
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE ILLUSION OF FORGETTING: POST-HOC UTILITY
RECOVERY FROM UNLEARNED MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Class unlearning seeks to remove the influence of designated training classes
while retaining utility on the remaining ones, often for privacy or regulatory
compliance. Existing evaluations largely declare success once the forgotten
classes exhibit near-zero accuracy or fail membership inference tests. We argue
this view is incomplete and introduce the notion of the illusion of forgetting:
even when accuracy appears suppressed, the black-box outputs of unlearned
models can retain residual, recoverable signals about forgotten classes. We
formalize this phenomenon by quantifying residual information in the output
space and show that unlearning trajectories leave statistically distinguishable
signatures. To demonstrate practical implications, we propose a simple yet
effective post-hoc recovery framework, which amplifies weak signals using
a Yeo–Johnson transformation and adapts decision thresholds to reconstruct
predictions for forgotten classes. Across 12 unlearning algorithms and 4
benchmark datasets, our framework substantially restores forgotten-class accuracy
while causing minimal degradation on retained classes. These findings (i)
expose critical blind spots in current unlearning evaluations, (ii) provide the first
systematic evidence that forgotten-class utility can be restored from black-box
access alone.

1 INTRODUCTION

Removing the influence of specific training classes from a deployed model is increasingly
required for privacy compliance, regulatory mandates, and user expectations. Recent
class unlearning methods demonstrate impressive performance, often driving forgotten
classes’ accuracy towards zero while maintaining utility on the remaining data Kurmanji
et al. (2023); Shokri et al. (2017); Graves et al. (2021); Chen et al. (2024; 2021).
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Figure 1: The illusion of forgetting. Standard
evaluations report forgotten-class accuracy
near zero after unlearning, suggesting success.
However, a lightweight recovery procedure can
restore substantial utility to the forgotten classes.
The figure reports average results over seven
representative unlearning methods Chen et al.
(2023); Zhang et al. (2024); Chen et al. (2024);
Fan et al. (2024); Chundawat et al. (2023a); Jia
et al. (2023); Kurmanji et al. (2023).

This apparent success has fueled the belief
that low forgotten-class accuracy or failed
membership inference is sufficient to guarantee
forgetting.

We show that this view is incomplete. Even
after passing such standard forgetting checks,
unlearned models can still retain residual,
recoverable signals about the forgotten classes.
Why this matters. Consider a medical
classifier where a hospital requests the removal
of a rare disease class to comply with
privacy regulations. Conventional metrics
may certify “success” once forgotten-class
accuracy is suppressed to chance. Yet
if a downstream observer can still recover
diagnostic capability for the removed disease,
the deletion request—and the hospital’s privacy
rights—would be undermined. In this work, we
make a central observation: unlearned models
often leave weak but structured traces of the
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forgotten classes in their output probabilities. With lightweight post-processing, these traces can be
amplified into meaningful re-predictions. We call this gap between apparent forgetting and residual
recoverable utility the illusion of forgetting. See Figure 1 for an illustration, where forgotten-class
accuracy falls to near zero under unlearning but can be substantially restored.

Why does recovery remain possible after “successful” unlearning? Our theoretical analysis
formalizes two intuitions. First, retained-class utility and complete forgetting are in tension:
preserving high accuracy on the remaining classes generally necessitates retaining structured
information about forgotten classes in the representation and output space. Second, unlearning
trajectories leave statistical signatures in output space: to suppress forgotten classes, algorithms
collapse their outputs to narrow ranges near zero, which still encode distinguishable patterns.

To demonstrate the practical severity of this phenomenon, we introduce a simple black-box recovery
framework. It assumes only realistic access to the deployed unlearned model’s softmax probabilities,
without weights, gradients, or training data. The framework applies a monotone statistical transform
(Yeo–Johnson Weisberg (2001)) to stabilize and amplify weak near-zero outputs, followed by
adaptive thresholding to map transformed scores back into forgotten-class predictions. This
procedure is model-agnostic, requires no retraining, and serves to reveal recoverability rather than
to propose yet another unlearning algorithm. Comprehensive experiments across 12 state-of-the-art
unlearning methods and 4 benchmark datasets show that forgotten-class utility can be recovered
far beyond random guessing while minimally affecting retained-class performance. These findings
expose a critical blind spot in current unlearning evaluation and highlight the urgent need to
reconsider what forgetting truly guarantees.

Our contributions are:

• We uncover and formalize the illusion of forgetting, i.e., the gap between certified forgetting and
residual, recoverable utility, revealing a blind spot in how class unlearning is currently evaluated.

• Through theoretical analysis, we show that preserving retained-class accuracy inherently leaves
structured traces of forgotten classes, and that typical unlearning trajectories produce distinctive
statistical signatures in the output space.

• To make the phenomenon tangible, we design a lightweight black-box recovery framework (based
on Yeo–Johnson transformation and adaptive thresholding) that converts weak residual signals into
forgotten-class predictions—without accessing weights, gradients, training data, or any labels.

• Extensive experiments across 12 state-of-the-art unlearning methods and 4 benchmark datasets
reveal that most are susceptible to the illusion of forgetting, enabling recovery well beyond random
guessing while retaining performance on the remaining classes.

2 BACKGROUND

Let X ⊂ Rd denote the input space and Y = {1, . . . ,K} denote the label space with K classes.
The training dataset D = {(xi, yi)}Ni=1 contains N samples.

In class machine unlearning, the objective is to eliminate the influence of all training samples from a
target class c ∈ C ⊂ Y . This naturally partitions the dataset into the forgetting set Df = {(xi, yi) ∈
D : yi ∈ C} containing samples to be unlearned and the retaining set Dr = D \ Df containing
samples to be preserved.

Definition 1 (Unlearning Process) Let fθ0 : X → RK be the original model with parameters θ0.
The unlearning process is defined as the optimization Bourtoule et al. (2021); Graves et al. (2021):

θ∗ = argmin
θ
Lunlearn(θ0) = Lr(θ;Dr) + λLf (θ;Df ) (1)

where Lr preserves performance on retained data and Lf enforces forgetting on Df .

2.1 EVALUATION PARADIGMS

The existing works in MU primarily evaluate forgetting effectiveness through various
accuracy-based metrics Chen et al. (2024); Graves et al. (2021), such as unlearning accuracy (UA)
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and retaining accuracy (RA):

UA =
1

∥Df∥
∑

(x,y)∈Df

I[fθ∗(x) = y]; RA =
1

∥Dr∥
∑

(x,y)∈Dr

I[fθ∗(x) = y].

Compare UA and RA on the unlearned model with the results on fθ∗ to assess whether the
unlearning algorithms are successful or not. Commonly, success is declared when UA ≈ 0 and
RA ≈ RA(fθ0 ,Dr) Graves et al. (2021); Bourtoule et al. (2021); Chen et al. (2023); Foster et al.
(2024).

In addition to accuracy-based metrics, some recent works employ MIA Shokri et al. (2017); Chen
et al. (2021) to verify that forgotten samples cannot be distinguished from unseen data, while others
test forgetting quality by measuring how quickly the unlearned model can relearn the forgotten class
through fine-tuning on Df Chundawat et al. (2023b); Golatkar et al. (2020).

However, all these current evaluation paradigms share a common focus on: seeking to answer the
question Are the unlearning samples truly forgotten?. There still is a gap to Can the utility on
forgotten classes be recovered through only an unlearned model?.

2.2 ATTACK ON MACHINE UNLEARNING

Recent research has identified various attack vectors against unlearning systems. Adversarial
approaches exploit the unlearning mechanism to trigger hidden behaviors Di et al. (2022); Liu et al.
(2024) or lag the unlearning to increase computational costs Marchant et al. (2022). Privacy-focused
attacks leverage information leakage to infer training information Chen et al. (2021); Gao et al.
(2022); Lu et al. (2022); Hu et al. (2024). Unlike prior attacks typically require access to original
models Hu et al. (2024); Lu et al. (2022); Chen et al. (2021); Gao et al. (2022) or involve model
modifications Xiao et al. (2025), our approach differs fundamentally in both methodology and
objective. Rather than attempting adversarial exploitation, we demonstrate that utility recovery
on forgotten classes is possible through statistical analysis of black-box outputs alone, revealing
inherent limitations in class unlearning. This suggests that current unlearning processes may not
fully achieve their fundamental objective of removing sample influence, a gap we systematically
investigate in this work.

2.3 RECOVERY EVALUATION

We define how the recovery is evaluated in this work. Given a test dataset Dtest, the utility of the
unlearned model fθ∗ for the forgotten class c can be evaluated by the following metrics:

UA(g ◦ fθ∗ ,Dtest
f ) > 1/K and RA∗ −∆ ≤ RA(g ◦ fθ∗ ,Dtest

r ) ≤ RA∗ +∆, (2)

where ∆ denotes an acceptable change in the accuracy.

The unlearned model that can be deployed to users can obtain positive gain via the processing
method g, which indicates the successful utility recovery. If utility recovery succeeds under these
minimal assumptions, it reveals that the unlearned model retains sufficient residual information
about the forgotten class to enable classification, contradicting the privacy guarantees that unlearning
aims to provide.

3 METHOD

In this section, firstly, we present the theoretical analysis to explain why machine unlearning
inevitably leaves recoverable traces, then propose a post-hoc recovery framework that exposes these
vulnerabilities through statistical analysis of output probability distributions.

3.1 THEORETICAL ANALYSIS

To understand why machine unlearning algorithms inevitably leave recoverable traces of forgotten
information, we analyze the fundamental trade-offs between forgetting completeness and utility
preservation. We establish information-theoretic bounds on residual information (Theorem 1),
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characterize the geometric properties of class-specific forgetting trajectories (Theorem 2), and
quantify the statistical detectability of these residual patterns (Theorem 3). The detailed proofs
of all theorems are presented in Appendix A.

Definition 2 (Residual Information) For an unlearned model fθ∗ and forgotten class c, the residual
information is:

Ires(c) = I(fθ∗(X);Yc | X ∈ Xc), (3)
where I(·; ·) denotes mutual information Cover (1999), Xc is the input distribution of class c, and
Yc is the label indicator for the forgotten class c.

3.1.1 INFORMATION-THEORETIC ANALYSIS

We first delve into complete information removal, which could be impossible when maintaining
utility on retained classes. This reveals a conflict between forgetting specific information and
preserving model capabilities.

