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Abstract
Recently, forecasting future abnormal events has
emerged as an important scenario to tackle real-
world necessities. However, the solution of pre-
dicting specific future time points when anoma-
lies will occur, known as Anomaly Prediction
(AP), remains under-explored. Existing meth-
ods dealing with time series data fail in AP, fo-
cusing only on immediate anomalies or failing
to provide precise predictions for future anoma-
lies. To address the AP task, we propose a novel
framework called Anomaly to Prompt (A2P),
comprised of Anomaly-Aware Forecasting (AAF)
and Synthetic Anomaly Prompting (SAP). To en-
able the forecasting model to forecast abnormal
time points, we adopt a strategy to learn the re-
lationships of anomalies. For the robust detec-
tion of anomalies, our proposed SAP introduces
a learnable Anomaly Prompt Pool (APP) that
simulates diverse anomaly patterns using signal-
adaptive prompt. Comprehensive experiments on
multiple real-world datasets demonstrate the su-
periority of A2P over state-of-the-art methods,
showcasing its ability to predict future anoma-
lies. Our implementation code is available at
https://github.com/KU-VGI/AP.

1. Introduction
As deep learning methods have evolved rapidly, their appli-
cation to time series analysis has gained significant attention
due to their critical importance in real-world scenarios. As
part of this, recently, forecasting future abnormal events
has been newly proposed in time series analysis, such as in
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Figure 1: Comparison among different scenarios of existing time
series anomaly detection, forecasting, and a newly proposed
anomaly prediction.

(Jhin et al., 2023) and (You et al., 2024), aiming to enhance
preparedness for potential abnormal events in real-world
scenarios. For example, it is greatly helpful for medical
doctors to predict potential abnormalities based on patients’
biomedical data because they can make decisions about their
health in advance. Another example case can be the main-
tenance of industrial systems where a prediction of future
abnormal events is crucial, since companies or users can
minimize costs from abrupt system failure.

The illustration of three different scenarios about time se-
ries forecasting, time series anomaly detection (AD), and
Anomaly Prediction (AP) is depicted in Figure 1. In time
series forecasting, a model should predict how future sig-
nals will look like, while in anomaly detection, a model
should detect abnormal time points from the given signal.
In Anomaly Prediction, a model should detect anomalies in
the predicted signal. This is a more realistic and challenging
scenario, in which we are interested in this paper.

Although there have been some recent attempts to define
the AP scenario in which a model should predict future
anomalies as in (Jhin et al., 2023) and (You et al., 2024),
they cannot meet the demands of the real world. (Jhin et al.,
2023) can only detect if an anomaly is likely to occur in
the very near future, while failing to provide information on
exact abnormal time points. In the real world, it is crucial
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to predict possible future anomalies within a more distant
future, robustly against the various lengths of the future in
which we are interested. However, existing works including
(You et al., 2024) do not directly tackle the problems of
Anomaly Prediction yet and also lack analysis on longer
and various future lengths, limiting its applicability in the
real world. To sum up, despite the significance of the AP
scenario, how to predict the timing of abnormal events in
the future is still under-explored.

Figure 2: Comparison of
F1-scores for existing time
series anomaly detection
task (AD) and Anomaly
Prediction task (AP) in the
MBA dataset.

A straightforward combina-
tion of existing state-of-the-
art time series forecasting and
anomaly detection methods
may appear to be a natu-
ral baseline for the AP task,
where the anomaly detection
model detects anomalies from
predicted signals that are the
outputs of the forecasting
model. Figure 2 presents a
comparison of AD, which de-
tects anomalies from past sig-
nals, and AP, which identifies
anomalies from the predicted
future signals using a combina-
tion of time series forecasting
and anomaly detection meth-
ods. However, as shown in Figure 2, we empirically found
that a naïve combination of the time series forecasting model
and time series anomaly detection model fails at predict-
ing future anomalies. The reason for this failure is quite
intuitive: existing forecasting models are trained on only
normal signals and predict them, thereby overlooking the
prominence of abnormality in abnormal time points when
predicting future signals. As a result, anomaly detection
models fail at detecting anomalies because the forecasting
models rather reduce the degree of abnormality of anomaly
time points, which makes it difficult to detect them for
anomaly detection models.

To effectively resolve this challenging scenario, we propose
a simple yet effective framework, Anomaly to Prompt
(A2P), which is composed of Anomaly-Aware Forecasting
(AAF) and Synthetic Anomaly Prompting (SAP). AAF
aims to consider the existence of anomalies in the train-
ing process of forecasting. To achieve this, we utilize an
Anomaly-Aware Forecasting Network which is pre-trained
before the main training to learn the probability of being an
anomaly at a specific time point. By learning the relation-
ship of anomaly signals, we solve the absence problem of
abnormality in signals while forecasting, which hinders ex-
isting forecasting models from tackling the AP task. Along
with the method to endow the capability to forecast anoma-
lous time steps, we introduce a novel SAP method with

Anomaly Prompt Pool (APP) to improve the robustness of
anomaly detection. Anomaly prompts, which are learnable
parameters, are utilized to intensify the diversity of signals
used for reconstruction in the anomaly detection model, by
capturing the characteristics of anomalies. We leverage a
novel signal-adaptive prompt tuning, with a specially de-
signed loss term to guide signals to have abnormal features
and an Anomaly Prompt Pool that contains instructions for
transforming normal signals into anomalous ones. Further-
more, we adopt a shared backbone architecture that can learn
a unified representation, enabling forecasting and anomaly
detection at once. This can remove the need for separate
models, i.e., enhancing efficiency, and improves the overall
performance, proven by our extensive experiments.

Our main contributions can be summarized as follows:

• For the first time, we introduce a novel Anomaly to
Prompt (A2P) method to address the Anomaly Predic-
tion (AP) task, which aims to identify the time points at
which abnormal events are likely to occur in the future
based on the observed signals.

• We propose an unprecedented method for forecasting
time points with anomalies. To achieve this, we intro-
duce Anomaly-Aware Forecasting (AAF) to endow the
forecasting ability of future signals containing anoma-
lies.

