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Ideas NCBR,

Polish Academy of Sciences,
deepsense.ai

Abstract

Inferring causal structure from data is a challenging task of fundamental importance
in science. Observational data are often insufficient to identify a system’s causal
structure uniquely. While conducting interventions (i.e., experiments) can improve
the identifiability, such samples are usually challenging and expensive to obtain.
Hence, experimental design approaches for causal discovery aim to minimize the
number of interventions by estimating the most informative intervention target.
In this work, we propose a novel Gradient-based Intervention Targeting method,
abbreviated GIT, that ’trusts’ the gradient estimator of a gradient-based causal
discovery framework to provide signals for the intervention acquisition function.
We provide extensive experiments in simulated and real-world datasets and demon-
strate that GIT performs on par with competitive baselines, surpassing them in the
low-data regime.

1 Introduction
Estimating causal structure from data, commonly known as causal discovery or causal structure
learning, is central to the progress of science [28]. Methods for causal discovery have been suc-
cessfully deployed in various fields, such as biology [31, 42, 15], medicine [36, 5, 44], earth system
science [11], or neuroscience [32]. In general, real-world systems can often be explained as a modular
composition of smaller parts connected by causal relationships. Knowing the underlying structure is
crucial for making robust predictions about the system after a perturbation (or treatment) is applied
[29]. Moreover, such knowledge decompositions are shown to enable sample-efficient learning and
fast adaptation to distribution shifts by only updating a subset of parameters [3, 34].

To identify a system’s causal structure uniquely, observational data (i.e., obtained directly from
the system, without interference) are, in general, insufficient and only allow recovery of the causal
structure up to the Markov Equivalence Class (MEC) [37, 30]. Such a class contains multiple graphs
that explain the observational data equally well. To overcome the limited identifiability, causal
discovery algorithms commonly leverage interventional data [17, 4, 20], which are acquired by
manipulating a part of the system [38, 28]. Without an experimental design strategy, intervention
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targets (i.e. variables on which the manipulation is performed) are usually chosen at random before
conducting an experiment. While collecting enough interventional samples under a random strategy
enables identification [10, 8], such an acquisition technique neglects the current evidence and can be
wasteful, as acquiring interventional data might be costly (e.g. additional experiments in the chemistry
lab) [30]. Consequently, the field of experimental design [23, 27, 41] is concerned with the acquisition
of interventional data in a targeted manner to minimize the number of required experiments.

Gradient-based

Causal Discovery

Gradient-based

Intervention Targeting

(GIT)

Score using

Intervention Acquisition

Figure 1: Overview of GIT’s usage in a gradient-based causal
discovery framework. The framework infers a posterior distribution
over graphs from observational and interventional data (denoted
as Dobs and Dint) through gradient-based optimization. The dis-
tribution over graphs and the gradient estimator ∇L(·) are then
used by GIT in order to score the intervention targets based on the
magnitude of the estimated gradients. The intervention target with
the highest score is then selected, upon which the intervention is
performed. New interventional data Dnew

int are then collected and
the procedure is repeated.

In this work, we introduce a sim-
ple yet effective approach to actively
choose intervention targets, called
Gradient-based Intervention Target-
ing, or GIT for short, see Figure 1.
GIT is a scoring-based method (i.e.,
the intervention with the highest score
is selected) that relies on „imagi-
nary” interventional data, and is sim-
ple to implement on top of existing
gradient-based causal discovery meth-
ods. GIT requires access to a para-
metric causal graph model and a loss
function, typically based on interven-
tional or fused (observational and in-
terventional) data. The model and loss
function can be defined exclusively
for GIT purposes or provided by the
underlying gradient-based causal dis-
covery framework. With that, the GIT
scores reflect the expected magnitudes
of gradients of the loss function with
respect to the model structural param-
eters. Intuitively, GIT selects an in-
tervention on which the model is the
most mistaken, i.e., the one that can
lead to the largest model update.

Our contributions include:

• We introduce GIT, a method for active intervention targeting in gradient-based causal discov-
ery, which can be applied on top of various causal discovery frameworks.

• We conduct extensive experiments on synthetic and real-world graphs. We demonstrate
that, compared against competitive baselines, our method typically reduces the amount of
interventional data needed to discover the causal structure. GIT is particularly efficient in the
low-data regime and thus recommended when access to interventional data is limited.

• We perform additional analyses which suggest that the good performance of GIT stems from
its ability to focus on highly informative nodes.

2 Preliminaries
2.1 Structural Causal Models and Causal Structure Discovery
Causal relationships can be formalized using structural causal models (SCM) [30]. Each of the
endogenous variables X = {X1, . . . , Xn} is expressed as a function Xi = fi(PAi, Ui) of its direct
causes PAi ⊆ X and an external independent noise Ui. It is assumed that the assignments are acyclic
and thus associated with a directed acyclic graph G = (V,E). The nodes V = {1, . . . , n} represent
the random variables and the edges correspond to the direct causes, that is (i, j) ∈ E if and only if
Xi ∈ PAj . The joint distribution is Markovian to the graph G, which means that:

P (X1, . . . , Xn) =

n∏
i=1

P (Xi|PAi). (1)

Causal structure discovery aims to recover the graph G. Without any additional restrictive assump-
tions, and having access to only observational data, the solution to such a problem is not unique and
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can be determined only up to a Markov Equivalence Class [38, 30]. To improve identifiability, data
from additional experiments, called interventions, need to be gathered.

An intervention on Xi replaces the conditional distribution P (Xi|PAi) with a new distribution
P̃ (Xi|PAi). The node i ∈ V is called the intervention target. An intervention that removes the
dependency of a variable Xi on its parents, yielding P̃ (Xi|PAi) = P̃ (Xi), is called hard. In this
paper, we assume access to data gathered from distributions induced by performing hard interventions.

2.2 ENCO Framework
ENCO [24] is a gradient-based causal discovery framework that maintains a parameterized distribution
over graph structures and a set of parameters modeling the functional dependencies. The graph
parameters {ρi,j}i,j and functional parameters {ϕi}i are updated by iteratively alternating between
two optimization stages — the distribution fitting stage and the graph fitting stage.

The goal of the distribution fitting stage is to learn functions fϕi’s, which model the conditional
density fϕi(xi|PA(i,C)) of P (Xi|PA(i,C)). The set of parents PA(i,C) is defined by the graph
structure induced by adjacency matrix C, sampled from the current graph distribution. The training
objective is a standard log-likelihood loss, described in detail in Appendix C.1.