Theorem 1 (Incompatibility of Complete Forgetting and Utility Preservation) For any unlearning
algorithm A that maintains accuracy αr ≥ α0 on remaining classes, the residual information
satisfies:

Ires(c) ≥
1

K

[
logK −H

(
1− α0

K − 1

)
− (1− α0) log(K − 1)

]
, (4)

where αr and α0 are the accuracy of the unlearned model fθ∗ and the original model fθ0 on
remaining classes respectively, and H(·) is the entropy function.

This theorem reveals a fundamental trade-off: maintaining high accuracy on retained classes
generally leaves residual information about forgotten classes. The bound increases with a higher
original accuracy α0, as preserving performance requires shared representations that cannot be
completely disentangled. This explains why existing unlearning methods showing good forgetting
performance may still contain recoverable information.

3.1.2 GEOMETRIC ANALYSIS OF FORGETTING TRAJECTORIES

To better understand the source of residual information, we now investigate how this information
manifests in the parameter space.

Theorem 2 (Class-Specific Forgetting Trajectories) For distinct classes ci, cj ∈ Y , their forgetting
trajectories γci(t), γcj (t) satisfy:

E[∥γci(t)− γcj (t)∥2] ≥ δ(t) ·
√

dci + dcj
2K

, (5)

where δ(t) is monotonically increasing for small t with δ(0) = 0 and dci , dcj are the
dimensionalities of the features.

This separation of trajectories occurs because each class has a unique data distribution that
creates distinct gradient patterns during unlearning. The divergence between paths depends on the
distributional differences between classes, where more distinct class distributions lead to greater
trajectory separation. This provides the theoretical foundation for identifying which specific class
was forgotten by analyzing the unlearned model’s behavior.

3.1.3 STATISTICAL DETECTABILITY OF RESIDUAL PATTERNS

The existence of residual information and distinguishable patterns raises a critical question about
practical detectability. We now quantify the sample complexity required to reliably recover the
forgotten class information from finite observations.

Theorem 3 (Recovery Success Bound) Let P [recovery] denote the probability that the recovery
accuracy on forgotten class c exceeds random guessing by margin ε, i.e., P [Accuracy > 1/K + ε].
Given n test samples and residual information Ires(c) > 0, the probability of successful recovery
satisfies:

P [recovery] ≥ 1− exp(−2n · Ires(c)) (6)
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This exponential relationship between sample size and recovery probability has important practical
implications. Even with small residual information, recovery becomes highly probable with
sufficient samples. This explains why we can successfully recover across diverse unlearning
algorithms. Although the traceable signal is weak, it is consistently detectable with reasonable
sample sizes.

Our theoretical framework reveals why the “illusion of forgetting” is inevitable in machine
unlearning. The vulnerability we identify is not a flaw in specific unlearning algorithms but an
inherent consequence of how neural networks encode and share information across classes.

3.2 POST-HOC UTILITY RECOVERY FRAMEWORK

Based on our theoretical insights, we propose the Post-hoc Utility Recovery framework method
to exploit residual information in unlearned models. Specifically, the framework operates through
statistical analysis of output probability distributions in four steps: 1) forgotten class identification,
2) probability distribution extraction & re-scaling, 3) adaptive threshold determination, and 4)
threshold-based Re-prediction.

3.2.1 FORGOTTEN CLASS IDENTIFICATION

In real-world practical scenarios, the downstream model users could not know the unlearned classes.
Therefore, we identify potential forgotten classes through forgotten class detection in the output
distribution. For each output neuron node k ∈ {1, ...,K}, we compute the average probability and
variance on the test dataset, for x ∈ Dtest:

p̄k =
1

|Dtest|
∑

x∈Dtest

pk(x), (7)

where pk(x) = S(fθ∗(x))k and S denotes softmax function. For an initialized model on balanced
data, it expects p̄k ≈ 1/K for all classes. However, forgotten classes exhibit a distinctive
characteristic: near-zero average probability, typically p̄c ≪ 1/K, as the unlearning process
squeezes all outputs for the forgotten class to a range near zero. Based on the forgotten class
detection strategy, we identify the set of potentially forgotten classes as:

Cf = {k : p̄k < κ/K}, (8)
where κ ∈ (0, 1) is a fixed small scaling constant.

3.2.2 PROBABILITY DISTRIBUTION EXTRACTION & RE-SCALING

After identifying forgotten classes Cf , we extract their output probabilities for the downstream
decision. Post-unlearning, the forgotten-class probabilities typically concentrate near zero with
heavy skew and heteroscedastic tails. Direct thresholding on raw p can therefore be unstable: tiny
numeric fluctuations around 0 dominate the decision boundary and become sensitive to skew and
scale. To this end, it is necessary to seek a data transformation that should (i) preserve ranking,
which thus does not change the fixed-quantile operating point, while (ii) correcting skew and
stabilizing within-class variance so that unsupervised thresholding is more reliable at finite sample
sizes. Therefore, we apply the Yeo-Johnson transformation Weisberg (2001), which can preserve the
order but pulls apart the near-zero region and reduces tail sensitivity, which will benefit unsupervised
threshold estimation stability. Formally, the probability value of p ∈ {pc(x1), pc(x2), ..., pc(xNt)},
where Nt denotes the number of test examples, the transformation mapping can be formalized as:

Tλ(p) =

{
(p+1)λ−1

λ if λ ̸= 0,

log(p+ 1) if λ = 0,
(9)

where λ is the transformation parameter, and the optimal parameter λ∗ is selected by maximizing
the Gaussian log-likelihood estimation without any labels:

λ∗ = argmax
λ

n∑
i=1

[
log ϕ

(
Tλ(pi)− µ̄λ

σλ

)
− log σλ + log

∣∣∣∣dTλdp

∣∣
p=pi

∣∣∣∣ ], (10)
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where ϕ is the standard normal PDF, and µ̄λ, σλ are the sample mean and standard deviation of
transformed values.

3.2.3 ADAPTIVE THRESHOLD DETERMINATION

The key insight is that different forgotten classes exhibit distinct patterns in this transformed space
due to their class-specific unlearning trace, i.e., Theorem 2.

Given a set of transformed probability values {Tλ(pi)} for the output corresponding to forgotten
class, regarded as binary classification problems (e.g., x ∈ D′

test or x /∈ D′
test), we apply Otsu’s

method Otsu (1975) adaptive threshold determination method to find the optimal threshold τ∗ that
maximizes the between-class variance:

τ∗ = argmax
τ

σ2
B(τ), (11)

where the between-class variance σ2
B(τ) is:

σ2
B(τ) = ω0(τ)ω1(τ)[µ0(τ)− µ1(τ)]

2, (12)

where ω0(τ) and ω1(τ) are the proportions of samples below and above threshold τ , with
corresponding means µ0(τ) and µ1(τ). For the adaptive thresholding, Gaussian Mixture Models
(GMM) Reynolds (2015) and k-means clustering can also be utilised as an alternative method.

3.2.4 RE-PREDICTION

Once we obtain the transformed probability Tλ∗(p(x)) and the optimal threshold, we can execute
the final classification for Dtest, which is defined as:

ŷ(x) =

{
c if Tλ∗(pc(x)) > τ∗,

argmaxj ̸=cS(fθ∗(x))j otherwise.
(13)

The classification rule allows us to recover the model’s performance from the unlearned model. The
summary of the framework is shown in Algorithm 1.

3.2.5 EXTENSION TO MULTI-CLASS FORGETTING

The framework can be easily extended to a multi-class forgetting scenario. After the identification
of the forgotten classes, we aggregate probabilities across Cf , instead of analyzing each c ∈ Cf
separately. For each sample x ∈ Dtest, aggregate the probabilities across Cf :

pagg(x) =
∑
c∈Cf

pc(x). (14)

This aggregation captures the total response to potentially forgotten samples. Apply the
transformation and threshold determination following in Step 2 3.2.2 and Step 3 3.2.3 to pagg(x)
with optimal parameter λ∗

agg and τ∗agg .

Finally, we can re-predict on Dtest following the classification rules:

ŷ(x) =

{
argmaxc∈Cf

pc(x) if Tλ∗(pagg(x)) > τ∗agg
argmaxj /∈Cf

S(fθ∗(x))j otherwise.
(15)

4 EXPERIMENTS

In this section, we empirically demonstrate the effectiveness of our post-hoc utility recovery
framework across diverse unlearning methods and datasets.

4.1 EXPERIMENTAL SETUP

Datasets & backbone models. We conduct experiments on four benchmark datasets with varying
complexity: MNIST LeCun et al. (1998), FMNIST Xiao et al. (2017), CIFAR-10 Krizhevsky &

6
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Hinton (2009), and CIFAR-100 Krizhevsky & Hinton (2009). For each dataset, we randomly sample
80% as the training set and 20% as the validation set from the original datasets. The test dataset is
used from the officially provided test set.

Following the existing works Chen et al. (2024); Chundawat et al. (2023b), we adopt AllCNN
Springenberg et al. (2014) as the backbone for MNIST and FMNIST, ResNet18 He et al. (2016)
for CIFAR10 and ResNet34 He et al. (2016) for CIFAR-100. All models are trained to converge on
the original dataset before unlearning, details shown in Appendix D.1.

Unlearning Methods. We evaluate 12 state-of-the-art unlearning methods spanning different
approaches. The approaches includes Unroll Thudi et al. (2022), Unroll-F Thudi et al. (2022),
GA Golatkar et al. (2020), Fisher Golatkar et al. (2020), Boundary Shrink (BS) Chen et al. (2023),
Boundary Expand (BE) Chen et al. (2023), Bad-T Chundawat et al. (2023a), SPARSE (SP) Jia
et al. (2023), SCRUB Kurmanji et al. (2023), SALUN Fan et al. (2024), UNSC Chen et al. (2024)
and PRU Zhang et al. (2024). RT is a fundamental method of retraining from scratch on the
remaining classes’ data. Since the RT model is trained only on the remaining classes, the model
has corresponding classification nodes, without the nodes corresponding to the forgotten classes.
The RT original model comes with initialized classifier nodes for evaluation on the forgetting data
Df . More details are shown in Appendix D.2.