• We propose a novel Synthetic Anomaly Prompting
(SAP) method to simulate anomalies with a novel loss
objective to train Anomaly Prompt Pool (APP), com-
posed of a set of learnable parameters. This method
enables our model to effectively diversify training sig-
nals through a novel signal-adaptive tuning method.

• We conducted comprehensive experiments on various
real-world datasets to show the effectiveness of our
proposed method and demonstrate that our method
outperforms the state-of-the-art methods.

2. Related Work
Time Series Forecasting. Time series forecasting, which
is the task of forecasting future signals based on historical
observations, is important in terms of practicality in the
real world. Previous works on time series have achieved
strong prediction performance by leveraging advances in se-
quence modeling machine learning methods and deep neural
networks such as RNN (Hochreiter & Schmidhuber, 1997;
Tokgöz & Ünal, 2018; Abdel-Nasser & Mahmoud, 2019),
GNN (Jiang & Luo, 2022; Wang et al., 2022b; Panagopou-
los et al., 2021), and CNN (Bai et al., 2018; Livieris et al.,
2020) to capture temporal dependencies. Recently, Trans-
formers (Vaswani et al., 2017) have begun to be actively
used for time series forecasting (Zhou et al., 2021; 2022;
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Wu et al., 2021; Liu et al., 2021; Cirstea et al., 2022; Zhang
& Yan, 2022; Nie et al., 2023; Zhou et al., 2023; Liu et al.,
2024; Xu et al., 2023). However, existing forecasting mod-
els are trained on normal signals, neglecting anomalies,
which leads to poor prediction of abnormal events. Ad-
ditionally, these models require human interpretation for
decision-making, which is time-consuming. This paper
presents a novel approach to forecast abnormal events, pro-
viding direct, practical insights for decision-making.

Time Series Anomaly Detection. Multivariate time series
anomaly detection is a crucial problem for many applica-
tions and has been widely studied. Most of the previous
studies are mainly performed in an unsupervised manner
considering the restriction on access to abnormal data. Con-
temporary works on time series anomaly detection can be
divided into reconstruction-based approaches (Shen et al.,
2021; 2020a; Li et al., 2019; Su et al., 2019b; Zhou et al.,
2019; Yang et al., 2023; Shin et al., 2023) which find latent
representations of normal time series data for reconstruction,
and forecasting-based approaches (Shen et al., 2020b; Si
et al., 2023). Among them, (Xu et al., 2022) proposes a
new association-based method, which applies the learnable
Gaussian kernel for better reconstruction. Another recent
reconstruction-based model DCdetector (Yang et al., 2023)
achieves a similar goal in a much more general and concise
way with a dual-attention self-supervised contrastive-type
structure. Existing anomaly detection models identify past
anomalies, limiting real-world applicability. In this paper,
we tackle a more practical challenge: predicting anomalies
in future signals for the first time.

Predicting Future Anomalies. Recently, predicting
whether anomalies are likely to occur in the future for time-
series data has been studied in (Jhin et al., 2023) and (You
et al., 2024). In (Jhin et al., 2023), Precursor-of-Anomaly
(PoA) detection is proposed which aims to detect future
anomalies in advance. However, in PoA detection, the
model can only know if any anomalies will occur in the
near future or not. Therefore, it cannot be used in scenar-
ios where identifying time steps with anomalies is crucial.
In response to the need to predict the specific time points
of anomalies in the future, (You et al., 2024) introduces
Anomaly Prediction in which a model is required to pinpoint
abnormal time steps in the future. Although it formulated
the AP scenario, it does not directly tackle its challenges.
Related studies have been done in early accident anticipa-
tion (Liao et al., 2024; Thakur et al., 2024) for autonomous
driving as well. However, they focus on detecting the possi-
bility of an accident as early as possible within a short video
clip and cannot point out when the accident will happen
in the future. Thus, there is no method that can solve AP
yet. In this work, we first propose a method to deal with the
problems of AP.

3. Method
In this section, we formulate a novel scenario called
Anomaly Prediction, to foresee potential anomalies in future
signals in Section 3.1. Then, we explain the architecture of
A2P, a unified shared backbone network to perform both
forecasting and anomaly detection at once in Section 3.2.
To tackle our challenging scenario effectively, in Section
3.3, we introduce a new approach called Anomaly-Aware
Forecasting for more precise forecasting of abnormal time
points. Furthermore, we propose a novel method coined
Synthetic Anomaly Prompting which trains a newly pro-
posed Anomaly Prompt Pool. Anomaly-Aware Forecasting
Network and Anomaly Prompt Pool are jointly pre-trained
in advance of the main training where the shared backbone
for both forecasting and anomaly detection is trained. Fi-
nally, we summarize the total objective function in Section
3.5.

3.1. Scenario Description: Time Series Anomaly
Prediction

Time series anomaly prediction is a scenario that aims
to pinpoint the exact time steps of anomaly points in the
upcoming signals. Specifically, for a given input signal
Xin ∈ RLin×C , the final goal is to obtain the binary
results of anomaly detection O ∈ RLout from the pre-
dicted signal X̂out ∈ RLout×C , where Lin and Lout are
the lengths of the input and predicted signals, respectively,
and C is the number of channels in the signal. To per-
form anomaly prediction, we need a network for time series
forecasting denoted as ΘF , and a network for time series
anomaly detection denoted as ΘAD. Therefore, O can be
written as O = ΘAD ◦ ΘF (Xin) = ΘAD(X̂out), where
X̂out = ΘF (Xin). For the evaluation of anomaly predic-
tion performance, F1-score is used as existing time series
anomaly detection methods do. The difference in the mea-
surement from the existing methods is that the Point Ad-
justment (PA) proposed in (Audibert et al., 2020) cannot
be adopted in original way, since in anomaly prediction, it
is important to identify specific time points. Therefore, we
alleviate PA for our metric, which is explained in Section 4.