The graph fitting stage aims to update the parametrized edge probabilities. To this end, ENCO selects
the intervention target I uniformly at random from the graph nodes and collects a data sample from
the interventional distribution P̃I2. The graph parameters are optimized by minimizing:

LG = EC
[
EX∼P̃I

[ n∑
i=1

LC(Xi)

]]
, LC(xi) := − log fϕi

(xi|PA(i,C)). (2)

ENCO applies REINFORCE-based gradient estimators to get the signal for updating the structural
parameters. For a detailed description of the method and the estimators, please refer to Appendix C.1.

2.3 Online Causal Discovery and Targeting Methods

Algorithm 1 ONLINE CAUSAL DISCOVERY

Input: causal discovery algorithm A, intervention tar-
geting function F , number of data acquisition
rounds T , observational dataset Dobs

1: Dint ← ∅
2: Fit φ0 with algorithm A on Dobs
3: for round i = 1, 2, . . . , T do
4: I ← intervention targets generated by F
5: DI

int ← query for data from interventions I
6: Dint ← Dint ∪DI

int
7: Fit φi with algorithm A on Dint and Dobs

return φT

In this work, we consider an online causal
discovery procedure outlined in Algo-
rithm 1. Initially, the graph model φ0 is
fitted using observational data Dobs. Fol-
lowing, batches of interventional samples
are acquired and used to improve the belief
about the causal structure (line 7). Interven-
tion targets are chosen by some function F
to optimize the overall performance, taking
into account the current belief about the
graph structure encoded in φi−1. In this
paper we describe our new method GIT
in Section 3 and compare against two of
other possible choices: AIT and CBED,
described in detail in Appendix D.

3 GIT method
GIT aims to choose the intervention target which induces the largest update of the parameters
modeling the causal structure. Consequently, GIT scores intervention candidates using a gradient
norm, which is a proxy for the update magnitude. In the ideal scenario, we would calculate target
scores using corresponding interventional data, leading to a good gradient estimation. This approach,
which we call GIT-privileged, performs well (which we show in Section 4) and can be used as a
soft upper bound. However, GIT-privileged requires gathering real interventional data for each node,
which is hugely wasteful and thus infeasible in practice. GIT solves this problem by approximating
the gradients using imaginary interventions taken from its running causal model. In Section 4,
we show that we can indeed ’trust’ such gradients: GIT not only achieves results similar to GIT-
privileged, but also performs favorably compared with other methods.

2In experiments in this paper, the variables are assumed to be categorical. The intervention is implemented by
setting the conditional distribution of the target node to uniform over the set of categories.
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Algorithm 2 INTERVENTION TARGET SELECTION WITH GIT

Input: current parameters ρ of distribution over graphs, loss function L, graph nodes V
Output: batch of interventions to execute I

1: G ← sample a set of DAGs according to the current graph distribution parameterized by ρ
2: for intervention target i ∈ V do
3: si ←

∑
G∈G ||∇ρL(DG,i)||, where DG,i ∼ PG,i

4: I ← select batch of interventions according to scores si

Our method requires access to a gradient-based causal discovery model and a loss function. These
objects can be tailor-made for the GIT method, see Appendix B, or supplied by a causal discovery
method that uses interventional data. Virtually any existing gradient-based causal discovery method
fulfills these requirements. Our algorithm scores interventions based on imaginary data generated by
the current graph distribution. Formally, for the intervention i ∈ V , its score si is given by

si := Ex∼Pρ,i
∥∇ρL(x)∥, Pρ,i(X) =

∑
G

Pρ(G)PG,i(X), (3)

where Pρ is the distribution over graphs specific to the given method and PG,i are data generated
assuming graph G and intervention, that is

PG,i(X) = P̃
(
Xi|PA(i,G)

) ∏
j=1...n,j ̸=i

Pϕ
(
Xj |PA(j,G)

)
, (4)

where P̃ denoted the interventional distribution, ϕ are functional parameters3 and we make explicit
dependence on G. In Algorithm 2, we approximate si using Monte-Carlo sampling, see line 3. In
GIT-privileged, we use the real intervention data instead of sampling from Pρ,i.

3.1 GIT with ENCO

We choose to use ENCO as the gradient-based causal discovery frameworkA in our main experiments
(recall Algorithm 1) due to its strong empirical results and good computational performance on GPUs.
Note, however, that our method can work with any framework with a structural gradient estimator. In
Appendix F.1, we present a description for the DiBS framework.

In ENCO, the structural parameters for an edge (i, j) are represented by two parameters ρi,j =
[θi,j , γi,j ]. Intuitively, γi,j corresponds the existence of the edge, while θi,j = −θj,i is associated
with the direction of the edge (see Appendix C.1). Let ∇θL(D) and ∇γL(D) be the gradients for
structural parameters θ, γ on dataD that are computed by ENCO method. We incorporate information
from both of these gradients and use ||∇γL(DG,i)||2+ ||∇θL(DG,i)||2 as a score for the intervention
i in line 3. Note that we concentrate on structural gradients, and do not include gradients of functional
parameters in our score. In order to sample DAGs from the current graph distribution (line 1), we use
a two-phase sampling procedure as proposed in [33].

4 Experiments

We compare GIT against the following baselines: AIT, CBED, Random, and GIT-privileged. AIT
and CBED are competitive intervention acquisition methods for gradient-based causal discovery
(described in Appendix D). The Random method selects interventions uniformly in a round-robin
fashion4. The last approach, GIT-privileged, is the oracle method described in Section 3.

Our main result is that GIT brings substantial improvement in the low data regime, being the best
among benchmarked methods in all considered synthetic graph classes and half of the considered real
graphs in terms of the EAUSHD metric, see Section 4.2. On the remaining real graphs, our approach
performs similarly to the baseline methods. This result is accompanied by an in-depth analysis of the
relationships between different strategies and the distributions of the selected intervention targets
presented in Appendix F.4. Additional results in DiBS framework are presented in Appendix F.1.

3Formally, ϕ are the parameters of neural networks modeling the true conditional distributions P
(
Xj |PAG

j

)
.

