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ABSTRACT

We present Point2SSM, a novel unsupervised learning approach for constructing
correspondence-based statistical shape models (SSMs) directly from raw point
clouds. SSM is crucial in clinical research, enabling population-level analysis of
morphological variation in bones and organs. Traditional methods of SSM con-
struction have limitations, including the requirement of noise-free surface meshes
or binary volumes, reliance on assumptions or templates, and prolonged inference
times due to simultaneous optimization of the entire cohort. Point2SSM over-
comes these barriers by providing a data-driven solution that infers SSMs directly
from raw point clouds, reducing inference burdens and increasing applicability as
point clouds are more easily acquired. While deep learning on 3D point clouds has
seen success in unsupervised representation learning and shape correspondence,
its application to anatomical SSM construction is largely unexplored. We con-
duct a benchmark of state-of-the-art point cloud deep networks on the SSM task,
revealing their limited robustness to clinical challenges such as noisy, sparse, or
incomplete input and limited training data. Point2SSM addresses these issues
through an attention-based module, providing effective correspondence mappings
from learned point features. Our results demonstrate that the proposed method
significantly outperforms existing networks in terms of accurate surface sampling
and correspondence, better capturing population-level statistics. The source code
is provided at https://github.com/jadie1/Point2SSM.

1 INTRODUCTION

Statistical shape modeling (SSM) enables quantifying and characterizing the morphological varia-
tions in a group of shapes. SSM captures the inherent characteristics of a shape class or the under-
lying parameters that remain when global geometric information (i.e., location and orientation) is
factored out (Kendall, 1977). It is a powerful tool in medical research, enabling population-level
analysis of anatomies such as bones or organs, revealing correlations between shape variations and
clinical outcomes. Despite being successfully applied in a wide range of tasks (including pathol-
ogy detection (Atkins et al., 2017; Bischoff et al., 2014; Wang et al., 2015), disease biomarker
identification (Bruse et al., 2016; Cates et al., 2014; Mendoza et al., 2014; Merle et al., 2014), sur-
gical/treatment planning (Bhalodia et al., 2020; Carriere et al., 2014; Zhang et al., 2015; Zachow,
2015), and implant designs (Zadpoor & Weinans, 2015)), practical limitations have prevented its
widespread adoption. The conventional SSM approach entails analyzing a group of complete sur-
face representations obtained from 3D medical images (e.g., CT or MRI) in the form of binary
volumes or meshes. Correspondence-based SSM establishes sets of geometrically and semantically
consistent landmarks or correspondence points on the shape surfaces. Various optimization schemes
have automated the correspondence point generation process (Davies et al., 2002; Ovsjanikov et al.,
2012; Styner et al., 2006) to provide dense sets of correspondence points for each shape, includ-
ing particle-based shape modeling (PSM) (Cates et al., 2007; 2017). However, such optimization
techniques have three significant limitations. Firstly, they require complete shape representations
in the form of high-resolution meshes or binary volumes that are free from noise and artifacts,
which are difficult to acquire, prohibiting many use cases. Secondly, the optimization process is
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time-consuming and must be performed on the entire cohort simultaneously, which greatly hinders
inference when adding a new shape to the SSM. Lastly, these methods utilize metrics such as Gaus-
sian entropy (Cates et al., 2007) or parametric representations (Ovsjanikov et al., 2012; Styner et al.,
2006) to define optimization objectives, which may bias or restrict the types of variation captured by
the SSM (i.e., via enforcing linearity or inheriting the topology of the pre-defined template). Deep
learning methods have been proposed to predict SSM from meshes (Bastian et al., 2023; Lüdke et al.,
2022; Iyer & Elhabian, 2023), addressing some of these limitations. However, such approaches rely
on mesh connectivity, enforcing the same input restrictions as optimization-based methods.

Point cloud deep learning has recently shown success in tasks such as unsupervised representation
learning, shape generation, point cloud up-sampling and completion, and point-to-point matching
(Fei et al., 2022; Xiao et al., 2023; Akagic et al., 2022). Point clouds can be readily obtained from
full-shape segmentations such as meshes when available. They can, however, also be obtained from
more lightweight shape acquisition methods, e.g., thresholding clinical images, anatomical surface
scanning, and combining 2D contour representations (Timmins et al., 2021; Treleaven & Wells,
2007). Thus, generating SSM directly from point clouds would significantly expand the potential
clinical use cases of shape analysis. Recently, Adams & Elhabian (2023b) demonstrated that existing
point cloud encoder-decoder-based completion networks perform reasonably well at SSM genera-
tion out-of-the-box. Although such architectures were not designed for correspondence tasks, the
bottleneck captures a population-specific shape prior, and the continuous-mapping decoder results
in ordered output, providing correspondence as a by-product. However, such methods have not been
benchmarked against point correspondence approaches or tested for robustness to noise, partiality,
or sparse input (Adams & Elhabian, 2023b). A myriad of challenges accompanies applying point
cloud deep learning approaches to anatomical SSM - most notably, the issue of data scarcity. Deep
network training requires a large cohort of representative anatomies defined from volumetric medi-
cal images, which is difficult to acquire, especially if modeling an uncommon disease or pathology.
In addition, point cloud shape representations obtained from medical images may suffer from vari-
ous issues, such as noise from the acquisition process, missing regions outside the scanner field of
view, or sparse point clouds due to low image resolution (Razzak et al., 2018).