3.2. Unified Architecture for Anomaly Prediction

Both existing time series forecasting models such as (Nie
et al., 2023; Wang et al., 2022a; Zhou et al., 2023; Wu et al.,
2021; Zhou et al., 2021; 2022; Liu et al., 2021) and anomaly
detection models like (Xu et al., 2022; Yang et al., 2023)
capture the representation of time series data. Inspired by
this point, we adopt a shared backbone (θ) to establish a
unified architecture to learn the representations of signals
for both the forecasting and anomaly detection models at
the same time, as shown in Figure 3.
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Specifically, in our framework, several base layers of trans-
former blocks denoted as θ are shared, while other specific
parts, the embedding layers (eF and eAD) and output lay-
ers (oF and oAD) to construct ΘF and ΘAD, exist sepa-
rately, i.e., ΘF = {eF , oF , θ} and ΘAD = {eAD, oAD, θ}.
By sharing the backbone network, our model can accumu-
late general knowledge for both time series forecasting and
anomaly detection effectively, resulting in rich represen-
tations and performance improvements. We analyze the
effectiveness of the unified framework in Section 4.

3.3. Pre-Training of Anomaly-Aware Forecasting
Network and Anomaly Prompt Pool

Anomaly-Aware Forecasting. We propose a novel
method called Anomaly-Aware Forecasting (AAF), which
improves the accuracy of future signal prediction by ex-
plicitly accounting for anomalies in prior signals. Unlike
traditional forecasting models that treat all past data equally,
our approach incorporates an additional module to improve
robustness in dynamic and unpredictable environments. The
core of this method is the Anomaly-Aware Forecasting Net-
work, which is pre-trained to learn the complex relationships
between prior signal anomalies and future trends. This pre-
training step enables the network to anticipate how past
anomalies might influence upcoming signals, thereby pro-
viding a more informed and accurate forecast during the
main training phase.

The main purpose of AAF is to learn the relation between
abnormal features inherent in a prior signal and its following
future signal. To this end, we exploit Anomaly-Aware Fore-
casting Network which is composed of embedding layers,
an attention layer, and an activation layer as shown in Figure
3. The inputs of Anomaly-Aware Forecasting Network are
Xz

out and Xz
in, which are the results of random anomaly

injection among seasonal, global, trend, contextual, and
shapelet anomaly types from Xout and Xin, respectively.
For the detailed implementation of the injection, we adopt
the scheme used in (Darban et al., 2025). We first iden-
tify where to inject these abnormalities by comparing each
signal with its reconstruction output using fftr, which is a
pre-trained model, and focusing on the regions that yield
the highest Mean Squared Error. Moreover, the magnitude
of the injected abnormalities is treated as a learnable pa-
rameter, allowing the model to adaptively determine how
much abnormality to inject at each identified location. The
query for attention in Anomaly-Aware Forecasting Network
is eout(X

z
out), which is the target that we want to know

about, while key and value are ein(X
z
in), the ground for as-

sessing the abnormality of Xz
out, where eout and ein refers

to the embedding layers for Xz
out and Xz

in. The output of
the network is trained to indicate the probability of being
an anomaly for each time step. This output is compared to
ground truth label yzout of Xz

out, and Mean Squared Error

is used for the loss term. As a result, the final loss term for
training Anomaly-Aware Forecasting Network in advance
of the main training is as follows:

LAAF = MSE(σ(Attn(eout(X
z
out), ein(X

z
in))), y

z
out),

(1)
where σ is the activation function, sigmoid function, and
Attn is the cross attention layer.

Synthetic Anomaly Prompting. To accurately predict
anomaly points, forecasting the future signal from a prior
signal while considering the existence of anomaly points
is crucial. To tackle this challenge, we propose a novel ap-
proach, named Synthetic Anomaly Prompting (SAP), which
utilizes synthetic anomaly prompts for our model to predict
future abnormal signals effectively. For SAP, we integrate a
new Anomaly Prompt Pool (APP) into our unified architec-
ture, as shown in Figure 3. The purpose of APP, which is a
set of additional trainable parameters P , is to guide an input
signal to behave like an abnormal signal, by infusing the
anomaly prompts into the original embedding of the signal.

In detail, APP is defined as P =
{(k1, p1) , (k2, p2) , · · · , (kM , pM )}, where pm ∈ RLz×D

and km ∈ RD denote the m-th anomaly prompt and its
corresponding key, respectively, Lz and D are the token
length of single anomaly prompt and the embedding
dimension, and M is the pool size, which is the number
of total anomaly prompts in APP. Moreover, to select
N best-matched prompts with the input signal Xr

in

(Xr
in = ΘAD(Xin)) in the pool, we introduce a feature

extractor fftr(·), which is a simple three-layer transformer
architecture with a [CLS] token, as a query function, i.e.,
q(Xr

in) = fftr([CLS;Xr
in])[CLS]. The [CLS] token is a

learnable embedding used to capture global representations,
and it helps to select the most relevant anomaly prompt in
A2P, enabling effective abnormal feature synthesis.

The process of our proposed anomaly synthesis method us-
ing APP is displayed in Figure 3. First, we pre-train the
feature extractor fftr(·) with the train set, which will be
used to select the most relevant anomaly prompt from APP.
After the training of fftr(·), it is frozen and used for the
retrieval of features from signals. Second, we train Anomaly
Prompt Pool with input data Xr

in, which is the reconstructed
output of Xin. The input signal passes through the feature
extractor to obtain the query q(Xr

in). This query is then
matched against the keys in the APP, and the prompts cor-
responding to the top-N closest keys are attached to the
embedded input X̃r

in ∈ RLin×D, where X̃r
in = eAD(Xr

in).
Note that the synthesis of anomaly is executed at the embed-
ding level, which enables more diverse prompting in high
dimensions. Finally, the simulated embedding of anomaly
X̃p

in is defined as follows:

X̃p
in = [ps1 ; · · · ; psN ; X̃r

in], si ∈ S, (2)
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Figure 3: Pre-training of Anomaly-Aware Forecasting Network and Anomaly Prompt Pool. Our model first pre-trains Anomaly-
Aware Forecasting Network and Anomaly Prompt Pool (APP) by injecting anomalies to train data. After pre-training, Anomaly-Aware
Forecasting Network and APP are frozen in the main training.

S = argmax
{si}N

i=1⊆[1,M ]

N∑
i=1

γ (q(Xr
in), ksi) , (3)

where the score function γ is the cosine similarity, which is
for calculating how each anomaly prompt is related to each
normal signal, and [·; ·] denotes the concatenation. The se-
lected prompt tokens are attached to the input tokens of X̃r

in,
after passing through the embedding layer eAD, to trans-
form the original normal signal into an abnormal signal. The
output anomaly prompts are then removed before the final
projection of each oF and oAD, to match the dimension.