Unlearning & Recovery Tasks We evaluate our post-hoc recovery framework across single-class
and multi-class unlearning scenarios. For each method-dataset combination, we first train the
original model fθ0 on the complete dataset D, then apply the unlearning algorithm to forget target
classes, producing unlearned models fθ∗ . For single-class scenarios, we systematically forget each
class individually, providing K experimental target classes per method-dataset combination. For
multi-class scenarios, we randomly select two target classes for MNIST, FMNIST, and CIFAR-10,
and 10 classes for CIFAR-100. Each experiment is repeated three times with different random seeds,
i.e.,{0, 1, 2}, to ensure statistical reliability.

Evaluation Metrics. We report accuracies on forgotten classes (FA) and on remaining classes
(RA) using the unlearned model and the FA and RA results after post-hoc restoration processing.
This directly reflects the two desiderata of class unlearning: (i) removing utility on the forgotten
classes and (ii) preserving utility on the remaining classes. In Tab. 15 and 1, the upper line of each
method shows the unlearned results; the lower line with a gray background shows the post-hoc
restoration utility results. The MIA results to show the unlearning efficacy are shown in Tab. 18.

4.2 MAIN RESULTS

Utility restoration under single- and multi-class unlearning. Tabs. 1 and 15 report results
on four benchmarks and a broad set of unlearning methods. As expected, unlearning suppresses
forgotten-class accuracy (FA) while largely preserving the accuracy on remaining classes (RA), and
the MIA score (reported as TNR) indicates successful erasure under standard criteria. After applying
our post-hoc recovery, however, FA rises by tens of percentage points, whereas RA changes only
marginally (typically < 5%), and this trend holds on all datasets and across unlearning approaches.
In several cases, we even restore strong forgotten-class performance when the corresponding
unlearned FA is exactly zero, showing that “near-zero accuracy” alone can be misleading.

In the single-class scenario 15, when unlearning preserves high RA, the model must retain shared
representations that encode information about the forgotten class; our theory formalizes this
trade-off and lower-bounds the residual information Ires in such scenarios. Consequently, the
probability of successful restoration increases exponentially with both the available samples and
Ires, matching the consistent FA gains we observe. In the multi-class scenario, Tab. 1 shows the
same qualitative pattern: large FA gains after recovery with small RA changes. The level of restored
FA depends on the number of forgotten classes and their semantic proximity, but the conclusion
remains—the forgotten subset’s utility is systematically recoverable from the output space of fθ∗ .

We identify two main failure modes consistent with our analysis and the method designs.
(i) Representation collapse. If unlearning also degrades RA, the retained features become
less informative, shrinking Ires and reducing detectability; this follows directly from the
information-utility trade-off. (ii) Structural constraints at the head. RT retrains from scratch on

7
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Table 1: Unlearning and Recovery on multi-class forgetting (mean ± std over three runs). Upper
line: original unlearned results; lower line (with gray background): Post-hoc recovery results. FA
denotes accuracy on forgotten classes; RA denotes accuracy on remaining classes.

Method MNIST FMNIST CIFAR-10 CIFAR-100

FA RA FA RA FA RA FA RA

Orig 99.52±0.15 99.56±0.04 91.94±4.87 93.27±1.22 91.82±2.52 93.25±0.63 73.04±3.93 72.01±0.44

RT 0.00±0.00 99.63±0.10 0.00±0.00 94.31±1.77 0.00±0.00 94.07±0.85 0.00±0.00 72.78±0.67
47.27±11.73 98.29±0.59 25.62±10.66 89.96±1.66 18.89±5.30 89.72±0.90 2.88±0.56 69.15±0.53

PRU 0.00±0.00 99.43±0.21 0.08±0.09 94.24±1.64 0.00±0.00 94.33±0.91 0.00±0.02 71.14±0.66
49.37±10.15 99.40±0.21 44.71±7.46 93.46±1.39 56.59±7.28 90.95±0.77 14.90±5.33 66.01±0.72

BS 0.69±1.90 74.75±13.06 1.19±2.26 90.51±3.17 0.92±0.67 89.13±0.91 3.07±0.87 61.15±1.58
46.99±21.55 69.18±13.66 14.66±13.25 89.24±3.55 16.08±5.48 84.68±1.55 42.24±5.67 57.79±1.28

BE 8.77±5.19 94.84±2.43 19.15±7.15 91.65±3.25 39.68±3.30 93.27±0.89 35.84±3.45 70.38±0.60
47.57±8.29 94.20±2.83 58.78±7.49 91.28±3.33 83.92±3.30 92.67±0.71 77.22±3.25 67.08±0.32

Unroll 0.00±0.00 55.70±20.97 2.35±8.32 70.90±22.86 49.27±8.35 93.12±1.28 59.58±4.83 72.05±0.55
13.22±9.66 52.42±19.38 50.08±19.09 62.29±22.91 67.58±6.25 92.81±1.21 73.27±3.72 70.90±0.46

Unroll-F 20.16±19.55 97.35±2.30 3.31±4.93 87.93±3.90 29.38±11.93 90.15±2.11 40.93±6.78 70.08±1.10
95.00±2.98 97.31±2.29 36.00±9.34 87.73±3.94 78.18±8.42 88.82±1.46 77.44±5.24 66.25±0.61

UNSC 0.00±0.02 99.55±0.09 0.15±0.11 94.17±1.49 0.00±0.00 94.30±0.86 0.14±0.14 72.88±0.56
64.51±3.77 98.55±0.59 48.85±10.53 90.73±2.09 28.64±3.39 93.17±0.92 31.08±3.71 72.41±0.59

SALUN 0.03±0.04 98.00±1.65 0.07±0.11 92.63±1.35 0.09±0.16 82.43±5.00 14.15±3.68 43.59±5.73
95.49±4.23 97.78±1.67 84.42±10.35 87.71±2.66 58.74±10.94 77.56±7.74 50.61±4.64 40.58±7.12

GA 20.15±13.39 93.63±6.55 6.27±9.39 87.53±10.02 0.24±0.28 81.25±3.87 8.14±10.19 52.34±12.70
64.00±32.87 92.98±6.94 10.07±12.46 86.32±10.96 1.06±0.75 80.92±3.93 32.02±17.48 48.24±13.05

Fisher 3.50±6.86 98.94±0.69 3.42±5.48 93.22±1.98 3.64±3.46 93.78±0.85 0.00±0.00 71.22±0.58
52.15±27.98 97.49±1.57 38.80±22.76 91.74±1.70 41.53±16.55 92.59±0.76 4.41±1.52 67.12±0.47

Bad-T 0.02±0.09 98.06±1.10 2.44±4.47 91.43±2.38 1.45±0.89 91.77±1.40 0.00±0.00 58.99±1.80
51.47±8.12 93.93±1.99 46.84±10.75 85.98±2.31 53.71±5.90 89.75±1.42 33.90±5.19 57.17±1.81

SP 0.00±0.00 99.52±0.07 0.00±0.00 93.67±1.90 0.00±0.00 93.63±0.95 0.77±0.72 71.58±0.66
85.54±5.51 98.62±0.31 53.13±10.99 87.75±2.49 51.31±6.45 88.30±1.27 49.83±3.88 70.26±0.55

SCRUB 2.27±4.31 99.02±0.28 2.01±2.92 92.54±2.19 0.01±0.03 91.12±1.27 6.32±3.12 67.68±0.69
92.96±4.19 98.81±0.36 67.76±13.99 91.24±3.33 79.80±2.51 87.30±1.70 57.46±3.59 66.34±0.66

remaining classes and omits classifier nodes for forgotten classes in the deployed model, which
forces near-zero logits for Cf and limits any black-box restoration. Fisher Golatkar et al. (2020)
explicitly modifies the last-layer head for forgotten classes, further clamping outputs near zero and
diminishing separability after transformation.

Table 2: Comparing the Recall among our method and OOD detection methods on CIFAR-100.

Method PRU BS BE Unroll Unroll-F UNSC SALUN GA Bad-T SP SCRUB

MSP 3.92±1.39 7.86±1.59 15.44±0.39 11.65±0.70 13.46±0.67 15.30±1.18 2.39±1.06 11.16±0.62 10.49±1.05 13.74±0.86 12.40±0.65
Ratio 4.11±1.41 7.76±1.50 14.61±0.49 11.48±0.84 12.98±0.85 14.79±1.12 2.44±1.16 10.74±0.75 9.73±1.17 14.40±1.01 13.52±0.81
Energy 3.16±1.10 6.45±1.25 12.68±0.54 10.94±0.80 11.87±0.73 12.13±0.79 2.24±1.14 11.12±0.76 8.32±0.78 11.33±0.67 10.74±0.69
Margin 3.77±1.33 7.50±1.51 14.83±0.44 11.50±0.69 13.05±0.63 14.89±1.11 2.37±1.04 10.96±0.65 9.68±0.97 13.25±0.83 11.99±0.61
Gini 3.57±1.28 7.34±1.46 14.82±0.42 11.53±0.63 13.05±0.57 14.86±1.00 2.35±0.99 11.07±0.59 9.50±0.93 12.66±0.72 11.40±0.53
Energy+ 3.38±1.22 7.29±1.40 15.27±0.36 11.70±0.53 13.47±0.48 15.29±1.13 2.36±1.03 11.80±0.49 10.29±1.00 12.38±0.63 11.30±0.58
Entropy 4.04±1.43 8.45±1.72 16.81±0.40 11.89±0.78 14.30±0.74 16.40±1.32 2.37±1.05 11.73±0.69 12.98±1.24 14.26±0.95 12.55±0.74
Ours 7.80±3.31 14.46±5.31 94.74±1.89 64.23±4.76 71.04±1.47 66.03±7.13 34.42±1.41 19.61±1.15 29.60±6.54 58.55±1.14 62.38±1.06

Comparison to other possible restoration methods. We introduce six OOD detection methods:
Max Softmax Probability (MSP) Hendrycks & Gimpel (2017), Entropy-based detection Malinin
& Gales (2018), Gini coefficient Liu et al. (2023), likelihood ratio Ren et al. (2019), and Energy
Score-based methods (including overall-based (Energy+) Liu et al. (2020) and specific-based
(Energy) Wang et al. (2021)). The details of these methods are provided in Appendix D.3. For each
method, we report the Recall rate for the forgotten class, which is the ratio of correctly re-predicted
samples to the total number of forgotten class samples on the test set. The results evaluated on
CIFAR-100 are shown in Tab. 2, and the complete results in 16. We observe that our method achieves
the best performance among all compared methods.

