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Abstract

Exploration is a key challenge in Reinforcement Learning, especially in long-
horizon, deceptive and sparse-reward environments. For such applications,
population-based approaches have proven effective. Methods such as Quality-
Diversity deals with this by encouraging novel solutions and producing a diversity
of behaviours. However, these methods are driven by either undirected sampling
(i.e. mutations) or use approximated gradients (i.e. Evolution Strategies) in the
parameter space, which makes them highly sample-inefficient. In this paper, we pro-
pose a model-based Quality-Diversity approach. It extends existing QD methods to
use gradients for efficient exploitation and leverage perturbations in imagination for
efficient exploration. Our approach optimizes all members of a population simulta-
neously to maintain both performance and diversity efficiently by leveraging the
effectiveness of QD algorithms as good data generators to train deep models. We
demonstrate that it maintains the divergent search capabilities of population-based
approaches on tasks with deceptive rewards while significantly improving their
sample efficiency and quality of solutions.

1 Introduction
Reinforcement Learning (RL) has demonstrated tremendous abilities to learn challenging tasks across
a range of applications [27, 38, 1]. However, they generally struggle with exploration as the agent
can only gather data by interacting with the environment. On the other hand, population based
learning methods have shown to be very effective approaches [20, 42, 11, 44]. In contrast to single
agent learning, training a population of agents allow diverse behaviors and data to be collected. This
results in exploration that can better handle sparse and deceptive rewards [11] as well as alleviate
catastrophic forgetting [8].

An effective way to use the population of agents for exploration are novelty search methods [23, 8]
where the novelty of the behaviors of new agents is measured with respect to the population. This
novelty measure is then used in place of the conventional task reward similar to curiosity and intrinsic
motivation approaches [31, 2, 33]. Quality-Diversity (QD) [34, 10, 3] extends this but also optimizes
all members of the population on the task reward while maintaining the diversity through novelty.
Beyond exploration, the creativity involved in finding various ways to solve a problem/task (i.e. the
QD problem) is an interesting aspect of general intelligence that is also associated with adaptability.
For instance, discovering diverse walking gaits can enable rapid adaptation to damage [10].

However, a drawback of conventional population based approaches is the large amounts of samples
and evaluations required, usually in the order of millions. Some methods that utilize Evolutionary
Strategies (ES) and more recently MAP-Elites [28] (a common QD algorithm), sidestep this issue
as they can parallelize and scale better with compute [35, 8, 26] than their Deep RL counterparts,
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Figure 1: The GDA-QD algorithm can be summarized as follows: (1) the current population ⇥ is
copied in ⇥̃, (2) ⇥̃ is used to perform multiple steps of QD optimization fully in imagination using the
dynamics model, (3) the critic update sampled policies learned in imagination with policy-gradient
updates; they are concatenated with (4) policies sampled from the resulting population learned in
imagination ⇥̃, (5) these concatenated batch of policies are evaluated in the environment and used to
update the real population of policies for the next optimization loop; the transitions collected in the
environment are then used to train the dynamics model and the critic.

resulting in faster wall-clock times. Despite this, they still come at a cost of many samples. One
of the main reasons for this lies in the underlying optimization operators. QD methods generally
rely on undirected search methods such as objective-agnostic random perturbations [28, 41] to favor
creativity and exploration. More directed search such as ES has also been used [7] but relies on a
large number of such perturbations (⇠thousands) to approximate a single step of natural gradient to
direct the improvement of solutions.

In this paper, we introduce an extended version of Dynamics-Aware QD (DA-QD-ext) as well as
Gradient and Dynamics Aware QD (GDA-QD), a new model-based QD method to perform sample-
efficient exploration in RL. GDA-QD optimizes an entire population of diverse policies through a
QD process in imagination using a learned dynamics model. Additionally, GDA-QD augments the
conventional QD optimization operators with policy gradient updates using a critic network to obtain
a more performant population. Beyond the effective exploration capabilities of QD methods, they
are also excellent data generators. We leverage this idea to harvest a diversity of transitions to train
the dynamics model and the critic. Thus, GDA-QD combine the powerful function-approximation
capabilities of deep neural networks with the directed-search abilities of gradient-based learning and
the creativity of population-based approaches. We demonstrate that it successfully outperforms both
Deep RL and QD baselines in a hard-exploration task. GDA-QD exceeds the performance of baseline
QD algorithms by ⇠ 1.5 times, and can reach the same results in 5 times less samples.

