maximizes the joint Q-network for any state s:

maximize
a1,...,aN

∑N

i=1
Q′(i, si, ai; θ)

s.t.
∑N

i=1
ai ≤M, ai ∈ N.

(28)

This integer program, which can be efficiently solved using commercial solvers such as Google OR- Tools (Perron &
Furnon, 2024) or Xpress (FICO, 2023), serves two purposes: it generates feasible data for the replay buffer to compute
the expectation in (3) during training, and it determines the optimal actions once learning has converged. Notably, this
optimization step is separate from the Q-learning process.
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Figure 11: Comparison of worst-case returns: estimation using QCB for both immediate rewards and transition probabilities is compared
against the actual observed values from extensive state-action space exploration. The close alignment validates our approach of using QCB
to approximate both components of the worst-case scenario in (30).

C.5. Distributionally Robust Bellman Operator in Large-Scale Robotic Sortation Warehouses

In large-scale robotic sortation warehouses, we observe that the transition probability is dependent on the induction random
variable X , which violates the assumption in Lemma 3.2. Consequently, we must compute:

inf
P∈M

γ Eps,a(X),X∼Pg

[
max
a′

Q̃(s′, a′)
]

for the distributionally robust Bellman operator. This leads to:

T̃R(Q̃)(s, a) = inf
g∈G

{
EX∼Pg

[r(s, a;X)]
}
+ inf

P∈M

{
γ Eps,a(X),X∼Pg

[
max
a′

Q̃(s′, a′)
]}

(29)

where the computation becomes infinite-dimensional and practically intractable. To address this, during training, we
approximate the distributionally robust Bellman operator with:

ŨR(Q̃)(s, a) = inf
g∈G

{
EX∼Pg [r(s, a;X)] + γ Eps,a(X),X∼Pg

[
max
a′

Q̃(s′, a′)
]}

, (30)

which provides an upper bound for the distributionally robust Bellman operator, as shown by:

ŨR(Q̃)(s, a) ≥ inf
g∈G

{
EX∼Pg

[r(s, a;X)]
}
+ inf
g∈G

{
γ Eps,a(X),X∼Pg

[
max
a′

Q̃(s′, a′)
]}

≥ inf
g∈G

{
EX∼Pg

[r(s, a;X)]
}
+ inf

P∈M

{
γ Eps,a(X),X∼Pg

[
max
a′

Q̃(s′, a′)
]}

= T̃R(Q̃)(s, a).

(31)

During training, we use (30) to construct the loss function (13) for DRMARL, where the optimization problem within (30)
is solved using the solution from the CB-based worst-case reward estimator QCB. In practice, this approximation (30) proves
highly effective for the worst-case return, with the relative approximation error of ŨR(Q̃)(s, a) to T̃R(Q̃)(s, a) being less
than 0.57% (see Figure 11). This small error margin indicates that ŨR(Q̃)(s, a) does not impede DRMARL’s ability to
capture the worst-case return.

D. Additional Simulation Results and Discussions
D.1. Simplified Sortation Environments

As shown in Table 6, the DRMARL policy with QCB outperforms both the MARL policy and the DRMARL policy trained
with random group selection across all metrics. Here, random group selection refers to replacing Line 7 of Algorithm 2 with:

g′ ← Uniform(G),

instead of:
g′ ← argmin

g∈G
QCB(st, at, g).

This confirms that QCB effectively enables the DRMARL policy to explore worst-case reward functions during training.
Furthermore, when compared to a DRMARL policy trained using exhaustive search over worst-case rewards for each
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Table 6: Comparison of key sortation metrics across policies, averaged over m = 9 groups, each evaluated over 100 runs.

Policy Recirculation Rate (↓) Throughput (↑) Recirculation Amount (↓)

MARL 2.16%± 2.35% 11740.98± 42.30 259.02± 19.81
DRMARL (random) 1.56%± 1.45% 11812.77± 30.14 187.23± 17.26
DRMARL (with QCB) 0.56%± 0.18% 11932.21± 24.12 67.79± 5.16
DRMARL (exhaustive) 0.55%± 0.13% 11933.68± 22.48 66.32± 4.83
MARL (group-specific) 0.53%± 0.14% 11936.60± 23.11 63.40± 5.02
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Figure 12: Training efficiency comparison in simplified robotic sortation warehouses.

state-action pair (s, a), the QCB-based approach achieves equivalent policy performance and robustness while being
computationally more efficient. The last row presents the theoretical optimal performance of group-specific MARL policies
(trained and tested on the same group). DRMARL performs only marginally below this optimal baseline, demonstrating an
effective balance between individual performance and distributional robustness.

The training efficiency comparison across different approaches is presented in Figure 12. DRMARL with exhaustive
search requires the longest training time due to its comprehensive exploration across all distribution groups. In contrast,
DRMARL with QCB converges significantly faster while matching the recirculation performance of the exhaustive search
in initial stages, validating QCB’s ability to identify worst-case groups. DRMARL with random group selection shows
faster convergence than the QCB-based approach, but this is because random exploration does not guarantee capturing the
worst-case reward functions. The group-specific MARL policy exhibits the fastest convergence due to the relative simplicity
of its training task.

