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Abstract—This paper introduces SePA (Search-enhanced Pre-
dictive AI Agent), a novel LLM health coaching system that in-
tegrates personalized machine learning and retrieval-augmented
generation to deliver adaptive, evidence-based guidance. SePA
combines: (1) Individualized models predicting daily stress,
soreness, and injury risk from wearable sensor data (28 users,
1260 data points); and (2) A retrieval module that grounds
LLM-generated feedback in expert-vetted web content to ensure
contextual relevance and reliability. Our predictive models, eval-
uated with rolling-origin cross-validation and group 4-fold cross-
validation show that personalized models outperform generalized
baselines. In a pilot expert study (n=4), SePA’s retrieval-based
advice was preferred over a non-retrieval baseline, yielding
meaningful practical effect (Cliff’s δ=0.3, p=0.05). We also
quantify latency performance trade-offs between response quality
and speed, offering a transparent blueprint for next-generation,
trustworthy personal health informatics systems.

Index Terms—Large Language Models, Personalized Health,
Wearable Sensors, Predictive Modeling

I. INTRODUCTION

The proliferation of wearable sensors has ushered in an era
of unprecedented personal health data, offering the potential to
move from reactive healthcare to proactive wellness manage-
ment. Consumer devices from Fitbit, Garmin, and Apple now
continuously stream physiological and behavioral data, yet a
critical gap persists: the raw data or simple trend visualizations
provided by most applications often fail to translate into
proactive, personalized, and trustworthy guidance [1]. Users
are left with metrics, but little understanding of what to do
next to mitigate future risks of stress, soreness, or injury.
Large Language Models (LLMs) have emerged as a promising
technology to bridge this gap. Early systems like PhysioLLM
demonstrated that integrating wearable data with LLM-driven
interfaces could yield richer, more personalized insights for
domains like sleep hygiene and recovery [2]. Subsequent re-
search, including PH-LLM [3] and Health-LLM [4], advanced
this paradigm by leveraging sophisticated models trained on
multimodal health records to provide patient-centric explana-
tions. While powerful, these systems have largely remained
retrospective, excelling at explaining historical data rather than
forecasting near-future wellness states.

Recent work such as PHIA [5] highlights the potential of
LLMs to dynamically interact with personal data and external
knowledge sources. While promising, it lacks open-source

accessibility, personalized retrieval based on biometric context,
and verified sourcing needed for health-related guidance.

This paper introduces SePA (Search-enhanced Predictive
Agent), an LLM health agent designed with the principles
of transparency and evidence-based coaching, to overcome
these limitations. Our system integrates proactive risk predic-
tion directly into a trustworthy, context-aware conversational
loop. We move beyond reactive analysis by forecasting daily,
subjective states of stress, muscle soreness, and injury risk
from wearable data. These predictions then serve as dynamic
context for a web-retrieval pipeline that grounds its advice in
a whitelist of trusted sources, ensuring all claims are verifiable
and relevant to the user’s current and predicted state.

Our primary contributions are as follows:
• Development and validation of a two-tiered predictive

modeling strategy for daily stress, soreness, and injury
risk. This strategy balances immediate utility of a general-
ized model (validated with group 4-fold cross-validation)
with the superior accuracy of personalized neural models,
which we evaluate using rolling-origin cross-validation.

• A context-aware and trusted web-retrieval pipeline that
dynamically rewrites search queries using daily ML-
driven risk predictions. This ensures the retrieved content
is both contextually relevant to the user’s physiological
state and sourced from expert-vetted domains.

• A transparent architectural blueprint and performance
analysis, including detailed system design and documen-
tation.

• Preliminary expert validation through a blind evaluation
with four domain experts, demonstrating that our web-
search retrieval-augmented coaching agent provides rec-
ommendations of meaningfully higher quality, relevance,
and helpfulness compared to a non-retrieval baseline.

Our web-retrieval pipeline implementation is available at
https://github.com/stevenshci/sepa-web-search.