In this paper, we introduce Point2SSM, an unsupervised deep learning framework for learning
correspondence-based SSM of anatomy directly from point clouds. Point2SSM overcomes the lim-
itations of existing optimization-based SSM methods and point cloud networks by providing a data-
driven solution that operates on unordered point clouds and infers SSMs that capture population-
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Figure 1: Comparison of particle-based mod-
eling (PSM) (Cates et al., 2017), point autoen-
coders (AE) (Achlioptas et al., 2018), canonical
point autoencoder (CPAE) (Cheng et al., 2021),
Chen et al. (2020) (ISR), deep point correspon-
dence(DPC) (Lang et al., 2021), and Point2SSM.

level statistics with good surface sampling.
Point2SSM removes biases imposed by opti-
mization assumptions and significantly relaxes
the input shape requirement. Moreover, a trained
Point2SSM provides a fast and efficient way to
predict SSM from a new unseen point cloud
without re-optimization. We benchmark exist-
ing state-of-the-art (SOTA) point cloud networks
against the proposed method for the SSM ap-
plication. This benchmark reveals that although
these methods achieve some success on this new
task, they have limited ability to address the
challenges that arise in clinical scenarios. We
show that Point2SSM is more robust to a lim-
ited training budget as well as to sparse, noisy,
and incomplete input than existing point meth-
ods and achieves similar statistical compactness
to an optimization-based SSM method. Our con-
tributions can be summarized as follows:

(1) We introduce Point2SSM, a novel point cloud approach for anatomical SSM that removes the
limitations of optimization-based SSM generation techniques without hindering statistical accuracy.

(2) We provide the first benchmark of SOTA point cloud networks on the anatomical SSM task.

(3) We demonstrate Point2SSM outperforms existing methods in terms of surface sampling and
correspondence accuracy and is more robust to limited data and sparse, noisy, or incomplete input.
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2 RELATED WORK

2.1 OPTIMIZATION-BASED SSM

Correspondence-based SSM optimization techniques constrain points to the shape surfaces and es-
tablish intersubject correspondence via metrics such as entropy (Cates et al., 2007; 2017; Oguz et al.,
2016) or minimum description length (Davies et al., 2002), or via parametric representations (Ovs-
janikov et al., 2012; Styner et al., 2006). These approaches require complete, faultless shape inputs
(surface meshes or binary segmentations) and operate on the entire cohort simultaneously, prevent-
ing the addition of a new shape without rerunning the optimization process. Convolutional deep
learning approaches for predicting SSMs directly from unsegmented images have been proposed to
reduce these burdens (Bhalodia et al., 2018; Adams et al., 2020; Adams & Elhabian, 2022; 2023a;
Bhalodia et al., 2021; Ukey & Elhabian, 2023; Tóthová et al., 2020). However, such approaches are
supervised and thus require a traditional optimization scheme for generating a training data cohort,
limiting their accuracy potential based on the training set.

2.2 DEEP LEARNING ON POINT CLOUDS

PointNet (Qi et al., 2017a) was the first deep network designed to process raw point clouds. It
employs multi-layer perceptrons (MLPs) and symmetric aggregation functions to learn permutation
invariant features. PointNet++ (Qi et al., 2017b) extended this architecture to have a hierarchical
structure for learning multiscale geometric information. Dynamic graph convolution (DGCNN)
(Wang et al., 2019) utilized nearest neighbors to construct point cloud graphs and apply edge con-
volution. Transformer-based methods (i.e., PointTransformer (Zhao et al., 2021) and Point-Bert (Yu
et al., 2022)) have also been developed, which apply self-attention to 3D point cloud processing to
learn underlying structure. To date, there is no ubiquitous 3D backbone for point cloud networks,
but the aforementioned networks are common (Xiao et al., 2023). Supervised training of point
cloud networks requires large-scale, densely labeled datasets. This annotation burden has inspired
the exploration of unsupervised learning of robust feature representations (Xiao et al., 2023). Unsu-
pervised tasks include self-reconstruction, point cloud up-sampling, and completion of partial point
clouds. Achlioptas et al. (2018) proposed the first point cloud autoencoder (AE) and demonstrated
the generative power of the learned latent space, which led to the subsequent development of gener-
ative architectures (Xiao et al., 2023). Point completion networks have widely adopted an encoder
and coarse-to-fine decoder architecture, allowing the network to learn general shape first and then
refine it (Yuan et al., 2018; Fei et al., 2022). Point cloud encoder-decoder-based networks such as
these have been shown to perform reasonably well at SSM generation (Adams & Elhabian, 2023b).
Although these methods were not designed for SSM, the continuous mapping from the learned la-
tent space to output space results in decoded ordered point clouds, providing correspondence as a
by-product. However, such methods require a sufficiently large and representative training dataset
and have yet to be compared to point correspondence approaches (Adams & Elhabian, 2023b).