How does the probability distribution re-scaling work? As illustrated in Fig. 2, we analyze the
probability distributions for the unlearned class (class 1) on the CIFAR-10 test set, comparing the
original model, the model after unlearning with the SCRUB approach, and the re-scaled probability
distribution. We observe that the unlearning causes the probability distribution of the forgotten
class to be compressed into a narrow range near zero in Fig. 2b. This is the reason why the
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(c) Re-scaled Probability

Figure 2: All samples’ probability distribution for the unlearned class (class 1) on the test-set of
CIFAR-10. We compare the original model, the model after unlearning with SCRUB, and its
re-scaled probability distribution.

unlearning signifies an apparent success in unlearning, where the model loses its classification
ability, and consequently, MIAs consistently classify these samples as non-members, as their outputs
are indistinguishable from true unseen data. This state represents a fragile form of unlearning, as
well as the illusion of forgetting. This illusive forgetting is not a result of true knowledge removal,
but an artifact of the compressed output space, which still leaves significant traceable clues. As
shown in Fig. 2c, the transformation process rescales the distribution to a narrower range, re-enabling
the fundamental clustering assumption and enabling the previously forgotten class samples to be
distinguished once again.

How do data conditions impact utility recovery? We assess the robustness of unlearning
methods against class imbalance and reduced test-set size. The assessment is conducted on
CIFAR-100 with ten forgetting classes. We control class imbalance via a ratio ρ, capping each
unlearn class at ⌊ρ n̄⌋ samples, where n̄ = ⌊N/C⌋ is the average per-class size. Figure 3a reveals
a key trade-off: low imbalance ratios result in poor forgetting efficacy and, paradoxically, degraded
retain-set accuracy. We attribute this to the model misclassifying scarce samples of forgotten classes
into the more dominant retain classes. As ρ increases, forgetting efficacy improves and the accuracy
on remaining classes recovers, with a maximal degradation of only around 5% for most methods.
Finally, Figure 3b shows that evaluation metrics are stable against reduced test-set sizes, confirming
the feasibility of reliable assessment with limited test data.
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Figure 3: Impact of data conditions on utility restorability. We measure the accuracy gain on
forgotten classes (∆Accun) to assess knowledge recovery and on remaining classes (∆Accre) to
evaluate collateral impact. The gain is calculated as ∆Acc = Accrestore − Accunlearn, where
Accunlearn denotes the model accuracy after unlearning and Accrestore denotes its accuracy after
restoring the unlearned model’s utility.

5 CONCLUSION

In this paper, we investigate the illusion of forgetting, the gap between suppressed forgotten-class
accuracy and the residual, recoverable information that persists in an unlearned model’s outputs.
By analyzing the statistical signatures left along unlearning trajectories, we showed that preserving
utility on retained classes can inherently leave structured traces about forgotten classes. Building on
these insights, we proposed a lightweight, black-box post-hoc recovery procedure that rescales the
near-zero outputs via a Yeo–Johnson transformation and applies adaptive thresholding to reconstruct
predictions for forgotten classes. Across some unlearning methods and benchmarks, this framework
restores forgotten-class utility while minimally affecting performance on the remaining classes.
Our findings motivate the development of more robust methods that address recovery risk, such
as evaluation-time transformations, output-space regularization, or structural changes that mitigate
informative collapse without unduly harming retained utility.
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REPRODUCIBILITY STATEMENT

Upon submission, we will release an anonymized code archive with data prep, training/unlearning
wrappers, and our post-hoc recovery implementation on Anonymous Repository. Datasets,
backbones, splits, and full hyperparameters are specified in the paper and the Appendix.

ETHICS STATEMENT

We use only standard public datasets and do not process PII or involve human subjects. Our analysis
targets understanding of class unlearning and is confined to a realistic black-box setting (probability
outputs only; no access to weights, gradients, or training data). We do not interact with deployed
services, and any released artifact is restricted to research models/datasets with risk notes.
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APPENDIX

A MORE RELATED WORKS

A.1 MACHINE UNLEARNING

Machine unlearning aims to remove the influence of specific training data from trained models Cao
& Yang (2015); Bourtoule et al. (2021); Nguyen et al. (2022). Exact unlearning through retraining
from scratch serves as the gold standard but incurs prohibitive computational costs Bourtoule et al.
(2021); Kim & Woo (2022). To address this, approximate unlearning methods have emerged
across several categories: gradient-based approaches that reverse the learning process Graves et al.
(2021); Thudi et al. (2022); Neel et al. (2021), knowledge distillation methods using incompetent
teachers Chundawat et al. (2023a); Tarun et al. (2023), model modification techniques including
parameter pruning and isolation Jia et al. (2023); Chen et al. (2024); Kurmanji et al. (2023),
and boundary manipulation strategies Chen et al. (2023). Recent works also explore orthogonal
projected gradient Hoang et al. (2024) and null space calibration approaches Chen et al. (2024).
However, these methods primarily focus on achieving low accuracy on forgotten data without
considering the recoverability of utility, a critical gap our work addresses.
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A.2 EVALUATION OF MACHINE UNLEARNING

Current evaluation paradigms for machine unlearning primarily rely on performance-based metrics.
These approaches measure forgetting quality through accuracy degradation on forgotten data and
retention quality through maintained performance on remaining data Graves et al. (2021); Chen
et al. (2024). Some work has proposed more sophisticated metrics, such as membership inference
attack (MIA) success rate Shokri et al. (2017); Chen et al. (2021), relearn time Chundawat et al.
(2023b); Golatkar et al. (2020), and activation pattern analysis Foster et al. (2024).

Recent studies have challenged the sufficiency of accuracy-based evaluation.
Information-theory-based approaches attempt to quantify residual information through mutual
information bounds Kurmanji et al. (2023), while certification methods provide theoretical
guarantees under specific assumptions Guo et al. (2020); Sekhari et al. (2021). Empirical evaluation
frameworks have emerged to standardize assessment across different unlearning scenarios Nguyen
et al. (2022).

B DETAILED PROOFS

Here, we provide the complete proof of Theorem 1, Theorem 2, and Theorem 3.

B.1 PROOF OF THEOREM 1

We establish the lower bound through a series of steps:

Definition 3 (Feature Extractor) Let h : X → Rm be the feature extractor (all layers except the
final). The original model achieves high accuracy by learning discriminative features Bengio et al.
(2012):

min
h,W

n∑
i=1

ℓ(WTh(xi), yi). (16)

This creates features where h(x) for x ∈ Xc activates a specific subspace Vc.

Lemma 4 (Mutual Information) The mutual information between random variables X and Y is:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X), (17)

where H(·) denotes entropy and H(·|·) denotes conditional entropy.

1) Mutual Information Decomposition. By the Markov chain Yc → h(X) → fθ∗(X), where
fθ∗(X) is a deterministic function of h(X), the data processing inequality gives:

I(Yc; fθ∗(X) | X ∈ Xc) ≤ I(Yc;h(X) | X ∈ Xc).

By the symmetry of mutual information I(A;B) = I(B;A):

I(fθ∗(X);Yc | X ∈ Xc) ≤ I(h(X);Yc | X ∈ Xc).

Substituting the definition of residual information, i.e., Definition 2:

Ires(c) ≤ I(h(X);Yc | X ∈ Xc).

However, to maintain accuracy αr ≥ α0, the features h(X) must retain discriminative information.

2) Fano’s Inequality Application. For any classifier with error rate ϵ = 1−α0 on K classes, based
on Fano’s Inequality Scarlett & Cevher (2019), we have:

H(Y |h(X)) ≤ H(ϵ) + ϵ log(K − 1), (18)

where H(ϵ) = −ϵ log ϵ− (1− ϵ) log(1− ϵ).

3) Information Lower Bound. I(h(X);Y ) = H(Y ) − H(Y |h(X)) and H(Y ) = logK for
uniform distribution:

I(h(X);Y ) ≥ logK −H(ϵ)− ϵ log(K − 1). (19)
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4) Class-Specific Information. Due to shared feature learning, each class contributes approximately
1/K of the total mutual information. Therefore:

I(h(X);Yc|X ∈ Xc) ≈
1

K
· I(h(X);Y ). (20)

Combine Eq. 19 with the above equation:

I(h(X);Yc | X ∈ Xc) ≥
1

K

[
logK −H(ϵ)

− ϵ log(K − 1)
]
.

(21)

Substitute error rate ϵ = 1− α0 and H(ϵ) = −ϵ log ϵ− (1− ϵ) log(1− ϵ):

Ires(c) ≥
1

K

[
logK −H

(
1− α0

K − 1

)
− (1− α0) log(K − 1)

]
.

(22)

B.2 A.2 PROOF OF THEOREM 2

We establish that forgetting trajectories for distinct classes necessarily diverge in parameter space.

1) Gradient Decomposition. When forgetting class c, the unlearning gradient has two components:

∇θL(c)
unlearn(θ) = ∇θLr(θ;Dr) + λ∇θLf (θ;Dc). (23)

The class-specific component is:

gc(θ) = Ex∼p(x|c)[∇θℓf (fθ(x), c)], (24)

where ℓf is the forgetting loss.

2) Gradient Difference. For distinct classes ci, cj , we analyze:

∥gci(θ)− gcj (θ)∥2 =
∥∥∥Ex∼p(x|ci)[∇θℓf (fθ(x), ci)] (25)

−Ex∼p(x|cj)[∇θℓf (fθ(x), cj)]
∥∥∥2. (26)

Using the fact that the loss function ℓf is designed to maximize entropy for forgotten classes, we
can write:

∇θℓf (fθ(x), c) = −∇θ log pθ(c|x) · I[fθ(x) activates for class c], (27)

where I[·] is the indicator function.

3) Connection to Feature Activation Patterns. Let Ac(θ) ⊂ Rm be the set of feature activation
patterns for class c:

Ac(θ) = {hθ(x) : x ∈ Xc}, (28)

where hθ is the feature extractor Bengio et al. (2012).

We assume that, for well-trained models, classes have partially disjoint activation regions. The
gradient difference satisfies:

∥gci(θ)− gcj (θ)∥2 ≥
λ2

L2
· V (Aci(θ)△Acj (θ)), (29)

where L is the Lipschitz constant of ℓf , △ denotes symmetric difference, and V (·) denotes the
volume (Lebesgue measure) in the feature space Rm Folland (1999).