By integrating proactive forecasting with verifiable, context-
aware retrieval, SePA presents a significant step toward the
next generation of digital health agents that are not only
intelligent but also predictive, transparent, and trustworthy.

II. RELATED WORKS

Our research builds upon three distinct but converging
lines of work: predictive modeling from wearable data, the



development of LLM-powered health agents, and the use of
web-retrieval for trustworthy guidance.

A. Predicting Stress, Soreness, Injury Risk via Wearable Data

The last five years have witnessed remarkable advances in
automated wellness prediction using wearable sensors. Early
research established strong correlations between physiological
signals like heart rate variability (HRV) and sleep disruption
with perceived stress [6]. More recent work has evolved
from retrospective analysis to forecasting, with some models
achieving F1 scores above 0.80 for next-day stress prediction
by integrating heart rate, accelerometry, and contextual data
[7].

Predicting muscle soreness, particularly delayed onset mus-
cle soreness (DOMS), remains a challenge due to its subjective
nature. However, wearable-derived features such as training
load, high-intensity movement counts, and heart rate zone
exposures have been shown to significantly anticipate next-day
soreness [8]. Similarly, the prediction of injury risk has been
a major focus, often employing tree-based methods or logistic
regression [9], [10]. Many of these models grapple with severe
class imbalance from infrequent injury events [11], and while
some report high performance, broad injury definitions can
limit their practical relevance in specific athletic contexts [12].
A recurring theme in this domain is the high inter-individual
variability, suggesting that personalized models often outper-
form generalized ones. Our work builds on these foundations
by developing personalized models specifically for proactive,
daily forecasting to power a downstream agent.

B. LLM Health Agents Leveraging Wearable Data

The intersection of wearables and LLMs has catalyzed
a new wave of personal health technologies. PhysioLLM
was a pioneering system that demonstrated how combining
statistical analysis of Fitbit data with an LLM summarizer
could produce more actionable, user-centered coaching than
traditional dashboards [2]. This line of work was extended
by more sophisticated systems like PH-LLM [3] and Health-
LLM [4], which utilized large-scale, transformer-based models
to provide patient-centric explanations and recommendations
from multimodal health records. Other approaches, such as
GPTCoach [13], have focused on leveraging LLMs for moti-
vational interviewing and goal setting.

Despite their sophistication, these systems are primarily
reactive. Their main function is to interpret and explain
historical trends, with limited support for actionable prediction
and prevention. They excel at answering what happened? but
are less equipped to answer what is my risk tomorrow, and
what should I do about it?. SePA is designed specifically to
be proactive, using daily risk forecasts as the primary driver
for its conversational guidance.

C. Live Web-Retrieval for Personal-Health LLM Agents

To ensure advice is both current and factually accurate,
researchers enhance the LLM context with retrieval-augmented
generation (RAG). In medicine, RAG has proven essential

for reducing factual errors and hallucinations, with studies
showing it can cut unsupported claims in clinical guidance
from 23% down to just 4% [14]. A recent meta-analysis
confirmed this, finding a pooled 1.35x performance lift when
RAG is added to a health-oriented LLM [15]. Systems have
integrated RAG for sleep-hygiene coaching [16], diabetes meal
planning [17], and other wellness domains. However, these
often rely on static corpora or generic web searches without
strong source filtering, limiting trustworthiness. Wu et al.
showed that GPT-4 with unrestricted web search still produced
unsupported statements 30% of the time in medical responses
[18]. This underscores that the quality of retrieved content and
its integration are crucial for trustworthy health guidance.

PHIA [5] represents the state-of-the-art in the context of
LLM-based health coaching, introducing a ReAct-style agent
that combines data analysis with Google Search. While in-
fluential, the system has critical limitations for real-world de-
ployment: (1) it lacks contextual retrieval, as searches are not
personalized using real-time biometrics or risk predictions; (2)
it retrieves from the unrestricted public web without verified
sources or trust mechanisms; and (3) it is not open-source,
with key components of its retrieval pipeline and prompts
undocumented, limiting reproducibility.