2 Preliminaries
2.1 Reinforcement Learning
Reinforcement Learning (RL) is commonly formalised as a Markov Decision Process (MDP) [40]
represented by the tuple (S,A,P,R), where S and A are the set of states and actions. P(st+1|st, at)
is the probability of transition from state st to st+1 given an action at, where st, st+1 2 S and
at 2 A. The reward function defines the reward obtained at each timestep rt = r(st, at, st+1) when
transitioning from state st to st+1 under action at. An agent acting in the environment selects its next
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Algorithm 1: DA-QD-ext and GDA-QD (highlighted lines are specific to GDA-QD)

1 Inputs: J num iterations, N num imagined iterations, pgradient prop. of gradient-updated
policies, and pmodel = 1� pgradient (for DA-QD-ext pgradient = 0 and pmodel = 1)

2 Initialisation: ⇥0  init_population(), q�  init_dynamics_model(), Q  init_critic()
3 for j = 1, ..., J do
4 ⇥̃j  ⇥j // copy ⇥j in ⇥̃j

5 // Optimize population in imagination

6 for itimagination = 1, ..., N do
7 ✓  random_selection(⇥̃j)

8 ✓̃  perturb(✓)
9 F (✓̃), d(✓̃) evaluate_imagination(✓̃, q�)

10 ⇥̃j  update_population(✓̃, F (✓̃), d(✓̃))

11 ✓new  get_last_added(⇥̃j) // get last policies added to ⇥̃j

12 ✓model  select(✓new, pmodel)
13 ✓gradient  apply_gradient(Q , select(✓new, pgradient))
14 ✓final  (✓model, ✓gradient) // concatenate ✓model and ✓gradient

15 F (✓), d(✓) evaluate(✓final) // evaluate to get reward F and descriptor d
16 ⇥j+1  update_population(✓, F (✓), d(✓))
17 q�  update_dynamics_model(q�), Q  update_critic(Q )
18 return ⇥J

action based on the current state st by following a policy ⇡✓(at|st). The conventional objective in
RL is then to optimize the parameters ✓ of policy ⇡✓, such that it maximizes the expected cumulative
reward R(⌧) =

PT
t=1 rt over the entire episode trajectory ⌧ :

J(⇡✓) = E⌧⇠⇡✓ [R(⌧)] (1)

The transition probabilities P(st+1|st, at) of the environment are usually assumed to be unknown.
Model-based RL [45] methods learn a parametric model p�(st+1|st, at) typically using supervised
learning, from data collected when interacting in the environment. Policies are then trained using
transitions obtained by rolling out the model.

2.2 Quality Diversity
Quality-Diversity (QD) [34, 9] are diversity-seeking population-based approaches to learning. QD
methods maintain a diversity of policies in the population ⇥ while maximizing the performance of
each policy ✓ 2 ⇥. The population usually contains thousands of policies. QD considers an objective
function F (✓) acting on the parameters of the policy ✓. Additionally, QD also considers a behavior
descriptor d(✓) that characterizes the behavior induced by a policy. d(✓) is used to maintain solutions
in their behavioral niche to guarantee the population diversity and that there is no two solutions in
the population with similar behavior descriptor d(✓). When applying QD to a RL problem, they are
defined as follows, where d(⌧) is the behavior descriptor of a given trajectory ⌧ :

F (✓) = J(⇡✓) = E⌧⇠⇡✓ [R(⌧)] and d(✓) = E⌧⇠⇡✓ [d(⌧)] (2)