2.3 LEARNING 3D POINT CLOUD DENSE CORRESPONDENCE

While point cloud learning for anatomical SSM is largely unexplored, point networks have been de-
veloped to establish shape correspondence. This task has been approached in a supervised manner
through point cloud registration (Choy et al., 2019; Chen et al., 2019a; Gojcic et al., 2019; Huang
et al., 2017), via unified embeddings of multiple shape representations (Muralikrishnan et al., 2019),
and via part labels (Bhatnagar et al., 2020). Recently, unsupervised methods have been developed
that formulate shape correspondence from either a pairwise or class-level, global standpoint. Pair-
wise approaches seek to find a point-to-point mapping from a source shape to a target shape. Mesh-
based methods have been established for this task using functional maps (Ovsjanikov et al., 2012;
Donati et al., 2020; Ginzburg & Raviv, 2020; Eisenberger et al., 2020), which require connectivity.
Functional maps have been extended to point clouds, using spectral matching to define correspon-
dence (Marin et al., 2020). Other approaches extract correspondence by learned deformations to a
predefined template (Deprelle et al., 2019; Cosmo et al., 2016). Recent approaches utilize deep net-
works to learn a matching permutation between a source and target point cloud. Zeng et al. (2021)
utilize an encoder-decoder architecture to regress the shape coordinates for permuted reconstruction,
whereas Lang et al. (2021) opt to drop the decoder and use the original point cloud in reconstruction,
achieving better performance by leveraging similarity in the learned feature space.
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Prior global correspondence approaches have focused on discovering class-specific keypoints (a.k.a.
ordered stable interest or structure points) from point clouds (Suwajanakorn et al., 2018; Fernandez-
Labrador et al., 2020; Jakab et al., 2021). These semantically consistent points are typically sparse.
More relevant works have sought to define dense keypoints or structure points - a task highly related
to correspondence-based SSM. Chen et al. (2020) developed a network that reconstructs point clouds
in a consistent way using an input subset and learned features, providing a correspondence model
with meaningful principal component analysis embedding. Liu & Liu (2020) leveraged part features
learned by a branched AE (Chen et al., 2019b) to establish intraclass correspondence. However, this
approach requires additional knowledge of the shape surface to compute the occupancy for training
the implicit function. Cheng et al. (2021) developed a self-supervised canonical point autoencoder
that utilizes mapping to a canonical primitive (sphere) to establish order across classes of shapes.
While these methods establish correspondence, they haven’t been tested against anatomical SSM
challenges, such as limited training budget or input noise, missingness, or sparsity.

3 METHODS

3.1 PROPOSED APPROACH: POINT2SSM

Let S denote an unordered point cloud of P points representing an anatomical shape: S =
{s1, . . . , sP } with si ∈ R3. Given a subset of N points in S, the goal of Point2SSM is to predict a
set of M correspondence points, denoted C. Point2SSM learns correspondence in a self-supervised
manner by estimating a set of points C that best reconstructs the full point clouds S. It is comprised
of an encoder and a transformer-like attention module, as shown in figure 2.
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Figure 2: Point2SSM architecture

The encoder learns an L-dimensional feature vector for each point. We select a DGCNN (Wang
et al., 2019) encoder architecture to learn topological information via edge convolution. Unlike
PointNet and other methods that treat each point independently, DGCNN incorporates local neigh-
borhood information, enriching the representational power and capturing global semantic character-
istics. This formulation is well suited for learning features for anatomical SSM because anatomies
share typical characteristics that stem from the underlying mechanisms involved in their formation.

The attention module predicts an attention map from the feature representation via self-attention.
The output correspondence points are then computed via matrix multiplication between the atten-
tion map and the input point cloud. Similar to existing methods (Chen et al., 2020; Lang et al.,
2021), each resulting output point is a weighted combination of all of the input points. This con-
straint, combined with the attention module, increases surface sampling accuracy. The attention
module must capture the structural characteristic of the shape from the point features to learn cor-
respondence. Hence, we leverage the self-feature augment (SFA) blocks introduced in Wang et al.
(2022). The SFA blocks integrate the information from different point features and establish the
spatial relationship among points by introducing self-attention. In this manner, SFA captures global
information and reveals detailed shape geometry, generating semantically consistent attention maps
for all shapes in a cohort. Resulting attention maps are visualized in appendix B.

The Point2SSM loss function is comprised of two terms - one that encourages C to reconstruct S
and one that regularizes C, encouraging better correspondence. Chamfer distance (CD) is used to
measure the difference between the point clouds in a permutation-invariant way:

CD(C,S) =
1

|C|
∑
c∈C

min
s∈S

||c− s||22 +
1

|S|
∑
s∈S

min
c∈C

||s− c||22 (1)
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A pairwise mapping error (ME), originally proposed in (Lang et al., 2021), is adapted to provide an
output regularization loss term. The ME between two output point clouds C′ and C′′ is defined as:

ME(C′,C′′) =
1

M ∗K

M∑
i=1

∑
j∈NC′(c′

i)

v′ij
∥∥c′′i − c′′j

∥∥2
2

(2)

where NC′ (c′i) are the K indices of the K-nearest neighbors of point c′i in C′ (in Euclidean dis-

tance). Here v′il = e−∥c
′
i−c′

l∥2

2 weights the loss elements according to the proximity of the neighbor
points. ME loss encourages the point neighborhoods in C′ to be similar to C′′, promoting corre-
spondence. ME is computed between all pairs of output in a minibatch of size B. Point2SSM is not
sensitive to the choice of B, as demonstrated in appendix F. The Point2SSM loss is thus defined as:

L =
1

B

B∑
i=1

CD(Ci,Si) + α

 1

(B − 1)2

B∑
i=1

B∑
j=1,j ̸=i

ME(Ci,Cj) +ME(Cj ,Ci)

 (3)

where α is a hyperparameter that controls the effect of the regularization. An ablation experiment
that demonstrates the impact of the encoder architecture, attention module architecture, and ME loss
is provided in appendix A.

3.2 COMPARISON MODELS

We benchmark the following SOTA methods on the anatomical SSM tasks and compare their per-
formance to that of Point2SSM:

PSM (Cates et al., 2017) denotes particle-based shape modeling, the SOTA optimization-
based technique for generating correspondence points from complete shape surface representations
(Goparaju et al., 2022). We use the mesh-based implementation of PSM available in the open-source
toolkit ShapeWorks (Cates et al., 2017). We include this method to provide context regarding the
expected modes of variation compactness of SSM for a given anatomy.

PN-AE (Achlioptas et al., 2018) is the autoencoder formulated by Achlioptas et al. (2018) with
PointNet (Qi et al., 2017a) encoder. The combination of bottleneck and MLP decoder results in
consistent output ordering of C (Adams & Elhabian, 2023b).