Our work directly addresses these gaps by introducing
a privacy-preserving agent architecture designed for trust
and transparency. Its novel web-retrieval pipeline, which we
commit to releasing as open-source, is both context-aware,
using ML predictions to inform retrieval, and trust-filtered,
using a rigorously curated domain whitelist and strict citation
requirements.

III. SYSTEM ARCHITECTURE & METHOD

SePA is an end-to-end system designed to provide proactive,
personalized, and trustworthy health guidance. Its architecture
integrates three core components: (1) an asynchronous data
processing and prediction pipeline, (2) an agentic conver-
sational layer, and (3) a novel trusted, context-aware web-
retrieval pipeline. A high-level overview of the system is
presented in Figure 1.

A. Overall Architecture and Data Flow

The system is implemented as a web application with a
Python Flask backend. User management and persistence are
handled via a PostgreSQL database.

1) Data Ingestion: Users upload their Apple Health data
as a ZIP archive. This triggers an asynchronous pro-
cess uploaded data task managed by a Celery worker
queue with a Redis broker. This architecture allows
for concurrent processing of multiple uploads without
impacting conversational latency.

2) Preprocessing & Feature Engineering: The worker un-
packs the raw data, cleans it, and engineers a daily feature
matrix. Key variables include sleep stages, wearable
tracked vitals, and activity summaries (steps, calories,
etc.) (See Section III-B for more details). The original



Fig. 1: SePA system architecture overview. User uploads their Apple Health data export to our website, which is then transformed
into a 1-Day aggregated tabular data format after feature extraction. If the user provides 10+ days of labels for their subjective
feelings of injury risk, soreness, stress, our higher performing Personalized Health Models (PHMs) are unlocked. For cold-start
scenario, the user has access to a lower-performing, exploratory XGBoost-Soreness model. For incoming user query, SePA
analyzes which tool(s) is needed. For web-retrieval, pipeline flow and processing steps are depicted on the right (Reranking is
done for pre-filtering purposes). The example response illustrates the final output, demonstrating how the system synthesizes
personalized data with cited web content to provide actionable, evidence based guidance.

raw data is permanently deleted after this step to enforce
privacy, with only the derived feature set being stored.

3) Conversational Loop: The user interacts with the LLM
agent-powered by any OpenAI API compatible model
with tool call support- via the web interface, including
open-source LLMs served from Groq API. whose privacy
guarantees are detailed in Section III-D. The agent main-
tains conversational history and has access to a suite of
tools, which it can autonomously invoke to answer user
queries.

B. Proactive Health Predictions

A core contribution of our system is the move from post-
hoc analysis of health data via a chat interface, to proactive
forecasting enabling preventive health insights. Each morning
after wake-up, we predict self-reported stress, soreness, and
injury risk scores for the current day ahead, enabling athletes
to receive actionable health insights before starting their day.
After recording sleep data each morning, our models fore-
cast the day’s average self-reported health scores (spanning
morning, afternoon, and evening). The predictions use the
past 72 hours of wearable and environmental data, the just-
completed night’s sleep-related metrics (including vitals like
HRV, SpO2,VO2 max, Resp Rate.), with the target being the
average of three same-day self-reports (1-7 scale) collected
at morning, afternoon, and evening. We gathered continu-
ous wearable data from Fitbit devices alongside self-reported
health ratings from student-athletes at our institution. The
day-aggregated dataset includes all wearable captured data,

environmental factors (weather), and athlete demographics
(age, weight, height, sport), processed using statistical methods
ranging from basic (mean, std, skewness) to advanced (DFA,
entropy, second-order statistics [19]) for heart rate and sleep.

Our analysis revealed that purely generalized models strug-
gle with the high inter-individual variability of these subjective
health states, achieving more limited predictive power. We
therefore designed a practical, two-tiered deployment strategy
that transitions from general to personalized models as user
data accumulates.