4) Volume Lower Bound via Dimensionality. We derive a lower bound on the volume of
non-overlapping activation regions using concentration of measure in high dimensions.
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The symmetric difference can be expressed as:

V (Aci(θ)△Acj (θ)) = V (Aci \Acj ) + V (Acj \Aci). (30)

For a well-trained model, the activation regions correspond to the support of feature distributions:

V (Aci \Acj ) =

∫
Rm

P[hθ(X) ∈ dz|Y = ci] · I[z/∈Acj
]dz. (31)

In high-dimensional spaces, by the concentration of measure phenomenon Vershynin (2018), feature
activations concentrate around class-specific manifolds. For features with effective dimension dc,
the measure concentrates in a dc-dimensional subspace of Rm.

The volume of the region where class ci activates but cj does not satisfies:

V (Aci \Acj ) ≥
dci
2K
· P[hθ(X) ∈ Aci \Acj |Y = ci]. (32)

The probability that features from class ci fall outside the activation region of class cj is bounded
by:

P[hθ(X) ∈ Aci \Acj |Y = ci] ≥ β · ∥p(x|ci)− p(x|cj)∥TV, (33)
where β > 0 is a constant depending on the Lipschitz property of hθ.

By symmetry and combining both terms:

V (Aci(θ)△Acj (θ)) = V (Aci \Acj ) + V (Acj \Aci)

≥ dci
2K
· β · ∥p(x|ci)− p(x|cj)∥TV

+
dcj
2K
· β · ∥p(x|ci)− p(x|cj)∥TV

= β ·
dci + dcj

2K
· ∥p(x|ci)− p(x|cj)∥TV.

(34)

For strongly separated classes, the volume scales quadratically with the TV distance due to the
product structure of the activation regions:

V (Aci(θ)△Acj (θ)) ≥ κ ·
(
dci + dcj

2K

)
· ∥p(x|ci)− p(x|cj)∥2TV,

(35)

where κ = β2/c for some constant c > 0, and ∥p−q∥TV = 1
2

∫
|p(x)−q(x)|dx is the total variation

distance between distributions Villani et al. (2008).

Since ci ̸= cj , we have ∥p(x|ci)− p(x|cj)∥TV ≥ ϵ0 > 0 for some constant ϵ0.

5) Trajectory Evolution. Let γci(t) and γcj (t) denote the parameter trajectories when forgetting
classes ci and cj respectively, starting from θ0 Li et al. (2018). The trajectories evolve according to:

γci(t)− γcj (t) = −
∫ t

0

[
∇θL(ci)

unlearn(γci(s)) (36)

−∇θL
(cj)
unlearn(γcj (s))

]
ds. (37)

Substituting the gradient decomposition from A.2.1:

∥γci(t)− γcj (t)∥ ≥ λ

∫ t

0

∥gci(γci(s))− gcj (γcj (s))∥ds (38)

−
∫ t

0

∥∇θLr(γci(s))−O(t2). (39)
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6) Final Lower Bound. Combining the bounds from Steps 3 and 4:

∥gci(θ)− gcj (θ)∥ ≥
λ

L

√
c0 ·

dci + dcj
2K

· ϵ20. (40)

Substituting this into the trajectory bound from Step 5:

E
[
∥γci(t)− γcj (t)∥2

]
≥ λ

∫ t

0

λ

L

√
κϵ20(dci + dcj )

2K
ds

−O(t2)

= δ(t) ·
√

dci + dcj
2K

,

(41)

where δ(t) = λ2κϵ0t
L
√
2
−O(t2) is monotonically increasing for small t with δ(0) = 0. The expectation

is over randomness in the optimization algorithm (e.g., mini-batch sampling).

B.3 PROOF OF THEOREM 3

Here, we analyze the recovery bound through information-theoretic analysis of the hypothesis
testing problem on model outputs.

Lemma 5 (Hoeffding’s Inequality for Bernoulli Random Variables Fan et al. (2021)) Let
X1, X2, . . . , Xn be independent Bernoulli random variables, and let Sn = X1 +X2 + · · · +Xn.
Then, for any t ≥ 0,

P
(∣∣X − E[X]

∣∣ ≥ ε
)
≤ exp

(
−2nε2

)
. (42)

We test whether x belongs to the forgotten class c. Consider the binary hypothesis test:

H0 : x ∼ p(x|y ̸= c);

H1 : x ∼ p(x|y = c).
(43)

Let Z = fθ∗(x)c be the test statistic. Under each hypothesis:

p0(z) = p(Z = z | H0);

p1(z) = p(Z = z | H1).
(44)

To obtain tractable bounds, we have to define the binary statistic, B = I[Z > τ ] = I[fθ∗(x)c > τ ].
By the data processing inequality Cover (1999):

I(B;Yc) ≤ I(Z;Yc) = I(fθ∗(X)c;Yc) = Ires(c). (45)

This inequality is tight when τ is chosen optimally.
Let τ∗ be the threshold maximizing I(B;Yc). Define:

q0 = P (B = 1 | Y ̸= c) = P (fθ∗(X)c > τ∗ | Y ̸= c)

q1 = P (B = 1 | Y = c) = P (fθ∗(X)c > τ∗ | Y = c)
(46)

Without loss of generality, assume q1 > q0.

For binary variables distribution, with π = P (Y = c) = 1
K , through standard information-theoretic

analysis Xu & Raginsky (2017), we can get:

I(B;Yc) ≥ 2π(1− π)(q1 − q0)
2 =

2(K − 1)

K2
(q1 − q0)

2, (47)

where I(B;Yc) = H(B)−H(B | Yc).

For large K, we can get:

(q1 − q0)
2 ≥ K

2
· I(B;Yc) ≥

K

2
· Ires(c) (48)
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Given n test samples {x1, . . . , xn}, and n is finite, we obtain:

B̂n =
1

n

n∑
i=1

I[fθ∗ (xi)c>τ∗] (49)

This is the empirical fraction of samples with logit scores exceeding τ∗. Under H0 (majority of
samples from non-class c): E[B̂n] ≈ q0; under H1 (majority of samples from class c): E[B̂n] ≈ q1.
Since I[fθ∗(xi)c > τ∗] ∈ {0, 1}, by Hoeffding’s inequality Fan et al. (2021):

P
(
B̂n ≥ q0 + t | H0

)
≤ exp(−2nt2) (50)

P
(
B̂n ≤ q1 − t | H1

)
≤ exp(−2nt2) (51)

Substitute threshold η = q0+q1
2 . Setting t = q1−q0

2 :

P (Type I error) = P
(
B̂n > η | H0

)
≤ exp

(
−n(q1 − q0)

2

2

) (52)

P (Type II error) = P
(
B̂n ≤ η | H1

)
≤ exp

(
−n(q1 − q0)

2

2

) (53)

Using the decision threshold η = q0+q1
2 , we can get the overall error probability:

P (error) ≤ exp

(
−n(q1 − q0)

2

2

)
(54)

Substituting the bound from Eq. 47:

P (error) ≤ exp

(
−nKIres(c)

4

)
(55)

For typical machine learning settings with moderate K and considering implementation factors
(suboptimal threshold, finite sample effects), we obtain the conservative bound:

P [recovery] = 1− P (error) ≥ 1− exp(−2n · Ires(c)) (56)

where the constant 2 absorbs the dependence on K and other factors, providing a practical bound
that holds across diverse settings.

C THE ALGORITHM OF THE RECOVERY FRAMEWORK

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 ADDITIONAL TRAINING SETTINGS

We summarize the original model training settings in Tab. 3.

D.2 CONSIDERED MU METHODS AND THEIR IMPLEMENTATION DETAILS

This section provides the details of the considered MU methods and their implementation details.
In the following tables, un-LR denotes the learning rate for unlearning, and un-Epochs denotes
the number of epochs for unlearning. There are two settings for each method, corresponding to
single-class and multi-class unlearning settings (single/multi).
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Algorithm 1 Post-hoc Utility Recovery Framework

Require: Unlearned model fθ∗ , test set Dtest

Ensure: Recovered predictions ŷ
1: # Forgotten Class Identification
2: for k ∈ {1, ...,K} do
3: Pk ← {pk(x) : x ∈ Dtest} where pk(x) = S(fθ∗(x))k
4: end for
5: Cf ← {k : p̄k < 0.1/K}
6: # Probability Distribution Extraction & Re-scaling
7: Pc ← {Pi}i∈Cf

8: λ∗ ← argmaxλ
∑

p∈Pc
log pλ(p)

9: P̃c ← {(Tλ∗(p)) : p ∈ P}
10: # Adaptive Threshold Determination
11: τ∗ ← Otsu’({p̃ : p̃ ∈ P̃})
12: # Re-prediction
13: for x ∈ Dtest do
14: p← S(fθ∗(x))c
15: p̃← Tλ∗(p)
16: if p̃ > τ∗ then
17: ŷ ← c
18: else
19: ŷ ← argmaxj ̸=c S(fθ∗(x))j
20: end if
21: end for
22:
23: return {ŷ}

Table 3: Original model training settings.

Settings MNIST FMNIST CIFAR-10 CIFAR-100

AllCNN AllCNN ResNet-18 ResNet-34

Batch Size 128 128 128 128
Learning Rate 0.01 0.01 0.01 0.01
Epochs 30 60 120 200
Optimizer SGD SGD SGD SGD
Weight Decay 1e−4 1e−4 5e−4 1e−4

Momentum 0.9 0.9 0.9 0.9
Scheduler - MultiStepLR MultiStepLR MultiStepLR
Milestones - [25, 45] [60,90] [100, 150]

Gradient-based Methods:
Unrolling Thudi et al. (2022): Approximates retraining by unrolling SGD steps.

Table 4: Unrolling settings.

Settings MNIST FMNIST CIFAR-10 CIFAR-100

un-LR 0.30/0.31 0.22/0.17 0.20/0.017 0.02/0.01
Sigma 0.036/0.011 0.028/0.01 0.010/0.010 0.020/0.025

Unrolling-F: Unrolling is applied only to forgetting samples.

Table 5: Unrolling-F settings.

Settings MNIST FMNIST CIFAR-10 CIFAR-100

un-LR 0.0040/0.0040 0.0040/0.0018 0.050/0.016 0.0080/0.0024
Sigma 0.0035/0.0036 0.0015/0.0042 0.040/0.015 0.030/0.022
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GA (Gradient Ascent) Golatkar et al. (2020): Maximizes loss on forgetting data.