DG-AE (Wang et al., 2019) is a variant of PN-AE where the PointNet (Qi et al., 2017a) encoder is
replaced with a DGCNN (Wang et al., 2019) encoder. It is included to assist in comparing the AE
framework with Point2SSM and DPC .

CPAE (Cheng et al., 2021) is the canonical point autoencoder that maps points to a sphere template
in the bottleneck and then reconstructs the points in an ordered fashion.

ISR (Chen et al., 2020) denotes the method for learning intrinsic structural representation (ISR)
points proposed by Chen et al. (2020). ISR utilizes Chamfer loss (equation 1), a PointNet++ (Qi
et al., 2017b) encoder, and an MLP point integration module that maps the features to a probability
map. The probability map is multiplied by a learned subset of the input points to provide output.

DPC (Lang et al., 2021) is the deep point correspondence model proposed by Lang et al. (2021).
DPC is a pairwise correspondence method that takes the source and target point clouds as input and
outputs the source reordered to match the target. The architecture comprises a DGCNN (Wang et al.,
2019) encoder and cross- and self-construction modules that utilize latent similarity. To adapt DPC
to provide global correspondence, the same target point cloud or reference is used for every shape
in inference. In this work, the reference is selected as the point cloud with the minimum Chamfer
distance to all other point clouds in the training set.

3.3 EVALUATION METRICS

An ideal SSM accurately samples the shape surface via uniformly distributed points that are con-
strained to lie on the surface. Simultaneously, it captures anatomically relevant mappings between
shapes by establishing consistent, invariant points (i.e., correspondences) across diverse populations
with varying forms. Consequently, the evaluation of an SSM should encompass both aspects: the
accuracy of surface sampling and the efficacy of the extracted shape statistics.
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Three metrics are used to define the point surface sampling accuracy: CD(C,S), Earth movers
distance (EMD), and point-to-face distance (P2F). EMD requires both point clouds to have the same
number of points; thus, a subset of points in S is selected using farthest point sampling (Qi et al.,
2017b). In this way, EMD captures whether the predicted correspondence points cover the entire
shape. P2F distance is calculated as the distance of each point in C to the closest face of the ground
truth mesh, indicating how well points are constrained to the surface.

In an ideal SSM, point locations and neighborhoods are preserved across all shapes in the cohort,
leading to a meaningful model with compact modes of shape variation. In SSM analysis, corre-
spondence points are averaged to generate a representative mean shape, and principal component
analysis (PCA) is performed to compute the significant modes of variation. These modes can be
used in medical hypothesis testing and visualized by deforming the mean shape along each basis
of the linear subspace (Cates et al., 2014). Three statistical metrics are used to evaluate SSM corre-
spondence accuracy: compactness, generalization, and specificity (Munsell et al., 2008). A compact
SSM represents the training data distribution using the minimum number of parameters; thus, com-
pactness is quantified as the number of PCA modes required to capture 95% of the variation in the
correspondence points. Moreover, a good SSM should generalize well from training examples to
unseen examples. The generalization metric quantifies how well the SSM generalizes from training
examples to unseen examples via the reconstruction error (L2) between held-out correspondence
points and those reconstructed via the training SSM. The specificity metric measures the degree
to which the SSM generates valid instances of the shape class presented in the training set. It is
computed as the average distance between correspondences sampled from the training SSM and the
closest existing training correspondences. The equations of these metrics are available in Munsell
et al. (2008) and Appendix C. Additionally, ME (Equation 2) is included as an SSM metric since it
captures how well point neighborhoods correspond across the cohort.

Both categories of metrics must be used to evaluate the accuracy of SSM, as one does not imply the
other. For example, a network that yields identical output given any input will perform very well on
statistical metrics but poorly on sampling metrics. Conversely, a network that perfectly reconstructs
the input in an unordered fashion will succeed at point sampling metrics but fail at statistical metrics.

4 EXPERIMENTS AND ANALYSIS

We utilize three challenging organ mesh datasets of various sample sizes to benchmark the per-
formance of Point2SSM and the comparison methods: spleen (Simpson et al., 2019) (40 shapes),
pancreas (Simpson et al., 2019) (272 shapes), and left atrium of the heart (1096 shapes). We elect
to acquire point clouds from meshes to enable benchmarking against PSM, which requires mesh
connectivity. The spleen dataset represents a typical SSM scenario with limited data and consid-
erable variation in shape and curvature. The pancreas dataset consists of cancer patients, resulting
in increased shape variability due to varying tumor sizes and morphologies. The left atrium is a
notoriously difficult shape to model because it exhibits significant variations in volume, appendage
size, and pulmonary vein configuration, number, and length. Appendix G provides a visualization
of the organ cohorts. Note that the nonanatomical shape datasets previously used to benchmark
comparison methods are much larger (i.e., tens of thousands).