Divergence Loss. To make the model detect more diverse
anomalies, we pre-train the Anomaly Prompt Pool which
holds the knowledge of characteristics of anomalies. The
pre-trained APP can then be used to infuse plausible anoma-
lies later in the main training phase. For the efficient pre-
training of APP, we introduce a novel Divergence loss (LD)
to guide the anomaly prompts in the APP to prompt the
signals to function as anomalies, distinct from normal sig-
nals. Along with a term to make abnormal signals, we add
an additional term to pull the selected keys closer to the
corresponding features of normal signals as follows:

LD = −KL(A(X̃p
in), A(X̃

r
in))− λk γ (fftr(X

r
in), km) .

(4)
Here, we obtain the reconstruction output Xr

in which plays
a role of pseudo-normal signal, where A is the first attention
layer in θ. Then, the model attaches anomaly prompts from
Anomaly Prompt Pool to pseudo-normal embedding X̃r

in to
simulate anomaly, which results in X̃p

in. Since we aim to
train APP to add abnormalities into the signal, the features
of synthetic anomaly and pseudo-normal input features are
trained to be distinct with LD, which serves to intensify
the gap between the features of pseudo-normal feature and

synthetic anomaly feature. Note that after the pre-training
phase, the proposed Anomaly-Aware Forecasting Network
and APP are frozen.

Forecasting Loss. Along with Anomaly-Aware Forecast-
ing Network and APP, the forecasting model is pre-trained
to predict future time series with anomaly signals, as well
as normal signals. The outputs of Xin and Xz

in from the
forecasting model ΘF , which result in X̂out and X̂z

out, re-
spectively, are used to pre-train ΘF via forecasting loss LF

as follows:

LF =
1

2

(∥∥∥X̂out −Xout

∥∥∥2 + ∥∥∥X̂z
out −Xz

out

∥∥∥2) . (5)

3.4. Main Training

In the main training stage, the pre-trained Anomaly-Aware
Forecasting Network, explained in section 3.3, is used to out-
put anomaly probability, as indicated in Figure 4. Therefore,
in the main training, the final loss term regarding forecasting
is as follows:

LAF = g(Xin, X̂out)⊙
∥∥∥X̂out −Xout

∥∥∥2 , (6)

where g(·) is Anomaly-Aware Forecasting Network, X̂out

is ΘF (Xin) and ⊙ is element-wise multiplication. By con-
sidering the errors in anomaly time steps more than other
time steps, the network can be trained to focus on abnormal
areas.

We employ an additional loss term that aims to reconstruct
X̃p

in to its original normal form Xin, as follows:

LR =
1

2

(
∥Xin −Xp,r

in ∥2 + ∥Xin −Xr
in∥

2
)
, (7)
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Figure 4: Main Training of A2P. Only the shared backbone is
trained during the main training, and others are frozen.

Figure 5: Test time of Anomaly Prediction.

where Xp,r
in = oAD(θ(X̃p

in)) is the reconstruction out-
put of synthesized abnormal input embedding and Xr

in =
ΘAD(Xin) is that of original normal input signal.

3.5. Total Objective Function

The total objective function of our proposed framework is
summarized as follows:

LTotal =

{
λAAFLAAF + λDLD + λFLF for PT,
λRLR + λAFLAF , for MT,

(8)
where PT and MT mean pre-training and main training,
respectively, and λ = {λAAF , λD, λF , λR, λAF } is a set of
coefficients for weighting each loss term. We set all five
coefficients to 1 as default values during whole experiments.

3.6. Test Time

In the test time for the evaluation of A2P, only the shared
backbone is utilized and other modules are discarded as

shown in Figure 5. First, the forecasted signal X̂out is
obtained by forwarding the input signal Xin to ΘF . Then
the reconstructed output of X̂out is obtained as X̂r

out =
ΘF (X̂out). Finally, the anomaly score for each time step is
calculated using X̂out and X̂r

out, following the scheme of
(Xu et al., 2022).

4. Experiments
4.1. Experimental Setup

Dataset Configurations. We evaluated our method on
four real-world time series datasets: 1) MBA (MIT-BIH
Supraventricular Arrhythmia Database) (Moody & Mark,
2001) is a set of electrocardiogram recordings from four
patients, composed of two distinct types of irregularities
(supraventricular contractions or premature heartbeats). 2)
Exathlon (Jacob et al., 2020) is a set of real-world datasets
collected using Apache Spark. It is comprised of eight sub-
datasets, each dataset with 19 dimensions. 3) SMD (Server
Machine Dataset) (Su et al., 2019a) is a 5-week-long dataset
that was collected from a large Internet company with 38
dimensions. 4) WADI (Water Distribution) (Ahmed et al.,
2017) is a distribution system comprising a larger number
of water distribution pipelines with 123 dimensions.

Baselines and Evaluation Metrics. We compared our
model with various combinations of existing forecasting
models and anomaly detection models, considering them as
our baselines. For forecasting models, we adopted state-of-
the-art models, PatchTST (Nie et al., 2023), MICN (Wang
et al., 2022a), GPT2 (Zhou et al., 2023), iTransformer (Liu
et al., 2024), and FITS (Xu et al., 2023). Regarding anomaly
detection models, we adopted reconstruction-based meth-
ods, AnomalyTransformer (Xu et al., 2022), DCDetector
(Yang et al., 2023), and CAD (Si et al., 2023). We con-
ducted additional baseline experiments, which are described
in Appendix C.3. We used F1-score (F1) as the main eval-
uation metric. If not mentioned, the scores reported in the
tables indicate F1-scores. In addition, F1-score was calcu-
lated without point adjustment introduced in (Audibert et al.,
2020). Instead, we used F1-score with tolerance t, which
denotes the time window within which errors are tolerated in
anomaly detection. For example, when a model predicts that
a time step i is an anomaly, the real ground-truth anomaly
time points from [i− t, i+ t] are considered to be correctly
detected before the calculation of F1-score.

