
Revisiting the Graph Reasoning Ability of Large Language Models:
Case Studies in Translation, Connectivity and Shortest Path

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have achieved001
great success in various reasoning tasks. In this002
work, we focus on the graph reasoning ability003
of LLMs. Although theoretical studies proved004
that LLMs are capable of handling graph rea-005
soning tasks, empirical evaluations reveal nu-006
merous failures. To deepen our understanding007
on this discrepancy, we revisit the ability of008
LLMs on three fundamental graph tasks: graph009
description translation, graph connectivity, and010
the shortest-path problem. Our findings sug-011
gest that LLMs can fail to understand graph012
structures through text descriptions and exhibit013
varying performance for all these three funda-014
mental tasks. Meanwhile, we perform a real-015
world investigation on knowledge graphs and016
make consistent observations with our findings.017

1 Introduction018

Large Language Models (LLMs) have shown re-019

markable achievements in a multitude of reasoning020

tasks, ranging from mathematical, commonsense021

and symbolic problem-solving (Luo et al., 2023;022

Creswell et al., 2023), to more specialized applica-023

tions like dialogue systems (Ouyang et al., 2022),024

program debugging (Surameery and Shakor, 2023)025

and scientific discovery (Boiko et al., 2023). In026

this work, we focus on graph reasoning capability,027

where LLMs employ an explicit graph, sourced028

either from the input data or external resources, to029

infer the outcome. This reasoning ability is cru-030

cial and can be applied across various domains,031

such as improving question-answering system by032

a domain-specific knowledge graph (Huang et al.,033

2022), facilitating planning in autonomous agents034

through the tool relation graph (Liu et al., 2024),035

and enhancing robot navigation via physical maps036

(Creswell et al., 2022).037

There are recent studies initially exploring the038

LLM’s graph reasoning capability. On the one039

hand, the theoretical work (Feng et al., 2024)040

proved that LLMs have the ability to mimic a pow-041

erful decision-making framework (i.e., dynamic042

programming), to solve the complex tasks. This043

Figure 1: The overview of datasets in accuracy and dis-
tribution across different connectivity types. We evalu-
ate GPT-3 on determining whether a path exists between
two nodes. Previous work (Wu et al., 2024) primarily
focused on 1-hop and 2-hop connections, resulting in
high accuracy. However, it overlooked the fact that ac-
curacy tends to drop when extending to 3, 4, and 5-hop
connections.

suggests that LLMs are capable of handling certain 044

graph reasoning tasks that can be formulated as 045

decision-making problems, including breadth-first 046

search for graph connectivity, and the Dijkstra for 047

shortest path problem. On the other hand, recent 048

empirical studies, such as GPT4Graph (Guo et al., 049

2023) and NLGraph (Wang et al., 2024), found 050

that LLMs could fail in these graph tasks. This 051

discrepancy between theoretical expectations and 052

practical observations indicates a critical gap in our 053

comprehension of LLMs’ graph reasoning abili- 054

ties. In light of this, we aim to delve deeper into 055

fundamental graph tasks to uncover the limitations 056

inherent in LLMs, assess the impact of these limi- 057

tations in real-world graphs, and propose possible 058

explanations to understand the discrepancy. 059

In this work, we re-evaluate three fundamental 060

graph reasoning tasks: graph description transla- 061

tion, graph connectivity, and the shortest path prob- 062

lem. First, we check whether LLMs can compre- 063

hend graph structures through the translation of var- 064

ied graph descriptions (See Section 3.1). We sum- 065

1

marize the three most popular graph description066

methods and evaluate the translation tasks among067

them. Despite it is a simple reasoning task and068

LLMs could achieve high performance, LLMs are069

not entirely error-free. Then, we explore graph070

connectivity and examine LLMs systematically by071

considering varying connectivity lengths between072

nodes, diverse types of disconnections and differ-073

ent graph descriptions (See Section 3.2). Existing074

works(Wang et al., 2024; Luo et al., 2024) primar-075

ily focuses on the influence of graph size while076

considering only a limited range of connectivity077

types, leading to biased evaluations in connectiv-078

ity tasks, as demonstrated in Figure 1. To address079

this, we constructed a balanced and comprehensive080

dataset. Our investigations on this dataset indicate081

that in addition to graph size, connection types082

and graph descriptions also play significant roles.083

Moreover, we conduct experiments to a more chal-084

lenging problem, i.e., the shortest path problem085

(Section 3.3), and investigate real-world graphs,086

i.e., entity connections in the knowledge graphs087

(Section 4). The consistent observations are made,088

suggesting the same underlying mechanism em-089

ployed by LLMs in graph reasoning tasks.090

2 Related work and Background091

2.1 Evaluation on graph reasoning tasks092

Recent efforts have been made on graph reason-093

ing evaluations (Guo et al., 2023; Fatemi et al.,094

2023; McLeish et al., 2024). NLGraph (Wang et al.,095

2024) evaluates LLMs across the 8 fundamental096

graph reasoning tasks, suggesting that LLMs have097

preliminary graph reasoning abilities. GraphIn-098

struct (Luo et al., 2024) extends the graph reason-099

ing benchmark to 21 classical graph tasks and in-100

troduces a step masking method to enhance the101

graph reasoning abilities of LLMs. Additionally,102

VisionGraph (Li et al., 2024) provides a multimodal103

version of the graph reasoning task benchmark, ex-104

tending its applicability beyond text.105

2.2 Graph connectivity in theory106

LLMs, through their transformer architecture, have107

demonstrated essential capabilities for reasoning108

tasks (Giannou et al., 2023; Yang et al., 2023; San-109

ford et al., 2024b). Specifically, for the graph rea-110

soning tasks, de Luca and Fountoulakis (2024) sug-111

gest that looped transformers are able to simulate112

every step in a graph algorithm. Sanford et al.113

(2024a) reveal that a single-layer transformer is114

sufficient for a naive graph connectivity task.115

2.3 LLMs for graphs in the applications 116

Despite LLMs having capabilities in graph reason- 117

ing tasks in theory, there remains a gap between 118

text understanding and graph reasoning (Chai et al., 119

2023; Zhao et al., 2023). Therefore, some recent 120

work approves the use of additional tools to help 121

LLMs understand graphs. Recent studies have vali- 122

dated the use of extra tools to enhance LLMs’ com- 123

prehension of graphs. GraphEmb (Perozzi et al., 124

2024) employs an encoding function to augment 125

prompts with explicit structured information. Ad- 126

ditionally, GraphWiz (Chen et al., 2024) fine-tunes 127

LLMs using graph reasoning datasets to achieve 128

higher performance in graph tasks. However, when 129

LLMs are pretrained using text data, their limita- 130

tions in graph reasoning tasks remain unclear. In 131

this work, we do a comprehensive study on the fail- 132

ures of LLMs in graph reasoning tasks. We summa- 133

rize and analyze the potential reasons why LLMs 134

fail in graph reasoning only using text prompts. 135

2.4 Theoretical support for graph reasoning 136

tasks 137

Feng et al. (2024) prove that if a task can be decon- 138

structed into subtasks, it can be solved by LLMs. 139

Based on this, Wu et al. (2024) offer insights into 140

transforming message-passing processes among 141

graphs into subtasks of message-passing among 142

nodes using transition functions, suggesting that 143

LLMs are capable of handling graph decision tasks. 144

Specifically, it can be theoretically proven that 145

graph connectivity and shortest-path tasks are two 146

examples of problems solvable by LLMs. 147

Suppose that the structure of a graph can be 148

represented as G = (X,E, E), where X is the 149

set of nodes, E is the edge set, and E is the fea- 150

ture set of the edges. For the graph connectiv- 151

ity task, we start from node ni and end at node 152

nj . The transition function F (i, j) for the graph 153

connectivity task can be formulated as: F (i, j) = 154

1k∈Nvj
(F (i−1, k)∩F (k, j)), where Nvj denotes 155

the neighbors of node node vj and 1 means whether 156

the connection is existing. Consequently, we can 157

deconstruct the graph connectivity tasks into sub- 158

tasks, which have been proven to be solved by 159

LLMs in (Feng et al., 2024). 160

Theoretical results suggest that LLMs are capa- 161

ble of solving fundamental graph reasoning tasks, 162

such as graph connectivity and shortest-path tasks. 163

However, we find that they fail in practice. 164

3 Limitations of LLMs in graph 165

reasoning 166

In this section, we empirically revisit the graph 167

reasoning ability via case studies. In particular, 168

2

Figure 2: Three types of graph descriptions. A graph
can be described by an adjacency matrix, edge list, and
neighborhood node sets.