4At every step, a target node is chosen uniformly at random from the set of yet not visited nodes. After every
node has been selected, the visitation counts are reset to 0.
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AIT CBED Random GIT (ours) GIT-privileged

mean SHD 10 (4 + 6) 7 (4 + 3) 22 (12 + 10) 17 (10 + 7) 24 (12 + 12)
mean AUSHD 6 (2 + 4) 6 (4 + 2) 12 (5 + 7) 18 (11 + 7) 24 (12 + 12)

Table 1: We count the number of training setups (24), where a given method was best or comparable to other
methods (AIT, CBED, Random, and GIT; GIT-privileged was not compared against), based on 90% confidence
intervals for SHD and AUSHD. Each entry shows the total count, broken down into two data regimes, N = 1056
and N = 3200, respectively, presented in parentheses.

4.1 Experimental Setup
We evaluate the different intervention targeting methods in online causal discovery, see Algorithm 1.
We utilize an observational dataset of size 5000. We use T = 100 rounds, in each one acquiring
an interventional batch of 32 samples. We distinguish two regimes: regular, with all 100 batches
(N = 3200 interventional samples), and low, with 33 batches (N = 1056 interventional samples).
We use synthetic and real-world datasets. The synthetic dataset consists of bidiag, chain,
collider, jungle, fulldag and random DAGs with 25 nodes. The variable distributions
are categorical, with 10 categories5. The real-world dataset consists of child, earthquake,
cancer, asia, alarm and sachs graphs, taken from the BnLearn repository [35]. The chosen
graphs, both synthetic and real-world, are commonly used as benchmarking datasets [20, 24, 33].

Metrics We use the Structural Hamming Distance (SHD) [43] between the predicted and the
ground truth graph as the main metric. SHD between two directed graphs is defined as the number
of edges that need to be added, removed, or reversed in order to transform one graph into the other.
More precisely, for two DAGs represented as adjacency matrices c and c′ we have SHD(c, c′) :=∑
i>j 1(cij + cji ̸= c′ij + c′ji or cij ̸= c′ij). To aggregate SHD values over different data regimes,

we introduce the area under the SHD curve:

AUSHDTm,cgt :=
1

T

T∑
t=1

SHDtm,cgt ; SHDtm,cgt := SHD(cgt, cm,t) (5)

where m is the used method, T is the number of interventional data batches, cgt is the ground truth
graph, and cm,t is the graph fitted by the method m using t interventional data batches. AUSHD
captures both the speed and quality of the causal discovery process, smaller values indicate a better
method. For better visualization, we also use a measure that we call EAUSHD, that for a given
method m reports its negative distance from the mean AUSHD result of the Ranodm method (see
Appendix E.1). Higher values of EAUSHD indicate a better method. We approximate the expected
values of SHD, AUSHD, and EAUSHD by empirical mean.

4.2 Main Result: GIT’s Performance on Synthetic and Real-World Graphs
We evaluate GIT on 24 training setups: twelve graphs (synthetic and real-world, six in each category)
and two data regimes (N = 1056 and N = 3200). The performance is measured as described in
Section 4.1. In the description below, we mainly focus on AUSHD. GIT is the best or comparable to
other non-privileged methods in 18 cases according to mean AUSHD (or 17 cases according to mean
SHD), see Table 1. Similarly, the distribution of AUSHD for GIT has most frequently the smallest
standard deviation among non-privileged methods (11 out of 24 cases)6.

This can be also observed in Figure 2 and Figure 3 where the distribution of GIT is relatively
concentrated as compared with other methods (except for the fulldag graph). In terms of pairwise
comparison with other methods (2 × 12 × 4 = 96 pairs in total), GIT is better in 45 cases and
comparable in 35 cases, see Table 6 in Appendix F.2.1. Interestingly, GIT’s performance for graphs
with fewer nodes (cancer, earthquake) is less impressive. We hypothesize that this is because in
these cases the corresponding Markov Equivalence Class is a singleton (see Figure 10). Consequently,
they require less interventional data to converge (see training curves in Appendix E.3), which
diminishes the impact of different intervention strategies.

GIT performs particularly well in the low data regime, where it is better or comparable to all the other
non-privileged methods for 11 out of 12 graphs (except for cancer, where AIT is the best), see
5We create the datasets using the code provided by [24]. See Appendix E.3 for details.
6The training curves and more detailed numerical results can be found in Appendix F.2.
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Figure 2: The distribution of EAUSHD (across 25 seeds), see equation 18 in Appendix, for synthetic graphs
(higher is better). The intense color (left-hand side of each violin plot) indicates the low data regime (N = 1056
samples). The faded color (right-hand side of each violin plot) represents a higher amount of data (N = 3200
samples).
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Figure 3: The distribution of EAUSHD (across 25 seeds), see equation 18 in Appendix, for real-world graphs
(higher is better). The intense color (left-hand side of each violin plot) indicates the low data regime (N = 1056
samples). The faded color (right-hand side of each violin plot) represents a higher amount of data (N = 3200
samples). Notice that the two plots have different scales.

Table 1. This phenomenon can be seen in Figure 2 and Figure 3, where the left-hand side of the GIT
violin plot tends to display the most favorable properties among AIT, CBED, and Random methods.
GIT also fares better in pairwise comparison for the small data regime, see Table 6 in Appendix F.2.1.
This suggests that GIT could be a good choice when access to interventional data is limited or costly.

In the regular data regime (N = 3200), GIT is at least as good as the other methods in 7 cases.
GIT gets outmatched by the Random method on collider, fulldag, and asia, by CBED on
earthquake, and by AIT on cancer, although most methods struggle in these cases. It also turns
out that for collider and fulldag, GIT has long left tail.

We also notice that the performance of MI-based approaches (CBED and AIT) is worse than the one
of GIT, sometimes converging to the significantly higher SHD values (see Figure 5 and Figure 6 in
the Appendix). We hypothesize this is because of approximation errors and model mismatches. In
order to compute the scores for considered acquisition methods, a DAG sampling procedure based on
the current graph belief is needed. Such procedure is an approximated sampling from the belief and
hence can exacerbate approximation errors in methods relying on mutual information estimation.