Hyperparameters. The hyperparameters used in our ex-
periments are mentioned in Appendix A.2, and the sen-
sitivity results on various parameter values are shown in
Appendix E.
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Table 1: Anomaly Prediction results on multivariate cases with Lin = 100, averaged over 3 random seeds. The best and second-best
results are highlighted.

Lout

Model Dataset
Avg. F1

F AD MBA Exathlon SMD WADI

100

P-TST
AT 55.05±3.75 18.10±0.24 34.32±0.50 58.02±3.95 41.37
DC 59.59±3.94 17.21±0.17 23.01±5.31 18.50±13.99 29.08

CAD 53.75±0.11 18.10±0.36 25.55±0.10 54.33±2.10 37.93

MICN
AT 38.84±14.85 17.30±1.29 34.06±1.38 54.51±3.99 36.18
DC 57.90±1.95 17.35±1.19 31.80±1.63 10.21±3.23 29.82

CAD 57.42±0.52 5.19±0.44 18.17±1.90 18.45±7.27 24.81

GPT2
AT 49.20±7.02 17.83±3.20 29.49±2.46 59.88±7.03 39.60
DC 55.13±3.80 9.66±0.74 31.23±1.98 21.56±7.50 29.90

CAD 16.64±8.75 17.34±1.13 8.14±0.57 26.97±2.53 17.77

iTransformer
AT 54.72±5.35 17.82±0.81 32.75±0.80 54.54±8.28 39.96
DC 53.07±5.30 12.98±3.73 13.47±6.62 13.65±12.82 23.29

CAD 39.76±6.38 16.94±0.88 25.69±2.58 24.36±1.60 26.69

FITS
AT 41.51±5.33 17.74±2.85 32.65±1.39 60.30±4.46 39.55
DC 61.39±4.89 17.38±3.26 32.45±1.27 52.96±6.11 41.55

CAD 23.72±9.43 10.87±0.06 33.15±1.14 28.93±0.45 24.67

A2P (Ours) 67.55±5.62 18.64±0.16 36.29±0.18 64.91±0.47 46.84

200

P-TST
AT 51.25±3.52 17.65±0.31 34.07±1.88 55.24±6.62 39.55
DC 59.04±3.69 16.23±0.50 13.42±5.38 7.36±5.20 24.01

CAD 16.87±5.21 16.28±0.11 6.71±0.79 31.69±1.41 17.89

MICN
AT 56.57±2.90 17.30±0.09 33.44±1.81 55.24±3.87 40.64
DC 57.80±1.32 17.41±0.34 30.32±2.13 56.24±1.13 40.94

CAD 50.46±0.82 2.44±0.07 6.36±0.23 32.75±2.00 23.00

GPT2
AT 49.29±2.55 17.64±0.54 35.12±0.90 59.35±4.34 40.35
DC 55.44±2.84 10.25±0.12 9.77±4.67 26.14±3.10 25.09

CAD 26.24±1.78 15.40±0.13 7.42±0.37 27.87±2.11 19.73

iTransformer
AT 54.13±0.08 17.88±0.14 27.26±6.01 48.72±9.47 37.50
DC 52.53±7.47 14.86±0.05 3.65±4.36 14.45±20.44 21.87

CAD 21.14±7.35 16.58±0.08 7.66±0.23 30.37±2.39 18.44

FITS
AT 47.85±2.07 17.88±0.26 35.70±0.24 64.10±1.22 41.38
DC 51.21±7.64 17.56±0.21 29.69±1.57 53.60±3.49 38.02

CAD 51.44±14.45 10.04±0.41 9.32±0.70 32.75±2.00 25.39

A2P (Ours) 74.63±5.92 28.71±0.54 42.36±0.80 66.65±1.93 53.08

400

P-TST
AT 47.25±11.15 17.30±0.49 26.56±1.50 56.05±1.34 36.79
DC 56.89±8.21 16.65±0.32 14.55±8.78 47.36±1.51 33.36

CAD 20.04±9.04 13.40±0.31 3.75±0.20 20.22±0.78 14.35

MICN
AT 57.81±1.57 17.37±0.75 35.71±0.10 53.83±1.96 41.18
DC 56.08±5.30 17.49±0.49 29.95±3.63 57.80±3.88 40.83

CAD 21.12±1.87 13.40±0.10 3.86±0.10 5.02±0.26 10.85

GPT2
AT 50.31±5.40 17.53±0.89 32.89±3.49 52.86±6.47 38.90
DC 57.70±10.28 9.49±3.29 3.89±3.06 15.16±1.80 21.06

CAD 3.57±2.25 11.07±4.22 4.14±0.72 11.07±4.22 7.96

iTransformer
AT 49.14±3.74 17.41±0.70 32.89±3.49 53.17±5.58 38.15
DC 49.72±4.23 15.46±0.22 12.61±7.20 7.57±10.70 21.84

CAD 24.87±6.02 12.37±1.13 3.55±0.83 10.23±8.44 12.76

FITS
AT 46.60±5.77 18.03±0.95 33.49±2.99 56.66±5.89 38.20
DC 54.32±11.29 17.66±0.42 23.83±11.40 45.12±1.78 35.73

CAD 66.33±4.21 7.50±0.56 4.95±0.12 22.60±0.08 25.84

A2P (Ours) 69.35±7.15 43.57±1.10 48.10±2.55 74.57±6.37 58.89
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Anomaly Threshold. The threshold for deciding anoma-
lies from anomaly scores is set by following the widely
accepted protocol from (Shen et al., 2020a), adjusting for
a percentage of anomalies in the test data. This approach
ensures consistency with established standards for anomaly
detection tasks.

4.2. Anomaly Prediction Results

The results of the Anomaly Prediction experiments are
demonstrated in Table 1. For the F1-score, our model con-
sistently outperforms the baselines, showing the effective-
ness of our proposed Anomaly-Aware Forecasting and Syn-
thetic Anomaly Prompting. Note that ours were effective
in datasets from various domains, which implies that our
methods are robust to the various statistics of datasets.

4.3. Ablation Study

AAF and SAP. To further examine the effectiveness of
our novel methods, we thoroughly conducted ablation stud-
ies. The ablation results of AAF and SAP are indicated
in Table 2 to see the impact of each method. As shown
in Table 2, 1) utilizing the knowledge of the relationship
among anomaly signals and 2) synthesizing anomalies at
the embedding level in a learnable way improved Anomaly
Prediction performance, respectively.