we introduce three fundamental graph tasks: graph169

description translations in Section 3.1, graph con-170

nectivity in Section 3.2, and the shortest path task171

in Section 3.3. Finally, we summarize and analyze172

our findings in Section 3.4.173

3.1 Graph description translation174

3.1.1 Graph Descriptions175

To begin with, we first describe the graph proper-176

ties denoted as: G describes a [properties] graph177

among x ∈ X, where [properties] define the graph178

types, such as undirected, directed, or knowledge179

graphs. Then, we use different graph descriptions180

to introduce their structures.181

We summarize three types of graph structure de-182

scription methods that have been widely used by183

the previous works (Fatemi et al., 2023; McLeish184

et al., 2024) as shown in Figure 2. They are (1) Ad-185

jacency Matrix: describing the adjacency matrix of186

a graph; (2) Node List: referring to the neighbors187

of a central node on a graph, and (3) Edges List:188

listing every edge of a graph. Adjacency Matrix189

is denoted as A ∈ RN×N , where N is the num-190

ber of nodes. In the text description, it encodes a191

paragraph by N ×N binary tokens.192

Node List uses the neighbors of a central node to193

describe a graph. For instance, consider the set of194

sentences SN = {s1, s2, . . . , sN}, which describes195

the graph via the neighbors [u] of node vi with the196

edge feature ϵ. A single sentence is as follows:197

si = Node vi [relation] Nodes {[u, ϵ]u∈Nvi ,ϵ∈E(vi,u)}.198

Note that the [relation] varies across different types199

of graphs. In undirected graphs, we use the rela-200

tion "is connected to," whereas in directed graphs,201

we use "is directed to." In knowledge graphs, the202

relation can be any specified type.203

Edge List describes a graph by listing the edges 204

in a graph. The set of description sentences is 205

denoted as: SNE
= {s1, s2, . . . , sNE

}, where NE 206

is the number of edges and si represents an edge, 207

which is defined as: 208

si = Node vi [relation] Node vj , ϵij . 209

The examples of the aforementioned descriptions 210

are shown in the Appendix A. 211

3.1.2 Translations on graph descriptions 212

If LLMs can comprehend the structures of a graph, 213

such understanding should be independent of the 214

methods used to describe the graph. Therefore, to 215

verify the ability of LLMs to understand the struc- 216

tural information of a graph, we design a graph 217

translation description task. This task requires 218

LLMs to use the input graph description to generate 219

various descriptions. After that, we will compare 220

these descriptions to determine if they represent the 221

same graph structure. 222

Note that the number of tokens in the Adjacency 223

Matrix depends on the number of nodes. This sug- 224

gests that the Adjacency Matrix may require more 225

tokens in dense graphs than Node or Edge Descrip- 226

tions, limiting its applicability in the real world 227

when the graph size is large. Therefore, we only 228

apply the Adjacency Matrix as the target format 229

in the graph description translation task while em- 230

ploying Node List and Edge List as both source and 231

target descriptions. It is the same reason that we 232

use Node List and Edge List for graph connectivity 233

and shortest-path tasks in Section 3.2 and Section 234

3.3. 235

As suggested by the previous study, such as NL- 236

Graph (Wu et al., 2024) and GraphInstruct (Luo 237

et al., 2024),increasing the graph size will chal- 238

lenge LLMs to understand graph structures. Thus, 239

following the previous work, we use node num- 240

bers to indicate difficulty levels. In particular, we 241

randomly generate 100 graphs with node num- 242

bers ranging from 5 to 25, and divide them into 243

two datasets: one containing 50 graphs with node 244

counts ranging from 5 to 15, labeled as "Easy", 245

and another containing 50 graphs with node counts 246

from 16 to 25, labeled as "Hard". 247

We employ GPT-4 and LLAMA3.0-70B with 248

the zero-shot setting and 0 temperature in the ex- 249

periment. As the Adjacency Matrix is constrained 250

by sentence length, we only predict the Adjacency 251

Matrix on the dataset with smaller graphs. In the 252

evaluation, we use the accuracy metrics. If the 253

translations are completely correct, we categorize 254

them as correct predictions. The results are sum- 255

marized in the Table 1. 256

3

Table 1: Using LLMs to predict the translation
among different descriptions. The scores are (GPT-
4/LLAMA3.0-70B)

Graph Avg. Node Avg. EdgeDataset 1 50 10.6 33.56
Source\Target Adjacency Nodes Edges

Nodes 0.88 / 0.68 1.00 / 0.94 0.94 / 0.88
Edges 0.88 / 0.66 0.94 / 0.74 1.00 / 0.88

Graph Avg. Node Avg. EdgeDataset 2 50 20.49 110.35
Source\Target Adjacency Nodes Edges

Nodes - 1.00 / 0.90 0.66 / 0.74
Edges - 0.50 / 0.32 0.92 / 0.70

The results indicate that LLMs struggle with257

graph description translations. LLMs achieve re-258

liable accuracy only when the source and target259

descriptions are identical; however, they fail when260

translating between different types of descriptions.261

For example, LLMs show high accuracy in repeat-262

ing the Node description, with both the source and263

target being Node descriptions. However, their264

performance significantly declines when Edge De-265

scription is used. Similarly, while LLMs can sum-266

marize edge information effectively using Edge267

description, they struggle to summarize edge infor-268

mation from Node description. Those suggest that269

LLMs may not fully understand graph structures.270

Furthermore, performance is also related to the271

sequence length. Although LLMs perform ade-272

quately with smaller-scale graphs, their effective-273

ness decreases as the graph size increases. Ad-274

ditionally, as Adjacency Matrix descriptions re-275

quire more tokens in the output, accuracy signif-276

icantly decreases when predicting adjacency ma-277

trices. These findings align with similar limita-278

tions observed in general long-form text-generation279

tasks (Ji et al., 2023).280

The experiments suggest that LLMs often gen-281

erate content that is logically inconsistent with the282

input and the instructions, indicating that these fail-283

ures may be due to faithfulness hallucinations. The284

appendix G provides examples of these failures285

in description translation, where LLMs occasion-286

ally ignore certain edges or introduce non-existent287

ones, diverging from the input. Since translation288

tasks do not require complex reasoning but still289

exhibit hallucinations, it is possible that more com-290

plex reasoning tasks may also be prone to similar291

hallucinations in graph understanding.292

3.2 Revisit graph connectivity task293

3.2.1 Connectivity types294

Previous studies suggest that large language mod-295

els (LLMs) possess essential capabilities for graph296

connectivity tasks (Wang et al., 2024; Luo et al.,297

2024), yet they still fail in some instances. To298

Figure 3: Different types of connectivity. The directed
graph consists of nodes 1 to 8, divided into three com-
ponents with node sets {1, 2}, {3}, and {4, 5, 6, 7, 8},
respectively. Arrows indicate directed edges. Dotted
lines represent unconnected nodes, while solid lines rep-
resent connected nodes. For the nodes are connected, A.
K-hop: nodes 5 and 6 connect to node 4 within 1-hop
and 2-hops, respectively. For the nodes are not con-
nected, B. Singleton: node 3 is an isolated node and
not attached to node 4; C. Isolated Components: nodes
2 and 4 belong to separate components, with no path-
connected edge; D. Asymmetric: Node 6 is directed
towards node 7 but lacks any connection in an asymmet-
ric configuration.

further investigate the graph connectivity task, we 299

begin by analyzing the samples where failures oc- 300

curred based on those two baseline datasets. 301

We first categorize the types of connectivity sam- 302

ples. For the samples of connected nodes, we clas- 303

sify them according to the path length, which is 304

denoted as K-hops. Besides, for the samples of 305

unconnected nodes, we label them into three cate- 306

gories: Singleton, Isolated Components (IC), and 307

Asymmetric, as shown in Figure 3. Singleton 308

denotes that one node is isolated. Isolated Com- 309

ponents indicate that these two nodes belong to 310

separate components in the graph. Note that a Sin- 311

gleton is a special case of Isolated Components. 312

The distinction lies in the representations using 313

Node List and Edge List, where the isolated node 314

is not included in the descriptions of the graph 315

structure, such as Node 3 in Figure 2. Asymmet- 316

ric is designated for directed graphs, highlighting 317

situations where a path exists from one node to an- 318

other, but the reverse path does not exist, indicating 319

a one-way connectivity. 320

We calculate the distribution of connectivity 321

types in the baseline datasets, as shown in Ap- 322

pendix C.1, Table 13, and subsequently conduct 323

an experiment on them. The results, presented in 324

Appendix C.2 Table 8, indicate that the baseline 325

datasets lack a balanced distribution across differ- 326

ent connectivity types. More importantly, LLMs 327

exhibit varying performances across these types. 328

Thus, it is crucial to establish a balanced dataset to 329

4

Table 2: Connectivity evaluation on the undirected graph datasets

Difficulty Model Des. k-hop, 1≤k≤2 k-hop, 3≤k≤4 5-hop Singleton I.C. AVG. ACC AVG. FaccACC Facc PCR ACC Facc PCR ACC Facc PCR Facc Facc

Easy
LLAMA3 Node 1.00 0.99 0.99 1.00 0.96 0.98 1.00 0.92 0.96 1.00 0.33 0.73 0.71

Edge 1.00 0.94 0.88 1.00 0.96 0.98 0.98 0.78 0.94 1.00 0.44 0.77 0.73

GPT-3 Node 1.00 0.98 0.82 0.88 0.87 0.93 0.78 0.72 0.87 0.92 0.13 0.60 0.59
Edge 1.00 0.96 0.80 0.82 0.80 0.93 0.88 0.72 0.90 0.94 0.17 0.61 0.58

GPT-4 Node 1.00 0.93 0.99 1.00 0.93 0.99 1.00 0.94 0.97 1.00 0.53 0.81 0.78
Edge 1.00 0.93 0.98 1.00 0.90 0.98 0.98 0.88 0.97 0.98 0.69 0.87 0.83

Medium
LLAMA3 Node 1.00 0.94 0.90 1.00 0.93 0.96 0.94 0.82 0.93 1.00 0.36 0.74 0.70

Edge 1.00 0.96 0.83 0.96 0.81 0.90 0.94 0.62 0.94 0.98 0.35 0.72 0.65

GPT-3 Node 1.00 0.97 0.72 0.81 0.74 0.84 0.76 0.62 0.79 0.94 0.16 0.60 0.56
Edge 1.00 0.96 0.72 0.72 0.60 0.90 0.76 0.52 0.83 0.96 0.18 0.59 0.53

GPT-4 Node 1.00 0.89 0.98 1.00 0.85 0.97 1.00 0.94 0.92 0.98 0.42 0.77 0.71
Edge 1.00 0.91 0.97 1.00 0.90 0.93 0.96 0.74 0.94 0.96 0.44 0.77 0.71

Hard
LLAMA3 Node 1.00 0.98 0.90 1.00 0.83 0.94 0.96 0.64 0.94 0.96 0.2 0.67 0.60

Edge 1.00 0.92 0.78 0.92 0.59 0.86 0.94 0.42 0.92 0.84 0.2 0.64 0.51

GPT-3 Node 1.00 0.92 0.65 0.76 0.67 0.85 0.80 0.50 0.77 0.98 0.14 0.59 0.52
Edge 1.00 0.92 0.66 0.65 0.47 0.86 0.74 0.38 0.81 1.00 0.18 0.58 0.49