GIT-privileged performed the best, as it was at least comparable with all other methods for each graph
and data regime (see Table 1). Similarly, GIT-privileged dominates the pairwise comparison with
other methods (see Table 6 in Appendix F.2.1), victorious 57 out of 96 times. This strong performance
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is also visible in Figure 2 and Figure 3, where the mass of the method consistently occupies the
favorable regions of the EAUSHD metric. These results solidify the perception of GIT-privileged as
a soft upper-bound. Importantly, GIT follows it quite closely: the methods are equivalent in 10 cases
in the low data regime (alarm, bidiag, cancer, chain, child, eqarthquake, fulldag,
jungle, random, sachs), and in 5 cases in the regular data regime (bidiag, cancer, chain,
child, jungle). Furthermore, the choices of GIT and GIT-privileged correlate highly (Spearman
correlation equal 73%), see Appendix F.3. These results provide additional evidence in favor of GIT
soundness and suggest that using data sampled from the model to compute GIT’s scores does not
lead to severe performance deterioration.

5 Conclusions
In this paper, we consider the problem of experimental design for causal discovery. We introduce a
novel Gradient-based Intervention Targeting (GIT) method, which leverages the gradients of gradient-
based causal discovery objectives to score intervention targets. We demonstrate that the method is
particularly effective in the low-data regime, outperforming competitive baselines. We also perform
several analyses of the method, confirming that GIT typically selects informative targets.
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class of DAGs, is first specified. Then, either substructures, such as cliques or trees, are investigated
and used to inform decisions [18, 9, 39, 16], or edges of a proposed graph are iteratively refined
until reaching a prescribed budget [14, 13, 21, 22]. The most severe limitation of graph-theoretical
approaches is that misspecification of the CPDAG at the beginning of the process can deteriorate
the final solution. Another class of methods is based on Bayesian Optimal Experiment Design [23],
which aims to select interventions with the highest mutual information (MI) between the observations
and model parameters. MI is approximated in different ways: AIT [33] uses F-score inspired metric
to implicitly approximate MI; CBED [40] incorporates BALD-like estimator [19]; ABCD [1] uses
estimator based on weighted importance sampling. Although theoretically principled, computing
mutual information suffers from approximation errors and model mismatches. Therefore, in this
work, we explore using scores based on different principles.

Gradient-based Causal Structure Learning. The appealing properties of neural networks have
sparked a flurry of gradient-based causal structure learning methods. The most prevalent approaches
are unsupervised formulations that optimize a data-dependent scoring metric (for instance, penalized
log-likelihood) to find the best causal graph G. Existing unsupervised methods that are capable
(or can be extended) to incorporate interventional data can be categorized based on the underlying
optimization formulation into: (i) frameworks with a joint optimization objective [4, 26, 6, 2, 12, 7]
and (ii) frameworks with alternating phases of optimization [3, 20, 24]. While structural and functional
parameters are optimized under a joint objective in the former, the latter splits the optimization into
two phases with separate objectives. All the aforementioned methods allow evaluation of gradient with
respect to the structural and functional parameters with a batch of (real or hypothesized) interventional
samples and can serve as a base framework for our proposed gradient-based intervention acquisition
strategy.

B Mathematical Formalism for MLE-based GIT Scoring Function
B.1 Formal Model

In what follows we identify a graph with its adjacency matrix c. We will also consider c’s that do
not include self loops, i.e. cii = 0 for every i. Below pϕ,ψ,β stands for the joint density of the model
(paremeterized by ϕ, ψ, and β), and let pj,ϕj

represent some density functions. The definition of
pϕ,ψ,β is slightly complex since (a) it covers the intervention and no-intervention cases, and (b) it
covers the case when c is not a DAG (which formally results in the appearance of an additional term,
Λc,ı).

Definition 1. For a given graph c and intervention ı ∈ {0, 1, . . . , n} we define the (conditional) joint
probability as

pϕ,ψ,β(x, c|ı) =

{∏
j pj,ϕj

(xj |PAcj)Λı,c
∏
i ̸=j β

cij
ij (1− βij)1−cij , ı = 0

uψ(xı)
∏
j ̸=ı pj,ϕj

(xj |PAcj)Λı,c
∏
i ̸=j,j ̸=ı β

cij
ij (1− βij)1−cij1(c·ı = 0), ı ≥ 1.

where uψ, pj,ϕ are density functions, and

Λı,c =

{
1/

∑
x uψ(xı)

∏
j ̸=ı pj,ϕj (xj |PAcj), ı ∈ {1, . . . , n},

1/
∑
x

∏
j pj,ϕj

(xj |PAcj), ı = 0.

The case ı = 0 is interpreted as no intervention. For brevity, we will not emphasize the dependence of
p on ϕ, ψ, β.

Remark 2. The expression for p(x, c|ı) defines a proper density function, i.e.
∑
x

∑
c p(x, c|ı) = 1.

Indeed, for ı ∈ {1, . . . , n} (and analogously for ı = 0),

∑
c

∑
x

p(x, c|ı) =
∑
c:c·ı=0

 ∏
i ̸=j,j ̸=ı

β
cij
ij (1− βij)1−cijΛı,c

∑
x

u(xı)
∏
j ̸=ı

pj(xj |PAcj)


=

∑
c:c·ı=0

∏
i ̸=j,j ̸=ı

β
cij
ij (1− βij)1−cij = 1.

Remark 3. If c is a DAG, Λı,c = 1.
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Notice that for ı ∈ {1, . . . , n},

p(c|ı) =
∑
x

p(x, c|i) = 1(c·ı = 0)
∏

i ̸=j,j ̸=ı

β
cij
ij (1− βij)1−cij ,

p(x|ı) =
∑
c

p(x, c|ı) = u(xı)
∑

c:c·,ı=0

Λı,c
∏
j ̸=ı

pj(xj |PAcj)
∏

i ̸=j,j ̸=ı

β
cij
ij (1− βij)1−cij ,

p(x|c, ı) = Λı,cu(xı)
∏
j ̸=ı

pj(xj |PAcj).

B.2 MLE-based Scoring Function
MLE-based scoring function is based on some approximation of EX∼P [log p(X|ı)] for each inter-
vention ı, where the choice of a distribution of X ∼ P , is a design decision. This quantity is difficult
to evaluate and contains intraceble elements (Λc,ı), hence we will make a series of simplifying
assumptions. Using Jensen’s inequality, we get:

EX∼P log p(x|ı) = EX∼P logEC∼p(c|ı)[p(x|C, ı)] ≥ EX∼PEC∼p(c|ı)[log p(x|C, ı)].
The right-hand side of the above inequality can be expressed as

EX∼PEC∼p(c|ı)[log p(x|C, ı)] = EC∼p(c|ı)EX∼P

log u(Xı) +
∑
j ̸=ı

logpj(Xj |PACj )]


+ EC∼p(c|ı)[log Λı,C ].