Meshes are pre-aligned to factor out global geometric information via iterative closest points (Besl
& McKay, 1992) utilizing the ShapeWorks (Cates et al., 2017) toolkit. The aligned, unordered mesh
vertices serve as ground truth complete point clouds, S. In all experiments, we set N = 1024,
L = 128, M = 1024, and batch size B = 8, unless otherwise specified. Point2SSM is not sensitive
to batch size (appendix F). During training, input point clouds are generated by randomly selecting
N points from S each iteration and uniformly scaling them to be between -1 and 1. The datasets are
randomly split into a training, validation, and test set using an 80%, 10%, 10% split. Adam opti-
mization with a constant learning rate of 0.0001 is used, and model training is run until convergence
via validation assessment. Specifically, a model is considered converged if the validation CD has not
improved in 100 epochs. Models resulting from the epoch with the best validation CD are used in the
evaluation. A 4x TITAN V GPU was used to train all models. For Point2SSM loss (equation 3), α is
set to 0.1 based on tuning using the validation set. For comparison models, the originally proposed
loss is used with the reported tuned hyperparameter values. Appendix D provides all parameters and
appendix E provides a comparison of model memory footprint.
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4.1 RESULTS

Figure 3 provides an overview of the results on all datasets. Point2SSM significantly outperforms
the existing point methods on the surface sampling metrics. This is further illustrated in figure 4,
which provides a point-level visualization of the test example with median P2F distance output by
each model. Figure 3 additionally demonstrates that Point2SSM performs comparably with respect
to statistical metrics to PSM and provides the best compactness on the left atrium dataset. Of the
point-based methods, Point2SSM achieves the best compactness on all datasets - with the exception
of the spleen DG-AE , which greatly suffers in terms of point sampling metrics. The AE methods
aggregate features into a global (L × 1) feature in the bottleneck. This restriction enforces a shape
prior, providing compactness, but it greatly limits model expressivity, hindering accurate surface
sampling. The CPAE output reconstructs the point cloud to a degree but does not provide corre-
spondence. The resulting CPAE SSM is not compact or interpretable, likely because learning a
canonical mapping is too complex given a small training set. Like Point2SSM , ISR and DPC pre-
dict output as a weighted combination of input points, thus providing good performance on surface
sampling metrics. However, they do not provide SSM that is as compact, generalizable, or specific
as Point2SSM. While ISR learns to map a learned subset of input points to correspondence points
via a point integration model, Point2SSM makes use of the full input information. Additionally, it
suffers from its individual treatment of points, whereas Point2SSM incorporates neighborhood in-
formation via edge convolution. DPC is comprised of only an encoder and utilizes latent similarity
alone to compute an affinity matrix for establishing correspondence. In contrast, Point2SSM learns
correspondence in a global manner by incorporating an attention module, which allows for captur-
ing population shape statistics without bias induced by reliance on a reference shape. Point2SSM
combines the strengths of the comparison methods, providing the best overall accuracy.
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Figure 3: Accuracy metrics are reported with best values outlined. Boxplots show the distribution
across test sets and averages are reported to the right. Compactness plots show cumulative popula-
tion variation captured by PCA modes, larger area under the curve indicates a more compact model.

Figure 5 displays the SSM resulting from Point2SSM on the pancreas dataset. The mean shape is
plausible and interpretable, and the individual point locations are geometrically consistent across
shapes. The primary modes of variation in the pancreas are semantically similar to those resulting
from the PSM method, suggesting they accurately capture population statistics and could be sim-
ilarly used in downstream tasks. Evaluation of one such task (pancreatic tumor classification) is
provided in appendix H, demonstrating the superior predictive power of Point2SSM output.
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Appendix I displays the first two modes of variation captured by Point2SSM and comparison models
on the spleen and left atrium. Point2SSM is the only point-based method that provides similar, if
not more smooth and interpretable, modes to the PSM method. Not only does Point2SSM allow for
faster inference than PSM, but it is also more scalable. While PSM accuracy is not largely affected
by the shape cohort size, the optimization process is much slower given a large cohort. Fitting the
ShapeWorks PSM model to the large left atrium cohort required running optimization incrementally
over four days, whereas, the Point2SSM model required under eight hours to train on a GPU.

4.2 ROBUSTNESS EVALUATION

We perform experiments to demonstrate model robustness using the medium-sized pancreas dataset.
These results are plotted in figure 6. In all robustness experiments, the training and testing point
clouds are corrupted in the same manner. Appendix J provides a visualization of example input.

Robustness against input noise. To analyze the effect of noise on performance, we apply random
Gaussian noise to input point clouds at various levels: 0.25, 0.5, 1, and 2 mm standard devia-
tion. Point2SSM and the comparison models are not significantly impacted by input noise, and
Point2SSM achieves the best accuracy at all noise levels. These results indicate that by adding the
denoising task in training, Point2SSM can easily be made robust to input noise.

Robustness against partial input. To analyze the impact of input with missing regions, we remove
continuous regions at random locations of various sizes (5%, 10%, and 20% of the total points)
from the input. The CD and EMD metrics capture how well the output fills in the missing regions
to provide full coverage. The autoencoder architectures (Æand DG-AE ) are the least impacted by
partial input, which is logical given this is the architecture used in point completion networks. Not
only does Point2SSM perform similarly or better than all models regarding the distance metrics,
but it also preserves compactness better than DPC and ISR with increasingly partial input.

Robustness against sparse input. To test the impact of input density, we train the models with input
size N of 128, 256, 512, 1024, 2048, and 4096, keeping L fixed at 128 and output size M fixed at
1024. This experiment benchmarks the network’s ability to both upsample and provide SSM. The
CPAE model and DPC model require N = M and are thus excluded. Point2SSM achieves the best
overall accuracy; however, performance declines given very sparse input (N = 128).

Impact of training sample size. The final experiment benchmarks the effect of training size on
model performance. We consistently define random subsets of the 216 training point clouds of size
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100, 50, 25, 12, and 6. DPC and Point2SSM perform the best on the distance metrics, demonstrating
impressive robustness (generalizing to the test set with only six training examples). Compactness
results are excluded since compactness depends on the variation in the training cohort.

The robustness experiments demonstrate that Point2SSM combines the strengths of all existing mod-
els. It performs as well as Æand DG-AE given large missing regions and as well as DPC given a
small training cohort. These comparisons are compiled in figure 6.