GPT-4 Node 1.00 0.87 0.98 0.99 0.84 0.93 0.98 0.76 0.90 1.00 0.30 0.72 0.64
Edge 1.00 0.86 0.94 0.93 0.69 0.87 0.90 0.58 0.90 0.92 0.34 0.71 0.60

better evaluate graph connectivity.330

3.2.2 Dataset Construction331

In previous work, NLGraph (Wang et al., 2024)332

included only an undirected graph dataset for the333

connectivity task, and GraphInstruct (Luo et al.,334

2024) featured an unbalanced distribution as shown335

in Appendix C.1, Table 13. Therefore, based on336

these studies, we need to consider factors such as337

the number of nodes in graphs, edge directions, and338

types of connectivity.339

Following previous studies (Wu et al., 2024; Luo340

et al., 2024), we indicate the difficulty levels of341

graphs based on the number of nodes, labeling342

them as Easy, Medium, and Hard. For each level,343

we initially generate all possible graphs with a cer-344

tain number of nodes and then randomly select345

graphs and corresponding node pairs to formulate346

test pairs of the questions. For samples connected347

within K-hops, we collect 50 samples for each k348

where k ∈ [1, 2, 3, 4, 5]. For negative samples,349

we selected 200 Isolated Component samples and350

50 Singleton samples from the undirected graph351

dataset. Similarly, for the directed graph dataset,352

we chose 100 Connected pairs, 100 Asymmetric353

samples, and 50 Singleton samples. Detailed in-354

formation can be found in Table 13 in Appendix355

C.1356

3.2.3 Evaluation Metrics357

Instead of only evaluating the accuracy of graph358

connectivity, we also want to check if the reasoning359

path to make the prediction can support the predic-360

tion. Thus, the prompt is defined as follows: "If a361

path exists, present the path formatted as "Node #1362

-> Node #2."; If no path is found, state "No path.".363

Therefore, to evaluate the reliability of such paths,364

we design two novel metrics, FidelityAcc (Facc)365

and Path Consistency Ratio (PCR), which are used 366

to analyze the correctness of reasoning paths. Facc 367

evaluates whether the reasoning path to infer the an- 368

swer is correct or not. The formulation is denoted 369

as: Facc = 1
M

∑M
i=1 (ŷi = yi) ∧ (p̂i ∈ P), where 370

ŷi denotes the predicted answer, yi the ground truth 371

answer, p̂i the predicted path, and P the set of 372

reachable paths. M is the number of data samples. 373

Facc correctly identifies the answer only when both 374

the connective prediction and the path prediction 375

are accurate. The range of Facc is [0, 1], where 376

a higher score indicates greater consistency with 377

the ground truth. A high accuracy with a low Facc 378

score suggests that the reasoning paths cannot well 379

support connectivity predictions, which could indi- 380

cate that LLMs are hallucinating. 381

Multiple reachable paths exist within a graph. 382

LLMs demonstrate superior reasoning abilities if 383

they can identify a shorter path. To assess the paths 384

LLMs select for reasoning, we introduce the Path 385

Consistency Ratio (PCR): PCR = 1
M

∑M
i=1

|pi|
|p̂i| , 386

|p̂i| represents the number of nodes in the path, 387

while |pi| denotes the number of nodes in the short- 388

est path. We evaluate PCR only when the LLMs 389

give the correct path. A higher score indicates that 390

the LLMs are more adept at selecting the shortest 391

path between two nodes. 392

3.2.4 Results 393

We select tree representative large language mod- 394

els, GPT-3 (GPT-3.5-turbo-0301), GPT-4 (GPT-4- 395

0125-preview) and LLAMA 3 (LLAMA3.0-70B) 396

with the temperature equal to 0. 397

Undirected Graph Results We start with the 398

undirected graph datasets and show the results in 399

Table 2. First of all, GPT-4 has better reasoning 400

ability compared with GPT-3 and LLAMA 3 across 401

5

Table 3: Connectivity evaluation on the directed graph datasets

Difficulty Model Des. k-hop, 1≤k≤2 k-hop, 3≤k≤4 5-hop Singleton Isolated C. Asymmetric AVG. ACC AVG. FaccACC Facc PCR ACC Facc PCR ACC Facc PCR Facc Facc Facc

Easy
GPT-3 Node 0.99 0.92 0.88 0.85 0.58 0.93 0.92 0.36 0.95 0.96 0.13 0.37 0.66 0.53

Edge 1.00 0.93 0.94 0.89 0.47 0.95 0.92 0.30 0.96 0.94 0.15 0.36 0.67 0.51

GPT-4 Node 0.99 0.98 0.94 0.95 0.81 0.96 0.88 0.66 0.96 1.00 0.84 0.85 0.91 0.86
Edge 0.99 0.97 0.99 0.88 0.72 0.97 0.76 0.44 0.99 0.98 0.65 0.84 0.85 0.78

Medium
GPT-3 Node 1.00 0.87 0.67 0.81 0.40 0.75 0.78 0.38 0.88 1.00 0.17 0.48 0.67 0.52

Edge 0.99 0.84 0.80 0.79 0.30 0.90 0.78 0.32 0.97 1.00 0.18 0.42 0.65 0.48

GPT-4 Node 1.00 0.94 0.95 0.86 0.55 0.94 0.74 0.50 0.82 1.00 0.70 0.67 0.82 0.72
Edge 0.98 0.88 0.96 0.79 0.43 0.92 0.70 0.38 0.91 1.00 0.53 0.75 0.78 0.66

Hard
GPT-3 Node 0.98 0.81 0.53 0.65 0.25 0.71 0.80 0.26 0.77 1.00 0.10 0.55 0.64 0.47

Edge 0.93 0.75 0.74 0.64 0.19 0.86 0.84 0.16 0.89 0.98 0.18 0.57 0.65 0.45

GPT-4 Node 0.96 0.88 0.91 0.81 0.44 0.81 0.68 0.36 0.76 0.98 0.70 0.53 0.77 0.64
Edge 0.96 0.80 0.93 0.85 0.40 0.83 0.76 0.38 0.82 0.98 0.41 0.59 0.74 0.58

all cases, regardless of the graph difficulty, graph402

description or the categories of connectivity.403

Secondly, we have following observations by404

comparing different connectivity situations: (1)405

The difficulty of reasoning increases as the path406

length extends (i.e., K-hop), peaking in the isolated407

component (where K can be viewed as infinite). As408

a result, both ACC and Facc exhibit a correspond-409

ing decline. (2) The value of PCR is stable and410

almost larger than 0.9 via GPT-4, indicating a ten-411

dency of GPT-4 to find some shorter paths when412

judging the connectivity. (3) The Singleton scene is413

particular because it is not affected by the difficulty414

changes and always performs well. This suggests415

that LLMs may have a shortcut in graph understand-416

ing: nodes not mentioned in the graph description417

are considered isolated and no connection with oth-418

ers. (4) Node Lists generally perform better than419

Edge Lists in most cases. This is because the search420

space differs when various description methods are421

used to search nodes within the next-token predic-422

tion framework. For the Node Lists, it is easy to423

find all the positions of neighbor nodes, which costs424

O(|N |). However, it takes O(|E|) for Edge Lists.425

Therefore, the overall algorithmic complexity is426

different, where the Node Lists should be O(|N |2)427

while the Edge Lists should be O(|N ||E|).428

Interestingly, LLMs demonstrate enhanced per-429

formance with node descriptions when k is larger,430

e.g., 5-hops, while they perform better in the iso-431

lated component scene when provided with edge432

descriptions. This suggests that LLMs may not433

consistently apply the same strategy for analyzing434

graph connectivity. Instead, the approach adopted435

by LLMs is shaped by the input context provided.436

Directed Graph Results Next, we evaluate the437

connectivity on the directed graphs shown in Table438

3. Some key observations are similar to those of439

undirected graph datasets. However, LLMs have440

lower performance on directed graphs across al-441

most all sub-datasets, yet they maintain high perfor-442

mance on subsets with k≤2 and Singleton subsets.443

Table 4: Results on the shortest path problem

Dataset undirected graphs directed graphs
Subdataset Des. unweighted weighted unweighted weighted

1≤k≤2 hops Node 0.88 0.80 0.93 0.76
Edge 0.89 0.70 0.91 0.71

3≤k≤4 hops Node 0.87 0.52 0.64 0.45
Edge 0.81 0.47 0.51 0.38

5-hops Node 0.88 0.54 0.48 0.40
Edge 0.76 0.44 0.42 0.26

Singleton Node 1.00 0.98 0.98 0.96
Edge 0.98 0.98 0.94 0.96

Isolated C. Node 0.46 0.47 0.63 0.67
Edge 0.61 0.51 0.52 0.69

Asymmetric Node - - 0.59 0.62
Edge - - 0.65 0.66

AVG Node 0.72 0.60 0.70 0.64
Edge 0.76 0.58 0.65 0.61

We also note distinct performance differences 444

between GPT-3 and GPT-4 on the Asymmetric 445

dataset. GPT-3’s accuracy increased from 0.4 to 446

0.55, whereas GPT-4’s decreased from 0.8 to 0.55. 447

Given that an accuracy of 0.55 is nearly equivalent 448

to random guessing in a binary task for asymmetric 449

detection, it suggests that LLMs might engage in 450

random reasoning within the Hard dataset. Further- 451

more, descriptions using Node Lists outperform 452

those using Edge Lists. Since an Edge List sim- 453

ply describes two nodes in one sentence, LLMs 454

may meet hallucination in determining whether 455

the relationship "A is B" is equivalent to "B is A" 456

(Berglund et al., 2023). 457

3.3 The shortest-path problem 458

The shortest-path problem is another essential task 459

theoretically proven to be achievable by LLMs, yet 460

it fails in practice. Compared to the graph con- 461

nectivity task, it is more challenging because it 462

requires not only determining whether nodes are 463

connected but also calculating edge weights to iden- 464

tify the shortest path among multiple potential so- 465

lutions. Next, we explore if the varied performance 466

of LLMs across different connectivity types is also 467

applicable to the shortest-path problem. 468

Experimental setup We study the shortest-path 469

problem using the Easy datasets from the un- 470

weighted graphs as mentioned in Section 3.2. For 471

6

Table 5: Algorithm CoT applied in the graph connectivity and shortest path

Connectivity task (Facc)
Dataset prompt k-hop, 1≤k≤2 k-hop, 3≤k≤4 5-hop Singleton I.C. AVG.

