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Abstract. Recently, the nnU-Net network had achieved excellent per-
formance in many medical image segmentation tasks. However, it also
had some obvious problems, such as being able to only perform fully su-
pervised tasks, excessive resource consumption in the predict. Therefore,
in the abdominal multi-organ challenge of FLARE23, only incomplete la-
beled data was provided, and the size of them was too large, which made
the original nnU-Net difficult to run. Based on this, we had designed a
framework that utilized generated pseudo labels and two-stage segmen-
tation for fast and effective prediction. Specifically, we designed three
nnU-Net, one for generating high-quality pseudo labels for unlabeled
data, the other for generating coarse segmentation to guide cropping,
and the third for achieving effective segmentation. Our method achieved
an average DSC score of 88.87% and 38.00% for the organs and lesions
on the validation set and the average running time and area under GPU
memory-time cure are 45s and 3000MB, respectively.
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1 Introduction

The segmentation of abdomen organs plays an important role in the field of
medical imaging. Abdomen organs are common cancer sites, including colorec-
tal and pancreatic cancer, which are the second and third major causes of cancer
deaths worldwide. Therefore, accurate segmentation of abdominal CT images is
crucial for early diagnosis, treatment planning, and efficacy evaluation of can-
cer. Since the advent of CT(computer tomography ), it has been frequently
used for the treatment and monitoring of cancer. Through CT scanning, doctors
can obtain detailed three-dimensional images of the patient’s internal organs in
a non-invasive manner, thereby helping doctors locate and develop treatment
plans. These tasks all rely on the accurate segmentation of abdominal organs.
For example, in the process of cancer treatment, doctors need to quantitatively
evaluate the volume changes of lesions to monitor efficacy, which requires precise
lesions segmentation. In addition, organ segmentation before surgery can help
doctors plan surgical paths and predict surgical risks, thereby improving the
success rate of surgery.
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Traditional manual segmentation methods have many limitations. This man-
ual evaluation is subjective, resulting in significant differences between experts,
and low consistency of results. Secondly, the manual segmentation process con-
sumes a lot of time and labor, especially for large-scale datasets, which reduces
work efficiency. In addition, manual segmentation may face many difficulties for
complex anatomical structures and lesions, resulting in unsatisfactory segmen-
tation results. Therefore, researchers have proposed some traditional abdominal
segmentation methods, such as region growth algorithm, graph cut, morphologi-
cal, and level set method, which have achieved good results. However, due to its
reliance on manually designed features and rules, it has poor segmentation per-
formance for complex organ structures and lesions and slow speed for processing
large-scale data.

The introduction of deep learning technology has brought new hope for ab-
dominal organ segmentation. Deep learning models can automatically learn the
features in images, and accurately segment abdominal organs and lesions at the
pixel level, greatly improving the efficiency and accuracy of segmentation. There-
fore, deep learning technology is widely used in the segmentation of abdominal
CT images and has achieved remarkable results in many studies. For example,
the U-Net model adopts an encoding decoding structure, which effectively cap-
tures features at different scales, significantly improving the segmentation effect
of organs and lesions [17]. The Seg-Net model adopts a lightweight encoding
decoding structure, which is suitable for low computational resource scenarios
while maintaining good segmentation accuracy [1]. Cao et al. proposed a net-
work based on self-attention mechanism for abdominal organ segmentation [3],
which can capture long-distance dependencies of images and improve generaliza-
tion ability through self-supervised pre-training. This method has also achieved
good results in multi-organ and tumor segmentation tasks. However, it requires a
large amount of computing resources and time to train the model, which may not
be feasible in practical applications. Chen et al. proposed a deep network based
on incremental learning [22], which can recall old knowledge without saving old
data and dynamically extends to new categories. It also utilizes visual semantic
information embedded in text to enhance training effectiveness. It demonstrates
superior performance in multi-organ and tumor segmentation tasks. However,
as to this method, it is necessary to design a reasonable pseudo label generation
strategy and parameter-sharing mechanism to alleviate catastrophic forgetting
problems, select appropriate text descriptions and embedding methods to ex-
tract effective visual semantic information, balance the learning rate and weight
between new and old categories to avoid overfitting or underfitting problems.