D.2. Large-Scale Robotic Sortation Environments

D.2.1. DETAILED EVALUATION RESULTS ACROSS ALL GROUPS

Table 7 presents detailed validation results comparing MARL and DRMARL chute mapping policies across all induction
distribution groups from Years 1-4. The DRMARL policy demonstrates superior performance across most groups, achieving
both higher package sortation throughput and lower recirculation rates. The only exceptions are two groups in Year 4, where
the MARL policy shows marginally better throughput but at the cost of higher recirculation rates. This is expected behavior
since the MARL policy is specifically trained on Year 4 induction data, while DRMARL optimizes for robustness rather
than throughput maximization. Overall, DRMARL achieves significant improvements, reducing recirculation by 80% on
average while simultaneously increasing throughput by 5.62% on average.
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Table 7: Relative key metrics improvements over MARL baseline trained on Year 4 data in large-scale robotic sortation warehouses.

GROUP NUMBER YEAR
RECIRCULATION RATE

REDUCTION (%)
PACKAGE THROUGHPUT

INCREASE (%)
PACKAGE RECIRCULATION
AMOUNT REDUCTION (%)

1 1 94.75 31.66 94.21
2 1 93.19 23.47 92.55
3 1 94.62 35.69 94.26
4 1 93.85 25.94 93.85
5 1 95.90 19.50 95.67
6 2 90.47 5.79 90.44
7 2 91.27 5.24 91.11
8 2 77.22 4.13 77.22
9 2 83.34 2.49 83.34

10 2 85.12 5.07 85.12
11 2 92.85 6.97 92.82
12 3 84.22 4.54 84.59
13 3 83.14 15.89 81.57
14 3 85.53 4.17 86.04
15 3 83.63 5.51 83.58
16 3 84.24 5.52 84.19
17 4 34.18 -0.99 36.71
18 4 57.04 -5.85 62.34
19 4 75.78 4.47 75.73
20 4 66.59 9.85 64.18
21 4 75.07 5.64 75.83

D.2.2. ABLATION STUDY

Ablation studies were conducted across a variety of warehouse layouts, focusing primarily on varying the total number of
eject chutes and unique induction destinations. These factors directly influence the action space size and the underlying
transition probabilities, thereby significantly affecting policy performance. By systematically modifying these environmental
parameters, we assess the adaptability and robustness of DRMARL compared to the standard MARL baseline under diverse
operational conditions.

In Figure 13, we reduce the total number of eject chutes available in the warehouse to model different warehouse operational
conditions. As the number of chutes decreases, competition among destinations for shared eject chute resources intensifies,
amplifying the complexity of the allocation problem. Despite this increased challenge, DRMARL consistently outperforms
the standard MARL baseline across all tested chute configurations. This superior performance highlights DRMARL’s robust
ability to handle both the complexity and uncertainty inherent in real-world resource allocation tasks.

Meanwhile, Figure 14 explores the impact of progressively reducing the number of induction destinations on policy
effectiveness. DRMARL maintains stable performance throughout most scenarios, demonstrating robustness to changes in
destination diversity. However, when only 50% of destinations remain active, MARL surpasses DRMARL in performance.
This phenomenon arises because DRMARL adopts a conservative strategy that reserves chutes for potential future destina-
tions, including those that may not materialize when half of the destinations are inactive. In contrast, MARL employs a
more aggressive allocation approach, prioritizing immediate assignment of chutes to currently active destinations without
accounting for the risk of obstructing future inductions. This trade-off underscores DRMARL’s cautious, risk-aware design,
which generally yields better performance but can be slightly less optimal in highly reduced destination scenarios.

D.2.3. POTENTIAL LIMITATIONS

A natural concern with DRMARL’s contextual bandit-based worst-case reward estimator is whether it might induce overly
pessimistic learning dynamics. Specifically, whether selecting the most adverse induction distribution at each step could
lead to excessively negative reward signals, resulting in instability or premature convergence to suboptimal policies, which
is a well-known challenge in robust policy learning. To mitigate such effects, our framework aggregates induction data
across multiple operational days rather than evaluating each day in isolation. This aggregation dampens the influence of
extreme outliers and stabilizes the worst-case signal used for training. In our experiments, this approach proved effective,
as no instability was observed due to extreme worst-case distributions. Nonetheless, we acknowledge that, in practical
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Figure 13: Relative improvement in recirculation rate (↑) over the baseline MARL across different numbers of available chutes.

Figure 14: Relative improvement in recirculation rate (↑) compared to the baseline MARL, shown across varying percentages of 120
induction destinations remaining active.

deployment, highly anomalous induction patterns could arise. In such cases, extreme outliers can be filtered prior to training,
and a fallback to a heuristic policy can be used when necessary. This trade-off reflects a known limitation of distributionally
robust methods: while they offer improved resilience under uncertainty, they may become overly conservative in the face of
extreme but low-probability events.
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