Undirected
0-shot 0.93 0.93 0.94 1.00 0.53 0.78

few-shot 0.92 0.93 0.96 1.00 0.87 0.92
BFS-CoT 0.95 0.98 1.00 1.00 0.88 0.93

Shortest path (ACC)

undirected
0-shot 0.88 0.87 0.88 1.00 0.46 0.72

few-shot 0.91 0.90 0.78 1.00 0.52 0.75
Dijkstra-CoT 0.96 0.94 0.86 1.00 0.70 0.84

weighted undirected
0-shot 0.80 0.52 0.54 0.98 0.47 0.60

few-shot 0.75 0.58 0.48 0.92 0.39 0.56
Dijkstra-CoT 0.81 0.65 0.58 0.84 0.53 0.65

the weighted graphs, we applied similar strategies472

that were used in undirected graph generations to473

generate the directed and undirected graph datasets.474

The directed graph datasets include two types,475

whether there are negative edges in the graphs. Ap-476

pendix C.1 Table 13 shows the details. The graph477

structure descriptions are shown in Appendix A478

Results We use GPT-4 to illustrate an example479

of the shortest-path problem. Table 4 displays the480

results of LLMs’ performance. The findings for481

the shortest path problem align with our observa-482

tions from graph connectivity, where performance483

diminishes as the path length (k-hop) increases.484

Moreover, undirected graphs consistently outper-485

form directed graphs. We observe a significant486

difference in LLM performance between datasets487

with weighted edges and those without. This sug-488

gests that LLMs might overlook or misrepresent489

edge weights in the text.490

3.4 Analysis of other factors491

3.4.1 Impact of the algorithm prompts492

In-context learning approaches, including Chain-of-493

Thought (CoT) (Wei et al., 2022) and zero-Chain-494

of-Thought (0-CoT) (Kojima et al., 2022), have495

been widely utilized in LLMs to enhance their496

reasoning capabilities. Meanwhile, specifically in497

graph-related tasks, previous works combined the498

prompts with the graph algorithms. However, they499

do not demonstrate consistent improvement (Wang500

et al., 2024). In this subsection, we revisit these501

approaches in detail.502

We consider several graph algorithms in the ex-503

periments. For the graph connectivity task, we504

focus on the Breadth-First Search (BFS) and we505

employ the Dijkstra algorithms to soleve the short-506

est path problem. We utilize Node descriptions507

to search the connectivity and shortest pathes in508

Easy setting by GPT-4. The prompts examples are509

shown in Appendix B. The results are detailed in510

Table 5.511

The observations can be summarized as follows: 512

(1) In the connectivity task, few-shot examples help 513

LLMs recognize isolated components. This is be- 514

cause few-shot examples enable the LLMs to cor- 515

rectly output ’No connection’ when they do not 516

find a connected path. (2) In the shortest path cases, 517

few-shot examples do not consistently lead to bet- 518

ter performance. However, performance improves 519

when the Dijkstra-CoT method is applied. This 520

suggests that while LLMs may use multiple strate- 521

gies to make decisions, but a specific algorithm can 522

guide them toward a unique solution. 523

3.4.2 The influence of node names 524

Fatemi et al. (2023) suggest that different naming 525

methods for graphs can yield varied results. This 526

variation is attributed to the graph node IDs oc- 527

cupying the same space as the pre-trained data of 528

LLMs. Thus, we further evaluated the impact of 529

naming conventions on nodes for the connectivity 530

task. Table 6 summarizes the results for GPT-4 531

on the Easy subset of the undirected graph dataset. 532

"Ordered ID" refers to nodes named sequentially 533

as "1, 2, 3, ...", "Random ID" denotes nodes named 534

using random numbers up to 10,000, and "Random 535

character" represents nodes named with random 536

five-character strings. The results indicate that nam- 537

ing nodes in sequential order, a common practice 538

in graph descriptions, may enhance LLM perfor- 539

mance. This suggests that LLMs could leverage 540

some form of memory recognition to predict con- 541

nectivity more effectively and thus achieve higher 542

performance. 543

4 A case study on knowledge graphs 544

To determine if our findings from previous sections 545

are applicable to real-world graphs, we conducted 546

the entity connections on knowledge graphs. 547

Dataset We used WN18RR (Shang et al., 2019) 548

as the base dataset, which provides both ID names 549

and Entity names. The ID names consist of strings 550

7

Table 6: Results for different node ID naming methods

Naming Des. k-hops, 1≤k≤2 k-hop, 3≤k≤4 5-hop Singleton Isolated C. AVG. ACC AVG. FaccACC Facc PCR ACC Facc PCR ACC Facc PCR Facc Facc

Ordered ID Node 1.00 0.93 0.99 1.00 0.93 0.99 1.00 0.94 0.97 1.00 0.53 0.81 0.78
Edge 1.00 0.93 0.98 1.00 0.90 0.98 0.98 0.88 0.97 0.98 0.69 0.87 0.83

Random ID Node 1.00 0.81 1.00 1.00 0.85 1.00 1.00 0.92 0.97 1.00 0.41 0.77 0.69
Edge 1.00 0.89 0.98 0.99 0.88 0.97 0.96 0.70 0.94 1.00 0.59 0.83 0.76

Random characters Node 1.00 0.83 0.99 1.00 0.86 1.00 1.00 0.94 0.99 0.98 0.43 0.77 0.70
Edge 1.00 0.88 0.98 0.99 0.88 0.98 0.94 0.88 0.96 0.98 0.55 0.81 0.76

Table 7: Case study results on knowledge graphs

Name Des. 1-hop 2-hop 3-hop 4-hop k-hop, k>5 Asymmetric AVG. scores

ID names
Edge ACC 1.0000 1.0000 0.9808 0.7805 0.6538 0.1750 0.7166

Facc 0.6400 0.6489 0.4808 0.1220 0.0000 0.1750 0.3810

Node ACC 1.0000 0.9892 0.8868 0.6429 0.5167 0.3216 0.7369
Facc 0.7664 0.7849 0.4906 0.2143 0.0000 0.3126 0.4981

Entity names
Edge ACC 1.0000 1.0000 1.0000 0.9524 0.9153 0.0754 0.7258

Facc 0.9700 0.8085 0.5283 0.3333 0.0508 0.0754 0.4685

Node ACC 1.0000 0.9681 0.9811 0.9048 0.8167 0.2374 0.7717
Facc 0.9907 0.8298 0.5472 0.2857 0.0333 0.2374 0.5416

Entity names
+ BFS cot

Edge ACC 1.0000 0.9894 0.9811 0.9048 0.9500 0.1717 0.7637
Facc 0.9907 0.8404 0.5660 0.2619 0.0333 0.1717 0.5147

Node ACC 1.0000 1.0000 0.9245 0.8571 0.8333 0.4343 0.8521
Facc 0.9813 0.8830 0.5660 0.3333 0.0333 0.4343 0.6380

of random numbers, and Entity names are used551

as specific and meaningful identifiers. From its552

training set, we randomly selected 150 subgraphs553

based on ego graphs with a depth of 3. Within554

each subgraph, we identified two nodes with the555

longest paths and segmented the paths into k′-hops.556

This strategy allowed us to generate k′ question-557

answer pairs, ranging from 1-hop to k′-hop. Ta-558

ble 12 shows the details of our sampled dataset.559

We take both Node List and Edge List in the exper-560

iment. The description examples can be found in561

Appendix A.562

Results We use GPT-4 to evaluate the knowledge563

graph datasets. The results are shown in Table 7.564

The performance of LLMs aligns with the results565

in Sections 3.2 and 4. Specifically, LLMs’ per-566

formance declines as the value of k increases in567

the K-hop setting, and Node List descriptions out-568

perform Edge List descriptions. Furthermore, as569

discussed in Section 3.4.2, LLMs exhibit improved570

performance with meaningful node names. Addi-571

tionally, we tested the prompt method using BFS,572

which result in the significant improvement, con-573

sistent with the result in Section 3.4.1.574

5 Conclusion575

We focus on the graph reasoning ability of LLMs576

in this paper. Recently, there exists a discrepancy577

between theoretical understanding and empirical578

experiments, where LLMs can handle complex579

decision-making tasks in theory, yet empirical find-580

ings often show poor performance. To bridge this581

gap, we have revisited fundamental graph-related582

tasks, including translation, graph connectivity and 583

shortest path tasks. We construct a balanced and 584

comprehensive dataset to involve various situations 585

and obtain extensive observations. Our results 586

show the failure cases of LLMs and reveal that 587

LLMs may utilize different algorithms to solve the 588

complex graph-related task, depending on the input 589

context. 590

Limitation: Currently we explore the graph rea- 591

soning capabilities of LLMs without fine-tuning. 592

Our future research will focus on incorporating ef- 593

fective fine-tuning strategies and novel approaches 594

to enhance the graph reasoning ability. 595

References 596

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita 597
Balesni, Asa Cooper Stickland, Tomasz Korbak, and 598
Owain Evans. 2023. The reversal curse: Llms trained 599
on" a is b" fail to learn" b is a". arXiv preprint 600
arXiv:2309.12288. 601

Daniil A Boiko, Robert MacKnight, Ben Kline, and 602
Gabe Gomes. 2023. Autonomous chemical research 603
with large language models. Nature, 624(7992):570– 604
578. 605

Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, 606
Xiaohai Hu, Xuanwen Huang, and Yang Yang. 2023. 607
Graphllm: Boosting graph reasoning ability of large 608
language model. arXiv preprint arXiv:2310.05845. 609

Nuo Chen, Yuhan Li, Jianheng Tang, and Jia Li. 610
2024. Graphwiz: An instruction-following lan- 611
guage model for graph problems. arXiv preprint 612
arXiv:2402.16029. 613