One of the most important and well-performing baselines among these meth-
ods is nnU-Net [10], namely no-new-Net. It can automatically configure param-
eters and conduct network training based on data. The nnU-Net places more
emphasis on image preprocessing, automatically determining image modality
and performing corresponding normalization operations, and resampling differ-
ent voxel intervals based on cubic spline interpolation. and it can automatically
set hyperparameters, such as training batch size, image block size, downsampling
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frequency, etc. In recent years, many top-level solutions have been established
based on it to address the challenges of medical image segmentation. Although
nnU-Net can achieve state-of-the-art performance in a fully supervised manner,
it is also limited to fully supervised training. Faced with complex datasets, it is
difficult for nnU-Net to achieve the expected results. Generally speaking, it can
be observed that nnU-Net has the following problems:

– The default nnU-Net has a high computational complexity, which takes a
long time to perform preprocessing or prediction. At the same time, the
device is prone to memory overflow;

– The default nnU-Net does not support training other than fully supervised.

However, in real clinical scenarios, the time budget inferred by the model and
the amount of labeled data is limited. Therefore, we urgently need a framework
that can utilize all types of data and perform effective inference simultaneously.

Inspired by [24] [21], in this article, we designed a two-stage framework
consisting of three 3D nnU-Net. Firstly, by using incomplete labeled data to
generate pseudo labels and overlaying existing labels to generate more reliable
pseudo labels which serve as the basis for fully supervised data in subsequent
stages; Secondly, in the first stage, coarse segmentation is performed to generate
the abdominal ROI region, guiding the data crop in the second stage, thereby
reducing the initial size of the data. Thirdly, perform final fully supervised fine
segmentation.

Our main contributions are summarized as follows:

– We have designed a simple pseudo-labels generation framework based on
nnU-Net;

– We propose an effective cropping strategy that utilizes coarse segmentation
results to locate and crop ROI regions. This strategy can greatly reduce the
initial data size and is beneficial for improving inference speed and reducing
resource consumption.

2 Method

2.1 Preprocessing

We analyzed the original labeled data and found that some data contained partial
organ labels, some data only contained tumor labeling, and some data contained
both organ and tumor labeling. Due to the fact that no label in the original data
contained both the tumor and all abdominal organs, we extracted the data of
labels containing all organs (a total of 13 categories) as the first category data.
As to the remaining data which had incomplete organ labels, we continued to
divide it into two parts, one of which contained both organs and tumors as the
second category. In subsequent strategies, we would use these two types of data
in sequence.

We didn’t use unlabeled images and the pseudo labels generated by the
FLARE22 winning algorithm [9] and the best-accuracy-algorithm [19].
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2.2 Proposed Method

As shown in the Figure 1, this is the overall framework of our method. First,
use the first category data which has 13 organ-labels for training nnU-Net-14
to generate pseudo labels for the organs(According to the number of categories
required in the corresponding segmentation task, we add number-suffixes to the
"nnU-Net" used to distinguish different nnU-Net we used. For example, if the
task has 13 labels, the number of categories is 14 and it is named nnU-Net-
14. The latter two nnU-Net are also the same). Second, the pseudo labels are
added to the second category data to obtain a more reliable pseudo labels. Third,
unify all the pseudo labels obtained in the second step into similar labels, which
used for nnU-Net-2 training for coarse segmentation of background and abdom-
inal regions. Finally, under the guidance of nnU-Net-2 coarse segmentation, the
pseudo labels got in second step with its’ corresponding data are cropped and
used for nnU-Net-15 training to obtain a network that can segment tumors and
all organs.

train

nnU-Net-14

predict ＝

predict

crop train

(a) Generation of pseudo labels

nnU-Net-2

nnU-Net-15

guide

(b) First stage
(c) Second stage

+

first type data second type data

Fig. 1. This is the overall framework of our method. Part (a) is pseudo label generation,
(b) is the first stage coarse segmentation, and (c) is the second stage fine segmentation.

Generation of Pseudo Labels Previously, we had already divided the dataset
into several parts. For the first type of data, we used threshold algorithms to
roughly remove the areas outside the torso to reduce excess areas and training
costs. Firstly, the first type of data containing 13 organ labels after processing
was used for fully supervised training of the first nnU-Net-14 network. Sec-
ondly, the network was used to predict the second type of data and generate
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corresponding organ pseudo labels. Thirdly, used the generated pseudo labels to
guide the filling of real labels, forming 14-type labels including all organs and
tumors, like Figure 2. This process could also use data that only contain tumor
label to be filled by predicted pseudo organ labels, getting 14-type labels. But
we didn’t choose it. This was because the quality of real labels was better than
that of pseudo labels, the more real organ labels there were during the process,
the better the quality of the final pseudo labels.
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Fig. 2. We introduce our label-filling strategy. As shown in the figure, first identify
which types of real labels are missing compared to the generated pseudo labels. In our
schematic, it is obvious that the real labels do not contain two types of labels: 2 and
4. Then, we will only fill in these types of labels based on the real labels. When filling
in, first determine whether the locaiton already has a label. If not, fill it in. Otherwise
not to avoid overwriting the original real labels.

