

000 001 002 003 004 005 006 007 008 009 010 THE ILLUSION OF FORGETTING: POST-HOC UTILITY RECOVERY FROM UNLEARNED MODELS

005 **Anonymous authors**

006 Paper under double-blind review

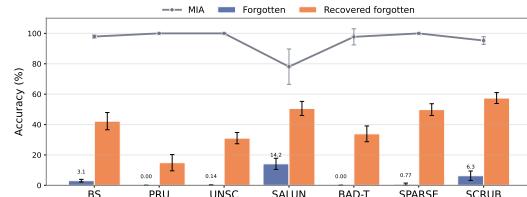
ABSTRACT

011 Class unlearning seeks to remove the influence of designated training classes
 012 while retaining utility on the remaining ones, often for privacy or regulatory
 013 compliance. Existing evaluations largely declare success once the forgotten
 014 classes exhibit near-zero accuracy or fail membership inference tests. We argue
 015 this view is incomplete and introduce the notion of *the illusion of forgetting*:
 016 even when accuracy appears suppressed, the black-box outputs of unlearned
 017 models can retain residual, recoverable signals about forgotten classes. We
 018 formalize this phenomenon by quantifying residual information in the output
 019 space and show that unlearning trajectories leave statistically distinguishable
 020 signatures. To demonstrate practical implications, we propose a simple yet
 021 effective post-hoc recovery framework, which amplifies weak signals using
 022 a Yeo–Johnson transformation and adapts decision thresholds to reconstruct
 023 predictions for forgotten classes. Across 12 unlearning algorithms and 4
 024 benchmark datasets, our framework substantially restores forgotten-class accuracy
 025 while causing minimal degradation on retained classes. These findings (i)
 026 expose critical blind spots in current unlearning evaluations, (ii) provide the first
 027 systematic evidence that forgotten-class utility can be restored from black-box
 028 access alone.

029 1 INTRODUCTION

030
 031 Removing the influence of specific training classes from a deployed model is increasingly
 032 required for privacy compliance, regulatory mandates, and user expectations. Recent
 033 class unlearning methods demonstrate impressive performance, often driving forgotten
 034 classes’ accuracy towards zero while maintaining utility on the remaining data Kurmanji
 035 et al. (2023); Shokri et al. (2017); Graves et al. (2021); Chen et al. (2024; 2021).
 036 This apparent success has fueled the belief
 037 that low forgotten-class accuracy or failed
 038 membership inference is sufficient to guarantee
 039 forgetting.

040 We show that this view is incomplete. Even
 041 after passing such standard forgetting checks,
 042 unlearned models can still retain residual,
 043 recoverable signals about the forgotten classes.
 044 Why this matters. Consider a medical
 045 classifier where a hospital requests the removal
 046 of a rare disease class to comply with
 047 privacy regulations. Conventional metrics
 048 may certify “success” once forgotten-class
 049 accuracy is suppressed to chance. Yet
 050 if a downstream observer can still recover
 051 diagnostic capability for the removed disease,
 052 the deletion request—and the hospital’s privacy
 053 rights—would be undermined. In this work, we
 make a central observation: unlearned models
 often leave weak but structured traces of the



054 Figure 1: The *illusion of forgetting*. Standard
 055 evaluations report forgotten-class accuracy
 056 near zero after unlearning, suggesting success.
 057 However, a lightweight recovery procedure can
 058 restore substantial utility to the forgotten classes.
 059 The figure reports average results over seven
 060 representative unlearning methods Chen et al.
 061 (2023); Zhang et al. (2024); Chen et al. (2024);
 062 Fan et al. (2024); Chundawat et al. (2023a); Jia
 063 et al. (2023); Kurmanji et al. (2023).

054 forgotten classes in their output probabilities. With lightweight post-processing, these traces can be
 055 amplified into meaningful re-predictions. We call this gap between apparent forgetting and residual
 056 recoverable utility the *illusion of forgetting*. See Figure 1 for an illustration, where forgotten-class
 057 accuracy falls to near zero under unlearning but can be substantially restored.

058 Why does recovery remain possible after “successful” unlearning? Our theoretical analysis
 059 formalizes two intuitions. First, *retained-class utility and complete forgetting are in tension*:
 060 preserving high accuracy on the remaining classes generally necessitates retaining structured
 061 information about forgotten classes in the representation and output space. Second, unlearning
 062 trajectories leave *statistical signatures in output space*: to suppress forgotten classes, algorithms
 063 collapse their outputs to narrow ranges near zero, which still encode distinguishable patterns.

064 To demonstrate the practical severity of this phenomenon, we introduce a simple black-box recovery
 065 framework. It assumes only realistic access to the deployed unlearned model’s softmax probabilities,
 066 without weights, gradients, or training data. The framework applies a monotone statistical transform
 067 (Yeo–Johnson Weisberg (2001)) to stabilize and amplify weak near-zero outputs, followed by
 068 adaptive thresholding to map transformed scores back into forgotten-class predictions. This
 069 procedure is model-agnostic, requires no retraining, and serves to reveal recoverability rather than
 070 to propose yet another unlearning algorithm. Comprehensive experiments across 12 state-of-the-art
 071 unlearning methods and 4 benchmark datasets show that forgotten-class utility can be recovered
 072 far beyond random guessing while minimally affecting retained-class performance. These findings
 073 expose a critical blind spot in current unlearning evaluation and highlight the urgent need to
 074 reconsider what forgetting truly guarantees.

075 Our contributions are:

- 077 • We uncover and formalize the *illusion of forgetting*, i.e., the gap between certified forgetting and
 078 residual, recoverable utility, revealing a blind spot in how class unlearning is currently evaluated.
- 079 • Through theoretical analysis, we show that preserving retained-class accuracy inherently leaves
 080 structured traces of forgotten classes, and that typical unlearning trajectories produce distinctive
 081 statistical signatures in the output space.
- 082 • To make the phenomenon tangible, we design a lightweight black-box recovery framework (based
 083 on Yeo–Johnson transformation and adaptive thresholding) that converts weak residual signals into
 084 forgotten-class predictions—without accessing weights, gradients, training data, or any labels.
- 085 • Extensive experiments across 12 state-of-the-art unlearning methods and 4 benchmark datasets
 086 reveal that most are susceptible to the illusion of forgetting, enabling recovery well beyond random
 087 guessing while retaining performance on the remaining classes.

089 2 BACKGROUND

090 Let $\mathcal{X} \subset \mathbb{R}^d$ denote the input space and $\mathcal{Y} = \{1, \dots, K\}$ denote the label space with K classes.
 091 The training dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$ contains N samples.

092 In class machine unlearning, the objective is to eliminate the influence of all training samples from a
 093 target class $c \in \mathcal{C} \subset \mathcal{Y}$. This naturally partitions the dataset into the forgetting set $\mathcal{D}_f = \{(x_i, y_i) \in \mathcal{D} : y_i \in \mathcal{C}\}$ containing samples to be unlearned and the retaining set $\mathcal{D}_r = \mathcal{D} \setminus \mathcal{D}_f$ containing
 094 samples to be preserved.

095 **Definition 1 (Unlearning Process)** Let $f_{\theta_0} : \mathcal{X} \rightarrow \mathbb{R}^K$ be the original model with parameters θ_0 .
 096 The unlearning process is defined as the optimization Bourtoule et al. (2021); Graves et al. (2021):

$$101 \quad \theta^* = \arg \min_{\theta} \mathcal{L}_{\text{unlearn}}(\theta_0) = \mathcal{L}_r(\theta; \mathcal{D}_r) + \lambda \mathcal{L}_f(\theta; \mathcal{D}_f) \quad (1)$$

102 where \mathcal{L}_r preserves performance on retained data and \mathcal{L}_f enforces forgetting on \mathcal{D}_f .

103 2.1 EVALUATION PARADIGMS

104 The existing works in MU primarily evaluate forgetting effectiveness through various
 105 accuracy-based metrics Chen et al. (2024); Graves et al. (2021), such as unlearning accuracy (*UA*)

108 and retaining accuracy (RA):
 109

$$110 \quad UA = \frac{1}{\|\mathcal{D}_f\|} \sum_{(x,y) \in \mathcal{D}_f} \mathbb{I}[f_{\theta^*}(x) = y]; \quad RA = \frac{1}{\|\mathcal{D}_r\|} \sum_{(x,y) \in \mathcal{D}_r} \mathbb{I}[f_{\theta^*}(x) = y].$$

$$111$$

$$112$$

113 Compare UA and RA on the unlearned model with the results on f_{θ^*} to assess whether the
 114 unlearning algorithms are successful or not. Commonly, success is declared when $UA \approx 0$ and
 115 $RA \approx RA(f_{\theta^*}, \mathcal{D}_r)$ Graves et al. (2021); Bourtoule et al. (2021); Chen et al. (2023); Foster et al.
 116 (2024).

117 In addition to accuracy-based metrics, some recent works employ MIA Shokri et al. (2017); Chen
 118 et al. (2021) to verify that forgotten samples cannot be distinguished from unseen data, while others
 119 test forgetting quality by measuring how quickly the unlearned model can relearn the forgotten class
 120 through fine-tuning on \mathcal{D}_f Chundawat et al. (2023b); Golatkar et al. (2020).

121 However, all these current evaluation paradigms share a common focus on: seeking to answer the
 122 question Are the unlearning samples truly forgotten?. There still is a gap to *Can the utility on*
 123 *forgotten classes be recovered through only an unlearned model?*.

125 2.2 ATTACK ON MACHINE UNLEARNING

127 Recent research has identified various attack vectors against unlearning systems. Adversarial
 128 approaches exploit the unlearning mechanism to trigger hidden behaviors Di et al. (2022); Liu et al.
 129 (2024) or lag the unlearning to increase computational costs Marchant et al. (2022). Privacy-focused
 130 attacks leverage information leakage to infer training information Chen et al. (2021); Gao et al.
 131 (2022); Lu et al. (2022); Hu et al. (2024). Unlike prior attacks typically require access to original
 132 models Hu et al. (2024); Lu et al. (2022); Chen et al. (2021); Gao et al. (2022) or involve model
 133 modifications Xiao et al. (2025), our approach differs fundamentally in both methodology and
 134 objective. Rather than attempting adversarial exploitation, we demonstrate that utility recovery
 135 on forgotten classes is possible through statistical analysis of black-box outputs alone, revealing
 136 inherent limitations in class unlearning. This suggests that current unlearning processes may not
 137 fully achieve their fundamental objective of removing sample influence, a gap we systematically
 138 investigate in this work.

139 2.3 RECOVERY EVALUATION

141 We define how the recovery is evaluated in this work. Given a test dataset \mathcal{D}_{test} , the utility of the
 142 unlearned model f_{θ^*} for the forgotten class c can be evaluated by the following metrics:

$$143 \quad UA(g \circ f_{\theta^*}, \mathcal{D}_f^{test}) > 1/K \quad \text{and} \quad RA^* - \Delta \leq RA(g \circ f_{\theta^*}, \mathcal{D}_r^{test}) \leq RA^* + \Delta, \quad (2)$$

$$144$$

145 where Δ denotes an acceptable change in the accuracy.

146 The unlearned model that can be deployed to users can obtain positive gain via the processing
 147 method g , which indicates the successful utility recovery. If utility recovery succeeds under these
 148 minimal assumptions, it reveals that the unlearned model retains sufficient residual information
 149 about the forgotten class to enable classification, contradicting the privacy guarantees that unlearning
 150 aims to provide.

152 3 METHOD

154 In this section, firstly, we present the theoretical analysis to explain why machine unlearning
 155 inevitably leaves recoverable traces, then propose a post-hoc recovery framework that exposes these
 156 vulnerabilities through statistical analysis of output probability distributions.

158 3.1 THEORETICAL ANALYSIS

160 To understand why machine unlearning algorithms inevitably leave recoverable traces of forgotten
 161 information, we analyze the fundamental trade-offs between forgetting completeness and utility
 162 preservation. We establish information-theoretic bounds on residual information (Theorem 1),

162 characterize the geometric properties of class-specific forgetting trajectories (Theorem 2), and
 163 quantify the statistical detectability of these residual patterns (Theorem 3). The detailed proofs
 164 of all theorems are presented in Appendix A.

166 **Definition 2 (Residual Information)** For an unlearned model f_{θ^*} and forgotten class c , the residual
 167 information is:

$$\mathcal{I}_{\text{res}}(c) = I(f_{\theta^*}(X); Y_c \mid X \in \mathcal{X}_c), \quad (3)$$

169 where $I(\cdot; \cdot)$ denotes mutual information Cover (1999), \mathcal{X}_c is the input distribution of class c , and
 170 Y_c is the label indicator for the forgotten class c .

171 3.1.1 INFORMATION-THEORETIC ANALYSIS

173 We first delve into complete information removal, which could be impossible when maintaining
 174 utility on retained classes. This reveals a conflict between forgetting specific information and
 175 preserving model capabilities.

177 **Theorem 1 (Incompatibility of Complete Forgetting and Utility Preservation)** For any unlearning
 178 algorithm \mathcal{A} that maintains accuracy $\alpha_r \geq \alpha_0$ on remaining classes, the residual information
 179 satisfies:

$$\mathcal{I}_{\text{res}}(c) \geq \frac{1}{K} \left[\log K - H\left(\frac{1 - \alpha_0}{K - 1}\right) - (1 - \alpha_0) \log(K - 1) \right], \quad (4)$$

182 where α_r and α_0 are the accuracy of the unlearned model f_{θ^*} and the original model f_{θ_0} on
 183 remaining classes respectively, and $H(\cdot)$ is the entropy function.

184 This theorem reveals a fundamental trade-off: maintaining high accuracy on retained classes
 185 generally leaves residual information about forgotten classes. The bound increases with a higher
 186 original accuracy α_0 , as preserving performance requires shared representations that cannot be
 187 completely disentangled. This explains why existing unlearning methods showing good forgetting
 188 performance may still contain recoverable information.

190 3.1.2 GEOMETRIC ANALYSIS OF FORGETTING TRAJECTORIES

191 To better understand the source of residual information, we now investigate how this information
 192 manifests in the parameter space.

194 **Theorem 2 (Class-Specific Forgetting Trajectories)** For distinct classes $c_i, c_j \in \mathcal{Y}$, their forgetting
 195 trajectories $\gamma_{c_i}(t), \gamma_{c_j}(t)$ satisfy:

$$\mathbb{E}[\|\gamma_{c_i}(t) - \gamma_{c_j}(t)\|_2] \geq \delta(t) \cdot \sqrt{\frac{d_{c_i} + d_{c_j}}{2K}}, \quad (5)$$

199 where $\delta(t)$ is monotonically increasing for small t with $\delta(0) = 0$ and d_{c_i}, d_{c_j} are the
 200 dimensionalities of the features.