1) Tier 1: Generalized Model for New Users (Cold-Start):
For a new user with no historical labels, the system deploys a
generalized XGBoost (G) model trained on pooled data from
our entire athlete cohort. While this model performs poorly for
stress and injury risk (negative R2 in group cross-validation,
see Figure 4), it achieves a modest but positive predictive
signal for soreness (R2 ≈ 0.15). This provides immediate,
preliminary guidance to new users, encouraging engagement
without an initial labeling burden.

2) Tier 2: Personalized Model for Engaged Users: Once a
user provides sufficient daily labels (d > 15 days), the system
switches to our Personalized Health Models (PHMs). The
detailed methodology, dataset, and validation for the injury
risk component of this model are presented in [20]. Our pro-
posed neural network architecture (Fig. 2) features participant-
specific embeddings, learned numerical vectors that allow the
model to learn each individual’s unique physiological baseline
and response patterns. The embedding concatenated before
feature extraction captures individual physiological baselines,



while the second concatenation enables person-specific pre-
diction scaling. To address overfitting given our dataset of
28 participants (1,260 participant-days), we employed mul-
ticollinearity removal and F-test feature selection, reducing
features from 200+ to 60-70 per task. As shown in Figure 3,
this personalized approach improves performance, achieving
R2 > 0.50 for stress, R2 > 0.40 for injury risk, and R2 ≈
0.28 for soreness.
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Fig. 2: PHM architecture with double concatenation of 64-dim
person embeddings. Feature extractor (input+64→256→128)
and prediction head (192→64→1) with ReLU activations and
dropout (p=0.5). L2 regularization (λ=1e-5) for training.

C. Trusted, Context-Aware Web-Retrieval Pipeline

When a user asks an advice-seeking question, the agent
invokes our novel Web-Retrieval pipeline.

1) Query Contextualization: The pipeline augments each
user query with personal context including demographics
(age, sex, sport), recent data-driven insights, and cur-
rent ML risk predictions (stress, soreness, injury). This
transforms a generic question (e.g., “How can I reduce
soreness?”) into a privacy-preserving search prompt (e.g.,
“Strategies to reduce soreness for a 21-year-old basketball
player with high soreness (74%) and elevated RHR”).

2) Cache Check: Before searching, a multi-layer cache (in-
memory, disk, semantic) is queried with the augmented
prompt. Cache hits bypass steps 3–6 and go straight to
synthesis.

3) Trusted Retrieval: On a cache miss, the query is sent
to Google Programmable Search Engine restricted to a
curated whitelist (35 trusted domains: professional soci-
eties, major medical centers, PubMed). A separate branch
handles video requests.

4) Scraping & Cleaning: Returned URLs are fetched asyn-
chronously (aiohttp); boilerplate is removed and main
text extracted.

5) Document-Level Reranking: Pages are scored against
the augmented query with a cross-encoder to filter before
embedding.

6) Semantic Similarity Search: Top-ranked documents are
(a) split into 800-character chunks, (b) embedded via an
embedding model, and (c) indexed in a FAISS vector

store; the enhanced query then similarity-searches this
index to retrieve the most relevant snippets for the final
response.

7) Response Synthesis: Retrieved snippets plus the system
prompt (“act as a certified sports-medicine coach; cite
every factual claim”) guide the LLM to produce an
answer with inline citations and a source list.

D. Privacy and Open Implementation

Our architecture ensures privacy through three layers: (1)
Raw user health data is ephemeral and deleted post-processing.
(2) No personally identifiable information is ever sent to
external APIs (both LLM and Google PSE APIs); only the
anonymized, rewritten search queries are transmitted (no name
information being passed to the context). (3) We give users the
option to use no-retention LLM endpoints, such as the Groq
API, which process queries for immediate inference and then
discard all data1. The web-retrieval pipeline implementation,
full domain whitelist, and prompt templates are publicly
available to ensure reproducibility.