First Stage Segmentation We converted the final labels of these 14 categories
into labels with only one category, and reduced them and the corresponding
data’s size to 1/4 of the original size to lower the consumption of training and
predict processes. We used the reduced data and labels to train the nnU-Net-2
network and used it to predict any reduced data to obtain simple abdominal
region segmentation results. Finally, by expanding the segmentation result to
the initial size, we obtained the final coarse segmentation result.

Second Stage Segmentation We could use the first stage coarse segmentation
network to predict the second type of data, and guided cropping for the second
type of data based on the abdominal region labels in the coarse segmentation
results. Due to the high amount of impurities in the coarse segmentation results,
there were many misclassified areas, and the abdominal organs’label did not



6 X. Yang et al.

stick together, these factors would affect our strategy of finding the abdominal
range. Therefore, we first dilated the labels of the coarse segmentation results to
make the abdominal organs as connected as possible. Then counted all connected
domains, among which the largest connected domain was basically the abdominal
region. We took its range to guide subsequent data cropping and used these data
for the training of nnU-Net-15.

2.3 Our Method Used in Inference

In inference, we first reduced the input data size to 1/4. Then used nnU-Net-2 for
the first prediction on the reduced data to obtain the coarse segmentation result,
then restored its size. Secondly, we got the spatial range of the largest connected
domain in the coarse segmentation results, which was very likely abdomen, to
guide the cropping of the original validation data. Finally, nnU-Net-15 was used
to predict the validation data after the cropping, obtaining a fine segmentation.
The size of the fine segmentation result was filled to the same size as the original
data to obtain the final segmentation result. Although our method used two
predictions, it did not take more time than end-to-end nnU-Net. Moreover, we
used different methods before each stage to greatly reduce the size of input data,
resulting in improved inference speed and lower resource consumption in each
stage.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [13][14],
aiming to aim to promote the development of foundation models in abdominal
disease analysis. The segmentation targets cover 13 organs and various abdom-
inal lesions. The training dataset is curated from more than 30 medical centers
under the license permission, including TCIA [4], LiTS [2], MSD [18], KiTS [7,8],
autoPET [6,5], TotalSegmentator [20], and AbdomenCT-1K [15]. The training
set includes 4000 abdomen CT scans where 2200 CT scans with partial labels and
1800 CT scans without labels. The validation and testing sets include 100 and
400 CT scans, respectively, which cover various abdominal cancer types, such as
liver cancer, kidney cancer, pancreas cancer, colon cancer, gastric cancer, and
so on. The organ annotation process used ITK-SNAP [23], nnU-Net [11], and
MedSAM [12].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.
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3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

System Ubuntu 20.04.2
CPU Intel(R) Core(TM) i9-12900X CPU@3.13GHz
RAM 16×4GB/s
GPU (number and type) NVIDIA GeForce RTX 4090 24G
CUDA version 11.7
Programming language Python 3.9
Deep learning framework Pytorch (Torch 2.0.1)

Training Protocols The training protocols for three nnU-Net are shown in
Table 2.

Table 2. Training protocols.

Labels generation Stage 1 Stage 2
Batch size 2

Initial learning rate (lr) 0.01
Lr decay schedule polylrscheduler for nnU-Net

Patch size 64×128×224 96×160×160 112×128×160
Total epochs 1000 50 500
Training time 36 hours 2hours 14hours

Optimizer SGD with nesterov momentum (µ = 0.99)
Loss RobustCrossEntroyLoss + MeomoryEfficientSoftDiceLoss

4 Results and discussion

4.1 Quantitative results on validation set

The performance of trained nnU-Net-14 and nnU-Net-15 on the validation is
shown in the table 3. It can be seen that nnU-Net-15, trained after label filling,
performs better on most organ segmentation in the validation than nnU-Net-14
which only segments organs.
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Table 3. Quantitative evaluation results.