CD (mm) EMD (mm) P2F (mm) Compactness
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Input
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Input

Training
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     256

128

     256
128

     256
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128

     256

128

     256

Figure 6: Robustness experiment results on the pancreas test set. Distance metrics are shown with
standard deviation error bands. Compactness is calculated at 95% variability.

4.3 LIMITATIONS AND FUTURE DIRECTIONS

Deterministic deep learning frameworks like Point2SSM have some limitations. They produce over-
confident estimates that could potentially misrepresent shapes, especially when dealing with noisy,
partial, and sparse inputs. Incorporating uncertainty quantification would enhance the reliability of
deploying Point2SSM in sensitive clinical decision-making scenarios. Additionally, Point2SSM re-
quires roughly aligned input point clouds and is designed to produce SSM of a single anatomy (i.e.,
bone or organ). While Point2SSM can be trained on multiple anatomies (see appendix L), multi-
anatomy training does not notably improve accuracy. Broadening the scope of Point2SSM to handle
misalignment and to leverage multiple anatomies directly in training would increase applicability.

5 CONCLUSION

We introduced Point2SSM, the first deep learning method designed to produce 3D anatomical SSM
directly from point clouds in an unsupervised manner. Point2SSM provides substantial advantages
over traditional SSM generation approaches, offering a data-driven solution free of biases stem-
ming from reference selection, metrics, or parametric representations used in classical methods.
By reducing the input requirement from complete, noise-free shape representations to point clouds,
Point2SSM significantly broadens the potential use cases of SSM. Additionally, the scalability and
fast inference distinguish Point2SSM from optimization-based SSM generation methods, which are
slow given large cohorts and necessitate complete reoptimization to incorporate new shapes. Deep
learning approaches such as Point2SSM also enable incremental model updating through sequential
or online learning. This adaptability is crucial to real-world clinical scenarios where shape data
accumulates over time. Furthermore, our approach enables concurrent SSM prediction and supple-
mentary tasks such as up-sampling, completion, or noise removal. Traditional methods cannot be
applied when dealing with sparse, partial, noisy observations. In rigorous evaluations, Point2SSM
outperforms state-of-the-art point cloud networks in surface sampling and correspondence accuracy.
Moreover, it exhibits robustness in challenging clinical modeling situations, deftly managing lim-
ited data and handling noisy, incomplete, and sparse shape representations. Ultimately, our proposed
methodology enhances the feasibility of SSM generation and broadens its possible applications, po-
tentially accelerating its adoption as an invaluable tool in clinical research.
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A POINT2SSM ABLATION EXPERIMENT

We perform an ablation experiment on the pancreas dataset to analyze the impact of each aspect
of the Point2SSM model. To illustrate the impact of the DGCNN (Wang et al., 2019) encoder,
we design a PointSSM variant with the PointNet (Qi et al., 2017a) decoder used in PN-AE . The
Point2SSM attention module (denoted ATTN) is comprised of attention-based SFAWang et al.
(2022) blocks. To analyze this impact, we design a variation of Point2SSM where the attention
module is replaced with an MLP-based architecture. For the MLP-based architecture, we elect to
use the Point Integration Module proposed in ISR , with three 1D convolution blocks. Finally, to
test the impact of the ME loss in equation 3, we test without it by setting α = 0.

The results of this ablation are shown in table 1, with the full proposed Point2SSM in the final row.
The DGCNN-encoder and ATTN attention module both provide surface sampling and correspon-
dence accuracy improvements. The addition of the ME loss (α = 0.1) improves the correspondence
accuracy without reducing the surface sampling accuracy.
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Table 1: Point2SSM ablation experiment on the pancreas dataset. Average test set values are re-
ported for point accuracy distance metrics in mm. SSM metrics are calculated at 95% variability.

Pancreas Point2SSM Ablation Point Accuracy Metrics (mm) ↓ SSM Metrics ↓
Encoder Attention Module α CD EMD P2F Comp. Gen. Spec.
PointNet MLP 0 7.35 1.78 0.833 52 2.96 4.48
PointNet ATTN 0 3.00 1.44 0.306 27 2.24 4.67
DGCNN MLP 0 3.40 1.46 0.378 31 2.2 4.52
DGCNN ATTN 0 2.87 1.43 0.283 26 2.32 4.80
DGCNN ATTN 0.1 2.72 1.42 0.283 24 2.15 4.55

B ATTENTION MAP VISUALIZATION

Figure 7 illustrates the attention map weights learned by the Point2SSM attention module on the
pancreas dataset. Output correspondence points are a weighted combination of the input points,
where the learned attention map defines the weights. Figure 7 highlights two output correspondence
points across shapes. The attention maps show the weights on the input points (via color map) that
generated the selected output point. The maps illustrate which input points were most important for
defining a given output point. Note the maps highlight similar anatomical regions across samples
for a given output corresponding point.
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Figure 7: Two output points (highlighted in red boxes) across three pancreas shapes are shown with
the corresponding weights (blue log scale color map) on the input point clouds.

C SSM EVALALUATION METRICS

As is standard (Munsell et al., 2008), we utilize three statistical metrics to evaluate correspondence
accuracy: compactness, generalization, and specificity. A compact SSM represents the training data
distribution using the minimum number of parameters. We quantify compactness as the number of
PCA modes required to capture 95% of the total variation in the output training cohort correspon-
dence points, where fewer modes indicate a more compact model. The compactness plots in figure 3
show the cumulative explained variance as the number of modes increases to provide a full picture.