IV. EVALUATION

We conducted a two-part evaluation to validate the core
components of SePA. First, we assessed the performance and
necessity of our predictive modeling strategy. Second, we
conducted an expert-driven study to measure the quality of
the guidance generated by our web-retrieval pipeline.

A. Predictive Model Performance

As detailed in Section III-B, our analysis focused on the
performance of personalized versus generalized models. The
results, summarized in Figure 3 and Figure 4, confirm our
central hypothesis.

The within-participant rolling-origin cross-validation evalu-
ation (Figure 3) shows that personalized models, particularly
our PHM model, consistently and significantly outperform all
generalized baselines across all three tasks (stress, soreness,
and injury risk) once a sufficient amount of historical data
is available. The PHM model reaches a robust coefficient of
determination (R2) of over 0.40 injury risk, and over 0.50 for
stress predictions, demonstrating sufficiently strong predictive
power.

Conversely, the group 4-fold cross-validation (Figure 4),
which simulates model performance on completely unseen
users, highlights the severe limitations of a generalized ap-
proach. For stress and injury risk, the best-performing global
models yielded negative R2 values, indicating their predictions
were worse than simply using the dataset’s mean. Only for
soreness did the XGBoost (G) model show a modest positive
performance (R2 ≈ 0.15). These quantitative results provide
strong evidence for our two-tiered deployment strategy, which
balances the need for immediate utility in a cold-start scenario
with higher accuracy of a personalized approach for engaged
users.

1www.groq.com/privacy-policy/



Fig. 3: Cumulative model performance comparison across stress, soreness, and injury risk prediction tasks. Models were
evaluated using rolling-origin validation with first N training days and tested on day N+1. Cumulative R2 values incorporate
all test predictions from day 10 to N. PHM (P): our proposed personalized model with participant embeddings; other baselines
include non-personalized and traditional ML approaches. Results averaged over 5 runs (Std. shown in shaded areas).
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Fig. 4: Model performance (R2) comparison using group
4-fold cross-validation (group-out CV, unseen participants).
PHM without personal embeddings (N-PHM), XGBoost (Gen-
eral) model for soreness has a positive R2, RF (General)
models. Noting that only soreness models achieve positive R2,
with XGBoost achieving the highest value at 0.15.

B. Web-Retrieval-Augmented Coaching Quality

To assess whether our context-aware web-retrieval pipeline
improves the quality of health coaching, we conducted a
blind evaluation with four domain experts: a Professor of
Psychology with expertise in wellness coaching, head coaches
of field-hockey and soccer teams at our institution, and the
head strength and conditioning coach in our institution.

1) Methodology: The experts were presented with answers
to ten representative advice-seeking coaching queries. The
queries were prepared by drawing from existing literature [3],
recorded interactions from our pilot user tests, and with the
input from a Professor of Psychiatry. The queries and the inter-
rater reliability (Kendall’s W) scores are presented in Table I.
The study design (4 experts, 2 items) constrains the Kendall’s
W statistic in Table I to discrete values of 1.0 (unanimity),
0.25 (3-1 majority), or 0.0 (2-2 split) which limits the metric’s
resolution in this context.

For each query, two responses were shown generated by:
• SePA-no-web: The LLM agent using only the user’s

TABLE I: Questions and corresponding inter-rater reliability
scores (Kendall’s W).

Id Question W

Q1 How can I effectively balance my acute and chronic
workload ratio (ACWR) to minimize injury risk?

1.00

Q2 What nutritional strategies might help improve VO2? 0.25

Q3 Could you give me a suggested workout about an hour
long that hits legs, based on my current injury risk
level?

1.00

Q4 What strategies can help me optimize my REM sleep? 0.25

Q5 How should my training volume adjust based on
changes in my resting heart rate?