201 This separation of trajectories occurs because each class has a unique data distribution that
 202 creates distinct gradient patterns during unlearning. The divergence between paths depends on the
 203 distributional differences between classes, where more distinct class distributions lead to greater
 204 trajectory separation. This provides the theoretical foundation for identifying which specific class
 205 was forgotten by analyzing the unlearned model's behavior.

207 3.1.3 STATISTICAL DETECTABILITY OF RESIDUAL PATTERNS

208 The existence of residual information and distinguishable patterns raises a critical question about
 209 practical detectability. We now quantify the sample complexity required to reliably recover the
 210 forgotten class information from finite observations.

212 **Theorem 3 (Recovery Success Bound)** Let $P[\text{recovery}]$ denote the probability that the recovery
 213 accuracy on forgotten class c exceeds random guessing by margin ε , i.e., $P[\text{Accuracy} > 1/K + \varepsilon]$.
 214 Given n test samples and residual information $\mathcal{I}_{\text{res}}(c) > 0$, the probability of successful recovery
 215 satisfies:

$$P[\text{recovery}] \geq 1 - \exp(-2n \cdot \mathcal{I}_{\text{res}}(c)) \quad (6)$$

This exponential relationship between sample size and recovery probability has important practical implications. Even with small residual information, recovery becomes highly probable with sufficient samples. This explains why we can successfully recover across diverse unlearning algorithms. Although the traceable signal is weak, it is consistently detectable with reasonable sample sizes.

Our theoretical framework reveals why the “illusion of forgetting” is inevitable in machine unlearning. The vulnerability we identify is not a flaw in specific unlearning algorithms but an inherent consequence of how neural networks encode and share information across classes.

3.2 POST-HOC UTILITY RECOVERY FRAMEWORK

Based on our theoretical insights, we propose the Post-hoc Utility Recovery framework method to exploit residual information in unlearned models. Specifically, the framework operates through statistical analysis of output probability distributions in four steps: 1) forgotten class identification, 2) probability distribution extraction & re-scaling, 3) adaptive threshold determination, and 4) threshold-based Re-prediction.

3.2.1 FORGOTTEN CLASS IDENTIFICATION

In real-world practical scenarios, the downstream model users could not know the unlearned classes. Therefore, we identify potential forgotten classes through forgotten class detection in the output distribution. For each output neuron node $k \in \{1, \dots, K\}$, we compute the average probability and variance on the test dataset, for $x \in \mathcal{D}_{test}$:

$$\bar{p}_k = \frac{1}{|\mathcal{D}_{test}|} \sum_{x \in \mathcal{D}_{test}} p_k(x), \quad (7)$$

where $p_k(x) = S(f_{\theta^*}(x))_k$ and S denotes softmax function. For an initialized model on balanced data, it expects $\bar{p}_k \approx 1/K$ for all classes. However, forgotten classes exhibit a distinctive characteristic: near-zero average probability, typically $\bar{p}_c \ll 1/K$, as the unlearning process squeezes all outputs for the forgotten class to a range near zero. Based on the forgotten class detection strategy, we identify the set of potentially forgotten classes as:

$$\mathcal{C}_f = \{k : \bar{p}_k < \kappa/K\}, \quad (8)$$

where $\kappa \in (0, 1)$ is a fixed small scaling constant.

3.2.2 PROBABILITY DISTRIBUTION EXTRACTION & RE-SCALING

After identifying forgotten classes \mathcal{C}_f , we extract their output probabilities for the downstream decision. Post-unlearning, the forgotten-class probabilities typically *concentrate near zero* with heavy skew and heteroscedastic tails. Direct thresholding on raw p can therefore be unstable: tiny numeric fluctuations around 0 dominate the decision boundary and become sensitive to skew and scale. To this end, it is necessary to seek a data transformation that should (i) preserve ranking, which thus does not change the fixed-quantile operating point, while (ii) correcting skew and stabilizing within-class variance so that unsupervised thresholding is more reliable at finite sample sizes. Therefore, we apply the Yeo-Johnson transformation Weisberg (2001), which can preserve the order but pulls apart the near-zero region and reduces tail sensitivity, which will benefit unsupervised threshold estimation stability. Formally, the probability value of $p \in \{p_c(x_1), p_c(x_2), \dots, p_c(x_{N_t})\}$, where N_t denotes the number of test examples, the transformation mapping can be formalized as:

$$\mathcal{T}_\lambda(p) = \begin{cases} \frac{(p+1)^\lambda - 1}{\lambda} & \text{if } \lambda \neq 0, \\ \log(p+1) & \text{if } \lambda = 0, \end{cases} \quad (9)$$

where λ is the transformation parameter, and the optimal parameter λ^* is selected by maximizing the Gaussian log-likelihood estimation without any labels:

$$\lambda^* = \arg \max_{\lambda} \sum_{i=1}^n \left[\log \phi \left(\frac{\mathcal{T}_\lambda(p_i) - \bar{p}_\lambda}{\sigma_\lambda} \right) - \log \sigma_\lambda + \log \left| \frac{d\mathcal{T}_\lambda}{dp} \right|_{p=p_i} \right], \quad (10)$$

270 where ϕ is the standard normal PDF, and $\bar{\mu}_\lambda$, σ_λ are the sample mean and standard deviation of
271 transformed values.
272

273 3.2.3 ADAPTIVE THRESHOLD DETERMINATION

275 The key insight is that different forgotten classes exhibit distinct patterns in this transformed space
276 due to their class-specific unlearning trace, i.e., Theorem 2.
277

278 Given a set of transformed probability values $\{\mathcal{T}_\lambda(p_i)\}$ for the output corresponding to forgotten
279 class, regarded as binary classification problems (e.g., $x \in \mathcal{D}'_{test}$ or $x \notin \mathcal{D}'_{test}$), we apply Otsu's
280 method Otsu (1975) adaptive threshold determination method to find the optimal threshold τ^* that
281 maximizes the between-class variance:
282

$$\tau^* = \arg \max_{\tau} \sigma_B^2(\tau), \quad (11)$$

283 where the between-class variance $\sigma_B^2(\tau)$ is:
284

$$\sigma_B^2(\tau) = \omega_0(\tau)\omega_1(\tau)[\mu_0(\tau) - \mu_1(\tau)]^2, \quad (12)$$

285 where $\omega_0(\tau)$ and $\omega_1(\tau)$ are the proportions of samples below and above threshold τ , with
286 corresponding means $\mu_0(\tau)$ and $\mu_1(\tau)$. For the adaptive thresholding, Gaussian Mixture Models
287 (GMM) Reynolds (2015) and k-means clustering can also be utilised as an alternative method.
288

290 3.2.4 RE-PREDICTION

292 Once we obtain the transformed probability $\mathcal{T}_{\lambda^*}(p(x))$ and the optimal threshold, we can execute
293 the final classification for \mathcal{D}_{test} , which is defined as:
294

$$\hat{y}(x) = \begin{cases} c & \text{if } \mathcal{T}_{\lambda^*}(p_c(x)) > \tau^*, \\ \arg \max_{j \neq c} S(f_{\theta^*}(x))_j & \text{otherwise.} \end{cases} \quad (13)$$

297 The classification rule allows us to recover the model's performance from the unlearned model. The
298 summary of the framework is shown in Algorithm 1.
299

300 3.2.5 EXTENSION TO MULTI-CLASS FORGETTING

301 The framework can be easily extended to a multi-class forgetting scenario. After the identification
302 of the forgotten classes, we aggregate probabilities across \mathcal{C}_f , instead of analyzing each $c \in \mathcal{C}_f$
303 separately. For each sample $x \in \mathcal{D}_{test}$, aggregate the probabilities across \mathcal{C}_f :
304

$$p_{agg}(x) = \sum_{c \in \mathcal{C}_f} p_c(x). \quad (14)$$

308 This aggregation captures the total response to potentially forgotten samples. Apply the
309 transformation and threshold determination following in Step 2 3.2.2 and Step 3 3.2.3 to $p_{agg}(x)$
310 with optimal parameter λ_{agg}^* and τ_{agg}^* .
311

Finally, we can re-predict on \mathcal{D}_{test} following the classification rules:
312

$$\hat{y}(x) = \begin{cases} \arg \max_{c \in \mathcal{C}_f} p_c(x) & \text{if } \mathcal{T}_{\lambda^*}(p_{agg}(x)) > \tau_{agg}^*, \\ \arg \max_{j \notin \mathcal{C}_f} S(f_{\theta^*}(x))_j & \text{otherwise.} \end{cases} \quad (15)$$

316 4 EXPERIMENTS

318 In this section, we empirically demonstrate the effectiveness of our post-hoc utility recovery
319 framework across diverse unlearning methods and datasets.
320

321 4.1 EXPERIMENTAL SETUP

323 **Datasets & backbone models.** We conduct experiments on four benchmark datasets with varying
324 complexity: *MNIST* LeCun et al. (1998), *FMNIST* Xiao et al. (2017), *CIFAR-10* Krizhevsky &

324 Hinton (2009), and *CIFAR-100* Krizhevsky & Hinton (2009). For each dataset, we randomly sample
 325 80% as the training set and 20% as the validation set from the original datasets. The test dataset is
 326 used from the officially provided test set.

327 Following the existing works Chen et al. (2024); Chundawat et al. (2023b), we adopt *AllCNN*
 328 *Springenberg et al. (2014)* as the backbone for *MNIST* and *FMNIST*, *ResNet18* He et al. (2016)
 329 for *CIFAR10* and *ResNet34* He et al. (2016) for *CIFAR-100*. All models are trained to converge on
 330 the original dataset before unlearning, details shown in Appendix D.1.

331
 332 **Unlearning Methods.** We evaluate 12 state-of-the-art unlearning methods spanning different
 333 approaches. The approaches includes *Unroll* Thudi et al. (2022), *Unroll-F* Thudi et al. (2022),
 334 *GA* Golatkar et al. (2020), *Fisher* Golatkar et al. (2020), *Boundary Shrink (BS)* Chen et al. (2023),
 335 *Boundary Expand (BE)* Chen et al. (2023), *Bad-T* Chundawat et al. (2023a), *SPARSE (SP)* Jia
 336 et al. (2023), *SCRUB* Kurmanji et al. (2023), *SALUN* Fan et al. (2024), *UNSC* Chen et al. (2024)
 337 and *PRU* Zhang et al. (2024). *RT* is a fundamental method of retraining from scratch on the
 338 remaining classes’ data. Since the *RT* model is trained only on the remaining classes, the model
 339 has corresponding classification nodes, without the nodes corresponding to the forgotten classes.
 340 The *RT* original model comes with initialized classifier nodes for evaluation on the forgetting data
 341 \mathcal{D}_f . More details are shown in Appendix D.2.

342
 343 **Unlearning & Recovery Tasks** We evaluate our post-hoc recovery framework across single-class
 344 and multi-class unlearning scenarios. For each method-dataset combination, we first train the
 345 original model f_{θ_0} on the complete dataset \mathcal{D} , then apply the unlearning algorithm to forget target
 346 classes, producing unlearned models f_{θ^*} . For single-class scenarios, we systematically forget each
 347 class individually, providing K experimental target classes per method-dataset combination. For
 348 multi-class scenarios, we randomly select two target classes for *MNIST*, *FMNIST*, and *CIFAR-10*,
 349 and 10 classes for *CIFAR-100*. Each experiment is repeated three times with different random seeds,
 350 i.e., $\{0, 1, 2\}$, to ensure statistical reliability.

351
 352 **Evaluation Metrics.** We report accuracies on forgotten classes (FA) and on remaining classes
 353 (RA) using the *unlearned* model and the FA and RA results after post-hoc restoration processing.
 354 This directly reflects the two desiderata of class unlearning: (i) removing utility on the forgotten
 355 classes and (ii) preserving utility on the remaining classes. In Tab. 15 and 1, the upper line of each
 356 method shows the unlearned results; the lower line with a gray background shows the post-hoc
 357 restoration utility results. The MIA results to show the unlearning efficacy are shown in Tab. 18.

358 4.2 MAIN RESULTS

359
 360 **Utility restoration under single- and multi-class unlearning.** Tabs. 1 and 15 report results
 361 on four benchmarks and a broad set of unlearning methods. As expected, unlearning suppresses
 362 forgotten-class accuracy (FA) while largely preserving the accuracy on remaining classes (RA), and
 363 the MIA score (reported as TNR) indicates successful erasure under standard criteria. After applying
 364 our post-hoc recovery, however, FA rises by tens of percentage points, whereas RA changes only
 365 marginally (typically $< 5\%$), and this trend holds on all datasets and across unlearning approaches.
 366 In several cases, we even restore strong forgotten-class performance when the corresponding
 367 unlearned FA is exactly zero, showing that “near-zero accuracy” alone can be misleading.

368 In the single-class scenario 15, when unlearning preserves high RA, the model must retain shared
 369 representations that encode information about the forgotten class; our theory formalizes this
 370 trade-off and lower-bounds the residual information I_{res} in such scenarios. Consequently, the
 371 probability of successful restoration increases exponentially with both the available samples and
 372 I_{res} , matching the consistent FA gains we observe. In the multi-class scenario, Tab. 1 shows the
 373 same qualitative pattern: large FA gains after recovery with small RA changes. The level of restored
 374 FA depends on the number of forgotten classes and their semantic proximity, but the conclusion
 375 remains—the forgotten subset’s utility is systematically recoverable from the output space of f_{θ^*} .