A good SSM should generalize well from training examples to unseen examples and be able to
describe any valid instance of the shape class. Given an unseen test cohort of correspondence point
sets, denoted Dtest, the generalization metric is defined as:

Gen. =
1

|Dtest|
∑

C∈Dtest

||C− Ĉ||22 (4)

where Ĉ is the point set reconstructed via the training cohort PCA eigenvalues and vectors that
preserve 95% variability. A smaller average reconstruction error indicates that the SSM generalizes
well to the unseen test set.
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Finally, effective SSM is specific, generating only valid instances of the shape class presented in
the training set. This metric is quantified by generating a set of new sample correspondence points,
denoted Dsample, from the SSM generated on the training cohort, denoted Dtrain. The specificity
metric is quantified as:

Spec. =
1

|Dsample|
∑

C′∈Dsample

min
C∈Dtrain

||C′ − C||22 (5)

The average distance between correspondence points sampled from the training SSM and the closest
existing training correspondence points provides the specificity metric. A small distance suggests
the samples match the training distribution well, indicating the SSM is specific.

D MODEL HYPERPARAMETERS

Model hyperparameters are provided in the following tables and in the configuration files proved
with the code. Table 2 displays the hyperparameters that are consistent across all models. Note in the
sparsity robustness experiments, the value of N varies. Tables 3 and 4 display the hyperparameters
specific to the CPAE and DPC models. These values match those originally tuned/reported. Finally,
table 5 displays the hyperparameters specific to our Point2SSM model. The number of neighbors
used in the ME loss is set to 10, as it is for DPC . The value of α is determined via tuning based on
the validation set performance.

Table 2: Hyperparameters shared by all models.

Shared Hyperparameters
Parameter Description Value
N Number of input points 1024
L Number of per-point features output by encoder 128
M Number of output points 1024
B Batch size 8
LR Learning rate 0.0001
ES Early stopping patience (epochs) 100
β1 Adam optimization first coefficient 0.9
β2 Adam optimization second coefficients 0.999

Table 3: Hyperparameters specific to the CPAE model.

Additional CPAE Hyper Parameters
Parameter Description Value
λMSE MSE loss weight 1000
λCD CD loss weight 10
λEMD EMD loss weight 1
λcc Cross-construction loss weight 10
λunfold Unfolding loss weight 10
e Adaptive loss epoch 100

Table 4: Hyperparameters specific to the DPC model.

Additional DPC Hyperparameters
Parameter Description Value
K Neighborhood size for loss calculation 10
γ Mapping loss neighbor sensitivity 8
λcc Cross-construction loss weight 1
λsc Self-construction loss weight 10
λm Mapping loss weight 1
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Table 5: Hyperparameters specific to our Point2SSM model.

Additional Point2SSM Hyperparameters
Parameter Description Value
K Neighborhood size for ME loss 10
α ME loss weight 0.1

E MODEL MEMORY COMPARISON

Table 6 shows a comparison of the memory footprint of each model.

Table 6: Model memory footprint comparison. Size is reported in MB.

Model Total params Forward/backward pass size Params size Total size
PN-AE 3,832,576 11.04 14.62 25.68
DG-AE 4,702,336 609.54 17.94 627.5
CPAE 156,652 19.58 0.60 56.18
ISR 1,962,208 4.00 7.49 11.51
DPC 962,176 609.50 3.67 613.21

Point2SSM 22,098,560 633.69 84.3 718.01

Point2SSM has many more parameters than the other models due to the attention module. When
this module is replaced with a simple MLP, as is done in the ablation experiment in appendix A, the
number of parameters is reduced from 22,098,560 to 2,707,328. It is worth noting that this reduced
model still provides more accurate SSM than the comparison models, as can be seen by comparing
the metrics reported in table 1, row 3 and figure 3. This suggests that the performance improvement
provided by Point2SSM is not simply a result of increased model capacity.

F BATCH SIZE ABLATION EXPERIMENT

The Point2SSM loss (equation 3) contains ME ( equation 2), which is computed pairwise within a
batch. To analyze the impact of batch size on model performance, we perform an ablation on the
pancreas dataset with batch sizes: 2, 4, 6, 8, 10, and 12. The results are provided in table 7. The
batch size does not have a large impact on accuracy.

Table 7: Effect of batch size on Point2SSM performance on the pancreas dataset. Average values
across test set are reported with best values marked in bold.

Point Accuracy Metrics (mm) ↓ SSM Metrics ↓
Batch Size CD EMD P2F Comp. Gen. Spec. ME

2 2.74 1.42 0.279 24 2.12 4.41 3.38
4 2.61 1.41 0.256 23 2.22 4.61 3.22
6 2.64 1.41 0.270 23 2.20 4.65 3.25
8 2.72 1.42 0.283 24 2.15 4.55 3.36

10 2.67 1.42 0.269 24 2.14 4.66 3.32
12 2.71 1.42 0.280 24 2.14 4.59 3.34

G SHAPE DATASET VISUALIZATION

Figure 8 displays example shapes from each organ dataset (spleen, pancreas, and left atrium) from
multiple views, illustrating the large amount of variation in these shape cohorts.
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Figure 8: Example shapes are shown from each of the datasets from the top and anterior views.

H DOWNSTREAM EVALUATION: PANCREAS TUMOR SIZE CLASSIFICATION

As SSM is useful in many downstream applications, we have performed an additional evaluation of
such a task. The pancreas dataset (Simpson et al., 2019) is comprised of cancerous cases, where
each pancreas shape has tumorous masses of various sizes. As a downstream classification task, we
analyze whether the tumor region of a given pancreas is larger or smaller than 20% of the pancreas
size. In particular, we compute PCA embeddings of the SSM generated from each method. These
PCA embeddings then serve as input into a random forest ensemble comprised of decision tree
classifiers. The classifier is fit and evaluated using the original pancreas train/test split. The accuracy
of the classifier built from each SSM is reported in table 8. The PSM and the comparison methods
all performed similarly in this task, but Point2SSM provided a slight improvement. This evaluation
demonstrates that Point2SSM provides effective, usable SSM estimation.