1.00

Q6 I went out partying last night and got back to my
apartment hammered at 4 AM. What advice would you
give to help me prepare for tomorrow’s game?

0.00

Q7 I have been dealing with a Grade 2 calf strain past 2
weeks. . . What should I do?

0.25

Q8 What are some recommendations or insights on how I
can optimize my exercise routine and overall wellness?

0.00

Q9 How do I reduce stress? 1.00

Q10 How can I improve my muscle recovery? 0.25

personal data, without web retrieval.
• SePA-web: Our full system, using both personal data and

the trusted web-retrieval pipeline.
The experts, blind to the condition, ranked the two responses

for each query on overall quality, considering accuracy, rele-
vance, helpfulness, and completeness (1 = better, 2 = worse).
All responses were generated using GPT-4o, with same exact
system prompts and data availability, the only difference being
the LLM not having access to the web searcher tool.

2) Results: As shown in Table II, the web-retrieval aug-
mented system (SePA-web) was strongly preferred by the
experts. SePA-web achieved a superior mean rank of 1.35
compared to 1.65 for the SePA-no-web system and received
26 out of 40 first-place votes.

A one-tailed Wilcoxon signed-rank test was used to evaluate
the quality of recommendations. The result provided evidence
against the null hypothesis at the margin of conventional



TABLE II: Comparison of Expert Rankings for Coaching
Responses.

Metric SePA-web SePA-no-web

Mean rank (↓ better) 1.35 1.65
# of first-place votes 26 14

TABLE III: Summary of Qualitative Feedback from Domain
Experts.

Expert Key Feedback Summary

Professor of
Psychology
(Wellness
Coaching
Expert)

• Praised the combination of personalized data with credible
web content.
• Suggested simplifying language to match user
health-literacy levels.
”Health literacy should be considered... boil down the
language.”

Head Strength &
Conditioning
Coach

• Valued detailed, cited answers for building trust.
• Stressed the agent’s need to ask clarifying questions
before advising on complex issues like injury.
”Asking the right question...is the most crucial aspect.”

Head
Field-Hockey
Coach

• Highlighted the value of privacy, allowing athletes to ask
”embarrassing or silly” questions without judgment.
• Noted the system’s potential to support off-season
self-coaching.
”They can ask any silly question...this system can give them
that resource.”

Head Soccer
Coach

• Appreciated the utility for athletes without direct staff
access, especially during the off-season.
• Emphasized the need to position the tool to support, not
replace, professional staff.
”...wouldn’t like athletes disagreeing with coach saying ’my
AI told me xxx’.”

statistical significance (W = 287, p = 0.05). While this result
is at the threshold of significance, it is supported by a Cliff’s
δ of 0.30, indicating a medium practical effect. This suggests
that the improvement offered by the web-retrieval pipeline is
not only statistically detectable but also meaningful in practice.

3) Qualitative Feedback: : Following the ranking task, ex-
perts engaged in free-form interaction with the live SePA-web
system. Their qualitative feedback reinforced the quantitative
findings. Experts praised the system’s ability to provide up-
to-date guidelines tied to the athlete’s recent workload and
appreciated the privacy to ask embarrassing questions without
judgment. The head strength and conditioning coach noted that
providing detailed, cited answers was crucial, stating that the
agent should help them know where the answer is coming
from instead of just spewing the response. This feedback
directly validates our design choices of integrating context-
aware retrieval and enforcing strict, verifiable citations. A
summary of the qualitative feedback is presented in Table III.

V. DISCUSSION

We offer a practical blueprint for integrating proactive,
personalized prediction with trusted, context-aware retrieval
in digital health coaching. By anticipating wellness risks
and grounding guidance in vetted sources, SePA helps move
beyond reactive what happened? analyses toward actionable
what might happen, and what should I do? support.