376 We identify two main failure modes consistent with our analysis and the method designs.
 377 (i) *Representation collapse*. If unlearning also degrades RA, the retained features become
 378 less informative, shrinking I_{res} and reducing detectability; this follows directly from the
 379 information-utility trade-off. (ii) *Structural constraints at the head*. *RT* retrains from scratch on

378 **Table 1: Unlearning and Recovery on multi-class forgetting** (mean \pm std over three runs). Upper
 379 line: original unlearned results; lower line (with gray background): Post-hoc recovery results. FA
 380 denotes accuracy on forgotten classes; RA denotes accuracy on remaining classes.
 381

382 Method	383 MNIST		384 FMNIST		385 CIFAR-10		386 CIFAR-100	
	387 FA	388 RA	389 FA	390 RA	391 FA	392 RA	393 FA	394 RA
384 Orig	385 99.52 \pm 0.15	386 99.56 \pm 0.04	387 91.94 \pm 4.87	388 93.27 \pm 1.22	389 91.82 \pm 2.52	390 93.25 \pm 0.63	391 73.04 \pm 3.93	392 72.01 \pm 0.44
385 RT	386 0.00 \pm 0.00	387 99.63 \pm 0.10	388 0.00 \pm 0.00	389 94.31 \pm 1.77	390 0.00 \pm 0.00	391 94.07 \pm 0.85	392 0.00 \pm 0.00	393 72.78 \pm 0.67
386 PRU	387 47.27 \pm 11.73	388 98.29 \pm 0.59	389 25.62 \pm 10.66	390 89.96 \pm 1.66	391 18.89 \pm 5.30	392 89.72 \pm 0.90	393 2.88 \pm 0.56	394 69.15 \pm 0.53
387 BS	388 0.00 \pm 0.00	389 99.43 \pm 0.21	390 0.08 \pm 0.09	391 94.24 \pm 1.64	392 0.00 \pm 0.00	393 94.33 \pm 0.91	394 0.00 \pm 0.02	395 71.14 \pm 0.66
388 BE	389 49.37 \pm 10.15	390 99.40 \pm 0.21	391 44.71 \pm 7.46	392 93.46 \pm 1.39	393 56.59 \pm 7.28	394 90.95 \pm 0.77	395 14.90 \pm 5.33	396 66.01 \pm 0.72
389 BS	390 0.69 \pm 1.90	391 74.75 \pm 13.06	392 1.19 \pm 2.26	393 90.51 \pm 3.17	394 0.92 \pm 0.67	395 89.13 \pm 0.91	396 3.07 \pm 0.87	397 61.15 \pm 1.58
390 BE	391 46.99 \pm 21.55	392 69.18 \pm 13.66	393 14.66 \pm 13.25	394 89.24 \pm 3.55	395 16.08 \pm 5.48	396 84.68 \pm 1.55	397 42.24 \pm 5.67	398 57.79 \pm 1.28
391 Unroll	392 8.77 \pm 5.19	393 94.84 \pm 2.43	394 19.15 \pm 7.15	395 91.65 \pm 3.25	396 39.68 \pm 3.30	397 93.27 \pm 0.89	398 35.84 \pm 3.45	399 70.38 \pm 0.60
392 Unroll-F	393 47.57 \pm 8.29	394 94.20 \pm 2.83	395 58.78 \pm 7.49	396 91.28 \pm 3.33	397 83.92 \pm 3.30	398 92.67 \pm 0.71	399 77.22 \pm 3.25	400 67.08 \pm 0.32
393 UNSC	394 0.00 \pm 0.00	395 55.70 \pm 20.97	396 2.35 \pm 8.32	397 70.90 \pm 22.86	398 49.27 \pm 8.35	399 93.12 \pm 1.28	400 59.58 \pm 4.83	401 72.05 \pm 0.55
394 UNSC	395 13.22 \pm 9.66	396 52.42 \pm 19.38	397 50.08 \pm 19.09	398 62.29 \pm 22.91	399 67.58 \pm 6.25	400 92.81 \pm 1.21	401 73.27 \pm 3.72	402 70.90 \pm 0.46
395 SALUN	396 20.16 \pm 19.55	397 97.35 \pm 2.30	398 3.31 \pm 4.93	399 87.93 \pm 3.90	400 29.38 \pm 11.93	401 90.15 \pm 2.11	402 40.93 \pm 6.78	403 70.08 \pm 1.10
396 GA	397 95.00 \pm 2.98	398 97.31 \pm 2.29	399 36.00 \pm 9.34	400 87.73 \pm 3.94	401 78.18 \pm 8.42	402 88.82 \pm 1.46	403 77.44 \pm 5.24	404 66.25 \pm 0.61
397 Fisher	398 0.00 \pm 0.02	399 99.55 \pm 0.09	400 0.15 \pm 0.11	401 94.17 \pm 1.49	402 0.00 \pm 0.00	403 94.30 \pm 0.86	404 0.14 \pm 0.14	405 72.88 \pm 0.56
398 GA	399 64.51 \pm 3.77	400 98.55 \pm 0.59	401 48.85 \pm 10.53	402 90.73 \pm 2.09	403 28.64 \pm 3.39	404 93.17 \pm 0.92	405 31.08 \pm 3.71	406 72.41 \pm 0.59
399 Bad-T	400 0.03 \pm 0.04	401 98.00 \pm 1.65	402 0.07 \pm 0.11	403 92.63 \pm 1.35	404 0.09 \pm 0.16	405 82.43 \pm 5.00	406 14.15 \pm 3.68	407 43.59 \pm 5.73
400 SP	401 95.49 \pm 4.23	402 97.78 \pm 1.67	403 84.42 \pm 10.35	404 87.71 \pm 2.66	405 58.74 \pm 10.94	406 77.56 \pm 7.74	407 50.61 \pm 4.64	408 40.58 \pm 7.12
401 SCRUB	402 20.15 \pm 13.39	403 93.63 \pm 6.55	404 6.27 \pm 9.39	405 87.53 \pm 10.02	406 0.24 \pm 0.28	407 81.25 \pm 3.87	408 8.14 \pm 10.19	409 52.34 \pm 12.70
402 SCRUB	403 64.00 \pm 32.87	404 92.98 \pm 6.94	405 10.07 \pm 12.46	406 86.32 \pm 10.96	407 1.06 \pm 0.75	408 80.92 \pm 3.93	409 32.02 \pm 17.48	410 48.24 \pm 13.05
403 Fisher	404 3.50 \pm 6.86	405 98.94 \pm 0.69	406 3.42 \pm 5.48	407 93.22 \pm 1.98	408 3.64 \pm 3.46	409 93.78 \pm 0.85	410 0.00 \pm 0.00	411 71.22 \pm 0.58
404 Bad-T	405 52.15 \pm 27.98	406 97.49 \pm 1.57	407 38.80 \pm 22.76	408 91.74 \pm 1.70	409 41.53 \pm 16.55	410 92.59 \pm 0.76	411 4.41 \pm 1.52	412 67.12 \pm 0.47
405 SP	406 0.02 \pm 0.09	407 98.06 \pm 1.10	408 2.44 \pm 4.47	409 91.43 \pm 2.38	410 1.45 \pm 0.89	411 91.77 \pm 1.40	412 0.00 \pm 0.00	413 58.99 \pm 1.80
406 SCRUB	407 51.47 \pm 8.12	408 93.93 \pm 1.99	409 46.84 \pm 10.75	410 85.98 \pm 2.31	411 53.71 \pm 5.90	412 89.75 \pm 1.42	413 33.90 \pm 5.19	414 57.17 \pm 1.81
407 GA	408 0.00 \pm 0.00	409 99.52 \pm 0.07	410 0.00 \pm 0.00	411 93.67 \pm 1.90	412 0.00 \pm 0.00	413 93.63 \pm 0.95	414 0.77 \pm 0.72	415 71.58 \pm 0.66
408 GA	409 85.54 \pm 5.51	410 98.62 \pm 0.31	411 53.13 \pm 10.99	412 87.75 \pm 2.49	413 51.31 \pm 6.45	414 88.30 \pm 1.27	415 49.83 \pm 3.88	416 70.26 \pm 0.55
409 SCRUB	410 2.27 \pm 4.31	411 99.02 \pm 0.28	412 2.01 \pm 2.92	413 92.54 \pm 2.19	414 0.01 \pm 0.03	415 91.12 \pm 1.27	416 6.32 \pm 3.12	417 67.68 \pm 0.69
410 SCRUB	411 92.96 \pm 4.19	412 98.81 \pm 0.36	413 67.76 \pm 13.99	414 91.24 \pm 3.33	415 79.80 \pm 2.51	416 87.30 \pm 1.70	417 57.46 \pm 3.59	418 66.34 \pm 0.66

406 remaining classes and omits classifier nodes for forgotten classes in the deployed model, which
 407 forces near-zero logits for C_f and limits any black-box restoration. Fisher Golatkar et al. (2020)
 408 explicitly modifies the last-layer head for forgotten classes, further clamping outputs near zero and
 409 diminishing separability after transformation.

410 **Table 2: Comparing the Recall among our method and OOD detection methods on CIFAR-100.**

412 Method	413 PRU	414 BS	415 BE	416 Unroll	417 Unroll-F	418 UNSC	419 SALUN	420 GA	421 Bad-T	422 SP	423 SCRUB
MSP	3.92 \pm 1.39	7.86 \pm 1.59	15.44 \pm 0.39	11.65 \pm 0.70	13.46 \pm 0.67	15.30 \pm 1.18	2.39 \pm 1.06	11.16 \pm 0.62	10.49 \pm 1.05	13.74 \pm 0.86	12.40 \pm 0.65
Ratio	4.11 \pm 1.41	7.76 \pm 1.50	14.61 \pm 0.49	11.48 \pm 0.84	12.98 \pm 0.85	14.79 \pm 1.12	2.44 \pm 1.16	10.74 \pm 0.75	9.73 \pm 1.17	14.40 \pm 1.01	13.52 \pm 0.81
Energy	3.16 \pm 1.10	6.45 \pm 1.25	12.68 \pm 0.54	10.94 \pm 0.80	11.87 \pm 0.73	12.13 \pm 0.79	2.24 \pm 1.14	11.12 \pm 0.76	8.32 \pm 0.78	11.33 \pm 0.67	10.74 \pm 0.69
Margin	3.77 \pm 1.33	7.50 \pm 1.51	14.83 \pm 0.44	11.50 \pm 0.69	13.05 \pm 0.63	14.89 \pm 1.11	2.37 \pm 1.04	10.96 \pm 0.65	9.68 \pm 0.97	13.25 \pm 0.83	11.99 \pm 0.61
Gini	3.57 \pm 1.28	7.34 \pm 1.46	14.82 \pm 0.42	11.53 \pm 0.63	13.05 \pm 0.57	14.86 \pm 1.00	2.35 \pm 0.99	11.07 \pm 0.59	9.50 \pm 0.93	12.66 \pm 0.72	11.40 \pm 0.53
Energy+	3.38 \pm 1.22	7.29 \pm 1.40	15.27 \pm 0.36	11.70 \pm 0.53	13.47 \pm 0.48	15.29 \pm 1.13	2.36 \pm 1.03	11.80 \pm 0.49	10.29 \pm 1.00	12.38 \pm 0.63	11.30 \pm 0.58
Entropy	4.04 \pm 1.43	8.45 \pm 1.72	16.81 \pm 0.40	11.89 \pm 0.78	14.30 \pm 0.74	16.40 \pm 1.32	2.37 \pm 1.05	11.73 \pm 0.69	12.98 \pm 1.24	14.26 \pm 0.95	12.55 \pm 0.74
Ours	7.80 \pm 3.31	14.46 \pm 5.31	94.74 \pm 1.89	64.23 \pm 4.76	71.04 \pm 1.47	66.03 \pm 7.13	34.42 \pm 1.41	19.61 \pm 1.15	29.60 \pm 6.54	58.55 \pm 1.14	62.38 \pm 1.06

419 **Comparison to other possible restoration methods.** We introduce six OOD detection methods:
 420 Max Softmax Probability (MSP) Hendrycks & Gimpel (2017), Entropy-based detection Malinin
 421 & Gales (2018), Gini coefficient Liu et al. (2023), likelihood ratio Ren et al. (2019), and Energy
 422 Score-based methods (including overall-based (Energy+) Liu et al. (2020) and specific-based
 423 (Energy) Wang et al. (2021)). The details of these methods are provided in Appendix D.3. For each
 424 method, we report the Recall rate for the forgotten class, which is the ratio of correctly re-predicted
 425 samples to the total number of forgotten class samples on the test set. The results evaluated on
 426 CIFAR-100 are shown in Tab. 2, and the complete results in 16. We observe that our method achieves
 427 the best performance among all compared methods.

428 **How does the probability distribution re-scaling work?** As illustrated in Fig. 2, we analyze the
 429 probability distributions for the unlearned class (class 1) on the CIFAR-10 test set, comparing the
 430 original model, the model after unlearning with the SCRUB approach, and the re-scaled probability
 431 distribution. We observe that the unlearning causes the probability distribution of the forgotten
 432 class to be compressed into a narrow range near zero in Fig. 2b. This is the reason why the

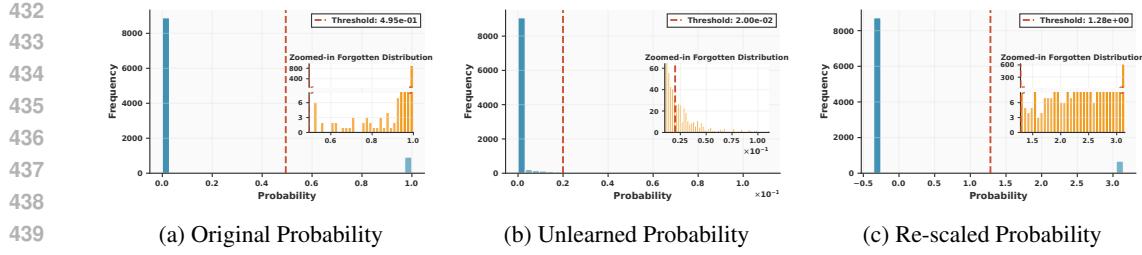


Figure 2: All samples’ probability distribution for the unlearned class (class 1) on the test-set of CIFAR-10. We compare the original model, the model after unlearning with **SCRUB**, and its re-scaled probability distribution.

unlearning signifies an apparent success in unlearning, where the model loses its classification ability, and consequently, MIAs consistently classify these samples as non-members, as their outputs are indistinguishable from true unseen data. This state represents a fragile form of unlearning, as well as the illusion of forgetting. This illusive forgetting is not a result of true knowledge removal, but an artifact of the compressed output space, which still leaves significant traceable clues. As shown in Fig. 2c, the transformation process rescales the distribution to a narrower range, re-enabling the fundamental clustering assumption and enabling the previously forgotten class samples to be distinguished once again.