The dependence of the last term in the above expression on β is untraceble, hence we will omit it.
The item of interest is thus the following expected value:

EC∼p(c|ı)EX∼P

log u(Xı) +
∑
j ̸=ı

logpj(Xj |PACj )]

 . (6)

Taking the expression in equation 6 and letting P corrsepond p(x|ı), one can formulate several
scoring function that are in the GIT spirit

1. ||∇βEC∼p(c|ı)EX∼P

[
log u(Xı) +

∑
j ̸=ı logpj(Xj |PACj )]

]
||.

2. ||EX∼P∇βEC∼p(c|ı)

[
log u(Xı) +

∑
j ̸=ı logpj(Xj |PACj )]

]
||.

3. EX∼P ||∇βEC∼p(c|ı)

[
log u(Xı) +

∑
j ̸=ı logpj(Xj |PACj )]

]
||.

The computation of derivatives for each method is similar, with the first item on the list being maybe
slightly more complex. For that reason, we provide the furhter computations for this case. Denoting
the term under the expectation in equation 6 as G(X,C, ı), we can expand this expression as

EX∼p(x|ı)EC∼p(c|ı)[G(X,C, ı)]

=
∑
x

∑
c′:c′·:ı=0

∑
c:c·ı=0

Λı,c′u(xı)
∏
j ̸=ı

pj(xj |PAc
′

j )
∏

i ̸=j,j ̸=ı

β
c′ij
ij (1− βij)1−c

′
ij

∏
i ̸=j,j ̸=ı

β
cij
ij (1− βij)1−cijG(x, c, ı).

Consequently, for any k and l ̸= ı, the partial derivative with respect to βkl takes the following form:

∂

∂βkl
EX∼p(x|ı)EC∼p(c|ı)[G(X,C, ı)]

=
∂

∂βkl

∑
x

∑
c′:c′·,ı=0

∑
c:c·,ı=0

β
c′kl+ckl

kl (1− βkl)2−c
′
kl−ckl × · · ·

=
∑
x

∑
c′:c′·,ı=0

∑
c:c·,ı=0

β
ckl+c

′
kl

kl (1− βkl)2−c
′
kl−ckl

βkl(1− βkl)
(c′kl + ckl − 2βkl)× · · ·

= EC′∼p(c|ı)EX∼p(x|C′,ı)EC∼p(c|ı)

[
C ′
kl + Ckl − 2βkl
βkl(1− βkl)

G(X,C, ı)

]
.

(7)
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Using the law of total probability and grouping the terms, the right-hand side of equation 7 can be
further simplified as

EC′∼p(c|ı)EX∼p(x|C′,ı)EC∼p(c|ı)

[
C ′
kl + Ckl − 2βkl
βkl(1− βkl)

G(X,C, ı)

]
= 2(1− βkl)

(
EC′∼p(c|ı)EX∼p(x|C′,ı)EC∼p(c|ı)[G(X,C, ı)|C ′

kl + Ckl = 1]

− EC′∼p(c|ı)EX∼p(x|C′,ı)EC∼p(c|ı)[G(X,C, ı)|C ′
kl + Ckl = 0]

)
+ 2βkl

(
EC′∼p(c|ı)EX∼p(x|C′,ı)EC∼p(c|ı)[G(X,C, ı)|C ′

kl + Ckl = 2]

− EC′∼p(c|ı)EX∼p(x|C′,ı)EC∼p(c|ı)[G(X,C, ı)|C ′
kl + Ckl = 1]

)
.

(8)

The above formulas can be interpreted in the following way.
Remark 4. 1. The coefficient next to G(X,C, ı) in the last expression in equation 7 has zero

mean and variance equal 2.

2. The expression G(X,C, ı) is large, e.g., when pj(Xj |C, ı) are small. This suggests that,
picking the intervention ı for which the model is incorrect and where we wish to improve it.

3. ENCO objective is similar to that of equation 6, with P defined as the ground truth interven-
tional distribution, the term u(Xı) replaced with p(Xı|PACı ), and additional regularizing
term added.

4. Sometimes it is assumed that β’s factorize into existential and directional edge parameters
θij and γij: βij = σ(θij)σ(γij), where σ is a sigmoid function, see also Appendix C. The
derivatives with respect to parameters γ and θ can be easily computed from the above
formulas via a chain rule.

C Details about Employed Causal Discovery Frameworks
C.1 ENCO
We extend the description of the ENCO framework [24] from Section 2.2.

Structural Parameters. ENCO learns a distribution over the graph structures by associating with
each edge (i, j), for which i ̸= j, a probability pi,j = σ(γi,j)σ(θi,j). Intuitively, the γi,j parameter
represents the existence of the edge, while θi,j = −θj,i is associated with the direction of the edge.
The parameters γi,j and θi,j are updated in the graph fitting stage.

Distribution Fitting Stage. The goal of the distribution fitting stage is to learn the conditional
probabilities P (Xi|PA(i,C)) for each variable Xi given a graph represented by an adjacency matrix
C, sampled from Ci,j ∼ Bernoulli(pi,j). Note that self-loops are not allowed and thus pi,i = 0.
The conditionals are modeled by neural networks fϕi

with an input dropout-mask defined by the
adjacency matrix. In consequence, the negative log-probability of a variable can be expressed as
LC(Xi) = − log fϕi

(PA(i,C))(Xi), where PA(i,C) is obtained by computing C·,i ⊙ X , with ⊙
denoting the element-wise multiplication. The optimization objective for this stage is defined as
minimizing the negative log-likelihood (NLL) of the observational data over the masks C·,i. Under
the assumption that the distributions satisfy the Markov factorization property defined in Equation 1,
the NLL can be expressed as:

LD = EXEC [
n∑
i=1

LC(Xi)]. (9)

Graph Fitting Stage and Implementation of Interventions. The graph fitting stage updates the
structural parameters θ and γ defining the graph distribution. After selecting an intervention target I ,
ENCO samples the data from the postinterventional distribution P̃I . In experiments in the current
paper the variables are assumed to be categorical. The intervention is implemented by changing the
target node’s conditional to uniform over the set of node’s categories. As the loss, ENCO uses the
graph strcuture loss LG defined in Equation 2 in the main text plus a regularization term λLsparseγ,θ

that influences the sparsity of the generated adjacency matrices, where λ is the regularization strength.