Table 6: GA settings.

Settings MNIST FMNIST CIFAR-10 CIFAR-100

un-LR 4.7e-5/5.1e-5 8.0e-7/2.8e-4 5.8e-4/4.6e-4 5.0e-4/1.8e-6
un-Epochs 5/5 40/5 5/5 10/20

Fisher Golatkar et al. (2020): Uses Fisher information matrix for selective forgetting.

Table 7: Fisher settings.

Settings MNIST FMNIST CIFAR-10 CIFAR-100

alpha 1e-7/1e-7 1e-7/1e-7 1e-8/1e-8 1e-8/1e-8
un-Epochs 3/3 3/3 3/3 3/3

Boundary Manipulation:
Boundary Shrink Chen et al. (2023): Contracts decision boundaries around forgotten class.
Boundary Expand Chen et al. (2023): Expands boundaries to exclude forgotten class.

Table 8: Boundary Shrink and Boundary Expand settings.

Settings MNIST FMNIST CIFAR-10 CIFAR-100

un-LR (Boundary Shrink) 4.3e-5/5.0e-5 1.0e-5/5.2e-4 3.3e-4/3.0e-4 5.0e-4/1.7e-4
un-LR (Boundary Expand) 3.6e-5/3.6e-5 5.0e-5/1.63e-5 5.0e-5/1.14e-5 1.0e-5/1.0e-5

Knowledge Distillation: Bad Teacher Chundawat et al. (2023a): Uses incompetent teacher for
selective forgetting.

Table 9: Bad Teacher settings.

Settings MNIST FMNIST CIFAR-10 CIFAR-100

un-LR 7.0e-3/1.0e-2 5.0e-2/4.0e-2 1.0e-1/9.2e-2 7.5e-2/9.4e-3
un-Epochs 7/3 5/5 60/35 40/40
Temperature 1.0/1.0 1.0/1.0 1.2/2.3 2.7/2.5

Model Modification: Sparse Unlearning Jia et al. (2023): Leverages model sparsity for efficient
unlearning.

Table 10: Sparse Unlearning settings.

Settings MNIST FMNIST CIFAR-10 CIFAR-100

un-LR 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01
un-Epochs 10/10 10/10 10/10 10/10
Pruning-Rate 0.95/0.95 0.95/0.95 0.95/0.95 0.95/0.95

SCRUB Kurmanji et al. (2023): Selective gradient updates with regularization.

Table 11: SCRUB settings.

Settings MNIST FMNIST CIFAR-10 CIFAR-100

un-LR 2.7e-6/2.0e-5 2.0e-5/2.0e-5 1e-5/1e-5 4.4e-6/4.4e-6
un-Epochs 3/3 3/3 3/3 35/35
alpha 0.57/0.30 0.64/0.30 0.57/0.60 0.51/0.41
gamma 2.70/1.00 1.00/1.00 1.00/1.00 4.78/4.97

SALUN Fan et al. (2024): Gradient-based weight saliency approach.

Table 12: SALUN settings.

Settings MNIST FMNIST CIFAR-10 CIFAR-100

un-LR 3.7e-5/2.0e-5 4.0e-5/7.0e-5 4.5e-5/4.4e-5 5.5e-4/5.6e-4
un-Epochs 15/10 8/8 15/15 7/7
threshold 0.57/0.7 0.64/0.3 0.57/0.57 0.51/0.54
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Null Space Methods: UNSC Chen et al. (2024): Projects gradients onto null space.

Table 13: UNSC settings.

Settings MNIST FMNIST CIFAR-10 CIFAR-100

un-LR 0.01/0.01 0.01/0.01 0.05/0.05 0.05/0.05
un-Epochs 10/10 15/15 25/25 25/25

PRU Zhang et al. (2024): Perception revising unlearning.

Table 14: PRU settings.

Settings MNIST FMNIST CIFAR-10 CIFAR-100

shift epoch 15/10 10/10 10/10 50/10
shift lr 2.8e-5/8.0e-5 1.0e-5/2.0e-5 1.0e-4/5.0e-4 1.35e-6/2.00e-6
shift lambda 1 1 1 1
refine epochs 5/1 1/1 2/1 40/1
refine lr 1.45e-3/3.00e-3 2.00e-3/1.00e-3 4.00e-3/5.00e-3 2.00e-2/2.00e-2

D.3 DETAILS OF THE OOD DETECTION METHODS

Max Softmax Probability (MSP) Hendrycks & Gimpel (2017). Detect OOD by thresholding
the model’s maximum predicted class probability. Lower MSP indicates higher OOD likelihood.
The MSP score is defined as:

MSP(x) = max
k∈{1,...,K}

pk(x), pk(x) =
efk(x)∑K
j=1 e

fj(x)
.

Entropy-based detection Malinin & Gales (2018). Use predictive uncertainty via Shannon
entropy; higher entropy suggests OOD. The entropy score is defined as:

H(x) = −
K∑

k=1

pk(x) log pk(x).

Decide OOD by thresholding H(x) (or equivalently use −H(x) as an in-distribution score).

Gini (impurity) score Liu et al. (2023). Measure concentration of the predictive distribution using
Gini impurity. A higher Gini score indicates a more uniform distribution, which suggests OOD. The
Gini score is defined as:

Gini(x) = 1−
K∑

k=1

pk(x)
2.

Ratio (likelihood ratio) Ren et al. (2019). Correct raw likelihoods using a background model to
discount generic statistics. Lower ratio indicates OOD. The ratio score is defined as:

sLR(x) = log pθ(x)− log pbg(x) = log
pθ(x)

pbg(x)
.

Energy Score (overall-based) Liu et al. (2020). Compute the (free) energy from logits via
log-sum-exp; higher energy indicates OOD. The energy score is defined as:

E(x; f) = T log

K∑
k=1

exp
(fk(x)

T

)
.

Often, the negative energy −E(x; f) is used as an in-distribution score.
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Energy Score (label-/class-specific; joint) Wang et al. (2021). For multi-label settings, aggregate
label-wise energies to capture joint evidence. Higher joint energy suggests OOD. The joint energy
score is defined as:

Ek(x) = log
(
1 + e fk(x)

)
, Ejoint(x) =

K∑
k=1

Ek(x).

where Ek(x) is the energy score for class k. Threshold −Ejoint(x) as an in-distribution score.

In the summarization of the above methods, fk(x) denotes the logits for class k, pk(x) = efk(x)∑
j efj(x) ,

K is the number of classes, and T > 0 is a temperature.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 RECOVERY RESULTS FOR SINGLE-CLASS UNLEARNING

Table 15: Results of Unlearning and Recovery on Single-Class forgetting (mean± std over three
runs). Upper line: original unlearned results; lower line (with gray background): post-hoc recovered
results. FA is accuracy on forgotten classes; RA is accuracy on remaining classes.

Method MNIST FMNIST CIFAR-10 CIFAR-100

FA RA FA RA FA RA FA RA

Orig 99.54±0.26 99.55±0.03 93.00±6.69 93.00±0.74 92.96±3.94 92.96±0.44 74.63±11.21 72.09±0.11

RT 0.00±0.00 99.49±0.56 0.00±0.00 93.60±1.23 0.00±0.00 93.32±0.65 0.00±0.00 72.06±0.32
89.53±8.70 97.43±1.87 49.25±14.58 87.87±0.90 44.67±10.62 87.28±1.12 46.57±12.38 67.77±0.65

PRU 0.00±0.00 98.19±1.68 0.19±0.27 91.45±3.86 0.00±0.00 93.06±0.79 0.00±0.00 70.61±1.29
90.87±3.13 98.18±1.69 84.41±12.99 90.77±4.71 88.34±5.15 92.13±0.58 81.13±8.84 70.07±1.38

BS 10.60±6.72 95.58±4.68 0.08±0.12 91.04±1.69 6.56±1.34 91.34±0.89 0.53±0.78 59.34±3.44
90.77±4.97 95.40±5.00 77.62±12.92 90.76±1.60 63.37±6.47 91.27±0.84 52.77±9.31 59.16±3.44

BE 12.57±9.27 83.26±10.00 11.80±3.16 89.00±5.83 24.75±4.42 91.43±1.15 2.17±1.74 62.26±4.66
89.20±4.80 82.33±10.98 89.58±9.42 87.88±7.14 83.79±5.90 91.11±1.03 50.03±9.73 62.20±4.67

Unroll 0.00±0.00 87.45±16.66 0.03±0.10 82.15±13.66 5.45±5.72 90.17±6.14 12.73±10.01 71.32±0.36
80.22±21.24 80.27±18.19 69.14±17.49 78.80±14.33 77.22±11.48 89.39±6.34 66.80±12.72 71.24±0.35

Unroll-F 0.24±0.55 94.97±5.01 59.53±13.26 90.75±3.43 3.40±3.73 88.66±1.92 2.33±3.48 70.03±0.60
95.94±2.62 93.00±9.52 88.06±9.88 90.41±3.47 47.79±18.03 88.63±1.91 38.67±9.85 70.03±0.60

UNSC 0.02±0.04 99.49±0.07 0.16±0.24 93.47±1.16 0.00±0.00 93.27±0.71 0.00±0.00 71.73±0.32
83.99±4.85 98.48±1.02 61.99±20.07 89.64±2.01 40.86±9.14 92.05±0.78 45.07±18.14 70.96±0.77

SALUN 0.16±0.28 98.28±1.40 0.64±0.44 91.83±1.02 1.84±1.71 88.12±1.49 3.60±3.39 66.98±1.38
96.94±1.23 98.25±1.40 88.67±8.58 91.43±0.99 84.20±13.07 87.12±1.59 80.60±10.40 66.25±1.68

GA 9.62±3.85 93.00±8.69 12.39±4.02 89.68±4.47 4.38±2.11 84.99±2.88 1.03±1.35 63.42±4.06
84.04±6.60 92.53±9.97 83.39±10.48 89.36±4.63 29.03±2.70 84.98±2.88 41.83±10.96 63.39±4.07

Fisher 2.63±5.31 98.87±0.51 3.67±10.05 92.18±1.34 5.06±5.89 92.63±0.75 0.00±0.00 70.30±0.26
99.11±0.60 95.62±2.81 87.25±9.99 89.47±1.25 85.67±5.04 90.77±0.70 54.57±13.65 65.80±0.32

Bad-T 0.00±0.00 98.72±0.40 1.02±2.67 90.70±1.56 1.64±2.96 91.96±1.46 1.37±1.94 66.50±0.61
99.90±0.10 94.79±1.98 97.98±1.85 86.85±2.24 96.26±2.34 90.00±1.23 83.50±9.10 65.68±0.65

SP 0.00±0.00 99.47±0.05 0.00±0.00 92.69±1.41 0.00±0.00 92.50±0.74 0.83±1.84 70.68±0.37
95.32±3.82 98.53±0.34 74.36±11.43 85.31±2.36 67.05±8.19 86.65±1.20 84.77±4.86 69.44±0.79

SCRUB 0.36±1.17 99.29±0.08 2.44±7.28 91.49±1.53 0.01±0.04 89.33±0.96 7.57±8.67 66.22±0.33
97.02±1.63 99.09±0.14 88.83±6.59 89.73±1.90 89.98±3.84 85.92±1.99 88.90±4.30 64.79±0.79

E.2 THE COMPLETE RESULTS OF COMPARISON METHODS ON CIFAR-100

These are complementary results for Tab. 2; we additionally include RT and Fisher.
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Table 16: Comparing the Recall among the proposed method and OOD detection methods on
CIFAR-100.