How do data conditions impact utility recovery? We assess the robustness of unlearning methods against class imbalance and reduced test-set size. The assessment is conducted on CIFAR-100 with ten forgetting classes. We control class imbalance via a ratio ρ , capping each unlearn class at $\lfloor \rho \bar{n} \rfloor$ samples, where $\bar{n} = \lfloor N/C \rfloor$ is the average per-class size. Figure 3a reveals a key trade-off: low imbalance ratios result in poor forgetting efficacy and, paradoxically, degraded retain-set accuracy. We attribute this to the model misclassifying scarce samples of forgotten classes into the more dominant retain classes. As ρ increases, forgetting efficacy improves and the accuracy on remaining classes recovers, with a maximal degradation of only around 5% for most methods. Finally, Figure 3b shows that evaluation metrics are stable against reduced test-set sizes, confirming the feasibility of reliable assessment with limited test data.

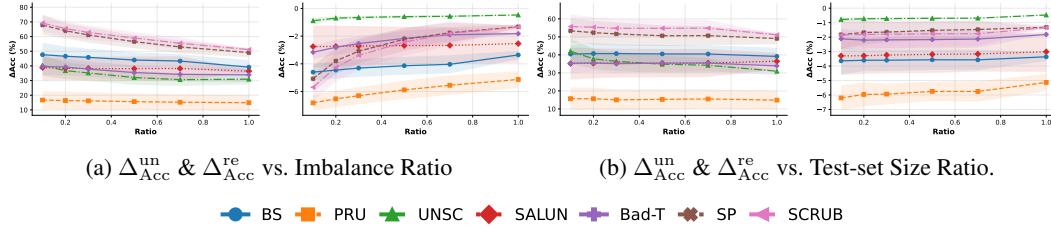


Figure 3: Impact of data conditions on utility restorability. We measure the accuracy gain on forgotten classes ($\Delta\text{Acc}_{\text{un}}$) to assess knowledge recovery and on remaining classes ($\Delta\text{Acc}_{\text{re}}$) to evaluate collateral impact. The gain is calculated as $\Delta\text{Acc} = \text{Acc}_{\text{restore}} - \text{Acc}_{\text{unlearn}}$, where $\text{Acc}_{\text{unlearn}}$ denotes the model accuracy after unlearning and $\text{Acc}_{\text{restore}}$ denotes its accuracy after restoring the unlearned model’s utility.

5 CONCLUSION

In this paper, we investigate the illusion of forgetting, the gap between suppressed forgotten-class accuracy and the residual, recoverable information that persists in an unlearned model’s outputs. By analyzing the statistical signatures left along unlearning trajectories, we showed that preserving utility on retained classes can inherently leave structured traces about forgotten classes. Building on these insights, we proposed a lightweight, black-box post-hoc recovery procedure that rescales the near-zero outputs via a Yeo–Johnson transformation and applies adaptive thresholding to reconstruct predictions for forgotten classes. Across some unlearning methods and benchmarks, this framework restores forgotten-class utility while minimally affecting performance on the remaining classes. Our findings motivate the development of more robust methods that address recovery risk, such as evaluation-time transformations, output-space regularization, or structural changes that mitigate informative collapse without unduly harming retained utility.

486 REPRODUCIBILITY STATEMENT
487488 Upon submission, we will release an anonymized code archive with data prep, training/unlearning
489 wrappers, and our post-hoc recovery implementation on Anonymous Repository. Datasets,
490 backbones, splits, and full hyperparameters are specified in the paper and the Appendix.
491492 ETHICS STATEMENT
493494 We use only standard public datasets and do not process PII or involve human subjects. Our analysis
495 targets understanding of class unlearning and is confined to a realistic black-box setting (probability
496 outputs only; no access to weights, gradients, or training data). We do not interact with deployed
497 services, and any released artifact is restricted to research models/datasets with risk notes.
498499 REFERENCES
500501 Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
502 perspectives. *arXiv* 2012. *arXiv*, 2012.503 Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
504 Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In *SP*, 2021.
505506 Yinzheng Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In *SP*,
507 2015.508 Huiqiang Chen, Tianqing Zhu, Xin Yu, and Wanlei Zhou. Machine unlearning via null space
509 calibration. *IJCAI*, 2024.510 Min Chen, Zhiqun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang.
511 When machine unlearning jeopardizes privacy. In *SIGSAC*, 2021.512 Min Chen, Weizhuo Gao, Gaoyang Liu, Kai Peng, and Chen Wang. Boundary unlearning: Rapid
513 forgetting of deep networks via shifting the decision boundary. In *CVPR*, 2023.514 Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Can bad teaching
515 induce forgetting? unlearning in deep networks using an incompetent teacher. In *AAAI*, 2023a.516 Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Zero-shot machine
517 unlearning. *TIFS*, 2023b.518 Thomas M Cover. *Elements of information theory*. John Wiley & Sons, 1999.519 Jimmy Z Di, Jack Douglas, Jayadev Acharya, Gautam Kamath, and Ayush Sekhari. Hidden poison:
520 Machine unlearning enables camouflaged poisoning attacks. In *NeurIPS ML Safety Workshop*,
521 2022.522 Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun:
523 Empowering machine unlearning via gradient-based weight saliency in both image classification
524 and generation. *ICLR*, 2024.525 Jianqing Fan, Bai Jiang, and Qiang Sun. Hoeffding's inequality for general markov chains and its
526 applications to statistical learning. *JMLR*, 2021.527 Gerald B Folland. *Real analysis: modern techniques and their applications*. John Wiley & Sons,
528 1999.529 Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without retraining
530 through selective synaptic dampening. In *AAAI*, 2024.531 Ji Gao, Sanjam Garg, Mohammad Mahmoody, and Prashant Nalini Vasudevan. Deletion inference,
532 reconstruction, and compliance in machine (un) learning. *PoPETs*, 2022.533 Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
534 Selective forgetting in deep networks. In *CVPR*, 2020.

540 Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In *AAAI*, 2021.
 541

542 Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal
 543 from machine learning models. *ICML*, 2020.

544 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 545 recognition. In *CVPR*, 2016.

546 Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
 547 examples in neural networks. In *ICLR*, 2017.

548 Tuan Hoang, Santu Rana, Sunil Gupta, and Svetha Venkatesh. Learn to unlearn for deep neural
 549 networks: Minimizing unlearning interference with gradient projection. In *WACV*, 2024.

550 Hongsheng Hu, Shuo Wang, Tian Dong, and Minhui Xue. Learn what you want to unlearn:
 551 Unlearning inversion attacks against machine unlearning. In *SP*, 2024.

552 Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma,
 553 and Sijia Liu. Model sparsity can simplify machine unlearning. *NeurIPS*, 2023.

554 Junyaup Kim and Simon S Woo. Efficient two-stage model retraining for machine unlearning. In
 555 *CVPR*, 2022.

556 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
 557 Technical report, University of Toronto, 2009.

558 Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
 559 machine unlearning. *NeurIPS*, 2023.

560 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 561 document recognition. *Proc. IEEE*, 1998.

562 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
 563 landscape of neural nets. *NeurIPS*, 2018.

564 Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution
 565 detection. *NeurIPS*, 2020.

566 Xixi Liu, Yaroslava Lochman, and Christopher Zach. Gen: Pushing the limits of softmax-based
 567 out-of-distribution detection. In *CVPR*, 2023.

568 Zihao Liu, Tianhao Wang, Mengdi Huai, and Chenglin Miao. Backdoor attacks via machine
 569 unlearning. In *AAAI*, 2024.

570 Zhaobo Lu, Hai Liang, Minghao Zhao, Qingzhe Lv, Tiancai Liang, and Yilei Wang. Label-only
 571 membership inference attacks on machine unlearning without dependence of posteriors. *IJISs*,
 572 2022.

573 Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks. In *NeurIPS*,
 574 2018.

575 Neil G Marchant, Benjamin IP Rubinstein, and Scott Alfeld. Hard to forget: Poisoning attacks on
 576 certified machine unlearning. In *AAAI*, 2022.

577 Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods
 578 for machine unlearning. In *ALT*, 2021.

579 Thanh Tam Nguyen, Thanh Trung Huynh, Zhao Ren, Phi Le Nguyen, Alan Wee-Chung Liew,
 580 Hongzhi Yin, and Quoc Viet Hung Nguyen. A survey of machine unlearning. *arXiv*, 2022.

581 Nobuyuki Otsu. A threshold selection method from gray-level histograms. *Automatica*, 1975.

582 Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon, and
 583 Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. In *NeurIPS*, 2019.

594 Douglas A. Reynolds. Gaussian mixture models. In *Encyclopedia of Biometrics*, 2015.
 595

596 Jonathan Scarlett and Volkan Cevher. An introductory guide to fano’s inequality with applications
 597 in statistical estimation. *arXiv*, 2019.

598 Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
 599 you want to forget: Algorithms for machine unlearning. *NeurIPS*, 2021.

600

601 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference
 602 attacks against machine learning models. In *SP*, 2017.

603

604 Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for
 605 simplicity: The all convolutional net. *arXiv*, 2014.

606

607 Ayush K Tarun, Vikram S Chundawat, Murari Mandal, and Mohan Kankanhalli. Fast yet effective
 608 machine unlearning. *TNNLS*, 2023.

609

610 Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling sgd:
 611 Understanding factors influencing machine unlearning. In *EuroS&P*, 2022.

612

613 Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*.
 614 Cambridge University Press, 2018.

615

616 Cédric Villani et al. *Optimal transport: old and new*. Springer, 2008.

617

618 Haoran Wang, Weitang Liu, Alex Bocchieri, and Yixuan Li. Can multi-label classification networks
 619 know what they don’t know? In *NeurIPS*, 2021.

620

621 Sanford Weisberg. Yeo-johnson power transformations. *Department of Applied Statistics, University
 622 of Minnesota*, 2001.

623

624 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
 625 benchmarking machine learning algorithms. *arXiv*, 2017.

626

627 Yixin Xiao, Qingqing Ye, Li Hu, Huadi Zheng, Haibo Hu, Zi Liang, Haoyang Li, and Yijie Jiao.
 628 Reminiscence attack on residuals: Exploiting approximate machine unlearning for privacy. *ICCV*,
 629 2025.

630

631 Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of
 632 learning algorithms. *NeurIPS*, 2017.

633

634 Chenhao Zhang, Weitong Chen, Wei Zhang, and Miao Xu. Countering relearning with perception
 635 revising unlearning. *ACML*, 2024.

636 APPENDIX

637 A MORE RELATED WORKS

638 A.1 MACHINE UNLEARNING

639 Machine unlearning aims to remove the influence of specific training data from trained models Cao
 640 & Yang (2015); Bourtoule et al. (2021); Nguyen et al. (2022). Exact unlearning through retraining
 641 from scratch serves as the gold standard but incurs prohibitive computational costs Bourtoule et al.
 642 (2021); Kim & Woo (2022). To address this, approximate unlearning methods have emerged
 643 across several categories: gradient-based approaches that reverse the learning process Graves et al.
 644 (2021); Thudi et al. (2022); Neel et al. (2021), knowledge distillation methods using incompetent
 645 teachers Chundawat et al. (2023a); Tarun et al. (2023), model modification techniques including
 646 parameter pruning and isolation Jia et al. (2023); Chen et al. (2024); Kurmanji et al. (2023),
 647 and boundary manipulation strategies Chen et al. (2023). Recent works also explore orthogonal
 648 projected gradient Hoang et al. (2024) and null space calibration approaches Chen et al. (2024).
 649 However, these methods primarily focus on achieving low accuracy on forgotten data without
 650 considering the recoverability of utility, a critical gap our work addresses.

648
649

A.2 EVALUATION OF MACHINE UNLEARNING

650
651
652
653
654
655

Current evaluation paradigms for machine unlearning primarily rely on performance-based metrics. These approaches measure forgetting quality through accuracy degradation on forgotten data and retention quality through maintained performance on remaining data Graves et al. (2021); Chen et al. (2024). Some work has proposed more sophisticated metrics, such as membership inference attack (MIA) success rate Shokri et al. (2017); Chen et al. (2021), relearn time Chundawat et al. (2023b); Golatkar et al. (2020), and activation pattern analysis Foster et al. (2024).

656
657
658
659
660
661

Recent studies have challenged the sufficiency of accuracy-based evaluation. Information-theory-based approaches attempt to quantify residual information through mutual information bounds Kurmanji et al. (2023), while certification methods provide theoretical guarantees under specific assumptions Guo et al. (2020); Sekhari et al. (2021). Empirical evaluation frameworks have emerged to standardize assessment across different unlearning scenarios Nguyen et al. (2022).

662

B DETAILED PROOFS

663
664

Here, we provide the complete proof of Theorem 1, Theorem 2, and Theorem 3.

665
666

B.1 PROOF OF THEOREM 1

667
668

We establish the lower bound through a series of steps:

669
670
671
672
673
674
675

Definition 3 (Feature Extractor) Let $h : \mathcal{X} \rightarrow \mathbb{R}^m$ be the feature extractor (all layers except the final). The original model achieves high accuracy by learning discriminative features Bengio et al. (2012):

$$\min_{h, W} \sum_{i=1}^n \ell(W^T h(x_i), y_i). \quad (16)$$

676
677

This creates features where $h(x)$ for $x \in \mathcal{X}_c$ activates a specific subspace V_c .

678
679
680
681

Lemma 4 (Mutual Information) The mutual information between random variables X and Y is:

$$I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X), \quad (17)$$

where $H(\cdot)$ denotes entropy and $H(\cdot|\cdot)$ denotes conditional entropy.

682
683
684
685
686

1) Mutual Information Decomposition. By the Markov chain $Y_c \rightarrow h(X) \rightarrow f_{\theta^*}(X)$, where $f_{\theta^*}(X)$ is a deterministic function of $h(X)$, the data processing inequality gives:

$$I(Y_c; f_{\theta^*}(X) \mid X \in \mathcal{X}_c) \leq I(Y_c; h(X) \mid X \in \mathcal{X}_c).$$

687
688
689

By the symmetry of mutual information $I(A; B) = I(B; A)$:

$$I(f_{\theta^*}(X); Y_c \mid X \in \mathcal{X}_c) \leq I(h(X); Y_c \mid X \in \mathcal{X}_c).$$

690
691
692

Substituting the definition of residual information, i.e., Definition 2:

$$\mathcal{I}_{\text{res}}(c) \leq I(h(X); Y_c \mid X \in \mathcal{X}_c).$$

693
694
695
696

However, to maintain accuracy $\alpha_r \geq \alpha_0$, the features $h(X)$ must retain discriminative information.

2) Fano's Inequality Application. For any classifier with error rate $\epsilon = 1 - \alpha_0$ on K classes, based on Fano's Inequality Scarlett & Cevher (2019), we have:

$$H(Y|h(X)) \leq H(\epsilon) + \epsilon \log(K-1), \quad (18)$$

697
698
699

where $H(\epsilon) = -\epsilon \log \epsilon - (1 - \epsilon) \log(1 - \epsilon)$.