15



Gradients Estimators. In order to update the structural parameters γ and θ ENCO uses
REINFORCE-inspired gradient estimators. For each parameter γi,j the gradient is defined as:

∂LG
∂γi,j

= σ′(γi,j)σ(θi,j)EX,C−ij
[LXi→Xj

(Xj)− LXi ̸→Xj
(Xj) + λ], (10)

where EX,C−ij denotes all of the three expectations in Equation 2 (in the main text), but excluding
the edge (i, j) from C. The term LXi ̸→Xj

(Xj) describes the negative log-likelihood of the variable
Xj under the adjacency matrix C−ij , while LXi→Xj

(Xj) is the negative log-likelihood computed
by including the edge (i, j) in C−ij . For parameters θi,j the gradient is defined as:

∂LG
∂θi,j

= σ′(θi,j)
(
p(Ii)σ(γi,j)EIi,X,C−ij

[LXi→Xj
(Xj)− LXi ̸→Xj

(Xj)]−

p(Ij)σ(γj,i)EIj ,X,C−ij
[LXj→Xi

(Xi)− LXj ̸→Xi
(Xi)]

)
, (11)

where p(Ii) is the probability of intervening on node i (usually uniform) and EIi,X,C−ij
is the same

expectation as EX,C−ij
but under the intervention on node i.

C.2 DiBS
DiBS [26] is a Bayesian structure learning framework which performs posterior inference over graphs
with gradient based variational inference. This is achieved by parameterising the belief about the
presence of an edge between any two nodes with corresponding learnable node embeddings. This
turns the problem of discrete inference over graph structures to inference over node embeddings,
which are continuous, thereby opening up the possibility to use gradient based inference techniques.
In order to restrict the space of distributions to DAGs, NOTEARS constraint [45] which enforces
acyclicity is introduced as a prior through a Gibbs distribution.

Formally, for any two nodes (i, j), the belief about the presence of the edge from i to j is paramerised
as:

p(gij | ui, vj) =
1

1 + exp(−α(uTi vj))
(12)

Here, gij is the random variable corresponding to the presence of an edge between i to j, α is a
tunable hyperparameter and ui, vj ∈ Rk are embeddings corresponding to node i and j. The entire
set of learnable embeddings, i.e. U = {ui}di=1, V = {vi}di=1 and Z = [U,V] ∈ R2×d×k form the
latent variables for which posterior inference needs to be performed. Such a posterior can then be
used to perform Bayesian model averaging over corresponding posterior over graph structures they
induce.

DiBS uses a variational inference framework and learns the posterior over the latent variables Z using
SVGD [25]. SVGD uses a set of particles for each embedding ui and vj , which form an empirical
approximation of the posterior. These particles are then updated based on the gradient from Evidence
Lower Bound (ELBO) of the corresonding variational inference problem, and a term which enforces
diversity of the particles using kernels. The prior over the latent variable Z is given by a Gibbs
distribution with temperature β which enforces soft-acyclicty constraint:

p(Z) ∝ exp(−βEp(G|Z) [h(G)])
∏
ij

N (zij ; 0, σ
2
z) (13)

Here, h is the DAG constraint function given by NOTEARS [45].

D Details about Intervention Acquisition Methods
In this section we briefly introduce other intervention acquisition methods used for comaprison in
this work.

Active Intervention Targeting (AIT) Assume that the structural graph distribution maintained
by the causal discovery algorithm can be described by some parameters ρ. Consider a set of graphs
G = {Gj} sampled from this distribution. AIT assigns to each possible intervention target i ∈ V
a discrepancy score that is computed by measuring the variance between the graphs (V BG) and
variance within the graphs (VWG). The V BGi for intervention i is defined as:

V BGi =
∑
j

⟨µj,i − µ̄i, µj,i − µ̄i⟩, (14)
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where µj,i is the mean of all samples drawn from graph Gj under the intervention on target i, and µi
is the mean of all samples drawn from graphs under intervention on target i. The variance within
graphs is described by:

VWGi =
∑
j

∑
k

⟨[Sj,i]k − µj,i, [Sj,i]k − µj,i⟩, (15)

where [Sj,i]k is the k-th sample from graph Gj under the intervention on target i. The AIT score is
then defined as the ratio Di =

V BGi

VWGi
. The method selects then the intervention attaining the highest

score Di.

CBED Targeting Bayesian Optimal Experimental Design for Causal Discovery (BOECD) selects
the intervention with the highest information gain obtained about the graph belief after observing the
interventional data. Let the tuple (j, v) define the intervention, where j ∈ V describes the intervention
target, and v represents the change in the conditional distribution of variable Xj . Specifically, this
means that the new conditional distribution of Xj is a distribution with point mass concentrated
on v. Moreover, let Y(j,v) denote the interventional distribution under the intervention (j, v), and
let ψ denote the current belief about the graph structure (i.e. the random variable corresponding
to the structural and distributional parameters ψ = (ρ, ϕ)). BOECD selects the intervention that
maximizes [40]:

(j∗, v∗) = argmax
(j,v)

I(Y(j,v);ψ | D), (16)

where D are the observational data. The above formulation necessities the use of an MI estimator.
One possible choice is a BALD-inspired estimator [40, 19]:

I(Y(j,v);ψ | D) = H(Y(j,v) | D)−H(Y(j,v);ϕ | D), (17)
with H(·; ·) denoting the cross-entropy. Note that this approach allows to select not only most
informative target, but also the value of the intervention.

E Additional Experimental Details
E.1 EAUSHD metric
For better visualization, we also use a measure that we call EAUSHD, that for a given method m
reports its negative distance from the mean AUSHD result of the Ranodm method

EAUSHDTm,cgt := −
{

AUSHDTm,cgt − E
[
AUSHDTRandom,cgt

]}
, (18)

where the expectation averages all randomness sources (e.g. stemming from the initialization). Higher
values of EAUSHD indicate a better method.

E.2 Compute details
To conduct our experiments we have been using internal CPU and GPU clusters (with mostly NVIDIA
A100 graphics cards). Each causal discovery process takes approximately 5 GPU-hours or 1344
CPU-hours (4 days of 14 core cpu time). The times vary with respect to graph size and acquisition
method. We estimate total GPU-time to be 40K GPU-hours and total CPU-time to be 2M CPU-hours.