8

Antonia Creswell, Murray Shanahan, and Irina Higgins.614
2022. Selection-inference: Exploiting large language615
models for interpretable logical reasoning. arXiv616
preprint arXiv:2205.09712.617

Antonia Creswell, Murray Shanahan, and Irina Higgins.618
2023. Selection-inference: Exploiting large language619
models for interpretable logical reasoning. In The620
Eleventh International Conference on Learning Rep-621
resentations.622

Artur Back de Luca and Kimon Fountoulakis. 2024.623
Simulation of graph algorithms with looped trans-624
formers. arXiv preprint arXiv:2402.01107.625

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi.626
2023. Talk like a graph: Encoding graphs for large627
language models. arXiv preprint arXiv:2310.04560.628

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye,629
Di He, and Liwei Wang. 2024. Towards revealing the630
mystery behind chain of thought: a theoretical per-631
spective. Advances in Neural Information Processing632
Systems, 36.633

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn,634
Kangwook Lee, Jason D Lee, and Dimitris Pa-635
pailiopoulos. 2023. Looped transformers as pro-636
grammable computers. In International Conference637
on Machine Learning, pages 11398–11442. PMLR.638

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi639
He, and Shi Han. 2023. Gpt4graph: Can large640
language models understand graph structured data?641
an empirical evaluation and benchmarking. arXiv642
preprint arXiv:2305.15066.643

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and644
Igor Mordatch. 2022. Language models as zero-shot645
planners: Extracting actionable knowledge for em-646
bodied agents. In International Conference on Ma-647
chine Learning, pages 9118–9147. PMLR.648

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan649
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea650
Madotto, and Pascale Fung. 2023. Survey of halluci-651
nation in natural language generation. ACM Comput-652
ing Surveys, 55(12):1–38.653

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-654
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-655
guage models are zero-shot reasoners. Advances in656
neural information processing systems, 35:22199–657
22213.658

Yunxin Li, Baotian Hu, Haoyuan Shi, Wei Wang,659
Longyue Wang, and Min Zhang. 2024. Visiongraph:660
Leveraging large multimodal models for graph the-661
ory problems in visual context. arXiv preprint662
arXiv:2405.04950.663

Xukun Liu, Zhiyuan Peng, Xiaoyuan Yi, Xing Xie,664
Lirong Xiang, Yuchen Liu, and Dongkuan Xu.665
2024. Toolnet: Connecting large language models666
with massive tools via tool graph. arXiv preprint667
arXiv:2403.00839.668

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian- 669
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei 670
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz- 671
ardmath: Empowering mathematical reasoning for 672
large language models via reinforced evol-instruct. 673
Preprint, arXiv:2308.09583. 674

Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, 675
Chenhao Zhang, Jinqi Jiang, Xing Xie, and Hai Jin. 676
2024. Graphinstruct: Empowering large language 677
models with graph understanding and reasoning ca- 678
pability. arXiv preprint arXiv:2403.04483. 679

Sean McLeish, Avi Schwarzschild, and Tom Goldstein. 680
2024. Benchmarking chatgpt on algorithmic reason- 681
ing. arXiv preprint arXiv:2404.03441. 682

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 683
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 684
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 685
2022. Training language models to follow instruc- 686
tions with human feedback. Advances in neural in- 687
formation processing systems, 35:27730–27744. 688

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsit- 689
sulin, Mehran Kazemi, Rami Al-Rfou, and Jonathan 690
Halcrow. 2024. Let your graph do the talking: En- 691
coding structured data for llms. arXiv preprint 692
arXiv:2402.05862. 693

Clayton Sanford, Bahare Fatemi, Ethan Hall, Anton 694
Tsitsulin, Mehran Kazemi, Jonathan Halcrow, Bryan 695
Perozzi, and Vahab Mirrokni. 2024a. Understanding 696
transformer reasoning capabilities via graph algo- 697
rithms. arXiv preprint arXiv:2405.18512. 698

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. 699
2024b. Transformers, parallel computation, and log- 700
arithmic depth. arXiv preprint arXiv:2402.09268. 701

Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong 702
He, and Bowen Zhou. 2019. End-to-end structure- 703
aware convolutional networks for knowledge base 704
completion. In Proceedings of the AAAI conference 705
on artificial intelligence, volume 33, pages 3060– 706
3067. 707

Nigar M Shafiq Surameery and Mohammed Y Shakor. 708
2023. Use chat gpt to solve programming bugs. In- 709
ternational Journal of Information technology and 710
Computer Engineering, (31):17–22. 711

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan 712
Tan, Xiaochuang Han, and Yulia Tsvetkov. 2024. 713
Can language models solve graph problems in natural 714
language? Advances in Neural Information Process- 715
ing Systems, 36. 716

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 717
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 718
et al. 2022. Chain-of-thought prompting elicits rea- 719
soning in large language models. Advances in neural 720
information processing systems, 35:24824–24837. 721

9

https://openreview.net/forum?id=3Pf3Wg6o-A4
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583

Xixi Wu, Yifei Shen, Caihua Shan, Kaitao Song, Si-722
wei Wang, Bohang Zhang, Jiarui Feng, Hong Cheng,723
Wei Chen, Yun Xiong, et al. 2024. Can graph724
learning improve task planning? arXiv preprint725
arXiv:2405.19119.726

Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris727
Papailiopoulos. 2023. Looped transformers are bet-728
ter at learning learning algorithms. arXiv preprint729
arXiv:2311.12424.730

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu,731
Michael Bronstein, Zhaocheng Zhu, and Jian Tang.732
2023. Graphtext: Graph reasoning in text space.733
arXiv preprint arXiv:2310.01089.734

A Example of different descriptions 735

Here we list the examples of descriptions utilized 736

in the experiment. Examples are listed as node 737

descriptions and edge descriptions on directed or 738

undirected graphs, with or without weights on 739

edges. 740

741

Node Description for Undirected Graph: 742

743

Edge Description for Undirected Graph: 744

G describes an undirected graph among node 0, 1, 745
2, 3, and 4. 746
Node 0 is connected to Node 1. 747
Node 1 is connected to Node 2. 748
Node 1 is connected to Node 3. 749
Node 2 is connected to Node 3. 750
Node 3 is connected to Node 4. 751

Node Description for Directed Graph: 752

G describes a directed graph among 0, 1, 2, 3, and 753
4. 754
In this graph: 755
Node 0 is directed to Node 1. 756
Node 1 is directed to Node 2, 3. 757
Node 2 is directed to Node 3. 758
Node 3 is directed to Node 4. 759

Edge Description for Directed Graph: 760

G describes a directed graph among node 0, 1, 2, 761
3, and 4. 762
Node 0 is directed to Node 1. 763
Node 1 is directed to Node 2. 764
Node 1 is directed to Node 3. 765
Node 2 is directed to Node 3. 766
Node 3 is directed to Node 4. 767

Node Description for Undirected Weighted 768

Graph: 769

G describes an undirected graph among 0, 1, 2, 3, 770
and 4. 771
In this graph: 772
Node 0 is connected to nodes 1 773
(weight: 8), 2 (weight: 1). 774
Node 1 is connected to node 0 775
(weight: 8). 776
Node 2 is connected to node 0 777
(weight: 1). 778

Edge Description for Undirected weighted 779

Graph: 780

G describes an undirected graph among 781

node 0, 1, 2, 3, and 4. 782

Node 0 is connected to Node 1 with 783

weight 8. 784

Node 0 is connected to Node 2 with 785

weight 1. 786

Node Description for Directed weighted 787

Graph: 788

10

Directivity Model Difficulty Des. 1-hop 2-hop 3-hop 4-hop 5-hop 6-hop Singleton Isolated C. Asymmetric k-hop k>6

Dataset GraphInstruct

Undirected

GPT-4

Tiny Node 1.00 1.00 1.00 0.83 1.00 - - 0.60 - -
Edge 1.00 1.00 1.00 0.83 1.00 - - 0.60 - -

Easy Node 1.00 1.00 1.00 1.00 1.00 1.00 - 0.35 - 1.00
Edge 1.00 1.00 1.00 1.00 0.67 1.00 - 0.41 - 1.00

Med Node 1.00 1.00 1.00 1.00 1.00 1.00 - 0.12 - 1.00
Edge 1.00 1.00 1.00 1.00 1.00 1.00 - 0.71 - 0.67

Hard Node 1.00 1.00 1.00 1.00 1.00 - - 0.04 - 0.75
Edge 1.00 1.00 1.00 1.00 1.00 - - 0.36 - 0.50

GPT-3

Tiny Node 1.00 0.88 0.36 0.00 0.00 - - 0.00 - -
Edge 1.00 0.79 0.18 0.33 0.00 - - 0.40 - -

Easy Node 0.98 0.91 0.92 0.64 0.67 1.00 - 0.56 - 1.00
Edge 1.00 0.91 0.75 0.45 0.33 1.00 - 0.50 - 0.00

Med Node 1.00 0.98 0.84 0.67 1.00 0.00 - 0.67 - 0.00
Edge 0.97 0.96 0.63 1.00 1.00 0.50 - 0.42 - 0.00

Hard Node 1.00 0.98 0.85 0.80 0.50 - - 0.36 - 1.00
Edge 1.00 0.96 0.90 0.60 1.00 - - 0.30 - 0.75

Directed

GPT-4

Tiny Node 1.00 0.92 0.14 - - - - 1.00 0.95 -
Edge 1.00 0.85 0.43 - - - - 1.00 0.97 -

Easy Node 1.00 0.93 1.00 0.67 - - - - 0.91 -
Edge 1.00 0.64 0.83 0.33 - - - - 0.91 -

Med Node 0.78 0.71 0.60 1.00 1.00 - - - 0.82 -
Edge 0.89 0.71 1.00 0.50 1.00 - - - 0.78 -

Hard Node 0.90 0.88 0.60 1.00 1.00 1.00 - - 0.77 -
Edge 1.00 0.88 0.60 1.00 1.00 1.00 - - 0.83 -

GPT-3

Tiny Node 0.94 0.92 1.00 - - - - 1.00 0.26 -
Edge 1.00 1.00 0.71 - - - - 1.00 0.27 -

Easy Node 0.77 0.93 0.83 1.00 - - - - 0.19 -
Edge 1.00 0.93 0.83 1.00 - - - - 0.31 -

Med Node 1.00 1.00 1.00 0.50 1.00 - - - 0.33 -
Edge 1.00 0.79 0.80 1.00 1.00 - - - 0.42 -

Hard Node 1.00 0.88 1.00 0.00 1.00 1.00 - - 0.22 -
Edge 1.00 0.88 0.90 0.00 0.50 1.00 - - 0.37 -

Table 8: Baseline result of zero-shot accuracy on GraphInstruct dataset.