700
701

3) Information Lower Bound. $I(h(X); Y) = H(Y) - H(Y|h(X))$ and $H(Y) = \log K$ for uniform distribution:

$$I(h(X); Y) \geq \log K - H(\epsilon) - \epsilon \log(K-1). \quad (19)$$

702 **4) Class-Specific Information.** Due to shared feature learning, each class contributes approximately
 703 $1/K$ of the total mutual information. Therefore:
 704

$$705 \quad I(h(X); Y_c | X \in \mathcal{X}_c) \approx \frac{1}{K} \cdot I(h(X); Y). \quad (20)$$

707 Combine Eq. 19 with the above equation:
 708

$$709 \quad I(h(X); Y_c | X \in \mathcal{X}_c) \geq \frac{1}{K} \left[\log K - H(\epsilon) \right. \\ 710 \quad \left. - \epsilon \log(K-1) \right]. \quad (21)$$

713 Substitute error rate $\epsilon = 1 - \alpha_0$ and $H(\epsilon) = -\epsilon \log \epsilon - (1 - \epsilon) \log(1 - \epsilon)$:
 714

$$716 \quad \mathcal{I}_{\text{res}}(c) \geq \frac{1}{K} \left[\log K - H\left(\frac{1 - \alpha_0}{K - 1}\right) \right. \\ 717 \quad \left. - (1 - \alpha_0) \log(K-1) \right]. \quad (22)$$

721 B.2 A.2 PROOF OF THEOREM 2

722 We establish that forgetting trajectories for distinct classes necessarily diverge in parameter space.

724 **1) Gradient Decomposition.** When forgetting class c , the unlearning gradient has two components:
 725

$$726 \quad \nabla_{\theta} \mathcal{L}_{\text{unlearn}}^{(c)}(\theta) = \nabla_{\theta} \mathcal{L}_r(\theta; \mathcal{D}_r) + \lambda \nabla_{\theta} \mathcal{L}_f(\theta; \mathcal{D}_c). \quad (23)$$

727 The class-specific component is:
 728

$$729 \quad g_c(\theta) = \mathbb{E}_{x \sim p(x|c)} [\nabla_{\theta} \ell_f(f_{\theta}(x), c)], \quad (24)$$

731 where ℓ_f is the forgetting loss.

732 **2) Gradient Difference.** For distinct classes c_i, c_j , we analyze:
 733

$$734 \quad \|g_{c_i}(\theta) - g_{c_j}(\theta)\|^2 = \left\| \mathbb{E}_{x \sim p(x|c_i)} [\nabla_{\theta} \ell_f(f_{\theta}(x), c_i)] \right. \\ 735 \quad \left. - \mathbb{E}_{x \sim p(x|c_j)} [\nabla_{\theta} \ell_f(f_{\theta}(x), c_j)] \right\|^2. \quad (25)$$

$$736 \quad (26)$$

738 Using the fact that the loss function ℓ_f is designed to maximize entropy for forgotten classes, we
 739 can write:
 740

$$741 \quad \nabla_{\theta} \ell_f(f_{\theta}(x), c) = -\nabla_{\theta} \log p_{\theta}(c|x) \cdot \mathbb{I}_{[f_{\theta}(x) \text{ activates for class } c]}, \quad (27)$$

742 where $\mathbb{I}[\cdot]$ is the indicator function.

743 **3) Connection to Feature Activation Patterns.** Let $A_c(\theta) \subset \mathbb{R}^m$ be the set of feature activation
 744 patterns for class c :
 745

$$746 \quad A_c(\theta) = \{h_{\theta}(x) : x \in \mathcal{X}_c\}, \quad (28)$$

747 where h_{θ} is the feature extractor Bengio et al. (2012).

748 We assume that, for well-trained models, classes have partially disjoint activation regions. The
 749 gradient difference satisfies:
 750

$$751 \quad \|g_{c_i}(\theta) - g_{c_j}(\theta)\|^2 \geq \frac{\lambda^2}{L^2} \cdot V(A_{c_i}(\theta) \triangle A_{c_j}(\theta)), \quad (29)$$

752 where L is the Lipschitz constant of ℓ_f , \triangle denotes symmetric difference, and $V(\cdot)$ denotes the
 753 volume (Lebesgue measure) in the feature space \mathbb{R}^m Folland (1999).
 754

755 **4) Volume Lower Bound via Dimensionality.** We derive a lower bound on the volume of
 non-overlapping activation regions using concentration of measure in high dimensions.

756 The symmetric difference can be expressed as:
 757

$$758 V(A_{c_i}(\theta) \Delta A_{c_j}(\theta)) = V(A_{c_i} \setminus A_{c_j}) + V(A_{c_j} \setminus A_{c_i}). \quad (30)$$

759 For a well-trained model, the activation regions correspond to the support of feature distributions:
 760

$$761 V(A_{c_i} \setminus A_{c_j}) = \int_{\mathbb{R}^m} \mathbb{P}[h_\theta(X) \in dz | Y = c_i] \cdot \mathbb{I}_{[z \notin A_{c_j}]} dz. \quad (31)$$

764 In high-dimensional spaces, by the concentration of measure phenomenon Vershynin (2018), feature
 765 activations concentrate around class-specific manifolds. For features with effective dimension d_c ,
 766 the measure concentrates in a d_c -dimensional subspace of \mathbb{R}^m .
 767

768 The volume of the region where class c_i activates but c_j does not satisfies:
 769

$$770 V(A_{c_i} \setminus A_{c_j}) \geq \frac{d_{c_i}}{2K} \cdot \mathbb{P}[h_\theta(X) \in A_{c_i} \setminus A_{c_j} | Y = c_i]. \quad (32)$$

771 The probability that features from class c_i fall outside the activation region of class c_j is bounded
 772 by:
 773

$$774 \mathbb{P}[h_\theta(X) \in A_{c_i} \setminus A_{c_j} | Y = c_i] \geq \beta \cdot \|p(x|c_i) - p(x|c_j)\|_{\text{TV}}, \quad (33)$$

775 where $\beta > 0$ is a constant depending on the Lipschitz property of h_θ .
 776

By symmetry and combining both terms:
 777

$$778 V(A_{c_i}(\theta) \Delta A_{c_j}(\theta)) = V(A_{c_i} \setminus A_{c_j}) + V(A_{c_j} \setminus A_{c_i}) \\ 779 \geq \frac{d_{c_i}}{2K} \cdot \beta \cdot \|p(x|c_i) - p(x|c_j)\|_{\text{TV}} \\ 780 + \frac{d_{c_j}}{2K} \cdot \beta \cdot \|p(x|c_i) - p(x|c_j)\|_{\text{TV}} \\ 781 = \beta \cdot \frac{d_{c_i} + d_{c_j}}{2K} \cdot \|p(x|c_i) - p(x|c_j)\|_{\text{TV}}. \quad (34)$$

785 For strongly separated classes, the volume scales quadratically with the TV distance due to the
 786 product structure of the activation regions:
 787

$$788 V(A_{c_i}(\theta) \Delta A_{c_j}(\theta)) \geq \kappa \cdot \left(\frac{d_{c_i} + d_{c_j}}{2K} \right) \\ 789 \cdot \|p(x|c_i) - p(x|c_j)\|_{\text{TV}}^2, \quad (35)$$

792 where $\kappa = \beta^2/c$ for some constant $c > 0$, and $\|p - q\|_{\text{TV}} = \frac{1}{2} \int |p(x) - q(x)| dx$ is the total variation
 793 distance between distributions Villani et al. (2008).
 794

Since $c_i \neq c_j$, we have $\|p(x|c_i) - p(x|c_j)\|_{\text{TV}} \geq \epsilon_0 > 0$ for some constant ϵ_0 .
 795

5) **Trajectory Evolution.** Let $\gamma_{c_i}(t)$ and $\gamma_{c_j}(t)$ denote the parameter trajectories when forgetting
 796 classes c_i and c_j respectively, starting from θ_0 Li et al. (2018). The trajectories evolve according to:
 797

$$798 \gamma_{c_i}(t) - \gamma_{c_j}(t) = - \int_0^t \left[\nabla_\theta \mathcal{L}_{\text{unlearn}}^{(c_i)}(\gamma_{c_i}(s)) \right. \\ 799 \left. - \nabla_\theta \mathcal{L}_{\text{unlearn}}^{(c_j)}(\gamma_{c_j}(s)) \right] ds. \quad (36)$$

$$800 \quad - \nabla_\theta \mathcal{L}_{\text{unlearn}}^{(c_j)}(\gamma_{c_j}(s)) \Big] ds. \quad (37)$$

803 Substituting the gradient decomposition from A.2.1:
 804

$$806 \|\gamma_{c_i}(t) - \gamma_{c_j}(t)\| \geq \lambda \int_0^t \|g_{c_i}(\gamma_{c_i}(s)) - g_{c_j}(\gamma_{c_j}(s))\| ds \\ 807 \quad - \int_0^t \|\nabla_\theta \mathcal{L}_{\text{r}}(\gamma_{c_i}(s)) - O(t^2)\|. \quad (38)$$

$$808 \quad - \int_0^t \|\nabla_\theta \mathcal{L}_{\text{r}}(\gamma_{c_i}(s)) - O(t^2)\|. \quad (39)$$

810 **6) Final Lower Bound.** Combining the bounds from Steps 3 and 4:

$$812 \quad 813 \quad \|g_{c_i}(\theta) - g_{c_j}(\theta)\| \geq \frac{\lambda}{L} \sqrt{c_0 \cdot \frac{d_{c_i} + d_{c_j}}{2K} \cdot \epsilon_0^2}. \quad (40)$$

814
815 Substituting this into the trajectory bound from Step 5:

$$816 \quad 817 \quad \mathbb{E}[\|\gamma_{c_i}(t) - \gamma_{c_j}(t)\|_2] \geq \lambda \int_0^t \frac{\lambda}{L} \sqrt{\frac{\kappa \epsilon_0^2 (d_{c_i} + d_{c_j})}{2K}} ds \\ 818 \quad 819 \quad - O(t^2) \quad (41) \\ 820 \quad 821 \quad = \delta(t) \cdot \sqrt{\frac{d_{c_i} + d_{c_j}}{2K}},$$

823 where $\delta(t) = \frac{\lambda^2 \kappa \epsilon_0 t}{L \sqrt{2}} - O(t^2)$ is monotonically increasing for small t with $\delta(0) = 0$. The expectation
824 is over randomness in the optimization algorithm (e.g., mini-batch sampling).

826 B.3 PROOF OF THEOREM 3

828 Here, we analyze the recovery bound through information-theoretic analysis of the hypothesis
829 testing problem on model outputs.

831 **Lemma 5** (Hoeffding's Inequality for Bernoulli Random Variables Fan et al. (2021)) Let
832 X_1, X_2, \dots, X_n be independent Bernoulli random variables, and let $S_n = X_1 + X_2 + \dots + X_n$.
833 Then, for any $t \geq 0$,

$$834 \quad \mathbb{P}(|\bar{X} - \mathbb{E}[\bar{X}]| \geq \varepsilon) \leq \exp(-2n\varepsilon^2). \quad (42)$$

835 We test whether x belongs to the forgotten class c . Consider the binary hypothesis test:

$$837 \quad H_0 : x \sim p(x|y \neq c); \\ 838 \quad H_1 : x \sim p(x|y = c). \quad (43)$$

840 Let $Z = f_{\theta^*}(x)_c$ be the test statistic. Under each hypothesis:

$$841 \quad p_0(z) = p(Z = z | H_0); \\ 842 \quad p_1(z) = p(Z = z | H_1). \quad (44)$$

844 To obtain tractable bounds, we have to define the binary statistic, $B = \mathbb{I}[Z > \tau] = \mathbb{I}[f_{\theta^*}(x)_c > \tau]$.
845 By the data processing inequality Cover (1999):

$$847 \quad I(B; Y_c) \leq I(Z; Y_c) = I(f_{\theta^*}(X)_c; Y_c) = \mathcal{I}_{\text{res}}(c). \quad (45)$$

848 This inequality is tight when τ is chosen optimally.

849 Let τ^* be the threshold maximizing $I(B; Y_c)$. Define:

$$851 \quad q_0 = P(B = 1 | Y \neq c) = P(f_{\theta^*}(X)_c > \tau^* | Y \neq c) \\ 852 \quad q_1 = P(B = 1 | Y = c) = P(f_{\theta^*}(X)_c > \tau^* | Y = c) \quad (46)$$

854 Without loss of generality, assume $q_1 > q_0$.

855 For binary variables distribution, with $\pi = P(Y = c) = \frac{1}{K}$, through standard information-theoretic
856 analysis Xu & Raginsky (2017), we can get:

$$858 \quad I(B; Y_c) \geq 2\pi(1 - \pi)(q_1 - q_0)^2 = \frac{2(K - 1)}{K^2}(q_1 - q_0)^2, \quad (47)$$

860 where $I(B; Y_c) = H(B) - H(B | Y_c)$.