Similar to Evolutionary Strategies (ES) [35], QD methods operate on entire episodes and hence both
the objective and the descriptor can be computed simultaneously for any parameter vector ✓. QD
methods then aim to maximize:

max
⇥

QD-Score(⇥) =
X

✓2⇥

F (✓) (3)

By maintaining a population ⇥ of both diverse and high-performing policies, QD uses the existing
parameters in the population as stepping stones [29, 43] in the optimization. At each iteration t,
a random set of policies are sampled from the current population ⇥j , perturbed and evaluated in
the environment. Based on the results of these evaluations, these perturbed policies might replace
existing ones or fill in a new niche in the population. This incrementally improves the QD-Score(⇥j)
and encourages creativity and exploration.
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Figure 2: Deceptive reward tasks in the form of PointMaze, AntTrap and AntMaze environments.

3 Method
In this section, we introduce our two new model-based QD methods: DA-QD-ext and GDA-QD.

3.1 DA-QD-ext: Learning and Sieving in Imagination
QD approaches are conventionally driven by random perturbations of the parameters of solutions.
This undirected and divergent process gives QD its exploration capabilities but its major drawback
is the number of samples it requires. This is especially evident for high-dimensional optimization
problems such as optimizing deep neural networks where usually more directed gradient based
methods are used. In this work, inspired by [25], we perform the perturbation process in imagination,
relying on a learned dynamics model of the environment to reduce the number of environment
interactions when evaluating such perturbed policies.

At each iteration j of the algorithm, the current population ⇥j is first "copied" into imagination ⇥̃j .
The policies of this provisional population ⇡✓̃ 2 ⇥̃j are then perturbed, and evaluated in imagination
using the rollouts of the dynamics model q�. Both the objective F (⇡✓̃) and the descriptor d(⇡✓̃) of
the policies can be obtained from the state information present in the rollouts. Using this process, ⇥̃j

undergoes multiple steps of QD optimization in imagination. The resulting policies ⇡✓̃ 2 ⇥̃j that
are added to the provisional population ⇥̃j during learning in imagination are then evaluated in the
environment and used to update the population ⇥j if they improve the QD-Score of the population.
The updated population ⇥j is then used as a start for the next iteration of the algorithm. This process
of performing QD in imagination acts as a sieve and filters out perturbed solutions that are not likely
to improve the quality and diversity of the population, hence increasing the sample efficiency.

Following [4], we use a probabilistic bootstrap ensemble of models q� to capture uncertainties. Each
model in the ensemble is a probabilistic model which predicts parameters of a Gaussian distribution
N(µ�(st, at),⌃�(st, at)) which we can then sample from, capturing the aleatoric uncertainty. This
model-based QD method corresponds to DA-QD [25]. However, we optimize high-dimensional
closed loop neural network policies in complex exploration domains and hence, refer to it as DA-QD-
ext.

3.2 GDA-QD: Incorporating gradients in Quality-Diversity
As mentioned above, the random perturbations driving QD approaches prove inefficient when applied
to high-dimensional search spaces such as the parameters of deep neural networks [7]. To deal
with this, we augment the usual perturbation operator with policy gradient information as done
by Nilsson and Cully [30]. The policy gradient can be more intuitively thought of as a more directed
perturbation, hence being a more efficient optimization update procedure. To apply policy gradients
to a populationx, we maintain a critic network Q which approximates the action-value function
Q(st, at) = E

hPT�t
k=0 �

krt+k+1 | st, at
i

and gives the expected return from being in state st and
following action at. The critic allows us to gradually improve any policy in the direction maximizing
the expected return by computing policy-gradient in Equation 4, approximated over a batch of
transitions. We train Q using the same procedure as TD3 [14].

r✓iJ(✓i) = Es,a⇠⇡✓i
[r✓i⇡✓i(s) raQ (s,a) ] (4)
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Figure 3: Final population of methods in the AntTrap environment (top left). Each policy in the
population is represented with a dot in the final position it manages to reach within the episode. The
color of the square around each policy indicates its total reward, the lighter the better. The obstacle
clearly appears on this plot, as the empty area in the middle. Our approach GDA-QD does not get
stuck in the trap and clearly outperforms baselines given the same number of evaluations.