Pre-training Loss Ablation. Table 3 demonstrates the
ablation of two loss terms used in the pre-training phase. For
training the backbone, utilizing LF and our proposed LD

both contributed to significant performance enhancement.
Especially, the Divergence loss (LD) alone improved about
24% of its performance in the MBA dataset, emphasizing
the effectiveness of LD for the robust reconstruction of time
series data from various abnormal features.

Shared Backbone. In order to investigate the impact of
sharing transformer layers between the forecasting model
and the anomaly detection model, we conducted ablation
experiments regarding the effectiveness of the shared back-
bone as demonstrated in Table 4. Sharing the layers of
backbone for forecasting and anomaly detection remark-
ably enhanced the performances, implying that sharing the
knowledge of forecasting and anomaly detection helped to
enrich the representation learning of time series signals.

Using Anomaly Probability for AAF. To investigate the
effectiveness of using anomaly probability for training the
forecasting model in main training phase, we ablated the use
of anomaly probability in Table 5. Using weighted loss term
LAF notably enhanced the performance of AP compared
to using traditional forecasting loss, indicating considering
anomaly probability in forecasting process is effective.

Table 2: Ablation for the proposed AAF and SAP, when
Lin = Lout = 100.

AAF SAP MBA Exathlon SMD WADI Avg. F1
✗ ✗ 36.26 17.65 34.74 58.66 36.82
✓ ✗ 40.95 17.76 34.87 61.98 38.89
✗ ✓ 55.95 18.29 36.05 59.36 42.41
✓ ✓ 67.55 18.64 36.29 64.91 46.84

Table 3: Ablation of loss terms LD and LF used in pre-training.

LF LD MBA Exathlon SMD WADI Avg. F1
✗ ✗ 40.95 17.76 34.87 61.98 38.89
✓ ✗ 50.57 17.91 34.92 62.31 41.42
✗ ✓ 65.19 17.91 35.17 63.25 45.38
✓ ✓ 67.55 18.64 36.29 64.91 46.84

Table 4: Ablation for the shared transformer backbone.

Shared MBA Exathlon SMD WADI Avg. F1
✗ 51.53 18.00 35.60 60.70 41.45
✓ 67.55 18.64 36.29 64.91 46.84

Table 5: Ablation for the use of anomaly probability in main
training.

Forecasting Loss MBA Exathlon SMD WADI Avg. F1
MSE 64.20 18.24 36.13 59.19 44.44

MSE ⊗ AN. Prob. 67.55 18.64 36.29 64.91 46.84

Table 6: Forecasting performances evaluated by MSE of
forecasting models and A2P (Ours) on the MBA dataset.

Lout 100 200 400
PatchTST 1.174 1.261 1.272

MICN 1.012 1.017 1.041
GPT2 1.021 1.096 1.100

iTransformer 1.140 1.256 1.279
FITS 1.495 1.844 2.390

A2P (Ours) 0.788 0.864 0.930

4.4. Analysis

Results on Forecasting. As shown in Table 6, our pro-
posed A2P was advantageous at predicting more accurate
future signals. The performance improvements in not only
Anomaly Prediction but also forecasting indicate that our
proposed approaches contributed to learning the representa-
tions of both normal and abnormal signals effectively, com-
pared to the baseline. Notably, when Lout was significantly
longer, our proposed A2P outperformed at forecasting future
signals with anomalies, indicating the capability of handling
long-term signals.

Qualitative Results on Anomaly Prediction. To further
examine the effectiveness of our method, we visualized
the time series signals as shown in Figure 6. As shown
in the figure, our proposed A2P successfully forecasted
the signal whereas our baseline, the naive combination of
PatchTST and AnomalyTransformer failed. Our proposed
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Figure 6: Ground-truth and predicted signals of MBA dataset
from the baseline and A2P (top), with corresponding anomaly
scores (bottom). The black dotted line represents the threshold of
anomaly scores, and red-shaded area indicates time step with
anomalies.

Figure 7: Comparison of GFLOPs and the number of parameters.

A2P predicted the abnormal events appropriately, and it led
to successful anomaly detection.

Computational Complexity. To investigate the impact
of additional computational complexity of our proposed
methods, we measured GFLOPs per iteration (including
both pre-training and main training) and the total number of
parameters of the baseline (combination of PatchTST and
AnomalyTransformer) and our proposed A2P. As shown
in the Figure 7, A2P does require additional computation
compared to the baseline. However, since our model uni-
fies both forecasting and anomaly detection within a single
framework, it significantly reduces the overall parameter
footprint. More importantly, this additional cost is only in-
curred during training, with no extra overhead at inference
time. Despite the modest increase in training complexity,

A2P achieved an average 10% improvement in performance
over the baseline, demonstrating a favorable trade-off be-
tween cost and accuracy. Moreover, the train time consumed
is utmost 1 hour in WADI dataset, which is negligible and is
not really a heavy burden for A2P to be applied in real-world
scenarios.

5. Conclusion
In this paper, we first addressed a solution to Anomaly Pre-
diction (AP), where the model needs to detect abnormal
time points from unarrived future signals. We tackle AP
by employing synthetic anomalies in train time, whereas
traditional time series forecasting and anomaly detection
models were trained with only normal signals, limiting their
generalizability to abnormal signals. We proposed two ef-
fective approaches, Anomaly-Aware Forecasting (AAF) and
Synthetic Anomaly Prompting (SAP). In AAF, we designed
Anomaly-Aware Forecasting Network to help the model
forecast time steps with anomalies. In SAP, we defined APP
which learns how to prompt the input signals to have anoma-
lous features. We achieved state-of-the-art performances on
the AP task in various real-world datasets, demonstrating
the effectiveness of our methods through comprehensive
experiments. We hope our pioneering attempt to predict
future anomalies provides an opportunity to anticipate po-
tential breakdowns, while also opening up a new direction
for research.
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A. Additional Information
A.1. Notations

Table 7: Categorized notations.