Method RT PRU BS BE Unroll Unroll-F UNSC SALUN GA Fisher Bad-T SP SCRUB

MSP 1.67±0.39 3.92±1.39 7.86±1.59 15.44±0.39 11.65±0.70 13.46±0.67 15.30±1.18 2.39±1.06 11.16±0.62 1.83±0.59 10.49±1.05 13.74±0.86 12.40±0.65
Ratio 1.66±0.40 4.11±1.41 7.76±1.50 14.61±0.49 11.48±0.84 12.98±0.85 14.79±1.12 2.44±1.16 10.74±0.75 1.82±0.58 9.73±1.17 14.40±1.01 13.52±0.81
Energy 1.26±0.30 3.16±1.10 6.45±1.25 12.68±0.54 10.94±0.80 11.87±0.73 12.13±0.79 2.24±1.14 11.12±0.76 1.38±0.46 8.32±0.78 11.33±0.67 10.74±0.69
Margin 1.62±0.40 3.77±1.33 7.50±1.51 14.83±0.44 11.50±0.69 13.05±0.63 14.89±1.11 2.37±1.04 10.96±0.65 1.75±0.56 9.68±0.97 13.25±0.83 11.99±0.61
Gini 1.58±0.37 3.57±1.28 7.34±1.46 14.82±0.42 11.53±0.63 13.05±0.57 14.86±1.00 2.35±0.99 11.07±0.59 1.69±0.54 9.50±0.93 12.66±0.72 11.40±0.53
Energy+ 1.48±0.31 3.38±1.22 7.29±1.40 15.27±0.36 11.70±0.53 13.47±0.48 15.29±1.13 2.36±1.03 11.80±0.49 1.62±0.53 10.29±1.00 12.38±0.63 11.30±0.58
Entropy 1.72±0.38 4.04±1.43 8.45±1.72 16.81±0.40 11.89±0.78 14.30±0.74 16.40±1.32 2.37±1.05 11.73±0.69 1.93±0.63 12.98±1.24 14.26±0.95 12.55±0.74
Ours 1.99±0.39 7.80±3.31 14.46±5.31 94.74±1.89 64.23±4.76 71.04±1.47 66.03±7.13 34.42±1.41 19.61±1.15 2.50±0.88 29.60±6.54 58.55±1.14 62.38±1.06

E.3 MIA EVALUATION

Table 17: Membership inference (MIA) for Single-class unlearning. AUROCF /AUROCR

are AUCs on the forgotten/retained subsets (positive = member). F-TPR5/R-TPR5 denote the
true positive rate at FPR = 5% on the forgotten/retained subsets. MIAI (SVM–TNR) is the
true-negative rate on the forgotten set, TN/|Du| (↑ indicates stronger privacy). MIAII is the
attacker accuracy at the shadow-optimal threshold τ∗ chosen to maximize balanced shadow accuracy
(values near 50% indicate chance).

Method MNIST Fashion-MNIST
AUROCF AUROCR F−TPR5 R−TPR5 MIAI MIAII AUROCF AUROCR F−TPR5 R−TPR5 MIAI MIAII

RT 49.93±0.09 50.01±0.03 4.88±0.30 4.57±0.09 100.00±0.00 51.89±0.49 49.97±0.09 49.25±0.31 4.87±0.26 2.56±0.73 100.00±0.00 58.50±1.99
PRU 50.01±0.09 49.95±0.06 4.95±0.40 4.64±0.16 99.99±0.03 50.81±0.38 49.56±0.27 49.22±0.30 3.49±0.63 2.80±0.71 100.00±0.00 57.01±1.57
BS 49.98±0.14 49.94±0.10 4.89±0.41 4.31±0.79 94.97±13.68 50.74±0.30 49.61±0.32 48.95±0.40 3.92±0.49 2.15±0.81 99.47±1.60 55.25±1.30
BE 49.91±0.15 49.91±0.08 4.52±0.40 4.02±0.84 92.08±10.61 50.52±0.33 48.90±0.77 49.21±0.35 2.98±0.81 1.93±0.64 99.37±0.40 55.73±0.73
Unroll 50.01±0.17 49.99±0.06 5.06±0.48 4.78±0.46 58.29±30.03 50.35±0.33 49.90±0.16 49.68±0.26 4.64±0.90 4.12±0.85 80.27±30.57 50.90±0.89
Unroll-F 50.01±0.12 49.89±0.05 4.92±0.38 4.26±0.48 88.47±16.54 50.47±0.24 49.61±0.37 48.98±0.36 4.27±0.96 1.07±0.77 98.90±2.15 53.96±1.08
UNSC 50.33±0.16 49.94±0.04 4.94±0.29 1.61±2.21 100.00±0.00 51.22±0.23 49.88±0.26 49.18±0.24 3.70±0.61 0.27±0.97 100.00±0.00 57.06±2.07
SALUN 50.04±0.12 50.01±0.04 4.94±0.29 4.78±0.10 100.00±0.00 50.97±0.27 49.62±0.16 49.68±0.32 3.33±0.47 2.19±0.55 100.00±0.00 56.02±1.44
GA 49.90±0.45 49.92±0.08 4.95±0.29 2.00±1.84 84.40±18.17 50.49±0.26 49.60±0.47 49.08±0.31 4.50±0.44 1.40±1.30 97.86±3.48 53.48±0.88
Fisher 49.98±0.10 49.97±0.04 4.96±0.28 4.65±0.13 95.06±12.57 50.75±0.25 49.43±0.29 49.13±0.35 3.67±0.54 2.48±0.79 100.00±0.00 55.69±1.17
Bad-T 50.01±0.13 50.00±0.05 5.12±0.39 4.79±0.14 36.85±37.02 50.25±0.38 49.82±0.09 49.66±0.18 4.30±0.35 3.62±0.42 99.96±0.12 51.85±0.31
SP 49.93±0.10 49.99±0.02 4.76±0.26 4.57±0.11 99.89±0.52 50.88±0.16 49.93±0.05 49.11±0.32 4.80±0.18 2.48±0.74 100.00±0.00 55.65±1.29
SCRUB 49.94±0.12 50.02±0.04 4.91±0.37 4.77±0.16 67.34±24.97 50.48±0.44 49.84±0.08 49.43±0.25 4.54±0.20 3.37±0.66 98.48±4.20 52.12±0.89

M CIFAR-10 CIFAR-100
AUROCF AUROCR F−TPR5 R−TPR5 MIAI MIAII AUROCF AUROCR F−TPR5 R−TPR5 MIAI MIAII

RT 50.02±0.13 49.21±0.15 5.14±0.32 0.20±0.76 100.00±0.00 57.46±0.93 50.09±0.18 47.30±0.12 5.21±0.35 0.00±0.00 100.00±0.00 75.86±0.59
PRU 49.70±0.13 49.38±0.14 3.89±0.44 2.83±0.45 100.00±0.00 57.00±0.80 49.92±0.09 48.21±0.16 4.56±0.40 0.02±0.01 100.00±0.00 72.45±0.58
BS 49.68±0.11 49.02±0.15 4.14±0.26 1.44±0.64 99.87±0.50 54.44±0.74 48.62±0.36 45.82±0.18 3.61±0.36 0.92±0.21 97.96±0.92 67.17±1.18
BE 46.92±0.97 49.09±0.17 2.54±0.69 0.03±0.02 92.64±2.71 56.71±0.75 41.65±0.89 46.93±0.12 0.34±0.14 0.01±0.00 72.44±2.73 74.31±0.55
Unroll 46.94±1.09 49.13±0.20 2.83±0.80 0.49±0.84 82.86±5.59 56.42±0.81 44.40±1.09 47.19±0.15 0.41±0.43 0.00±0.00 36.32±10.00 75.00±0.76
Unroll-F 48.72±0.96 48.97±0.21 3.77±0.63 0.97±0.67 92.73±3.39 55.25±1.21 43.10±0.84 46.84±0.23 0.75±0.60 0.02±0.02 56.96±10.25 73.61±1.02
UNSC 49.73±0.15 48.99±0.18 4.11±0.43 0.00±0.00 100.00±0.00 56.01±0.67 49.60±0.17 46.66±0.12 4.02±0.50 0.00±0.00 100.00±0.00 73.70±0.50
SALUN 49.80±0.10 49.44±0.11 4.41±0.33 2.23±0.92 99.98±0.04 53.40±0.86 49.96±0.10 49.89±0.36 4.78±0.43 4.78±0.31 76.35±12.06 50.90±1.82
GA 49.87±0.09 48.97±0.17 4.82±0.25 1.81±0.70 99.48±0.92 53.68±0.80 45.36±0.76 47.08±0.10 0.02±0.01 0.00±0.00 18.10±3.37 74.89±0.52
Fisher 49.30±0.25 49.26±0.14 3.27±0.43 2.50±0.36 100.00±0.00 56.90±0.74 49.45±0.11 47.24±0.12 3.30±0.47 0.01±0.00 100.00±0.00 74.28±0.50
Bad-T 49.40±0.18 49.24±0.26 3.05±0.56 1.69±0.97 100.00±0.00 55.44±0.61 49.63±0.10 47.92±0.10 4.08±0.34 3.00±0.13 97.89±4.47 56.97±0.44
SP 49.88±0.07 49.21±0.15 4.63±0.25 2.28±0.61 100.00±0.00 56.24±0.80 49.79±0.07 47.79±0.10 4.33±0.28 0.21±0.02 99.98±0.04 66.56±0.46
SCRUB 49.87±0.08 49.34±0.14 4.61±0.32 3.01±0.37 99.93±0.27 53.12±0.58 49.66±0.13 47.50±0.12 4.19±0.32 0.89±0.06 95.25±2.46 62.43±0.55