In DA-QD-ext explained in Section 3.1, the population of policies ⇥j is copied in imagination ⇥̃j

to undergo multiple steps of QD optimization and returns B policies to be evaluated. In GDA-QD,
we combine the efficient parameter based perturbation in imagination from DA-QD-ext with more
directed policy gradient updates explained above. The former is critical for efficient exploration, while
the latter is critical for efficient exploitation. To achieve this, a proportion pmodel of B is sampled
to be evaluated directly while another pgradient = 1� pmodel is sampled to be improved using the
policy gradient operators before being evaluated. In the following, we use pmodel = 0.9. We study the
impact of this value and illustrate the complementary properties of these two generation-procedures
in Appendix B. We demonstrate that both parameter update procedures are essential to guarantee
performance. Figure 1 and Algorithm 1 provides a summary of this algorithm.

A key design choice in GDA-QD for simplicity is that only parameter-based perturbations are
applied in imagination, while the policy gradient updates are not applied in imagination. This was to
clearly make a separation between efficient exploration and efficient exploitation (through gradient
optimization). Applying policy gradient updates in imagination could potentially further improve
GDA-QD at the cost of training the critic more often in imagination. We leave this for future work.

3.3 Quality-Diversity as data generators for deep models

A key quality of QD algorithms is that they are excellent at generating diverse and high-quality
data [11, 16]. In our work, the search for a diversity of high-performing behaviors when optimizing
the population results in a diverse dataset of transitions. We leverage this property to train deep
models which require and often excel when provided with such data. As commonly done, the diverse
dataset of transitions is stored in a replay buffer and used to train (1) the dynamics model q� and (2)
the critic Q . Both these models are suitable candidates as the training of the critic Q is off-policy
and can trained using transitions collected from any behavioral policy. Additionally, training the
dynamics model q� is a supervised learning problem which would benefit from a large and diverse
dataset of transitions.

We found this property to be especially important to our method. Specific to the training of the
dynamics model, GDA-QD does not use transitions produce by gradient-optimized policies to train
the model. This was found empirically in our studies as we observed the transitions produced by
the gradient-optimized policies induced a shift in distribution that prove detrimental for the training
of the dynamics models. Results of this study are detailed later in Section 4.3. It is important to
recognize that the transitions used to train the dynamics model are not merely just from policies that
have been randomly perturbed but a population of policies that have undergone multiple steps of QD
optimization in imagination and are expected to improve the population. This results in a diverse and
high performing dataset of transitions that GDA-QD uses to further train its models.
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POINTMAZE ANTTRAP ANTMAZE
QD-SCORE COV MAX-REW QD-SCORE COV MAX-REW QD-SCORE COV MAX-REW

TD3 - - -126.38 - - 189.52 - - 1.05
SAC - - -126.18 - - 204.68 - - 1.06
ES 0.46 0.52 -126.85 2.97 2.91 200.95 18.6 10.88 0.97

DIAYN - - -67.98 - - -6.15 - - 0.20
SMERL - - -38.29 - - 171.81 - - 1.06

NS-ES 0.93 1.8 -147.80 10.12 28.76 -13.14 45.45 42.6 1.23

ME 93.74 99.92 -25.36 42.44 43.44 218.77 56.71 37.68 1.29
PGA-ME 93.06 99.92 -24.06 47.82 47.08 274.52 62.56 39.66 1.48
NSR-ES 1.07 1.24 -126.85 6.36 6.26 196.30 22.89 14.24 1.02
NSRA-ES 1.44 1.78 -126.85 14.18 29.32 170.38 46.5 43.56 1.30
ME-ES 21.0 30.52 -62.05 12.70 21.92 157.42 38.5 33.48 1.15
DA-QD-ext 96.67 99.92 -24.81 50.33 51.0 196.66 70.94 43.7 1.51
GDA-QD 97.70 99.92 -24.24 76.28 72.44 342.24 80.5 51.4 1.87

Table 1: Final QD-Score (% of maximum value), Coverage (%) and Max-Total-Reward reached by
all algorithms on all considered tasks. Each experiment is replicated 15 times, we report in the table
the median value across runs. In the algorithms name, ME stands for MAP-Elites.