E.3 Synthetic Graphs Details
The synthetic graph structure is deterministic and is specified by the name of graph (chain,
collider, jungle, fulldag), except for random, where the structure is sampled. Following
(author?) [24], we set the only parameter of sampling procedure, edge_prob, to 0.3.

The ground truth conditional distributions of the causal graphs are modeled by randomly initialized
MLPs. Additionally, a randomly initialized embedding layer is applied at the input to each MLP that
converts categorical values to real vectors. We used the code provided by (author?) [24]. For more
detailed explanation, refer to (author?) [24, Appendix C.1.1].

E.4 ENCO Hyperparameters
For experiments on ENCO framework we used exactly the same parameters as reported by (author?)
[24, Appendix C.1.1]. We provide them here for the completeness of our report.
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parameter value

Sparsity regularizer λsparse 4× 10−3

Distribution model 2 layers, hidden size 64, LeakyReLU(α = 0.1)
Batch size 128
Learning rate - model 5× 10−3

Weight decay - model 1× 10−4

Distribution fitting iterations F 1000
Graph fitting iterations G 100
Graph samples K 100
Epochs 30
Learning rate - γ 2× 10−2

Learning rate - θ 1× 10−1

Table 2: Hyperparameters used for the ENCO framework.

E.5 DiBS Hyperparameters

In Table 3, we present hyperparameters used for the DiBS framework.

parameter value

Number of particles 20
Number of particle updates 20 000
Choice of Kernel k([Z,Θ], [Z′,Θ′]) = σZ exp(− 1

hZ
||Z− Z′||2F ) + σΘ exp(− 1

hΘ
||Θ−Θ′||2F )

hZ 5
hΘ 500
σZ 1
σΘ 1
Optimizer RMSProp
Learning rate Optimizer 0.005

Table 3: Hyperparameters used for the DiBS framework.

F Additional Experimental Results
F.1 Experiments in DiBS Framework

Experimental setup The experimental setup closely follows the one from [40]. In the experiments,
10 batches of 50 data-points each are acquired. Each batch can contain various intervention targets.
The acquisition method chooses intervention targets and values. For some of the methods, the
GP-UCB strategy is used to select a value for a given intervention; see [40] for details. We compare
the following methods:

• Soft GIT (ours): gradient magnitudes corresponding to different interventions are nor-
malized by the maximum one, then passed to the softmax function (with temperature 1).
Obtained scores are used as probabilities to sample a given intervention in the current batch.
GP-UCB is used for value selection.

• Random (fixed values): Intervention targets are chosen uniformly randomly. The interven-
tion value is fixed at 0.

• Random (uniform values): Intervention targets are chosen uniformly randomly. The
intervention value is chosen uniformly randomly from the variable support.

• Soft AIT: Intervention targets are chosen from the softmax probabilities of AIT scores [33],
with the temperature 2. GP-UCB is used for value selection.

• Soft CBED: Intervention targets are chosen from the softmax probabilities of CBED scores
[40], with the temperature 0.2. GP-UCB is used for value selection.
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The results are presented in Figure 4. We can see the performance of Soft GIT is comparable to that
of Random (uniform values) in both considered graph classes. In contrast, Soft AIT performs worse
on Erdos-Renyi graphs, while Soft CBED performs worse on Scale-Free graphs.
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Figure 4: Expected SHD metric for different acquisition methods on top of the DiBS framework, for graphs
with 50 nodes and two different graph classes: Erdos-Renyi and Scale-Free. 95% bootstrap confidence intervals
are shown.

F.2 Performance in ENCO Framework - All Results
F.2.1 Ranking Statistics

AIT CBED Random GIT (ours) GIT-privileged

Best 0 (0 + 0) 0 (0 + 0) 2 (0 + 2) 8 (4 + 4) 5 (1 + 4)
Best or comparable 6 (2 + 4) 6 (4 + 2) 12 (5 + 7) 18 (11 + 7) 24 (12 + 12)

Table 4: We count the number of training setups (24), where a given method was best or at least comparable to
other methods (AIT, CBED, and Random; GIT-privileged was not compared against), basing on 90% confidence
intervals for AUSHD. Each entry shows the total count, broken down into two data regimes, N = 1056 and
N = 3200 resp., presented in the parenthesis.

AIT CBED Random GIT (ours) priv. GIT

Best 1 (0 + 1) 1 (0 + 1) 2 (1 + 1) 1 (1 + 0) 3 (1 + 2)
Best or comparable 10 (4 + 6) 7 (4 + 3) 22 (12 + 10) 17 (10 + 7) 24 (12 + 12)

Table 5: We count the number of training setups (24), where a given method was best or at least comparable to
other methods (AIT, CBED, and Random; GIT-privileged was not compared against), basing on 90% confidence
intervals for SHD. Each entry shows the total count, broken down into two data regimes, N = 1056 and
N = 3200 resp., presented in the parenthesis.

Better Comparable Worse

AIT 9 (3+6) 27 (11+16) 60 (34+26)
CBED 9 (7+2) 35 (20+15) 52 (21+31)
Random 34 (13+21) 36 (21+15) 26 (14+12)
GIT (ours) 45 (24+21) 35 (21+14) 16 (3+13)
GIT-privileged 57 (25+32) 39 (23+16) 0 (0+0)

Table 6: For each method we show its pairwise performance against other methods (whether it is better,
comparable, or worse) based on 90% confidence intervals for AUSHD, across two data regimes (N = 1056 and
N = 3200) and all twelve graphs (hence for each method there are 2× 12× 4 = 96 pairs to consider). Each
entry shows the total count, broken down into two data regimes, N = 1056 and N = 3200 resp., presented in
the parenthesis.
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F.2.2 AUSHD Tables

AIT BALD Random GIT (ours) priv. GIT

bidiag 1056 24.7 (24.1, 25.5) 21.9 (21.1, 22.8) 22.0 (21.5, 22.7) 20.0 (19.5, 20.6) 19.9 (18.6, 20.9)