Difficulty Model Des. k-hop, 1≤k≤2 k-hop, 3≤k≤4 5-hop Singleton Isolated C. AVG. ACC AVG. FaccACC Facc PCR ACC Facc PCR ACC Facc PCR Facc Facc

Tiny
GPT-3 Node 1.00 0.99 0.90 0.82 0.82 0.95 1.00 1.00 1.00 - 0.00 0.93 0.92

Edge 1.00 0.96 0.87 0.65 0.65 0.96 1.00 1.00 1.00 - 0.00 0.91 0.87

GPT-4 Node 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - 0.80 0.99 0.99
Edge 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 - 0.80 0.99 0.97

Easy
GPT-3 Node 1.00 0.97 0.85 1.00 0.91 0.95 1.00 1.00 0.94 - 0.09 0.79 0.75

Edge 1.00 0.93 0.80 0.87 0.61 0.82 1.00 0.67 0.77 - 0.00 0.75 0.66

GPT-4 Node 1.00 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00 - 0.68 0.92 0.90
Edge 1.00 0.98 0.99 1.00 1.00 0.99 1.00 1.00 0.94 - 0.74 0.94 0.92

Medium
GPT-3 Node 0.99 0.98 0.69 1.00 1.00 0.90 1.00 0.00 0.00 - 0.00 0.68 0.66

Edge 0.99 0.86 0.72 0.96 0.68 0.88 1.00 0.50 1.00 - 0.02 0.68 0.57

GPT-4 Node 1.00 0.92 0.98 1.00 0.80 0.99 1.00 1.00 1.00 - 0.56 0.86 0.79
Edge 1.00 0.98 0.96 1.00 0.88 0.98 1.00 1.00 1.00 - 0.77 0.93 0.90

Hard
GPT-3 Node 1.00 0.94 0.63 1.00 0.76 0.85 1.00 0.00 0.00 - 0.10 0.71 0.63

Edge 1.00 0.78 0.56 1.00 0.56 0.81 1.00 0.00 0.00 - 0.08 0.70 0.51

GPT-4 Node 1.00 0.87 0.94 1.00 1.00 0.93 1.00 0.50 0.71 - 0.34 0.79 0.72
Edge 1.00 0.87 0.90 1.00 0.96 0.93 1.00 1.00 1.00 - 0.62 0.88 0.81

Table 9: Undirected Baseline result of ACC and Facc.

Difficulty Model Des. k-hop, 1≤k≤2 k-hop, 3≤k≤4 5-hop Singleton Isolated C. Asymmetric AVG. ACC AVG. FaccACC Facc PCR ACC Facc PCR ACC Facc PCR Facc Facc Facc

Tiny
GPT-3 Node 1.00 0.05 0.62 1.00 0.00 0.00 - - - - - 0.06 0.20 0.06

Edge 1.00 0.94 0.99 1.00 0.71 0.95 - - - - 1.00 0.04 0.25 0.22

GPT-4 Node 1.00 1.00 0.96 1.00 0.86 1.00 - - - - 1.00 0.88 0.90 0.90
Edge 1.00 1.00 1.00 1.00 1.00 1.00 - - - - 1.00 0.85 0.88 0.88

Easy
GPT-3 Node 1.00 0.00 0.00 1.00 0.00 0.00 - - - - - 0.04 0.17 0.03

Edge 0.96 0.89 0.93 1.00 0.78 0.83 - - - - - 0.07 0.28 0.26

GPT-4 Node 1.00 0.96 1.00 1.00 0.89 1.00 - - - - - 0.87 0.90 0.89
Edge 1.00 1.00 0.95 1.00 0.67 0.95 - - - - - 0.81 0.86 0.84

Medium
GPT-3 Node 1.00 0.00 0.00 - - - - - - - - 0.08 0.19 0.07

Edge 1.00 0.70 0.88 1.00 0.29 0.51 1.00 0.00 0.00 - - 0.10 0.32 0.22

GPT-4 Node 0.96 0.83 0.87 1.00 0.43 1.00 1.00 0.00 0.00 - - 0.67 0.74 0.68
Edge 1.00 0.87 0.91 1.00 0.57 0.97 1.00 0.00 0.00 - - 0.67 0.75 0.70

Hard
GPT-3 Node 1.00 0.00 0.00 1.00 0.00 0.00 - - - - - 0.17 0.32 0.14

Edge 1.00 0.70 0.74 1.00 0.36 0.85 1.00 0.50 1.00 - - 0.12 0.37 0.26

GPT-4 Node 1.00 0.74 0.93 0.91 0.45 0.82 1.00 0.00 0.00 - - 0.59 0.70 0.60
Edge 1.00 0.81 0.95 1.00 0.73 0.87 1.00 0.50 0.83 - - 0.67 0.76 0.70

Table 10: Directed Baseline result of ACC and Facc. ’-’ indicates no data.

11

Subdataset Des. 0-shot few-shot 0-dijkstra cot-dijkstra

unweighted

1≤k≤2 hops Node 0.88 0.91 0.92 0.96
Edge 0.89 0.82 0.87 0.96

3≤k≤4 hops Node 0.87 0.90 0.87 0.94
Edge 0.81 0.86 0.83 0.85

5-hops Node 0.88 0.78 0.78 0.86
Edge 0.76 0.68 0.74 0.82

Singleton Node 1.00 1.00 0.86 1.00
Edge 0.98 1.00 0.84 0.96

I.C. Node 0.46 0.52 0.58 0.70
Edge 0.61 0.37 0.64 0.74

AVG Node 0.72 0.75 0.75 0.84
Edge 0.76 0.65 0.75 0.81

Weighted

1≤k≤2 hops Node 0.80 0.75 0.75 0.81
Edge 0.70 0.66 0.65 0.73

3≤k≤4 hops Node 0.52 0.58 0.59 0.65
Edge 0.47 0.47 0.48 0.64

5-hops Node 0.54 0.48 0.54 0.58
Edge 0.44 0.52 0.44 0.50

Singleton Node 0.98 0.92 0.80 0.84
Edge 0.98 1.00 0.76 0.98

I.C. Node 0.47 0.39 0.35 0.53
Edge 0.51 0.32 0.46 0.57

AVG Node 0.60 0.56 0.54 0.65
Edge 0.58 0.51 0.53 0.65

Table 11: Shortest path result with strategy

Connectivity types # Sample AVG. # Node AVG. # Edge
1-hop 107 82 199
2-hop 64 104 257
3-hop 53 139 347
4-hop 42 145 363

k-hop (k≥5) 60 201 521
Asymmetric 198 49 106

Table 12: Knowledge graph dataset.

G describes a directed graph among node 0, 1, 2,789
3, and 4.790
In this graph:791
Node 0 is directed to Node 1 (weight: 8), 2792
(weight: 1).793

Edge Description for Directed weighted794

Graph:795

G describes a directed graph among node 0, 1, 2,796
3, and 4.797
Node 0 is directed to Node 1 with798
weight 8.799
Node 0 is directed to Node 2 with800
weight 1.801

Knowledge graph Node:802

G describes a knowledge graph among entity:803
"hairpiece", "wig", "dress", "overdress", "attire",804
"clothing", and "clothing".805

Entity "hairpiece" is directed to entity "attire"806
(relation hypernym).807

Entity "wig" is directed to entity "hairpiece" (re-808
lation hypernym).809

Entity "dress" is directed to entity "attire" (rela-810
tion derivationally related form), "dress" (relation811
verb group), "overdress" (relation also see), and812
"clothing" (derivationally related form) .813

Entity "overdress" is directed to entity "attire"814
(relation derivationally related form), "dress" (re-815
lation verb group).816

Entity "attire" is directed to entity "overdress" (re-817
lation derivationally related form), "clothing" (re-818
lation hypernym), "dress" (derivationally related819
form).820

Entity "clothing" is directed to entity "dress" (re-821
lation derivationally related form).822

Knowledge graph Edge: 823

G describes a knowledge graph among entity: 824
"hairpiece", "wig", "dress", "overdress", "attire", 825
"clothing", and "clothing". Entity "hairpiece" is 826
hypernym of entity "attire". 827

Entity "wig" is hypernym of entity "hairpiece". 828

Entity "dress" is derivationally related form of 829
entity "attire". 830

Entity "dress" is verb group of entity "dress". 831

Entity "dress" is also see of entity "overdress". 832

Entity "dress" is derivationally related form of 833
entity "clothing". 834

Entity "overdress" is derivationally related form 835
of entity "attire". 836

Entity "overdress" is verb group of entity "dress". 837

Entity "attire" is derivationally related form of 838
entity "overdress". 839

Entity "attire" is hypernym of entity "clothing". 840

Entity "attire" is derivationally related form of 841
entity "dress". 842

Entity "clothing" is derivationally related form of 843
entity "dress". 844

B Few-shot and CoT examples 845

Here are examples of how to use few-shot and CoT 846

prompting in graph connectivity and shortest path 847

tasks. 848

B.1 Connectivity examples 849

Few-shot: 850

Q: Given a directed graph: G describes a directed 851
graph among 0, 1, 2, 3, and 4. 852
In this graph: 853
Node 0 is directed to nodes 1, 3. 854
Node 1 is directed to nodes 2, 0, 4. 855
Node 2 is directed to nodes 3. 856
Node 3 is directed to nodes 4, 0, 1. 857
Is there a directed path from node 0 to node 3 If 858
the path exist, give "Exist path" the path in the 859
form of "Node #1 -> Node #2". Otherwise, give 860
"No path" 861
A: Exist path: 0 -> 3. 862