4 Experiments
We aim to evaluate our method by answering four main questions: (1) Can we scale model-based QD
approaches to RL domains and Neuroevolution? (2) Does GDA-QD results in more performant and
sample-efficient learning than traditional QD approaches and simple model-based QD? (3) What is
the importance of the policy-gradient perturbation in the performance of GDA-QD? (4) How does the
data-generation capabilities of GDA-QD enforce efficient learning?

4.1 Experimental setup
Tasks and Environments: We focus on tasks considered in literature as hard exploration problems:
PointMaze [24, 32], AntTrap [8, 7, 5, 32] and AntMaze [7, 5, 36] (see Fig. 2). The reward in these
tasks is deceptive making exploration and diversity critical when solving them. To start, we consider
a simple PointMaze environment where a 2-dimensional point agent is given a reward corresponding
to the distance to the goal in the maze. The AntTrap and AntMaze are higher dimensional continuous
control tasks where an 8-DoF Ant robot learns how to walk, aiming to go beyond the trap in AntTrap
and to reach the goal in AntMaze. In AntTrap, the robot gets increasing rewards for going as fast as
possible while minimizing energy-usage. In the AntMaze tasks, the reward is the distance to the goal.
This reward definition for all the tasks considered makes them deceptive. The descriptor d(⇡✓) used
in all the tasks is defined as the x-y position at the end of the trajectory (xT , yT ).

Baselines: Across our experiments, we consider the following baselines:
• MAP-Elites: the most-commonly used QD algorithm [28].
• PGA-MAP-Elites: [30], augments MAP-Elites with a policy-gradient based update operator.
• OpenAI ES: Evolution Strategy [35] relying on natural gradient approximation.
• Novelty Search ES: We compare against NS-ES [8] as an intrinsic motivation baseline. This uses

the OpenAI-ES algorithm but with a novelty reward instead of task reward..
• QD-ES Algorithms: QD-ES algorithms consider both quality and novelty during optimization. We

use NSR-ES, NSRA-ES [8], and MAP-Elites-ES (ME-ES) [7]. NSR-ES and NSRA-ES build on
NS-ES by including the task reward term as a weighted sum with the novelty reward term. ME-ES
mixes MAP-Elites with OpenAI ES [7].

• Single Policy Deep RL Algorithms: We consider TD3 [14] and SAC [18]. SAC is entropy
regularized and is a popular choice for greater exploration.

• Mutual Information RL Algorithms: We also consider DIAYN [12] and SMERL [22] which
are also diversity seeking algorithms. To ensure the comparisons are fair with descriptor based
methods, we use the x-y prior when running these algorithms. DIAYN is purely unsupervised and
does not consider the task rewards. SMERL considers the task reward during optimization

For fairness, as the single policy baselines (TD3, SAC, DIAYN, SMERL) do not rely on a population,
nor on complete-episode evaluations, we only reports its final value in the results as a dotted line.
For a more qualitative comparison of these algorithms, we also collect the trajectories of the policies
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Figure 4: QD-Score (top) Max-Total-Reward (bottom) of all algorithms on the AntTrap (left),
PointMaze (centre) and AntMaze (right) tasks plotted against number of evaluations. Each experiment
is replicated 15 times, the solid line corresponds to the median over replications and the shaded area
to the first and third quartiles.

throughout the learning process and plot them as part of a population. To ensure the comparability of
algorithms using ES (OpenAI-ES, NS-ES, NSR-ES, NSRA-ES, ME-ES) with other approaches, we
consider every estimate-evaluation as one sample, making these algorithms highly sample-inefficient.