Symbol Description

Dimension

Lin Length of input signal
Lout Length of forecasted signal

C Dimension of time series data
M Number of anomaly prompts in Anomaly Prompt Pool
N Number of prompts to attach in Synthetic Anomaly Prompting
Lz Length of single token of an anomaly prompt
D Embedding dimension

Parameters

θ Shared transformer blocks
eF Embedding layer for forecasting
eAD Embedding layer for anomaly detection
oF Projection layer for forecasting
oAD Projection layer for reconstruction
ΘF Forecasting network
ΘAD Anomaly detection network
fftr Feature extractor for obtaining class token
P Set of parameters of Anomaly Prompt Pool

Signal

Xin Ground truth prior time series
Xout Ground truth posterior time series
Xz

in Time series after injecting random anomaly to Xin

Xz
out Time series after injecting random anomaly to Xout

X̂out Forecasted time series from Xin

X̂z
out Forecasted time series from Xz

in

Xr
in Reconstructed output of Xin

Xp,r
in Reconstructed output of X̃p

in

X̂r
out Reconstructed output of X̂out

Feature
X̃in Embedding feature of Xin

X̃p
in Embedding feature of prompted anomaly

X̃r
in Embedding feature of Xr

in

Etc. yzout Ground truth anomaly label of Xz
out

A.2. Training Details

For all models, we trained all models using Standard scaler, Adam optimizer (Kingma & Ba, 2015) with β1 = 0.9 and β2 =
0.999, a batch size of 16, and a constant learning rate of 0.0001 for all settings. We used the length of input sequence Lin

as 100 for all settings. Also, we conducted experiments varying the length of output sequence Lout from 100 to 400. For
Synthetic Anomaly Prompting, we adopted the length of anomaly prompts Lz and the size of anomaly prompt pool 5 and
10, respectively, as default. In the selection of top-N anomaly prompts in anomaly prompt pool, we used N = 3. We trained
the models for 5 epochs, with 3 layers of transformer backbone, and the embedding dimension D is fixed to 256. Also, our
experiments were executed on single GPU (NVIDIA RTX 3090), implementation library (PyTorch (Paszke et al., 2019)) for
fair and exhaustive comparison. Regarding the anomaly detection model for Anomaly Prediction, we set the window size of
100, and used sliced predicted signals to obtain the output of anomaly detection in experiments, including all comparing
methods.

A.3. Dataset Details of the Anomalies

Table 8 provides detailed information about the anomaly configurations of the datasets.
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Table 8: Statistics of Anomalies in the Dataset.

Dataset
Avg.

Anomaly Ratio (%)
Avg.

Anomaly Len. # of Anomaly Seg. # of Batches
# of Anomaly Seg.
/ # of Total Sample

# of Anomaly Seg.
/ # of Anomaly Sample

MBA 33.80 29.48 86 75 1.14 1.18
Exathlon 12.69 91.94 1091 8911 0.12 1.00

SMD 4.15 47.26 623 7083 0.08 1.00
WADI 4.88 62.19 27 344 0.07 1.00

Table 9: Ablation for the type of loss used in Anomaly-Aware Forecasting Network.

Type MBA Exathlon SMD WADI Avg. F1
BCE 66.75 17.91 34.82 64.21 45.92
MSE 67.55 18.64 36.29 64.91 46.84

Table 10: Anomaly Prediction results on datasets that are excluded in the main paper with Lin = Lout = 100, averaged over 3 random
seeds. The best and second-best results are highlighted.

Model Dataset
Avg. F1

F AD MSL PSM SWaT SMAP

P-TST
AT 41.96±0.97 13.74±0.52 11.29±0.17 14.97±0.16 20.49
DC 39.93±1.20 13.88±0.30 7.27±2.09 13.91±0.09 18.75

CAD 17.99±0.25 3.26±0.04 16.65±0.18 3.76±0.10 10.42

MICN
AT 39.91±0.39 14.04±0.25 11.68±0.31 14.74±0.67 20.09
DC 41.05±0.51 13.87±0.51 11.85±0.33 15.14±0.93 20.47

CAD 3.82±0.05 2.75±0.00 6.13±1.39 1.62±0.03 3.58

GPT2
AT 41.91±2.73 13.89±0.46 11.18±0.46 15.34±0.73 20.58
DC 39.31±1.72 10.31±5.67 11.00±1.15 9.89±1.54 17.63

CAD 2.08±0.29 3.65±0.31 6.76±0.91 9.17±0.23 5.41

iTransformer
AT 42.35±0.75 13.83±0.96 11.18±0.46 15.87±0.24 20.82
DC 39.95±0.87 13.46±0.41 4.92±2.75 15.54±0.35 18.47

CAD 4.49±0.15 3.80±0.40 13.10±1.51 3.71±0.55 6.28

FITS
AT 41.97±0.12 13.79±0.32 11.34±0.49 15.35±0.55 20.60
DC 41.72±1.39 13.65±0.61 9.24±1.68 14.21±0.34 19.70

CAD 7.56±0.34 7.87±0.40 16.47±0.02 4.67±0.27 9.14

A2P (Ours) 46.87±0.36 15.28±0.09 15.74±0.35 16.31±0.12 23.55

B. Loss Ablation of Anomaly-Aware Forecasting Network
We also ablated the loss term used for training Anomaly-Aware Forecasting Network, as indicated in Table 9. When Binary
Cross Entropy loss was used, the performance was suboptimal. The result implies that driving anomaly probability to be
continuous (MSE) rather than discrete (BCE) is better to learn Anomaly-Aware Forecasting Network effectively. For this
reason, we finally adopt MSE instead of BCE to learn anomaly probability in AAF.

C. Quantitative Results
C.1. Experiment on other datasets

Aside from the datasets that were included in the main paper, there are datasets mainly used for the evaluation of time
series anomaly detection such as MSL, SMAP (Hundman et al., 2018), PSM (Abdulaal et al., 2021), and SWaT (Mathur &
Tippenhauer, 2016). However, they are not appropriate for the evaluation of anomaly detection task due to the soundness
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Table 11: Anomaly Prediction results evaluated using VUS-PR and VUS-ROC with Lin = Lout = 100, averaged over 3 random seeds.
The best and second-best results are highlighted.