861 For large K , we can get:

$$863 \quad (q_1 - q_0)^2 \geq \frac{K}{2} \cdot I(B; Y_c) \geq \frac{K}{2} \cdot \mathcal{I}_{\text{res}}(c) \quad (48)$$

864 Given n test samples $\{x_1, \dots, x_n\}$, and n is finite, we obtain:
 865

$$866 \quad 867 \quad 868 \quad \hat{B}_n = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{[f_{\theta^*}(x_i)_c > \tau^*]} \quad (49)$$

869 This is the empirical fraction of samples with logit scores exceeding τ^* . Under H_0 (majority of
 870 samples from non-class c): $\mathbb{E}[\hat{B}_n] \approx q_0$; under H_1 (majority of samples from class c): $\mathbb{E}[\hat{B}_n] \approx q_1$.
 871 Since $\mathbb{I}_{[f_{\theta^*}(x_i)_c > \tau^*]} \in \{0, 1\}$, by Hoeffding's inequality Fan et al. (2021):
 872

$$873 \quad P(\hat{B}_n \geq q_0 + t \mid H_0) \leq \exp(-2nt^2) \quad (50)$$

$$874 \quad 875 \quad P(\hat{B}_n \leq q_1 - t \mid H_1) \leq \exp(-2nt^2) \quad (51)$$

876 Substitute threshold $\eta = \frac{q_0+q_1}{2}$. Setting $t = \frac{q_1-q_0}{2}$:

$$877 \quad 878 \quad 879 \quad P(\text{Type I error}) = P(\hat{B}_n > \eta \mid H_0) \quad (52)$$

$$880 \quad 881 \quad \leq \exp\left(-\frac{n(q_1-q_0)^2}{2}\right)$$

$$882 \quad 883 \quad 884 \quad P(\text{Type II error}) = P(\hat{B}_n \leq \eta \mid H_1) \quad (53)$$

$$885 \quad 886 \quad \leq \exp\left(-\frac{n(q_1-q_0)^2}{2}\right)$$

887 Using the decision threshold $\eta = \frac{q_0+q_1}{2}$, we can get the overall error probability:
 888

$$889 \quad 890 \quad 891 \quad P(\text{error}) \leq \exp\left(-\frac{n(q_1-q_0)^2}{2}\right) \quad (54)$$

892 Substituting the bound from Eq. 47:

$$893 \quad 894 \quad 895 \quad P(\text{error}) \leq \exp\left(-\frac{nK\mathcal{I}_{\text{res}}(c)}{4}\right) \quad (55)$$

896 For typical machine learning settings with moderate K and considering implementation factors
 897 (suboptimal threshold, finite sample effects), we obtain the conservative bound:
 898

$$900 \quad P(\text{recovery}) = 1 - P(\text{error}) \geq 1 - \exp(-2n \cdot \mathcal{I}_{\text{res}}(c)) \quad (56)$$

901 where the constant 2 absorbs the dependence on K and other factors, providing a practical bound
 902 that holds across diverse settings.
 903

904 C THE ALGORITHM OF THE RECOVERY FRAMEWORK

907 D ADDITIONAL EXPERIMENTAL DETAILS

910 D.1 ADDITIONAL TRAINING SETTINGS

911 We summarize the original model training settings in Tab. 3.
 912

913 D.2 CONSIDERED MU METHODS AND THEIR IMPLEMENTATION DETAILS

914 This section provides the details of the considered MU methods and their implementation details.
 915 In the following tables, un-LR denotes the learning rate for unlearning, and un-Epochs denotes
 916 the number of epochs for unlearning. There are two settings for each method, corresponding to
 917 single-class and multi-class unlearning settings (single/multi).

918 **Algorithm 1** Post-hoc Utility Recovery Framework

919 **Require:** Unlearned model f_{θ^*} , test set \mathcal{D}_{test}

920 **Ensure:** Recovered predictions \hat{y}

921 1: **# Forgotten Class Identification**

922 2: **for** $k \in \{1, \dots, K\}$ **do**

923 3: $\mathcal{P}_k \leftarrow \{p_k(x) : x \in \mathcal{D}_{test}\}$ where $p_k(x) = S(f_{\theta^*}(x))_k$

924 4: **end for**

925 5: $C_f \leftarrow \{k : \bar{p}_k < 0.1/K\}$

926 6: **# Probability Distribution Extraction & Re-scaling**

927 7: $\mathcal{P}_c \leftarrow \{\mathcal{P}_i\}_{i \in C_f}$

928 8: $\lambda^* \leftarrow \arg \max_{\lambda} \sum_{p \in \mathcal{P}_c} \log p_{\lambda}(p)$

929 9: $\tilde{\mathcal{P}}_c \leftarrow \{(\mathcal{T}_{\lambda^*}(p)) : p \in \mathcal{P}\}$

930 10: **# Adaptive Threshold Determination**

931 11: $\tau^* \leftarrow \text{Otsu}'(\{\tilde{p} : \tilde{p} \in \tilde{\mathcal{P}}\})$

932 12: **# Re-prediction**

933 13: **for** $x \in \mathcal{D}_{test}$ **do**

934 14: $p \leftarrow S(f_{\theta^*}(x))_c$

935 15: $\tilde{p} \leftarrow \mathcal{T}_{\lambda^*}(p)$

936 16: **if** $\tilde{p} > \tau^*$ **then**

937 17: $\hat{y} \leftarrow c$

938 18: **else**

939 19: $\hat{y} \leftarrow \arg \max_{j \neq c} S(f_{\theta^*}(x))_j$

940 20: **end if**

941 21: **end for**

942 22:

943 23: **return** $\{\hat{y}\}$

944 Table 3: Original model training settings.

947 Settings	MNIST	FMNIST	CIFAR-10	CIFAR-100
	AllCNN	AllCNN	ResNet-18	ResNet-34
949 Batch Size	128	128	128	128
950 Learning Rate	0.01	0.01	0.01	0.01
951 Epochs	30	60	120	200
952 Optimizer	SGD	SGD	SGD	SGD
953 Weight Decay	$1e^{-4}$	$1e^{-4}$	$5e^{-4}$	$1e^{-4}$
954 Momentum	0.9	0.9	0.9	0.9
955 Scheduler	-	MultiStepLR	MultiStepLR	MultiStepLR
Milestones	-	[25, 45]	[60, 90]	[100, 150]

956
957 *Gradient-based Methods:*958 **Unrolling** Thudi et al. (2022): Approximates retraining by unrolling SGD steps.

961 Table 4: Unrolling settings.

963 Settings	MNIST	FMNIST	CIFAR-10	CIFAR-100
964 un-LR	0.30/0.31	0.22/0.17	0.20/0.017	0.02/0.01
965 Sigma	0.036/0.011	0.028/0.01	0.010/0.010	0.020/0.025

966 **Unrolling-F**: Unrolling is applied only to forgetting samples.

968 Table 5: Unrolling-F settings.

970 Settings	MNIST	FMNIST	CIFAR-10	CIFAR-100
971 un-LR	0.0040/0.0040	0.0040/0.0018	0.050/0.016	0.0080/0.0024
Sigma	0.0035/0.0036	0.0015/0.0042	0.040/0.015	0.030/0.022

972 **GA (Gradient Ascent)** Golatkar et al. (2020): Maximizes loss on forgetting data.
 973

974 Table 6: GA settings.

975 Settings	976 MNIST	977 FMNIST	978 CIFAR-10	CIFAR-100
un-LR	4.7e-5/5.1e-5	8.0e-7/2.8e-4	5.8e-4/4.6e-4	5.0e-4/1.8e-6
un-Epochs	5/5	40/5	5/5	10/20

979 **Fisher** Golatkar et al. (2020): Uses Fisher information matrix for selective forgetting.
 980

981 Table 7: Fisher settings.

982 Settings	983 MNIST	984 FMNIST	985 CIFAR-10	CIFAR-100
alpha	1e-7/1e-7	1e-7/1e-7	1e-8/1e-8	1e-8/1e-8
un-Epochs	3/3	3/3	3/3	3/3

986 *Boundary Manipulation:*

987 **Boundary Shrink** Chen et al. (2023): Contracts decision boundaries around forgotten class.

988 **Boundary Expand** Chen et al. (2023): Expands boundaries to exclude forgotten class.

989 Table 8: Boundary Shrink and Boundary Expand settings.

990 Settings	991 MNIST	992 FMNIST	993 CIFAR-10	CIFAR-100
un-LR (Boundary Shrink)	4.3e-5/5.0e-5	1.0e-5/5.2e-4	3.3e-4/3.0e-4	5.0e-4/1.7e-4
un-LR (Boundary Expand)	3.6e-5/3.6e-5	5.0e-5/1.63e-5	5.0e-5/1.14e-5	1.0e-5/1.0e-5

995 *Knowledge Distillation: Bad Teacher* Chundawat et al. (2023a): Uses incompetent teacher for
 996 selective forgetting.

997 Table 9: Bad Teacher settings.

998 Settings	999 MNIST	1000 FMNIST	1001 CIFAR-10	CIFAR-100
un-LR	7.0e-3/1.0e-2	5.0e-2/4.0e-2	1.0e-1/9.2e-2	7.5e-2/9.4e-3
un-Epochs	7/3	5/5	60/35	40/40
Temperature	1.0/1.0	1.0/1.0	1.2/2.3	2.7/2.5

1003 *Model Modification: Sparse Unlearning* Jia et al. (2023): Leverages model sparsity for efficient
 1004 unlearning.

1005 Table 10: Sparse Unlearning settings.

1006 Settings	1007 MNIST	1008 FMNIST	1009 CIFAR-10	CIFAR-100
un-LR	0.01/0.01	0.01/0.01	0.01/0.01	0.01/0.01
un-Epochs	10/10	10/10	10/10	10/10
Pruning-Rate	0.95/0.95	0.95/0.95	0.95/0.95	0.95/0.95

1011 **SCRUB** Kurmanji et al. (2023): Selective gradient updates with regularization.

1012 Table 11: SCRUB settings.

1013 Settings	1014 MNIST	1015 FMNIST	1016 CIFAR-10	CIFAR-100
un-LR	2.7e-6/2.0e-5	2.0e-5/2.0e-5	1e-5/1e-5	4.4e-6/4.4e-6
un-Epochs	3/3	3/3	3/3	35/35
alpha	0.57/0.30	0.64/0.30	0.57/0.60	0.51/0.41
gamma	2.70/1.00	1.00/1.00	1.00/1.00	4.78/4.97

1020 **SALUN** Fan et al. (2024): Gradient-based weight saliency approach.

1021 Table 12: SALUN settings.

1022 Settings	1023 MNIST	1024 FMNIST	1025 CIFAR-10	CIFAR-100
un-LR	3.7e-5/2.0e-5	4.0e-5/7.0e-5	4.5e-5/4.4e-5	5.5e-4/5.6e-4
un-Epochs	15/10	8/8	15/15	7/7
threshold	0.57/0.7	0.64/0.3	0.57/0.57	0.51/0.54

1026 *Null Space Methods: UNSC* Chen et al. (2024): Projects gradients onto null space.
 1027

1028 Table 13: UNSC settings.

1029 Settings	1030 MNIST	1031 FMNIST	1032 CIFAR-10	1033 CIFAR-100
1031 un-LR	1032 0.01/0.01	1033 0.01/0.01	1034 0.05/0.05	1035 0.05/0.05
1032 un-Epochs	1033 10/10	1034 15/15	1035 25/25	1036 25/25

1033 *PRU* Zhang et al. (2024): Perception revising unlearning.
 1034

1035 Table 14: PRU settings.

1036 Settings	1037 MNIST	1038 FMNIST	1039 CIFAR-10	1040 CIFAR-100
1038 shift epoch	1039 15/10	1040 10/10	1041 10/10	1042 50/10
1039 shift lr	1040 2.8e-5/8.0e-5	1041 1.0e-5/2.0e-5	1042 1.0e-4/5.0e-4	1043 1.35e-6/2.00e-6
1040 shift lambda	1041 1	1042 1	1043 1	1044 1
1041 refine epochs	1042 5/1	1043 1/1	1044 2/1	1045 40/1
1042 refine lr	1043 1.45e-3/3.00e-3	1044 2.00e-3/1.00e-3	1045 4.00e-3/5.00e-3	1046 2.00e-2/2.00e-2

1044 D.3 DETAILS OF THE OOD DETECTION METHODS

1045
 1046
 1047 **Max Softmax Probability (MSP) Hendrycks & Gimpel (2017).** Detect OOD by thresholding
 1048 the model’s maximum predicted class probability. Lower MSP indicates higher OOD likelihood.
 1049 The MSP score is defined as:

$$1051 \text{MSP}(x) = \max_{k \in \{1, \dots, K\}} p_k(x), \quad p_k(x) = \frac{e^{f_k(x)}}{\sum_{j=1}^K e^{f_j(x)}}.$$

$$1052$$

$$1053$$

1054 **Entropy-based detection Malinin & Gales (2018).** Use predictive uncertainty via Shannon
 1055 entropy; higher entropy suggests OOD. The entropy score is defined as:

$$1057 H(x) = - \sum_{k=1}^K p_k(x) \log p_k(x).$$

$$1058$$

$$1059$$

1060 Decide OOD by thresholding $H(x)$ (or equivalently use $-H(x)$ as an in-distribution score).
 1061

1062 **Gini (impurity) score Liu et al. (2023).** Measure concentration of the predictive distribution using
 1063 Gini impurity. A higher Gini score indicates a more uniform distribution, which suggests OOD. The
 1064 Gini score is defined as:

$$1065 \text{Gini}(x) = 1 - \sum_{k=1}^K p_k(x)^2.$$

$$1066$$

$$1067$$

1068 **Ratio (likelihood ratio) Ren et al. (2019).** Correct raw likelihoods using a background model to
 1069 discount generic statistics. Lower ratio indicates OOD. The ratio score is defined as:
 1070

$$1071 s_{\text{LR}}(x) = \log p_{\theta}(x) - \log p_{\text{bg}}(x) = \log \frac{p_{\theta}(x)}{p_{\text{bg}}(x)}.$$

$$1072$$

$$1073$$

1074 **Energy Score (overall-based) Liu et al. (2020).** Compute the (free) energy from logits via
 1075 log-sum-exp; higher energy indicates OOD. The energy score is defined as:

$$1076 E(x; f) = T \log \sum_{k=1}^K \exp\left(\frac{f_k(x)}{T}\right).$$

$$1077$$

$$1078$$

1079 Often, the negative energy $-E(x; f)$ is used as an in-distribution score.

1080
 1081 **Energy Score (label-/class-specific; joint) Wang et al. (2021).** For multi-label settings, aggregate
 1082 label-wise energies to capture joint evidence. Higher joint energy suggests OOD. The joint energy
 1083 score is defined as:

$$1084 \\ 1085 E_k(x) = \log(1 + e^{f_k(x)}), \quad E_{\text{joint}}(x) = \sum_{k=1}^K E_k(x).$$

$$1086 \\ 1087$$

1088 where $E_k(x)$ is the energy score for class k . Threshold $-E_{\text{joint}}(x)$ as an in-distribution score.

1089 In the summarization of the above methods, $f_k(x)$ denotes the logits for class k , $p_k(x) = \frac{e^{f_k(x)}}{\sum_j e^{f_j(x)}}$,
 1090 K is the number of classes, and $T > 0$ is a temperature.

1095 E ADDITIONAL EXPERIMENTAL RESULTS

1098 E.1 RECOVERY RESULTS FOR SINGLE-CLASS UNLEARNING

1101 **Table 15: Results of Unlearning and Recovery on Single-Class forgetting** (mean \pm std over three
 1102 runs). Upper line: original unlearned results; lower line (with gray background): post-hoc recovered
 1103 results. FA is accuracy on forgotten classes; RA is accuracy on remaining classes.