Membership inference evaluation. We evaluate MIA on the unlearned model to quantify whether
training membership can be inferred from outputs Shokri et al. (2017); Jia et al. (2023); Chen
et al. (2024); Kurmanji et al. (2023); Chen et al. (2023). To stabilize the attack across datasets
and methods, we feed a fusion feature that is the concatenation of five prediction statistics into a
binary SVM, including correctness (argmax equals the label), confidence py , entropy H(p), loss
− log py , and margin p(1) − p(2). MIA proceeds in two phases: (1) a shadow training phase where
we firstly construct a balanced retained shadow dataset (retained training data as members, retained
test data as non-members) and learn the SVM decision; and (2) an attack phase where the learned
attacker is applied to the forgotten set Du and retained evaluation splits. We report two metrics
following the existing works: MIAI is the true negative rate on the forgotten set, TN/|Du| (higher
↑ indicates stronger privacy); and MIAII is the attacker’s accuracy at the shadow-optimal threshold
τ∗ chosen to maximize balanced shadow accuracy (values near 50% indicate chance). In addition,
we include AUROC and TPR@5%FPR as complementary, widely used summaries. AUROC is
threshold-free and prevalence-robust, which equals the probability that a random member receives a
higher attack score than a random non-member (0.5 = chance). TPR@5%FPR captures operational
attack strength under a low false-positive budget that is relevant for privacy claims. Concretely,
for each example x we compute an attack score s(x) (SVM decision value or one of the scalar
scores), form member/non-member score sets for the subset of interest (forgotten F or retained
R), compute AUROC from the ROC curve, and obtain TPR@5%FPR by selecting a threshold
on a retained-only, balanced validation set to achieve FPR ≈ 0.05 (no test-label peeking), then
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measuring the corresponding TPR on the evaluation split. All operating-point metrics are computed
with balanced sampling, and results are averaged over multiple seeds for statistical stability.

Table 18: Membership inference (MIA) for Multi-class unlearning. AUROCF /AUROCR are
AUCs on the forgotten/retained subsets (positive = member). F-TPR5/R-TPR5 denote the true
positive rate at FPR = 5% on the forgotten/retained subsets. MIAI (SVM–TNR) is the
true-negative rate on the forgotten set, TN/|Du| (↑ indicates stronger privacy). MIAII is the
attacker accuracy at the shadow-optimal threshold τ∗ chosen to maximize balanced shadow accuracy
(values near 50% indicate chance).

Method MNIST Fashion-MNIST
AUROCF AUROCR F−TPR5 R−TPR5 MIAI MIAII AUROCF AUROCR F−TPR5 R−TPR5 MIAI MIAII

RT 49.94±0.09 50.01±0.03 4.85±0.27 4.60±0.08 100.00±0.00 51.81±0.51 49.98±0.04 49.21±0.27 4.89±0.13 2.57±0.73 100.00±0.00 58.44±1.98
PRU 50.05±0.08 50.01±0.03 5.09±0.25 4.66±0.13 100.00±0.00 50.91±0.22 49.56±0.23 49.22±0.24 3.49±0.67 2.80±0.71 100.00±0.00 56.99±1.56
BS 50.01±0.09 49.83±0.13 5.03±0.26 4.19±0.71 85.98±27.00 50.68±0.24 49.61±0.28 48.95±0.34 3.92±0.49 2.15±0.81 99.30±1.97 55.27±1.29
BE 49.88±0.12 49.97±0.06 4.56±0.28 4.53±0.43 95.05±17.07 50.77±0.24 48.90±0.69 49.21±0.30 2.98±0.81 1.93±0.64 99.31±0.48 55.73±0.73
Unroll 49.99±0.09 50.01±0.12 5.02±0.31 4.76±0.67 45.84±25.64 50.31±0.24 49.90±0.14 49.68±0.22 4.64±0.90 4.12±0.85 81.33±28.03 50.89±0.92
Unroll-F 50.05±0.20 49.87±0.06 5.04±0.22 4.41±0.47 92.46±12.61 50.69±0.35 49.61±0.33 48.98±0.31 4.27±0.96 1.07±0.77 99.05±1.74 53.94±1.06
UNSC 50.30±0.10 49.96±0.03 5.00±0.17 1.52±2.20 100.00±0.00 51.24±0.17 49.88±0.23 49.18±0.21 3.70±0.61 0.27±0.97 100.00±0.00 57.05±2.09
SALUN 50.01±0.07 50.01±0.05 4.90±0.32 4.78±0.11 100.00±0.00 50.94±0.26 49.62±0.14 49.68±0.28 3.33±0.47 2.19±0.55 100.00±0.00 56.03±1.44
GA 49.90±0.39 49.92±0.07 4.95±0.27 2.00±1.84 84.41±13.51 50.48±0.27 49.60±0.42 49.08±0.27 4.50±0.44 1.40±1.30 98.06±3.53 53.47±0.87
Fisher 49.98±0.08 49.97±0.03 4.96±0.26 4.65±0.12 96.48±10.38 50.74±0.22 49.43±0.26 49.13±0.31 3.67±0.54 2.48±0.79 100.00±0.00 55.67±1.17
Bad-T 50.01±0.11 50.00±0.04 5.12±0.36 4.79±0.13 28.04±36.22 50.33±0.34 49.82±0.08 49.66±0.16 4.30±0.35 3.62±0.42 95.94±16.00 51.85±0.33
SP 49.93±0.09 49.99±0.02 4.76±0.24 4.57±0.10 99.91±0.48 50.86±0.14 49.93±0.04 49.11±0.28 4.80±0.18 2.48±0.74 100.00±0.00 55.65±1.28
SCRUB 49.94±0.11 50.02±0.03 4.91±0.35 4.77±0.14 64.47±21.09 50.46±0.43 49.84±0.07 49.43±0.22 4.54±0.20 3.37±0.66 99.48±1.42 52.16±0.83

Method CIFAR-10 CIFAR-100
AUROCF AUROCR F−TPR5 R−TPR5 MIAI MIAII AUROCF AUROCR F−TPR5 R−TPR5 MIAI MIAII

RT 50.03±0.07 49.21±0.12 5.14±0.27 0.20±0.76 100.00±0.00 57.45±0.84 50.05±0.06 47.30±0.10 5.21±0.29 0.00±0.00 100.00±0.00 75.84±0.49
PRU 49.70±0.11 49.38±0.12 3.89±0.38 2.83±0.45 100.00±0.00 57.00±0.71 49.92±0.08 48.21±0.13 4.56±0.33 0.02±0.01 100.00±0.00 72.45±0.48
BS 49.68±0.09 49.02±0.13 4.14±0.22 1.44±0.64 99.94±0.13 54.42±0.66 48.62±0.30 45.82±0.15 3.61±0.30 0.92±0.21 97.93±0.94 67.17±0.99
BE 46.92±0.84 49.09±0.15 2.54±0.60 0.03±0.02 92.59±2.76 56.71±0.66 41.65±0.74 46.93±0.10 0.34±0.12 0.01±0.00 72.43±2.86 74.31±0.45
Unroll 46.94±0.95 49.13±0.17 2.83±0.70 0.49±0.84 82.97±5.75 56.43±0.71 44.40±0.91 47.19±0.12 0.41±0.36 0.00±0.00 36.23±9.84 75.02±0.63
Unroll-F 48.72±0.83 48.97±0.18 3.77±0.55 0.97±0.67 92.65±3.35 55.26±1.07 43.10±0.70 46.84±0.19 0.75±0.50 0.02±0.02 57.01±10.27 73.61±0.86
UNSC 49.73±0.13 48.99±0.16 4.11±0.38 0.00±0.00 100.00±0.00 56.01±0.60 49.60±0.14 46.66±0.10 4.02±0.42 0.00±0.00 100.00±0.00 73.69±0.40
SALUN 49.80±0.08 49.44±0.09 4.41±0.29 2.23±0.92 99.98±0.04 53.36±0.77 49.96±0.08 49.89±0.30 4.78±0.36 4.78±0.31 78.09±11.66 50.88±1.55
GA 49.87±0.08 48.97±0.15 4.82±0.22 1.81±0.70 99.69±0.37 53.66±0.71 45.36±0.63 47.08±0.08 0.02±0.01 0.00±0.00 18.21±3.36 74.90±0.43
Fisher 49.30±0.22 49.26±0.12 3.27±0.38 2.50±0.36 100.00±0.00 56.92±0.66 49.45±0.09 47.24±0.10 3.30±0.39 0.01±0.00 100.00±0.00 74.28±0.41
Bad-T 49.40±0.16 49.24±0.23 3.05±0.49 1.69±0.97 100.00±0.00 55.45±0.53 49.63±0.08 47.92±0.08 4.08±0.28 3.00±0.13 97.73±5.31 56.99±0.34
SP 49.88±0.06 49.21±0.13 4.63±0.22 2.28±0.61 100.00±0.00 56.24±0.72 49.79±0.06 47.79±0.08 4.33±0.23 0.21±0.02 99.98±0.04 66.56±0.37
SCRUB 49.87±0.07 49.34±0.12 4.61±0.28 3.01±0.37 99.59±2.04 53.09±0.52 49.66±0.11 47.50±0.10 4.19±0.27 0.89±0.06 95.30±2.54 62.43±0.44

F THE USE OF LLMS

We used large language models (LLMs) strictly as writing aids for language refinement. Concretely,
LLM prompts were limited to grammar correction, concise rephrasing, and minor reorganization of
sentences or paragraphs to improve clarity and brevity.

Scope and limitations. LLMs were not used for ideation, method or theorem development/proofs,
algorithm design, experimental setup or tuning, data collection/labeling, result selection, code
generation, figure creation, or statistical analysis. All technical content (definitions, theorems,
proofs, algorithms, experiments, and conclusions) is authored and validated by the authors.
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