Metrics: We consider two metrics to assess the performance of GDA-QD:
• QD-Score: defined in Section 2.2. It quantifies the diversity and quality of the overall population

and allows to compare population-based methods.
• Max-Total-Reward: the total reward of the best individual of the current population. This metrics

allows comparison with single-policy methods such as RL baselines.

Implementation and hyperparameters: The methods presented in this paper as well as all our
baselines are based on the implementation of MAP-Elites in the QDax open-source library [26], using
the Brax simulator [13]. All hyperparameters and implementation details used in our algorithms and
for model training can be found in the Appendix A.

4.2 Results
The results of our experiments are summarized in Figure 4 and Table 1. We also display a visualization
of the final populations of policies for each algorithm in Figure 3 (AntTrap) and Appendix C
(PointMaze and AntMaze).

Figure 4 shows that both our proposed model-based versions, DA-QD-ext and GDA-QD, significantly
outperform all baselines in terms of sample efficiency and final performance. This demonstrates that
we can scale model-based QD methods to deep neuroevolution. The performance of DA-QD-ext
suggests that learning diverse behaviors in imagination using the dynamics model is a simple but
effective approach to save samples yet maintain the divergent search capabilities of the random
perturbations. However, we can see that the maximum total reward obtained by DA-QD-ext seems to
stagnate and increase slowly, especially when compared to GDA-QD and PGA-MAP-Elites. This can
be explained by the absence of reward maximizing optimization updates such as the policy gradient
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no filtering
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filtering pg transitions
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filtering pg transitions
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filtering QD transitions
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Coverage Max-Total-Reward

Figure 5: QD-Score (left), Coverage (middle) and Max-Total-Reward (right) on the AntTrap task
of GDA-QD with different proportion of policy-gradients generated policies (pg) and different
transitions filtering schemes. The solid line corresponds to the median over replications and the
shaded area to the first and third quartiles.

updates present in GDA-QD and PGA-MAP-Elites. Hence, GDA-QD is shown to get the "best of
both worlds" by benefitting from the QD in imagination as well as the policy gradient updates. This
is evident in its performance across the QD-Score and max. return metrics.

In terms of baselines, Figure3 show that all objective-only baselines: SAC, TD3 and ES, struggle with
deceptive rewards. They all get stuck into the traps present in AntTrap and AntMaze. Diversity Based
RL algorihtms such as DIAYN struggle with no task reward signal while SMERL manages to reach
the final goal only in the simpler PointMaze. The single-agent baselines (TD3, SAC, DIAYN, and
SMERL) are plotted as horizontal lines to represent the max performance obtained by the agent. This
is done to allow comparison as they do not rely on a population, making the Coverage and QD-Score
metrics not relevant, and also performs policies-updates within episodes. The poor performance of
ES-based algorithms, in particular ME-ES, can be attributed to the number of samples (⇠ hundreds
or thousands) required just to approximate a single gradient step. It is important to note that these
methods commonly do not consider the notion of evaluations and generally evaluate the algorithms
versus time or number of generations as they are suited to be heavily parallelized across clusters
of CPUs. Despite this limitation, intrinsically-motivated ES baselines NS-ES and its QD variant
NSRA-ES manage to get good coverage on AntTrap and AntMaze. However, they struggle to discover
high-performing solutions within the given evaluation budget. We provide a visualization of the
adaptive mechanism of NSRA-ES in Appendix C.

4.3 Importance of QD for training deep models

To investigate the data generation abilities of QD, we compare the performance of the algorithm
when the dynamics model is trained on different data distributions based on the policies rolled out in
the environment. In our case, we have two main types of data generators: policies obtained thought
the QD process in imagination (giving Dmodel), and policies perturbed also using policy-gradients
(giving Dgradient). We run an ablation where we train the dynamics model on transitions collected by
either Dmodel, Dgradient, or a mixture of both Dmodel+gradient, by filtering out the corresponding
transitions. Figure 5 shows the performance curves when running this ablation on the AntTrap task.
We first test the effect of training the model with Dmodel when pgradient = 0.1. We notice a minor
difference in which experiments that train only on Dmodel perform better than when not using any
filter (i.e. Dmodel+gradient). To enable a fair comparison in terms of the number of transitions
added to the replay buffer when attempting to do the converse (i.e. using Dgradient), we use a
pmodel = pgradient = 0.5. We observe better performance when the dynamics model is only trained
with Dmodel. This is compared to training on Dmodel+gradient where the difference is minimal as
seen previously. However, performance significantly drops when training just on Dgradient. We
hypothesize that this is due to bias in the transitions obtained through the policies perturbed by policy
gradient resulting in a skewed dataset while the transitions given by policies obtained from QD in
imagination provides a diverse and high-quality dataset.
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5 Related Work