Method	MNIST		FMNIST		CIFAR-10		CIFAR-100	
	FA	RA	FA	RA	FA	RA	FA	RA
Orig	99.54 \pm 0.26	99.55 \pm 0.03	93.00 \pm 6.69	93.00 \pm 0.74	92.96 \pm 3.94	92.96 \pm 0.44	74.63 \pm 11.21	72.09 \pm 0.11
RT	0.00 \pm 0.00	99.49 \pm 0.56	0.00 \pm 0.00	93.60 \pm 1.23	0.00 \pm 0.00	93.32 \pm 0.65	0.00 \pm 0.00	72.06 \pm 0.32
	89.53 \pm 8.70	97.43 \pm 1.87	49.25 \pm 14.58	87.87 \pm 0.90	44.67 \pm 10.62	87.28 \pm 1.12	46.57 \pm 12.38	67.77 \pm 0.65
PRU	0.00 \pm 0.00	98.19 \pm 1.68	0.19 \pm 0.27	91.45 \pm 3.86	0.00 \pm 0.00	93.06 \pm 0.79	0.00 \pm 0.00	70.61 \pm 1.29
	90.87 \pm 3.13	98.18 \pm 1.69	84.41 \pm 12.99	90.77 \pm 4.71	88.34 \pm 5.15	92.13 \pm 0.58	81.13 \pm 8.84	70.07 \pm 1.38
BS	10.60 \pm 6.72	95.58 \pm 4.68	0.08 \pm 0.12	91.04 \pm 1.69	6.56 \pm 1.34	91.34 \pm 0.89	0.53 \pm 0.78	59.34 \pm 3.44
	90.77 \pm 4.97	95.40 \pm 5.00	77.62 \pm 12.92	90.76 \pm 1.60	63.37 \pm 6.47	91.27 \pm 0.84	52.77 \pm 9.31	59.16 \pm 3.44
BE	12.57 \pm 9.27	83.26 \pm 10.00	11.80 \pm 3.16	89.00 \pm 5.83	24.75 \pm 4.42	91.43 \pm 1.15	2.17 \pm 1.74	62.26 \pm 4.66
	89.20 \pm 4.80	82.33 \pm 10.98	89.58 \pm 9.42	87.88 \pm 7.14	83.79 \pm 5.90	91.11 \pm 1.03	50.03 \pm 9.73	62.20 \pm 4.67
Unroll	0.00 \pm 0.00	87.45 \pm 16.66	0.03 \pm 0.10	82.15 \pm 13.66	5.45 \pm 5.72	90.17 \pm 6.14	12.73 \pm 10.01	71.32 \pm 0.36
	80.22 \pm 21.24	80.27 \pm 18.19	69.14 \pm 17.49	78.80 \pm 14.33	77.22 \pm 11.48	89.39 \pm 6.34	66.80 \pm 12.72	71.24 \pm 0.35
Unroll-F	0.24 \pm 0.55	94.97 \pm 5.01	59.53 \pm 13.26	90.75 \pm 3.43	3.40 \pm 3.73	88.66 \pm 1.92	2.33 \pm 3.48	70.03 \pm 0.60
	95.94 \pm 2.62	93.00 \pm 9.52	88.06 \pm 9.88	90.41 \pm 3.47	47.79 \pm 18.03	88.63 \pm 1.91	38.67 \pm 9.85	70.03 \pm 0.60
UNSC	0.02 \pm 0.04	99.49 \pm 0.07	0.16 \pm 0.24	93.47 \pm 1.16	0.00 \pm 0.00	93.27 \pm 0.71	0.00 \pm 0.00	71.73 \pm 0.32
	83.99 \pm 4.85	98.48 \pm 1.02	61.99 \pm 20.07	89.64 \pm 2.01	40.86 \pm 9.14	92.05 \pm 0.78	45.07 \pm 18.14	70.96 \pm 0.77
SALUN	0.16 \pm 0.28	98.28 \pm 1.40	0.64 \pm 0.44	91.83 \pm 1.02	1.84 \pm 1.71	88.12 \pm 1.49	3.60 \pm 3.39	66.98 \pm 1.38
	96.94 \pm 1.23	98.25 \pm 1.40	88.67 \pm 8.58	91.43 \pm 0.99	84.20 \pm 13.07	87.12 \pm 1.59	80.60 \pm 10.40	66.25 \pm 1.68
GA	9.62 \pm 3.85	93.00 \pm 8.69	12.39 \pm 4.02	89.68 \pm 4.47	4.38 \pm 2.11	84.99 \pm 2.88	1.03 \pm 1.35	63.42 \pm 4.06
	84.04 \pm 6.60	92.53 \pm 9.97	83.39 \pm 10.48	89.36 \pm 4.63	29.03 \pm 2.70	84.98 \pm 2.88	41.83 \pm 10.96	63.39 \pm 4.07
Fisher	2.63 \pm 5.31	98.87 \pm 0.51	3.67 \pm 10.05	92.18 \pm 1.34	5.06 \pm 5.89	92.63 \pm 0.75	0.00 \pm 0.00	70.30 \pm 0.26
	99.11 \pm 6.60	95.62 \pm 2.81	87.25 \pm 9.99	89.47 \pm 1.25	85.67 \pm 5.04	90.77 \pm 0.70	54.57 \pm 13.65	65.80 \pm 0.32
Bad-T	0.00 \pm 0.00	98.72 \pm 0.40	1.02 \pm 2.67	90.70 \pm 1.56	1.64 \pm 2.96	91.96 \pm 1.46	1.37 \pm 1.94	66.50 \pm 0.61
	99.90 \pm 0.10	94.79 \pm 1.98	97.98 \pm 1.85	86.85 \pm 2.24	96.26 \pm 2.34	90.00 \pm 1.23	83.50 \pm 9.10	65.68 \pm 0.65
SP	0.00 \pm 0.00	99.47 \pm 0.05	0.00 \pm 0.00	92.69 \pm 1.41	0.00 \pm 0.00	92.50 \pm 0.74	0.83 \pm 1.84	70.68 \pm 0.37
	95.32 \pm 3.82	98.53 \pm 0.34	74.36 \pm 11.43	85.31 \pm 2.36	67.05 \pm 8.19	86.65 \pm 1.20	84.77 \pm 4.86	69.44 \pm 0.79
SCRUB	0.36 \pm 1.17	99.29 \pm 0.08	2.44 \pm 7.28	91.49 \pm 1.53	0.01 \pm 0.04	89.33 \pm 0.96	7.57 \pm 8.67	66.22 \pm 0.33
	97.02 \pm 1.63	99.09 \pm 0.14	88.83 \pm 6.59	89.73 \pm 1.90	89.98 \pm 3.84	85.92 \pm 1.99	88.90 \pm 4.30	64.79 \pm 0.79

1132 E.2 THE COMPLETE RESULTS OF COMPARISON METHODS ON CIFAR-100

1133 These are complementary results for Tab. 2; we additionally include RT and Fisher.

1134
1135
1136Table 16: Comparing the Recall among the proposed method and OOD detection methods on
CIFAR-100.1137
1138
1139
1140
1141
1142

Method	RT	PRU	BS	BE	Unroll	Unroll-F	UNSC	SALUN	GA	Fisher	Bad-T	SP	SCRUB
MSP	1.67 \pm 0.39	3.92 \pm 1.39	7.86 \pm 1.59	15.44 \pm 0.39	11.65 \pm 0.70	13.46 \pm 0.67	15.30 \pm 1.18	2.39 \pm 1.06	11.16 \pm 0.62	1.83 \pm 0.59	10.49 \pm 1.05	13.74 \pm 0.86	12.40 \pm 0.65
Ratio	1.66 \pm 0.40	4.11 \pm 1.41	7.76 \pm 1.50	14.61 \pm 0.49	11.48 \pm 0.84	12.98 \pm 0.85	14.79 \pm 1.12	2.44 \pm 1.16	10.74 \pm 0.75	1.82 \pm 0.58	9.73 \pm 1.17	14.40 \pm 1.01	13.52 \pm 0.81
Energy	1.26 \pm 0.30	3.16 \pm 1.10	6.45 \pm 1.25	12.68 \pm 0.54	10.94 \pm 0.80	11.87 \pm 0.73	12.13 \pm 0.79	2.24 \pm 1.14	11.12 \pm 0.76	1.38 \pm 0.46	8.32 \pm 0.78	11.33 \pm 0.67	10.74 \pm 0.69
Margin	1.62 \pm 0.40	3.77 \pm 1.33	7.50 \pm 1.51	14.83 \pm 0.44	11.50 \pm 0.69	13.05 \pm 0.63	14.89 \pm 1.11	2.37 \pm 1.04	10.96 \pm 0.65	1.75 \pm 0.56	9.68 \pm 0.97	13.25 \pm 0.83	11.99 \pm 0.61
Gini	1.58 \pm 0.37	3.57 \pm 1.28	7.34 \pm 1.46	14.82 \pm 0.42	11.53 \pm 0.63	13.05 \pm 0.57	14.86 \pm 0.99	11.07 \pm 0.59	1.69 \pm 0.54	9.50 \pm 0.93	12.66 \pm 0.72	11.40 \pm 0.53	
Energy+	1.48 \pm 0.31	3.38 \pm 1.22	7.29 \pm 1.40	15.27 \pm 0.36	11.70 \pm 0.53	13.47 \pm 0.48	15.29 \pm 1.13	2.36 \pm 1.03	11.80 \pm 0.49	1.62 \pm 0.53	10.29 \pm 1.00	12.38 \pm 0.63	11.30 \pm 0.58
Entropy	1.72 \pm 0.38	4.04 \pm 1.43	8.45 \pm 1.72	16.81 \pm 0.40	11.89 \pm 0.78	14.30 \pm 0.74	16.40 \pm 1.32	2.37 \pm 1.05	11.73 \pm 0.69	1.93 \pm 0.63	12.98 \pm 1.24	14.26 \pm 0.95	12.55 \pm 0.74
Ours	1.99\pm0.39	7.80\pm3.31	14.46\pm5.31	94.74\pm1.89	64.23\pm4.76	71.04\pm1.47	66.03\pm7.13	34.42\pm1.41	19.61\pm1.15	2.50\pm0.88	29.60\pm6.54	58.55\pm1.14	62.38\pm1.06

1143

E.3 MIA EVALUATION

1144

1145

1146

Table 17: **Membership inference (MIA) for Single-class unlearning.** AUROC_F/AUROC_R are AUCs on the forgotten/retained subsets (positive = member). F-TPR5/R-TPR5 denote the true positive rate at FPR = 5% on the forgotten/retained subsets. **MIA_I** (SVM-TNR) is the true-negative rate on the forgotten set, $TN/|D_u|$ (\uparrow indicates stronger privacy). **MIA_{II}** is the attacker accuracy at the shadow-optimal threshold τ^* chosen to maximize balanced shadow accuracy (values near 50% indicate chance).

1147

1148

1149

1150

1151

1152

1153

Method	MNIST						Fashion-MNIST					
	AUROC _F	AUROC _R	F – TPR5	R – TPR5	MIA _I	MIA _{II}	AUROC _F	AUROC _R	F – TPR5	R – TPR5	MIA _I	MIA _{II}
RT	49.93 \pm 0.09	50.01 \pm 0.03	4.88 \pm 0.30	4.57 \pm 0.09	100.00 \pm 0.00	51.89 \pm 0.49	49.97 \pm 0.09	49.25 \pm 0.31	4.87 \pm 0.26	2.56 \pm 0.73	100.00 \pm 0.00	58.50 \pm 1.99
PRU	50.01 \pm 0.09	49.95 \pm 0.06	4.95 \pm 0.40	4.64 \pm 0.16	99.99 \pm 0.03	50.81 \pm 0.38	49.56 \pm 0.27	49.22 \pm 0.30	3.49 \pm 0.63	2.80 \pm 0.71	100.00 \pm 0.00	57.01 \pm 1.57
BS	49.98 \pm 0.14	49.94 \pm 0.10	4.89 \pm 0.41	4.31 \pm 0.79	94.97 \pm 13.68	50.74 \pm 0.30	49.61 \pm 0.32	48.95 \pm 0.40	3.92 \pm 0.49	2.15 \pm 0.81	99.47 \pm 1.60	55.25 \pm 1.30
BE	49.91 \pm 0.15	49.91 \pm 0.08	4.52 \pm 0.40	4.02 \pm 0.84	92.08 \pm 10.61	50.52 \pm 0.33	48.90 \pm 0.77	49.21 \pm 0.35	2.98 \pm 0.81	1.93 \pm 0.64	99.37 \pm 0.40	55.73 \pm 0.73
Unroll	50.01 \pm 0.17	49.99 \pm 0.06	5.06 \pm 0.48	4.78 \pm 0.46	58.29 \pm 30.03	50.35 \pm 0.33	49.90 \pm 0.16	49.68 \pm 0.26	4.64 \pm 0.90	4.12 \pm 0.85	80.27 \pm 30.57	50.90 \pm 0.89
Unroll-F	50.01 \pm 0.12	49.89 \pm 0.05	4.92 \pm 0.38	4.26 \pm 0.48	88.47 \pm 16.54	50.47 \pm 0.24	49.61 \pm 0.37	48.98 \pm 0.36	4.27 \pm 0.96	1.07 \pm 0.77	98.90 \pm 2.15	53.96 \pm 1.08
UNSC	53.33 \pm 0.16	49.94 \pm 0.29	1.61 \pm 2.21	100.00 \pm 0.00	51.22 \pm 0.23	49.88 \pm 0.26	49.18 \pm 0.24	3.70 \pm 0.61	0.27 \pm 0.97	100.00 \pm 0.00	57.06 \pm 2.07	
SALUN	50.04 \pm 0.12	50.01 \pm 0.04	4.94 \pm 0.29	4.78 \pm 0.10	100.00 \pm 0.00	50.97 \pm 0.27	49.62 \pm 0.16	49.68 \pm 0.32	3.33 \pm 0.47	2.19 \pm 0.55	100.00 \pm 0.00	56.02 \pm 1.44
GA	49.90 \pm 0.45	49.92 \pm 0.08	4.95 \pm 0.29	2.00 \pm 1.84	84.40 \pm 18.17	50.49 \pm 0.26	49.60 \pm 0.47	49.08 \pm 0.31	4.50 \pm 0.44	1.40 \pm 1.30	97.86 \pm 3.48	53.48 \pm 0.88
Fisher	49.98 \pm 0.10	49.97 \pm 0.04	4.96 \pm 0.28	4.65 \pm 0.13	95.06 \pm 12.57	50.75 \pm 0.25	49.43 \pm 0.30	49.13 \pm 0.35	3.67 \pm 0.54	2.48 \pm 0.79	100.00 \pm 0.00	55.69 \pm 1.17
Bad-T	50.01 \pm 0.13	50.00 \pm 0.05	5.12 \pm 0.39	4.79 \pm 0.14	36.85 \pm 37.02	50.25 \pm 0.38	49.82 \pm 0.09	49.66 \pm 0.18	4.30 \pm 0.35	3.62 \pm 0.42	99.96 \pm 0.12	51.85 \pm 0.31
SP	49.93 \pm 0.10	49.99 \pm 0.02	4.76 \pm 0.26	4.57 \pm 0.11	99.89 \pm 0.52	50.88 \pm 0.16	49.93 \pm 0.05	49.11 \pm 0.32	4.80 \pm 0.18	2.48 \pm 0.74	100.00 \pm 0.00	55.65 \pm 1.29
SCRUB	49.94 \pm 0.12	50.02 \pm 0.04	4.91 \pm 0.37	4.77 \pm 0.16	67.34 \pm 24.97	50.48 \pm 0.44	49.84 \pm 0.08	49.43 \pm 0.25	4.54 \pm 0.20	3.37 \pm 0.66	98.48 \pm 4.20	52.12 \pm 0.89