BFS-CoT: 863

Q: Determine if there is a path between two nodes 864
in the graph. The graph is: G describes an undi- 865
rected graph among 0, 1, 2, 3, 4, and 5. In this 866
graph: Node 0 is connected to node 1. Node 1 867
is connected to nodes 0, 2. Node 2 is connected 868
to nodes 1, 3. Node 3 is connected to nodes 2, 869
4. Node 4 is connected to nodes 3, 5. Node 5 is 870
connected to node 4. The question is: Does a path 871
exist between node 1 and node 5? If a path exists, 872
present the BFS path formatted as "Node #1 -> 873
Node #2." If no path is found, state "No path." 874
This problem will be addressed using Breadth- 875
First Search (BFS). Let’s think step by step. A: 876
1. Node 1 is directely connected with nodes 0, 2. 877
2. From node 0, we can reach nodes 1. 3. From 878
node 2, we can reach nodes 1, 3. 4. From node 879
3, we can reach nodes 2, 4. 5. From node 4, we 880
can reach nodes 3, 5. 6. From node 5, we have 881
reached our target. So a path from node 1 to node 882
5 does exist. The BFS path taken in this search is: 883
Node 1 -> Node 2 -> Node 3 -> Node 4 -> Node 884
5. 885

12

1-hop 2-hop 3-hop 4-hop 5-hop Singleton Isolated C. Asymmetric

Dataset GraphInstruct Dataset (Tiny/Easy/Med/Hard)

Undirected
Sample 51 / 41 / 37 / 29 43 / 45 / 50 / 49 11 / 12 / 19 / 20 6 / 11 / 6 / 5 1 / 3 / 2 / 2 - / - / - / - 5 / 34 / 52 / 50 -

AVG. # Node 6 / 12 / 21 / 30 6 / 12 / 21 / 30 6 / 12 / 20 / 31 6 / 11 / 22 / 31 7 / 14 / 20 / 28 - / - / - / - 7 / 12 / 20 / 31 -
AVG. # Edge 8 / 24 / 77 / 181 7 / 22 / 68 / 125 5 / 14 / 37 / 62 6 / 10 / 33 / 49 7 / 14 / 20 / 28 - / - / - / - 7 / 12 / 20 / 31 -

Directed
Sample 18 / 13 / 9 / 10 13 / 14 / 14 / 17 7 / 6 / 5 / 10 - / 3 / 2 / 1 - / - / 1 / 2 - / - / - / - 1 / - / - / - 144 / 116 / 98 / 100

AVG. # Node 6 / 12 / 21 / 30 6 / 12 / 21 / 31 7 / 12 / 20 / 29 - / 15 / 20 / 31 - / - / 19 / 32 - / - / - / - 6 / - / - / - 6 / 11 / 21 / 31
AVG. # Edge 15 / 44 / 117 / 194 15 / 38 / 123 / 220 14 / 30 / 80 / 140 - / 28 / 50 / 56 - / - / 47 / 70 - / - / - / - 4 / - / - / - 10 / 24 / 45 / 73

Dataset NLGraph Dataset (Easy/Med/Hard)

Undirected
Sample 137 / 417 / 163 36 / 146 / 152 3 / 30 / 21 - / 5 / 4 - / 2 / - 51 / 106 / 42 125 / 494 / 298 -

AVG. # Node 7 / 19 / 31 8 / 19 / 31 9 / 19 / 30 - / 17 / 32 - / 20 / - 7 / 17 / 31 7 / 19 / 31 -
AVG. # Edge 11 / 78 / 138 8 / 47 / 103 7 / 26 / 56 - / 24 / 44 - / 20 / - 7 / 49 / 127 11 / 71 / 103 -

Dataset Our Dataset with Unweighted Edge Graphs (Easy/Med/Hard)

Undirected
Sample 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 200 / 200 / 200 -

AVG. # Node 10 / 21 / 30 10 / 21 / 31 11 / 21 / 30 11 / 20 / 31 11 / 20 / 30 11 / 20 / 31 11 / 21 / 31 -
AVG. # Edge 32 / 104 / 229 33 / 112 / 215 26 / 83 / 158 21 / 51 / 146 17 / 43 / 90 35 / 93 / 198 20 / 60 / 113 -

Directed
Sample 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 100 / 100 / 100 100 / 100 / 100

AVG. # Node 10 / 20 / 30 10 / 20 / 31 10 / 20 / 31 10 / 20 / 31 11 / 20 / 30 10 / 21 / 31 11 / 21 / 31 11 / 21 / 31
AVG. # Edge 64 / 191 / 514 57 / 191 / 479 49 / 170 / 409 38 / 131 / 251 32 / 89 / 185 45 / 162 / 466 35 / 102 / 188 57 / 120 / 279

Dataset Our Dataset Wtih Positive Weighted Edge Graphs (Easy/Med/Hard)

Undirected
Sample 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 200 / 200 / 200 -

AVG. # Node 10 / 20 / 30 10 / 20 / 30 10 / 20 / 30 11 / 20 / 30 11 / 20 / 30 11 / 20 / 30 11 / 20 / 30 -
AVG. # Edge 32 / 104 / 231 33 / 109 / 221 26 / 81 / 192 21 / 54 / 119 19 / 42 / 96 30 / 91 / 233 18 / 56 / 115 -

Directed
Sample 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 50 / 50 / 50 100 / 100 / 100 100 / 100 / 100

AVG. # Node 10 / 20 / 30 10 / 20 / 30 10 / 20 / 30 10 / 20 / 30 11 / 20 / 30 10 / 20 / 30 10 / 20 / 30 10 / 20 / 30
AVG. # Edge 55 / 184 / 386 55 / 205 / 503 49 / 173 / 356 36 / 97 / 222 31 / 99 / 177 46 / 192 / 437 32 / 91 / 194 47 / 121 / 250

Dataset Ours Dataset with Directed Negative Weighted Edge Graphs (Easy)

Directed
Sample 50 50 50 50 50 50 100 100

AVG. # Node 10 10 10 10 10 10 10 10
AVG. # Edge 30 30 28 27 25 22 20 26

Table 13: The summary table of datasets used in the connectivity task including the baseline dataset NLGraph and
GraphInstruct. Our dataset is generated for various types of node connections

Dijkstra-CoT:886

Q: Given a directed graph: G describes a directed887
graph among 0, 1, 2, 3, and 4.888
In this graph:889
Node 0 is directed to nodes 1 (weight: 6), 4890
(weight: 6), 3 (weight: 6), 2 (weight: 1).891
Node 1 is directed to nodes 2 (weight: 4), 4892
(weight: 3).893
Node 2 is directed to nodes 3 (weight: 7), 1894
(weight: 4), 0 (weight: 5).895
Node 3 is directed to nodes 4 (weight: 6), 0896
(weight: 6).897
Node 4 is directed to nodes 1 (weight: 6), 3898
(weight: 9), 0 (weight: 5).899
Does a path exist from node 4 to node 2? If so,900
provide the shortest path formatted as "Node #1901
-> Node #2." If not, state "No path.". Let’s think902
step by step using Dijkstra’s Algorithm.903
A: To determine if there is a path from node 4904
to node 2 and find the shortest path if it exists,905
we can use Dijkstra’s Algorithm. Let’s apply the906
algorithm step by step:907

908
Initialization909
- Start with node 4.910
- Set the distance to node 4 (the starting node) to911
0 and to all other nodes to infinity.912
- Keep a priority queue to select the node with913
the smallest tentative distance that hasn’t been914
permanently set yet.915
- Mark all nodes as unvisited.916

917
Step by Step Process918
1. Select node 4 (smallest distance in the priority919
queue). From node 4, we can reach nodes 1, 3920
and 0. We update the distances to nodes 1, 3 and921
0.922
- Distance to node 1 (from node 4) is 6, which923
is better than the previous, update the priority924
queue.925
- Distance to node 3 (from node 4) is 9, which926
is better than the previous, update the priority927
queue.928
- Distance to node 0 (from node 4) is 5, which is929

better than the previous, update the priority queue. 930
931

2. Select node 0 (next smallest distance 932
in the priority queue). From node 0, we can reach 933
nodes 1, 4, 3 and 2. However, nod and 4 has 934
already been selected. We update the distances to 935
nodes 1, 3 and 2. 936
- Distance to node 1 (from node 0) is 11, which is 937
not better than the previous, and will not update 938
the priority queue. 939
- Distance to node 3 (from node 0) is 11, which is 940
not better than the previous, and will not update 941
the priority queue. 942
- Distance to node 2 (from node 0) is 6, which is 943
better than the previous, update the priority queue. 944

945
3. Select node 1 (next smallest distance 946
in the priority queue). From node 1, we can reach 947
nodes 2 and 4. However, node 4 has already been 948
selected. We update the distance to node 2. 949
- Distance to node 2 (from node 1) is 10, which is 950
not better than the previous, and will not update 951
the priority queue. 952

953
4. Select node 2 (next smallest distance 954
in the priority queue). From node 2, we can reach 955
nodes 3, 1 and 0. However, nodes 1 and 0 have 956
already been selected. We update the distance to 957
node 3. 958
- Distance to node 3 (from node 2) is 13, which is 959
not better than the previous, and will not update 960
the priority queue. 961

962
5. Select node 3 (next smallest distance 963
in the priority queue). From node 3, we can 964
reach nodes 4 and 0. However, nodes 4 and 0 965
have already been selected. We have nothing to 966
update. 967