Model Lout
Avg.

F AD 100 200 400

V-PR V-ROC V-PR V-ROC V-PR V-ROC V-PR V-ROC

P-TST
AT 68.28 71.47 67.87 72.86 66.99 79.54 67.71 74.62
DC 68.52 72.11 67.44 71.31 67.84 70.25 67.93 71.22

CAD 55.26 68.07 57.98 71.94 56.96 70.55 56.73 70.19

MICN
AT 68.20 71.47 67.80 78.79 67.09 80.55 67.70 76.94
DC 68.55 72.31 67.89 70.93 67.96 71.44 68.13 71.56

CAD 67.30 78.31 67.93 80.12 60.48 73.36 65.24 77.26

GPT2
AT 68.24 71.85 67.61 76.61 66.95 75.70 67.60 74.72
DC 68.37 75.16 67.82 71.95 68.50 74.18 68.23 73.76

CAD 57.73 68.41 55.58 69.02 55.08 65.85 56.13 67.76

iTransformer
AT 67.95 72.87 66.90 80.38 66.72 80.04 67.19 77.76
DC 68.11 71.72 67.67 70.49 67.83 70.61 67.87 70.94

CAD 66.94 77.10 66.21 76.91 67.10 75.62 66.75 76.54

FITS
AT 67.98 71.59 68.14 72.30 68.24 72.57 68.12 72.15
DC 68.54 71.82 67.79 70.56 67.98 71.25 68.10 71.21

CAD 68.03 80.37 67.92 80.70 67.43 80.30 67.79 80.46

A2P (Ours) 71.18 83.37 68.17 81.55 69.01 82.52 69.46 82.48

of the datasets as discussed in (Wagner et al., 2023). Though, we demonstrate the results on the datasets in Table 10 for
reference.

C.2. Experiment on other evaluation metrics

Table 11 demonstrates the results on anomaly prediction evaluated using VUS-PR and VUS-ROC proposed in (Paparrizos
et al., 2022). VUS-PR and VUS-ROC are parameter-free measures that are extended from AUC-based measures. As shown
in the table, our proposed A2P showed superior performance across various forecasting length, indicating the robustness to
predict future anomalies of A2P.

C.3. Experiment on other baselines

To demonstrate the more generalized performance of A2P, the results of additional anomaly detection baseline experiments
are summarized in Table 12. We combined previously utilized time series forecasting models with time series anomaly
detection models such as TranAD (Tuli et al., 2022), BeatGAN (Zhou et al., 2019), and DiffusionAD (Zhang et al., 2025).
Across these baselines, A2P consistently achieved the highest performance.

C.4. Results on various tolerance

In the Anomaly Prediction task, it is crucial to detect the exact time steps of anomalies. In this regard, the general Point
Adjustment strategy is not fit to the Anomaly Prediction task. Therefore, we define t as the number of time steps to allow
errors in anomaly detection outputs before and after each time step, which is used to control the difficulty of the task. We
conducted experiments by varying t from 1 to ∞, where ∞ is equivalent to the existing point adjustment setting. As shown
in Figure 8, our proposed A2P outperformed on all t, implying that A2P can be used in diverse scenarios, from situations
where strict localization of time step is required to more relaxed scenarios. In our experiments, we used t = 50 as our
default setting.
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Table 12: Anomaly Prediction results on other baselines using additional anomaly detection models that are excluded in the main paper
with Lin = Lout = 100, averaged over 3 random seeds. The best and second-best results are highlighted.

Model Dataset
Avg. F1

F AD MBA Exathlon SMD WADI

P-TST
TranAD 61.38 17.35 34.67 57.12 42.63

BeatGAN 64.86 16.85 33.34 57.29 43.08
DiffusionAD 38.79 13.43 22.14 45.98 30.08

MICN
TranAD 58.10 18.48 28.97 59.36 41.22

BeatGAN 65.15 17.29 34.84 62.88 45.04
DiffusionAD 36.14 15.85 25.90 46.28 31.04

GPT2
TranAD 60.65 17.97 33.12 61.89 43.40

BeatGAN 50.82 17.27 30.45 55.07 38.40
DiffusionAD 29.74 13.76 23.88 52.21 29.89

iTransformer
TranAD 62.05 17.54 33.28 63.04 43.97

BeatGAN 63.97 17.35 32.19 59.68 43.29
DiffusionAD 37.60 11.97 23.43 48.80 30.45

FITS
TranAD 61.80 18.15 31.73 58.60 42.57

BeatGAN 61.16 17.32 28.77 53.46 40.17
DiffusionAD 27.79 11.96 21.68 46.95 27.09

A2P (Ours) 67.55 18.64 36.29 64.91 46.84

Figure 8: The F1-score of anomaly prediction in various tolerance, when Lin = Lout = 100.

D. Qualitative Results
We provide additional results of forecasting on the state-of-the-art forecasting models in Figure 9. The result showed that
the existing forecasting models fail at predicting abnormal events, since they consider to learn with only normal signals.

E. Hyperparameter Sensitivity
To figure out the effect of various hyperparameters used in A2P, we examined the F1-scores by varying each hyperparameter,
as shown in Figure 10. We conducted experiments with various λ coefficients, ranging from 0.1 to 0.9, to weigh each loss
term in the objective function. Our proposed model A2P showed stable performance across various values of λ. Regarding
the hyperparameters of Synthetic Anomaly Prompting, we examined the effect of various values of N for the number of
anomaly pool, M as the pool size of the anomaly prompt pool, and Lz which is the length of an anomaly prompt. While
our proposed A2P achieved stable performance for N and Lz across datasets, M affects the performance. Specifically, the
F1-score on the MBA dataset degrades with a bigger pool size, indicating that the selection of an appropriate pool size
considering the size of the dataset is needed to fully leverage the effectiveness of SAP. We also examined the influence of
nhAFFN which is the number of heads in Anomaly-Aware Forecasting Network. As shown in the last plot of Figure 10, our
proposed A2P performed robustly.
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Figure 9: Comparison of the result of forecasting the MBA dataset when Lin and Lout are 100. Red-shaded area indicate time steps with
anomalies.
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Figure 10: The results on various hyperparameter values when Lin = Lout = 100.
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