Table 8: Pancreas Tumor Mass Classification Accuracy Percentage of test cases correctly classi-
fied as having tumor regions are larger than 20% of the total pancreas size. Random forest ensem-
ble classifiers were trained in the PCA embedding of the correspondence points provided by each
method.

Model PSM PN-AE DG-AE CPAE ISR DPC Point2SSM
Accuracy 85.71% 85.71% 85.71% 82.29% 85.71% 85.71% 89.28%

I SPLEEN AND LEFT ATRIUM MODES OF VARIATION

Figure 9 displays the first two modes of variation captured by Point2SSM and all comparison mod-
els on the spleen and left atrium datasets. The CPAE results are excluded from this visualization
because the resulting SSM is uninterpretable. The meshes in figure 9 are constructed using the out-
put correspondence points. Mesh artifacts or implausible morphologies are an indication of output
miscorrespondence. Point2SSM is the only point-based method that provides similar, if not more
smooth and interpretable, modes to the PSM method.
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Figure 9: Primary and secondary modes of variation captured by spleen and left atrium SSMs output
by each model. Point2SSM provides the smoothest and most plausible mean and modes of variation.

J ROBUST EVALUATION INPUT EXAMPLES

Figure 10 shows examples of input point clouds from the robustness experiments described in sec-
tion 4.2.

𝑁 = 128 𝑁 = 256 𝑁 = 512 𝑁 = 1204 𝑁 = 2048 𝑁 = 4096

𝜎 = 0 𝜎 = 0.25 𝜎 = 0.5 𝜎 = 1 𝜎 = 2

0% Missing 5% Missing 10% Missing 20% Missing

Noisy

Input

Partial

Input

Sparse

Input

Figure 10: Robustness evaluation input point cloud examples are displayed over the semi-transparent
ground truth shape.

K VERTEBRAE EXPERIMENT

In addition to the three organ experiments presented in section 4, we provide an experiment on a
complex bone: the fourth lumbar (L4) vertebrae. This dataset is selected from the publicly available
labeled and segmented data for human vertebrae by the vertebrae segmentation challenge (VerSe)
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Sekuboyina et al. (2021). The L4 vertebrae data comprises 160 complete bone shapes. A visualiza-
tion of a subset of the bones is provided in figure 11.

L4

Vertebrae

Top View Posterior View

Figure 11: Example shapes are shown from each of the datasets from the top and anterior views.

The experiment was conducted using the same steps and parameters as described in section 4. The
results are summarized in table 9. While PN-AE and DG-AE provide the most compact SSM’s, they
do not perform well on point accuracy metrics. CPAE performs poorly on all metrics, likely because
the vertebrae topology is difficult to map to a sphere. ISR and DPC perform slightly better than the
autoencoder models in terms of point accuracy, but suffer on the SSM metrics. Point2SSM performs
best overall and provides an interpretable shape model with good correspondence and smooth modes
of variation, as shown in figure 12.

Table 9: Average results on the L4 vertebrae test set. Best values are marked in bold.

Point Accuracy Metrics (mm) ↓ SSM Metrics ↓
Model CD EMD P2F Comp. Gen. Spec. ME
PN-AE 5.22 1.82 0.897 24 0.606 1.70 2.03
DG-AE 4.90 1.79 0.836 22 0.615 1.67 2.09
CPAE 8.13 1.84 0.946 117 27.4 24.7 531.42
ISR 4.66 1.69 0.714 54 1.24 2.59 3.02
DPC 4.82 1.63 0.573 94 1.83 3.04 4.71

Point2SSM 2.61 1.48 0.304 34 0.879 2.06 1.98

Recolored to 

highlight

one point

Recolored to 

highlight

another point

Example Output 

Correspondence 

Points

L4 Vertebrae 

Point2SSM Modes of Variation

Figure 12: The L4 vertebrae SSM from Point2SSM is displayed. Left: The first three modes of
variation are shown for the Point2SSM model at ±1 standard deviation from the mean. The heatmap
and vector arrows display the distance to the mean. Right: Example predictions are shown where
the point color denotes correspondence. Recoloring according to the distance to a selected point is
provided for further illustration.
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L MULTI-ANATOMY TRAINING

Table 10 compares the results of training and testing Point2SSM on a single anatomy versus multi-
anatomy training. The results are similar, indicating multi-anatomy training neither helps nor hinders
Point2SSM. Future work could leverage anatomy labels to increase the training signal and provide
improved performance given multiple anatomies.

Table 10: Multi-anatomy Experiment

Anatomy Point Accuracy Metrics (mm) ↓ SSM Metrics ↓
Train Test CD EMD P2F Comp. Gen. Spec. ME
Spleen Spleen 3.42 1.53 0.363 8 4.19 6.11 3.25
Spleen, Pancreas, Left Atrium Spleen 3.33 1.54 0.310 8 4.42 6.13 2.94
Pancreas Pancreas 2.72 1.42 0.283 24 2.15 4.55 3.36
Spleen, Pancreas, Left Atrium Pancreas 3.10 1.44 0.352 24 2.11 4.21 3.45
Left Atrium Left Atrium 2.03 1.25 0.221 20 1.90 4.13 3.45
Spleen, Pancreas, Left Atrium Left Atrium 2.15 1.25 0.258 20 1.86 4.09 3.47
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