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

Membership inference evaluation. We evaluate **MIA** on the unlearned model to quantify whether training membership can be inferred from outputs Shokri et al. (2017); Jia et al. (2023); Chen et al. (2024); Kurmanji et al. (2023); Chen et al. (2023). To stabilize the attack across datasets and methods, we feed a *fusion feature* that is the concatenation of five prediction statistics into a binary SVM, including *correctness* (argmax equals the label), *confidence* p_y , *entropy* $H(p)$, *loss* $-\log p_y$, and *margin* $p_{(1)} - p_{(2)}$. MIA proceeds in two phases: (1) a shadow training phase where we firstly construct a balanced retained shadow dataset (retained training data as members, retained test data as non-members) and learn the SVM decision; and (2) an attack phase where the learned attacker is applied to the forgotten set D_u and retained evaluation splits. We report two metrics following the existing works: **MIA_I** is the true negative rate on the forgotten set, $TN/|D_u|$ (higher \uparrow indicates stronger privacy); and **MIA_{II}** is the attacker’s accuracy at the shadow-optimal threshold τ^* chosen to maximize balanced shadow accuracy (values near 50% indicate chance). In addition, we include AUROC and TPR@5%FPR as complementary, widely used summaries. AUROC is threshold-free and prevalence-robust, which equals the probability that a random member receives a higher attack score than a random non-member (0.5 = chance). TPR@5%FPR captures operational attack strength under a low false-positive budget that is relevant for privacy claims. Concretely, for each example x we compute an attack score $s(x)$ (SVM decision value or one of the scalar scores), form member/non-member score sets for the subset of interest (forgotten F or retained R), compute AUROC from the ROC curve, and obtain TPR@5%FPR by selecting a threshold on a *retained-only*, *balanced* validation set to achieve $FPR \approx 0.05$ (no test-label peeking), then

1188 measuring the corresponding TPR on the evaluation split. All operating-point metrics are computed
 1189 with balanced sampling, and results are averaged over multiple seeds for statistical stability.
 1190

1191 **Table 18: Membership inference (MIA) for Multi-class unlearning.** AUROC_F/AUROC_R are
 1192 AUCs on the forgotten/retained subsets (positive = member). F-TPR5/R-TPR5 denote the true
 1193 positive rate at FPR = 5% on the forgotten/retained subsets. MIA_I (SVM-TNR) is the
 1194 true-negative rate on the forgotten set, $TN/|D_u|$ (\uparrow indicates stronger privacy). MIA_{II} is the
 1195 attacker accuracy at the shadow-optimal threshold τ^* chosen to maximize balanced shadow accuracy
 1196 (values near 50% indicate chance).

Method	MNIST					Fashion-MNIST						
	AUROC _F	AUROC _R	F - TPR5	R - TPR5	MIA _I	MIA _{II}	AUROC _F	AUROC _R	F - TPR5	R - TPR5	MIA _I	MIA _{II}
RT	49.94 \pm 0.09	50.01 \pm 0.03	4.85 \pm 0.27	4.60 \pm 0.08	100.00 \pm 0.00	51.81 \pm 0.51	49.98 \pm 0.04	49.21 \pm 0.27	4.89 \pm 0.13	2.57 \pm 0.73	100.00 \pm 0.00	58.44 \pm 1.98
PRU	50.05 \pm 0.08	50.01 \pm 0.03	5.09 \pm 0.25	4.66 \pm 0.13	100.00 \pm 0.00	50.91 \pm 0.22	49.56 \pm 0.23	49.22 \pm 0.24	3.49 \pm 0.67	2.80 \pm 0.71	100.00 \pm 0.00	56.99 \pm 1.56
BS	50.01 \pm 0.09	49.83 \pm 0.13	5.03 \pm 0.26	4.19 \pm 0.71	85.98 \pm 27.00	50.68 \pm 0.24	49.61 \pm 0.28	48.95 \pm 0.34	3.92 \pm 0.49	2.15 \pm 0.81	99.30 \pm 1.97	55.27 \pm 1.29
BE	49.88 \pm 0.12	49.97 \pm 0.06	4.56 \pm 0.28	4.53 \pm 0.43	95.05 \pm 17.07	50.77 \pm 0.24	48.90 \pm 0.69	49.21 \pm 0.30	2.98 \pm 0.81	1.93 \pm 0.64	99.31 \pm 0.48	55.73 \pm 0.73
Unroll	49.99 \pm 0.09	50.01 \pm 0.12	5.02 \pm 0.31	4.76 \pm 0.67	45.84 \pm 25.64	50.31 \pm 0.24	49.90 \pm 0.14	49.68 \pm 0.22	4.64 \pm 0.90	4.12 \pm 0.85	81.33 \pm 28.03	50.89 \pm 0.92
Unroll-F	50.05 \pm 0.20	49.87 \pm 0.06	5.04 \pm 0.24	4.41 \pm 0.47	92.46 \pm 12.61	50.69 \pm 0.35	49.61 \pm 0.33	48.98 \pm 0.31	4.27 \pm 0.96	1.07 \pm 0.77	99.05 \pm 1.74	53.94 \pm 1.06
UNSC	50.30 \pm 0.10	49.96 \pm 0.03	5.00 \pm 0.17	1.52 \pm 2.20	100.00 \pm 0.00	51.24 \pm 0.17	49.88 \pm 0.23	49.18 \pm 0.21	3.70 \pm 0.61	0.27 \pm 0.97	100.00 \pm 0.00	57.05 \pm 2.09
SALUN	50.01 \pm 0.07	50.01 \pm 0.05	4.90 \pm 0.32	4.78 \pm 0.11	100.00 \pm 0.00	50.94 \pm 0.26	49.62 \pm 0.14	49.68 \pm 0.28	3.33 \pm 0.47	2.19 \pm 0.55	100.00 \pm 0.00	56.03 \pm 1.44
GA	49.90 \pm 0.39	49.92 \pm 0.07	4.95 \pm 0.27	2.00 \pm 1.84	84.41 \pm 13.51	50.48 \pm 0.27	49.60 \pm 0.42	49.08 \pm 0.27	4.50 \pm 0.44	1.40 \pm 1.30	98.06 \pm 3.53	53.47 \pm 0.87
Fisher	49.98 \pm 0.08	49.97 \pm 0.03	4.96 \pm 0.26	4.65 \pm 0.12	96.48 \pm 10.38	50.74 \pm 0.22	49.43 \pm 0.26	49.13 \pm 0.31	3.67 \pm 0.54	2.48 \pm 0.79	100.00 \pm 0.00	55.67 \pm 1.17
Bad-T	50.01 \pm 0.11	50.00 \pm 0.04	5.12 \pm 0.36	4.79 \pm 0.13	28.04 \pm 36.22	50.33 \pm 0.34	49.82 \pm 0.08	49.66 \pm 0.16	4.30 \pm 0.35	3.62 \pm 0.42	95.94 \pm 16.00	51.85 \pm 0.33
SP	49.93 \pm 0.09	49.99 \pm 0.02	4.76 \pm 0.24	4.57 \pm 0.10	99.91 \pm 0.48	50.86 \pm 0.14	49.93 \pm 0.04	49.11 \pm 0.28	4.80 \pm 0.18	2.48 \pm 0.74	100.00 \pm 0.00	55.65 \pm 1.28
SCRUB	49.94 \pm 0.11	50.02 \pm 0.03	4.91 \pm 0.35	4.77 \pm 0.14	64.47 \pm 21.09	50.46 \pm 0.43	49.84 \pm 0.07	49.43 \pm 0.22	4.54 \pm 0.20	3.37 \pm 0.66	99.48 \pm 1.42	52.16 \pm 0.83
Method	CIFAR-10					CIFAR-100						
	AUROC _F	AUROC _R	F - TPR5	R - TPR5	MIA _I	MIA _{II}	AUROC _F	AUROC _R	F - TPR5	R - TPR5	MIA _I	MIA _{II}
RT	50.03 \pm 0.07	49.21 \pm 0.12	5.14 \pm 0.27	0.20 \pm 0.76	100.00 \pm 0.00	57.45 \pm 0.84	50.05 \pm 0.06	47.30 \pm 0.10	5.21 \pm 0.29	0.00 \pm 0.00	100.00 \pm 0.00	75.84 \pm 0.49
PRU	49.70 \pm 0.11	49.38 \pm 0.12	3.89 \pm 0.38	2.83 \pm 0.45	100.00 \pm 0.00	57.00 \pm 0.71	49.92 \pm 0.08	48.21 \pm 0.13	4.56 \pm 0.33	0.02 \pm 0.01	100.00 \pm 0.00	72.45 \pm 0.48
BS	49.68 \pm 0.09	49.02 \pm 0.13	4.14 \pm 0.22	1.44 \pm 0.64	99.94 \pm 0.13	54.42 \pm 0.65	48.62 \pm 0.30	45.82 \pm 0.15	3.61 \pm 0.30	0.92 \pm 0.21	97.93 \pm 0.94	67.17 \pm 0.99
BE	46.92 \pm 0.84	49.09 \pm 0.15	2.54 \pm 0.60	0.03 \pm 0.02	92.59 \pm 2.76	56.71 \pm 0.67	41.65 \pm 0.74	46.93 \pm 0.10	0.34 \pm 0.12	0.01 \pm 0.00	72.43 \pm 2.86	74.31 \pm 0.45
Unroll	46.94 \pm 0.95	49.13 \pm 0.17	2.83 \pm 0.70	0.49 \pm 0.84	82.97 \pm 5.75	56.43 \pm 0.71	44.40 \pm 0.91	47.19 \pm 0.12	0.41 \pm 0.36	0.00 \pm 0.00	36.23 \pm 9.84	75.02 \pm 0.63
Unroll-F	48.72 \pm 0.83	48.97 \pm 0.18	3.77 \pm 0.55	0.97 \pm 0.67	92.65 \pm 3.35	55.26 \pm 0.17	43.10 \pm 0.70	46.84 \pm 0.19	0.75 \pm 0.50	0.02 \pm 0.02	57.01 \pm 10.27	73.61 \pm 0.86
UNSC	49.73 \pm 0.13	48.99 \pm 0.16	4.11 \pm 0.38	0.00 \pm 0.08	100.00 \pm 0.00	56.01 \pm 0.60	49.60 \pm 0.14	46.66 \pm 0.10	4.02 \pm 0.42	0.00 \pm 0.00	100.00 \pm 0.00	73.69 \pm 0.40
SALUN	49.80 \pm 0.08	49.44 \pm 0.09	4.41 \pm 0.29	2.23 \pm 0.92	99.98 \pm 0.04	53.36 \pm 0.77	49.96 \pm 0.08	49.89 \pm 0.30	4.78 \pm 0.36	4.78 \pm 0.31	78.09 \pm 11.66	50.88 \pm 1.55
GA	49.87 \pm 0.08	48.97 \pm 0.15	4.82 \pm 0.22	1.81 \pm 0.70	99.69 \pm 0.37	53.66 \pm 0.71	45.36 \pm 0.63	47.08 \pm 0.08	0.02 \pm 0.01	0.00 \pm 0.00	18.21 \pm 3.36	74.90 \pm 0.43
Fisher	49.30 \pm 0.22	49.26 \pm 0.12	3.27 \pm 0.38	2.50 \pm 0.36	100.00 \pm 0.00	56.92 \pm 0.66	49.45 \pm 0.09	47.24 \pm 0.10	3.30 \pm 0.39	0.01 \pm 0.00	100.00 \pm 0.00	74.28 \pm 0.41
Bad-T	49.40 \pm 0.16	49.24 \pm 0.23	3.05 \pm 0.49	1.69 \pm 0.97	100.00 \pm 0.00	55.45 \pm 0.53	49.63 \pm 0.08	47.92 \pm 0.08	4.08 \pm 0.28	3.00 \pm 0.13	97.73 \pm 5.31	56.99 \pm 0.34
SP	49.88 \pm 0.06	49.21 \pm 0.13	4.63 \pm 0.22	2.28 \pm 0.61	100.00 \pm 0.00	56.24 \pm 0.72	49.79 \pm 0.06	47.79 \pm 0.08	4.33 \pm 0.23	0.21 \pm 0.02	99.98 \pm 0.04	66.56 \pm 0.37
SCRUB	49.87 \pm 0.07	49.34 \pm 0.12	4.61 \pm 0.28	3.01 \pm 0.37	99.59 \pm 2.04	53.09 \pm 0.52	49.66 \pm 0.11	47.50 \pm 0.10	4.19 \pm 0.27	0.89 \pm 0.06	95.30 \pm 2.54	62.43 \pm 0.44

F THE USE OF LLMs

We used large language models (LLMs) strictly as writing aids for *language refinement*. Concretely, LLM prompts were limited to grammar correction, concise rephrasing, and minor reorganization of sentences or paragraphs to improve clarity and brevity.

Scope and limitations. LLMs were *not* used for ideation, method or theorem development/proofs, algorithm design, experimental setup or tuning, data collection/labeling, result selection, code generation, figure creation, or statistical analysis. All technical content (definitions, theorems, proofs, algorithms, experiments, and conclusions) is authored and validated by the authors.