Searching for Diversity. Prior studies have shown the importance of maintaining a diverse set of
solutions to solve a problem. Novelty-search approaches [23] inspired from evolutionary computation
optimize for the novelty of solutions defined by a behavioral characterization with respect to a
population instead of the optimization objective. QD methods [9, 28] extend this approach by also
considering the objective, aiming to find both diverse and high-performing population of solutions.
Similarly, our work builds on QD approaches with the aim to maintain a diversity of high-performing
solutions. Other approaches to searching for diversity also exist in the RL community. Unsupervised
RL methods [12, 37] commonly use a mutual information maximization objective to learn a diversity
of behaviors in a skill-conditioned policies. Similar to QD, Kumar et al. [22], Zahavy et al. [46] have
proposed to extend these unsupervised RL approaches by integrating objectives using constrained
Markov decision processes. While these approaches typically focus on maintaining a dozen of
different policies, our algorithm discovers thousands of independent diverse policies.

Neuroevolution seeks to evolve neural networks through biologically-inspired methods such as
evolutionary algorithms and have interesting properties unavailable to common gradient-based
methods [39]. However, a limitation in the neuroevolution domain is the dimensionality of the
search-space, that quickly limits the effectiveness of random perturbations. Some methods have
overcome this limitation by using indirect encoding methods [6] or through natural approximated
gradients [35]. Our work hybridizes neuroevolution with deep reinforcement learning methods.
Similar to Nilsson and Cully [30], we use policy-gradients as directed perturbations to effectively
maneuver the high-dimensional search space but, we significantly improve the sample efficiency and
performance by also augmenting these operators with model-based methods.

Model-based Quality-Diversity. As the perturbations commonly used in QD are sample inefficient,
prior work has sought the use of data-driven models to alleviate this. SAIL [15] introduced the use
of a surrogate model in the form of a Gaussian Process model to predict the objective. As Gaussian
processes generally only work well on low-dimensional data, more recent methods have explored
the use of deep networks [21, 25, 47] as forms surrogate models to predict both the objective and
descriptors. We utilize the model-based QD framework from Lim et al. [25] which first introduced
the idea of maintaining an imagined population and also builds on model-based RL methods [45]
where a dynamics model is used. Critically, this work has only been applied to low-dimensional
open-loop policies. To the best of our knowledge, our work is the first model-based QD algorithm
that scales to the more complex deep neuroevolution domain where we optimize closed loop RL
policies.

6 Conclusion and Future Work

In this paper, we introduce a novel model-based Quality-Diversity method, GDA-QD, which optimizes
a population of diverse policies to explore more efficiently. To the best of our knowledge, this approach
is the first model-based QD algorithm scaling to neuroevolution to optimize deep neural network
policies. We leverage a key property of QD algorithms as effective data generators to train deep
models in the form of a dynamics model and a critic. In turn, these models help to significantly
improve the sample efficiency and final performance of the QD algorithm. The dynamics model
is used to learn and sieve policies in imagination while the critic is used to apply policy gradient
updates to sampled policies. Our experiments show that GDA-QD outperforms a range of Deep RL
and QD baselines on a hard exploration task containing deceptive rewards. Overall, we demonstrate
some of the powerful synergies that can arise between population-based learning and deep learning
approaches. In future work, we hope to extend our work to more complex domains through the use of
latent dynamics models [17, 19].
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