A. Findings and Implications

Our evaluation yielded two principal findings. First, we
identified that one-size-fits-all approach is insufficient for
predicting subjective health states like stress, and injury risk.
Our personalized models, evaluated with rolling-origin cross-
validation learns significantly better than non-personalized
models (Figures 3 and 4). Our two-tiered deployment strategy
offers a pragmatic solution to this personalization challenge,
addressing the cold-start problem while incentivizing user en-
gagement to unlock more accurate, individualized predictions.

Second, our expert evaluation suggests that web-retrieval is
likely a critical component for high-quality health coaching.
This is indicated in our finding of expert preferences for the
web-retrieval agent (SePA-web) that, while at the margin of
statistical significance (p=0.05), was practically meaningful
(Cliff’s δ=0.30, medium effect). This highlights the value
of grounding advice in external, verifiable knowledge while
making the retrieval context-aware. By dynamically injecting
ML-driven risk predictions into search queries, we ensure the
retrieved evidence is directly relevant to the user’s immediate
physiological state, a key limitation we identified in prior
systems like PHIA [5].

B. Trust, Transparency, and Reproducibility

A central pillar of our work is addressing the black box
problem prevalent in many commercial AI systems. While
the full coaching system is part of an ongoing longitudinal
study, we are committed to advancing reproducible research
in this domain. By constraining retrieval to a curated domain
whitelist, enforcing strict claim-level citation, and commit-
ting to release our Web-Retrieval pipeline implementation
upon publication, we provide a transparent and reproducible
blueprint for this critical system component. This contrasts
with closed-source systems and offers a foundation upon
which the community can build, scrutinize, and improve.
The technical details and hyperparameters of this pipeline are
detailed in Section III to facilitate replication.

C. Practical Considerations and Performance Trade-offs

A practical consideration of our design is the trade-off
between response quality and system latency. We quantified
this by analyzing advice-seeking queries on our deployment
server (16GB RAM CPU). As shown in Figure 5, enabling
our web-retrieval pipeline increased the median response time
from 4.41s (n=28) to 19.69s (n=135). This overhead is inherent
to the multi-step retrieval process, which includes document
fetching, processing with the all-mpnet-base-v2 model,
and reranking with the ms-marco-electra-base cross-
encoder (see Section III). Our selection of these models
represents a balance between retrieval quality and real-time
interactivity within the constraints of typical web server hard-
ware. While larger models could enhance retrieval accuracy,
their latency would be prohibitive in a conversational context.
This highlights a critical area for future optimization through
techniques like model distillation to improve user experience
without sacrificing guidance quality.



Fig. 5: System response time comparison. Box plots show
response time distribution for agent turns with and without
the web-retrieval pipeline for advice-seeking queries.

D. Limitations and Future Work

This preliminary study has several limitations. Our predic-
tive models were trained and validated on a cohort of collegiate
student-athletes, and their generalizability to other populations
requires further investigation. The expert evaluation, while
providing valuable qualitative insights, was conducted with
a small panel (n=4). Further research is needed to validate
the system and predictive models on larger, more diverse
cohorts. Furthermore, future work should look into enhancing
the conversational capabilities of the coaching agent in light
of the insights from our expert panel.

VI. CONCLUSION

In this paper, we introduced SePA (Search-enhanced Predic-
tive Agent), a novel LLM health agent built on the principles of
transparency and evidence-based coaching to advance proac-
tive health management. We demonstrated the critical need for
personalization in predicting daily subjective states like stress,
soreness, and injury risk, and presented a practical two-tiered
modeling strategy to achieve this.

The core contribution of our work is a trustworthy, context-
aware web-retrieval pipeline that leverages these daily pre-
dictions to find highly relevant and verifiable guidance from
a curated set of expert sources. Our expert-driven evalua-
tion demonstrated that integration of proactive prediction and
trusted retrieval leads to a meaningful improvement in coach-
ing quality. By providing a detailed architectural blueprint and
committing to release the core web-retrieval component as
open-source, we offer a reproducible foundation for health
agent systems that are personalized, transparent, verifiable, and
proactive in helping users manage their health.
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