Target nnU-Net-14 nnU-Net-15
DSC(%) NSD(%) DSC(%) NSD(%)

Liver 0.9363 0.9539 0.9663 0.9599
Right Kidney 0.9032 0.9168 0.9229 0.9204
Spleen 0.9121 0.9169 0.9673 0.9658
Pancreas 0.8062 0.9365 0.8445 0.9462
Aorta 0.9439 0.9676 0.9558 0.9744
Inferior vena cava 0.9171 0.9303 0.9323 0.9435
Right adrenal gland 0.7938 0.9275 0.8284 0.9457
Left adrenal gland 0.7676 0.9008 0.7853 0.9117
Gallbladder 0.7471 0.7159 0.7849 0.7721
Esophagus 0.8063 0.9175 0.8146 0.9218
Stomach 0.8895 0.9305 0.9003 0.9346
Duodenum 0.8895 0.9199 0.8269 0.9411
Left kidney 0.8956 0.8943 0.9240 0.9196
Tumor / / 0.3914 0.3286
Average 0.8547 0.9100 0.8810 0.9274

4.2 Qualitative results on validation set

In the two cases with the best segmentation performance, like Figure 3, it can
be seen that the organ and tumor are well segmented. In the two cases with the
worst segmentation performance, we found that our model’s prediction results
clearly had regular boundaries, causing the segmentation results to appear as if
some parts have been removed, as shown in the red box in the Figure 4.

4.3 Segmentation efficiency results on validation set

After observation, most of the data show similar utilization rates in CPU, GPU,
and RAM, so we randomly select two of them for analysis, like Figure 5. Because
this is a two-stage segmentation network, there are two prediction stages, which
will occupy a lot of RAM and GPU. Therefore, there will be two peaks in the
variation of GPU and RAM occupancy over time. The first smaller peak is
due to the coarse segmentation, while the second larger peak is due to the fine
segmentation in the second stage.

4.4 Results on final testing set

The table 5 is our testing results during MICCAI (2023.10.8).

4.5 Limitation and future work

For limitation, from examples of poor segmentation, we can easily conclude that
the segmentation performance of our method not only depends on the quality
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Fig. 3. Two best examples from our segmentation results.
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Coronal

Sagittal
Case39_Pred Case39_GT

Fig. 4. Two worst examples from our segmentation results.



10 X. Yang et al.

Table 4. Quantitative evaluation of segmentation efficiency in terms of the running
them and GPU memory consumption.

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 93.76 3882 16384
0051 (512, 512, 100) 107.06 4174 16384
0017 (512, 512, 150) 127.36 4394 16384
0019 (512, 512, 215) 111.72 3946 16384
0099 (512, 512, 334) 129.2 3848 16384
0063 (512, 512, 448) 162.63 3922 16384
0048 (512, 512, 499) 173.74 3794 16384
0029 (512, 512, 554) 225.18 4554 16384

Case51

Case99

Fig. 5. Qualitative evaluation of segmentation efficiency.
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Table 5. Results on final testing set

Accuracy measures DSC NSD
Liver 0.9646 0.9656
RK 0.9447 0.9423

Spleen 0.9252 0.9311
Pancreas 0.8925 0.9659

Aorta 0.9672 0.9842
IVC 0.9540 0.9704
RAG 0.8305 0.9445
LAG 0.8014 0.9270

Gallbladder 0.7894 0.8033
Esophagus 0.8743 0.9690
Stomach 0.9074 0.9505

Duodenum 0.8610 0.9561
LK 0.9127 0.9168

Organ 0.8940 0.9407
Lesion 0.3379 0.2474

of the pseudo labels, but also on the accuracy of the first stage coarse segmen-
tation. Poor quality of coarse segmentation can lead to incomplete coverage to
the abdominal area after cropping, resulting in segmentation fragmentary. For
future work, on the one hand, we plan to adopt the idea of iterative learning and
continuously utilize better models to generate more accurate pseudo labels; On
the other hand, we plan to improve the performance of the coarse segmentation
network and improve the post-processing strategy of it.

5 Conclusion

This article designs a two-stage segmentation framework based on nnU-Net,
which utilizes partially labeled data for fully supervised data construction, train-
ing, and effective predict. This method can solve the problem of excessive con-
sumption of nnU-Net.
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Table 6. Checklist Table. Please fill out this checklist table in the answer column.

Requirements Answer
A meaningful title Yes
The number of authors (≤6) 6
Author affiliations and ORCID Yes
Corresponding author email is presented Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts:
background, related work, and motivation Yes

A pipeline/network figure is provided Figure 1
Pre-processing Page 3
Strategies to use the partial label Page 3,4
Strategies to use the unlabeled images. No
Strategies to improve model inference 6
Post-processing No
Dataset and evaluation metric section is presented Page 6
Environment setting table is provided Table 1
Training protocol table is provided Table 2
Ablation study Page 7
Efficiency evaluation results are provided Table 4
Visualized segmentation example is provided Figure 3,4
Limitation and future work are presented Yes
Reference format is consistent. Yes