968
Conclusion 969
A path exists from node 4 to node 2. 970
Answer: Node 4 -> Node 0 -> Node 2. 971

972

13

C Graph Connectivity task973

C.1 Dataset974

Table 13 shows the dataset information for all975

datasets we used. We separated the dataset ac-976

cording to the connectivity type to ensure clear dis-977

play of whether or not the dataset is uniformly dis-978

tributed. The table helps illustrate that our dataset979

aims to balance the distribution on connectivity980

type as uniform as possible (with 50 samples for981

most types), as well as the balance of positive and982

negative cases (250 samples for both connective983

and non-connective cases).984

C.2 Results985

Table 8 shows the zero-shot accuracy result of base-986

line datasets. The result is separated by connectiv-987

ity type in columns. However, due to the variability988

of distribution, significant numbers of grids remain989

empty. Table 9 and Table 10 are novel evaluations990

of undirected and directed baseline datasets with991

ACC and Facc.992

D Shortest-path task993

D.1 Result994

Table 11 records the shortest path accuracy on var-995

ious prompting methods. Weighted graph in this996

table only have positive weights.997

E Knowledge graph998

E.1 Dataset999

Table 12 contains information about knowledge1000

graph dataset, Including number of samples, aver-1001

age number of nodes, average number of edges in1002

all connectivity types.1003

F K-hops influence on the connectivity1004

task1005

In Section 3.2, we have demonstrated that perfor-1006

mance in the graph connectivity task is closely re-1007

lated to the number of nodes and k-hops in a graph.1008

However, it is important to note that smaller graphs1009

inherently support shorter paths. To fairly assess1010

the impact of k-hops on different graph sizes, we1011

further evaluate the relations between k-hop and1012

graph density.1013

We create a subset with 100 undirected graphs1014

where the graph node number is 16 - 36 and the1015

density is in the range of (0.2,0.4) and evaluate1016

them by Node and Edge List descriptions. The1017

results are shown in Figure 4.1018

The results indicate that 1-hop cases maintain1019

a very high accuracy regardless of graph density,1020

while 2-hop and 3-hop cases show a slight accu- 1021

racy decrease. In contrast, 4-hop and 5-hop cases 1022

exhibit high accuracy only in sparse graphs but sig- 1023

nificantly decline when graph density approaches 1024

0.38. This suggests that LLMs become confused 1025

as the graph complexity increases. 1026

Comparing the Node List and Edge List descrip- 1027

tions, it is observed that the Node List exhibits a 1028

smaller reduction in performance compared to the 1029

Edge List. This suggests that the Node List may be 1030

more effective in describing complex graphs. 1031

G Failed cases 1032

In this section, we will list some failed cases. We 1033

mark the added edges in Red and ignored edges in 1034

Green. 1035

G.1 Translation for Edge List to Node List 1036

Question: Your task is giving the neighbors of 1037
each node.G describes an undirected graph among 1038
node 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12. 1039

Node 0 is connected to Node 1. Node 0 is con- 1040
nected to Node 5. Node 0 is connected to Node 9. 1041
Node 0 is connected to Node 12. Node 0 is con- 1042
nected to Node 3. Node 0 is connected to Node 1043
10. Node 0 is connected to Node 8. Node 0 is 1044
connected to Node 11. Node 0 is connected to 1045
Node 7. 1046

Node 1 is connected to Node 2. Node 1 is con- 1047
nected to Node 4. Node 1 is connected to Node 1048
3. Node 1 is connected to Node 12. Node 1 is 1049
connected to Node 9. Node 1 is connected to 1050
Node 11. Node 1 is connected to Node 10. Node 1051
1 is connected to Node 5. Node 1 is connected to 1052
Node 6. 1053

Node 2 is connected to Node 3. Node 2 is con- 1054
nected to Node 4. Node 2 is connected to Node 6. 1055
Node 2 is connected to Node 10. Node 2 is con- 1056
nected to Node 9. Node 2 is connected to Node 1057
12. Node 2 is connected to Node 7. Node 2 is 1058
connected to Node 11. 1059

Node 3 is connected to Node 4. Node 3 is con- 1060
nected to Node 11. Node 3 is connected to Node 1061
5. Node 3 is connected to Node 10. Node 3 is 1062
connected to Node 12. Node 3 is connected to 1063
Node 8. 1064

Node 4 is connected to Node 5. Node 4 is con- 1065
nected to Node 9. Node 4 is connected to Node 8. 1066
Node 4 is connected to Node 10. Node 4 is con- 1067
nected to Node 6. Node 4 is connected to Node 1068
11. Node 4 is connected to Node 7. 1069

Node 5 is connected to Node 6. Node 5 is con- 1070
nected to Node 9. Node 5 is connected to Node 1071
10. Node 5 is connected to Node 7. Node 5 is 1072
connected to Node 8. 1073

Node 6 is connected to Node 7. Node 6 is con- 1074
nected to Node 9. Node 6 is connected to Node 1075
12. Node 6 is connected to Node 8. 1076

Node 7 is connected to Node 8. Node 7 is con- 1077
nected to Node 10. Node 7 is connected to Node 1078
9. Node 7 is connected to Node 12. 1079

Node 8 is connected to Node 9. Node 8 is con- 1080
nected to Node 12. Node 8 is connected to Node 1081
10. Node 8 is connected to Node 11. 1082

14

Figure 4: Accuracy of K-hops across varying graph
densities (Node List)

Figure 5: Accuracy of K-hops across varying graph
densities (Edge List)

Node 9 is connected to Node 10. Node 9 is con-1083
nected to Node 11. Node 9 is connected to Node1084
12.1085

Node 10 is connected to Node 11. Node 10 is1086
connected to Node 12. Node 11 is connected to1087
Node 12. For each node, the neighboring nodes1088
are listed as follows: "Node #1: [] Node #2: []"1089

Answer: Given the connections in the undirected1090
graph, the neighbors of each node can be summa-1091
rized as follows:1092

- Node 0: [1, 5, 9, 12, 3, 10, 8, 11, 7] - Node 1: [0,1093
2, 4, 3, 12, 9, 11, 10, 5, 6] - Node 2: [1, 3, 4, 6,1094
10, 9, 12, 7, 11] - Node 3: [0, 1, 2, 4, 11, 5, 10, 12,1095
8] - Node 4: [1, 2, 3, 5, 9, 8, 10, 6, 11, 7] - Node1096
5: [0, 1, 3, 4, 6, 9, 10, 7, 8] - Node 6: [1, 2, 4, 5,1097
7, 9, 12, 8] - Node 7: [0, 2, 4, 5, 6, 8, 10, 9, 12] -1098
Node 8: [0, 3, 4, 5, 6, 7, 9, 12, 10, 11] - Node 9:1099
[0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12] - Node 10: [0, 1,1100
2, 3, 4, 5, 7, 8, 9, 11, 12] - Node 11: [0, 1, 2, 3, 4,1101
8, 9, 10, 12] - Node 12: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9,1102
10, 11]1103

G.2 Translation for Node List to Edge List1104

Question: Your task is to identify all the edges1105
in a graph and represent them in sparse form.G1106
describes an undirected graph among 0, 1, 2, 3, 4,1107
5, 6, 7, 8, 9, 10, 11, 12, and 13. In this graph:1108

Node 0 is connected to nodes 1, 11, 2.1109

Node 1 is connected to nodes 0, 2, 3, 4, 9, 11, 7.1110

Node 2 is connected to nodes 0, 1, 3, 9, 8, 10.1111

Node 3 is connected to nodes 1, 2, 4, 8, 6, 13, 12.1112

Node 4 is connected to nodes 1, 3, 5, 10, 9.1113

Node 5 is connected to nodes 4, 6, 9, 7.1114

Node 6 is connected to nodes 3, 5, 7.1115

Node 7 is connected to nodes 1, 5, 6, 8, 12, 9, 11.1116

Node 8 is connected to nodes 2, 3, 7, 9, 12, 10.1117

Node 9 is connected to nodes 1, 2, 4, 5, 7, 8, 10.1118

Node 10 is connected to nodes 2, 4, 8, 9, 11.1119

Node 11 is connected to nodes 0, 1, 7, 10, 12.1120

Node 12 is connected to nodes 3, 7, 8, 11, 13.1121

Node 13 is connected to nodes 3, 12.1122

The edges should be list as: (Node #1, Node #2),1123
...1124

Answer: To represent the edges of the given 1125
undirected graph in sparse form, we’ll list each 1126
connection between nodes as a tuple ‘(Node #1, 1127
Node #2)‘. Since the graph is undirected, each 1128
edge is bidirectional, meaning if ‘(Node A, Node 1129
B)‘ is listed, ‘(Node B, Node A)‘ is not listed 1130
again to avoid redundancy. We’ll go through each 1131
node’s connections as provided, ensuring to list 1132
each edge only once. 1133

Here are the edges in sparse form: 1134

“‘ (0, 1), (0, 11), (0, 2), (1, 2), (1, 3), (1, 4), (1, 9), 1135
(1, 7), (2, 3), (2, 9), (2, 8), (2, 10), (3, 4), (3, 8), 1136
(3, 6), (3, 13), (3, 12), (4, 5), (4, 10), (5, 6), (5, 9), 1137
(5, 7), (6, 7), (7, 8), (7, 12), (7, 9), (7, 11), (8, 9), 1138
(8, 12), (8, 10), (9, 10), (10, 11), (11, 12), (12, 13) 1139
“‘ 1140

This list includes all unique edges in the graph, 1141
ensuring that each connection is represented once, 1142
respecting the undirected nature of the graph. 1143

15

	Introduction
	Related work and Background
	Evaluation on graph reasoning tasks
	Graph connectivity in theory
	LLMs for graphs in the applications
	Theoretical support for graph reasoning tasks

	Limitations of LLMs in graph reasoning
	Graph description translation
	Graph Descriptions
	Translations on graph descriptions

	Revisit graph connectivity task
	Connectivity types
	Dataset Construction
	Evaluation Metrics
	Results

	The shortest-path problem
	Analysis of other factors
	Impact of the algorithm prompts
	The influence of node names

	A case study on knowledge graphs
	Conclusion
	Example of different descriptions
	Few-shot and CoT examples
	Connectivity examples

	Graph Connectivity task
	Dataset
	Results

	Shortest-path task
	Result

	Knowledge graph
	Dataset

	K-hops influence on the connectivity task
	Failed cases
	Translation for Edge List to Node List
	Translation for Node List to Edge List