3200 14.0 (13.0, 15.4) 13.2 (12.5, 14.0) 11.1 (10.5, 12.1) 9.4 (9.0, 9.9) 9.3 (8.0, 10.3)

chain 1056 14.9 (14.4, 15.4) 12.2 (11.8, 12.7) 13.5 (13.1, 13.9) 11.7 (11.3, 12.1) 12.2 (11.4, 13.3)

3200 7.7 (7.3, 8.1) 7.2 (6.8, 7.7) 6.3 (6.0, 6.6) 5.6 (5.2, 6.0) 6.3 (5.2, 8.5)

collider 1056 16.0 (15.2, 16.7) 16.1 (15.5, 16.7) 14.6 (14.1, 15.1) 14.4 (13.4, 15.2) 11.8 (10.9, 13.0)

3200 10.9 (10.2, 11.7) 12.2 (11.6, 12.7) 9.7 (9.2, 10.3) 12.1 (10.9, 13.1) 7.8 (6.9, 8.8)

fulldag 1056 133.0 (131.2, 134.7) 141.6 (139.1, 144.2) 121.7 (120.4, 122.9) 119.8 (118.7, 120.8) 120.7 (119.1, 122.1)

3200 72.8 (71.0, 74.5) 100.6 (97.8, 103.8) 63.4 (62.0, 64.7) 67.9 (66.0, 70.3) 63.4 (61.2, 64.9)

jungle 1056 23.2 (21.9, 24.6) 20.6 (19.6, 21.7) 20.9 (20.1, 21.7) 14.7 (14.1, 15.4) 13.9 (12.4, 15.5)

3200 11.2 (10.7, 11.9) 13.3 (12.3, 14.3) 9.1 (8.8, 9.5) 6.9 (6.5, 7.2) 6.9 (5.5, 8.3)

random 1056 42.1 (40.5, 43.6) 43.1 (41.5, 44.9) 35.6 (34.6, 36.7) 34.6 (33.7, 35.7) 31.9 (30.4, 34.6)

3200 21.3 (20.4, 22.3) 30.7 (29.0, 32.5) 16.5 (15.8, 17.3) 17.0 (16.3, 17.7) 14.5 (13.6, 15.6)

Table 7: AUSHD with 90% confidence intervals (in the parenthesis), for synthetic data and for low and regular
data regimes (N = 1056 and N = 3200 resp.).

AIT CBED Random GIT (ours) priv. GIT

alarm 1056 42.8 (41.8, 43.8) 36.8 (35.8, 37.8) 39.7 (38.6, 40.8) 28.8 (28.3, 29.3) 28.5 (27.0, 29.6)

3200 35.0 (33.6, 36.4) 31.6 (30.3, 33.1) 28.8 (27.6, 30.8) 24.0 (23.4, 24.9) 21.5 (20.7, 23.1)

asia 1056 3.6 (2.9, 4.5) 3.5 (2.8, 4.3) 2.0 (1.8, 2.1) 2.2 (2.0, 2.5) 1.8 (1.7, 1.9)

3200 2.4 (1.9, 3.3) 2.1 (1.9, 2.5) 1.3 (1.2, 1.4) 1.5 (1.4, 1.6) 1.1 (1.0, 1.2)

cancer 1056 2.0 (1.9, 2.1) 2.1 (2.0, 2.3) 2.4 (2.2, 2.6) 2.4 (2.2, 2.5) 2.1 (1.6, 2.6)

3200 1.8 (1.6, 2.0) 2.1 (1.9, 2.2) 2.2 (2.0, 2.3) 2.2 (2.0, 2.4) 2.2 (1.7, 2.6)

child 1056 14.4 (13.7, 15.2) 10.4 (9.6, 11.2) 11.1 (10.7, 11.6) 8.3 (8.0, 8.7) 7.9 (7.0, 9.0)

3200 7.8 (7.1, 8.6) 7.1 (6.5, 8.0) 5.0 (4.7, 5.5) 4.5 (4.2, 4.8) 3.9 (3.2, 4.7)

earthquake 1056 0.5 (0.4, 0.6) 0.5 (0.4, 0.6) 0.4 (0.3, 0.5) 0.6 (0.5, 0.7) 0.4 (0.2, 0.6)

3200 0.2 (0.1, 0.3) 0.2 (0.1, 0.2) 0.1 (0.1, 0.2) 0.3 (0.2, 0.5) 0.1 (0.1, 0.2)

sachs 1056 3.1 (2.9, 3.3) 2.9 (2.6, 3.1) 2.9 (2.7, 3.1) 2.5 (2.4, 2.7) 2.5 (2.2, 2.8)

3200 1.4 (1.3, 1.6) 1.9 (1.7, 2.2) 1.2 (1.1, 1.3) 1.1 (1.0, 1.3) 0.9 (0.8, 1.0)

Table 8: AUSHD with 90% confidence intervals (in the parenthesis), for real-world data and for low and regular
data regimes (N = 1056 and N = 3200 resp.).

F.2.3 SHD Tables

AIT CBED Random GIT (ours) GIT-priv.

bidiag 1056 11.4 (10.3, 12.4) 10.1 (9.2, 11.0) 7.8 (7.0, 8.5) 6.3 (5.7, 7.0) 7.4 (6.2, 8.6)

3200 5.2 (4.2, 6.3) 7.8 (6.9, 8.7) 2.8 (2.3, 3.4) 2.4 (1.8, 2.9) 2.2 (0.8, 3.6)

chain 1056 5.6 (4.8, 6.4) 5.4 (4.6, 6.1) 4.3 (3.8, 4.9) 3.6 (3.0, 4.2) 3.6 (2.0, 4.8)

3200 3.2 (2.6, 3.7) 3.9 (3.4, 4.3) 2.2 (1.7, 2.6) 1.8 (1.3, 2.3) 1.8 (0.2, 2.6)

collider 1056 11.0 (10.1, 11.9) 11.8 (11.0, 12.7) 9.8 (9.1, 10.6) 13.3 (12.2, 14.4) 9.8 (7.6, 12.0)

3200 4.8 (3.8, 5.9) 7.9 (6.8, 8.9) 3.7 (2.8, 4.6) 9.7 (7.7, 11.6) 3.4 (1.4, 5.0)

fulldag 1056 64.4 (61.8, 67.0) 91.4 (86.8, 96.0) 52.1 (50.0, 54.3) 55.8 (53.4, 58.0) 53.4 (49.8, 57.0)

3200 32.0 (30.0, 33.8) 75.4 (71.8, 79.0) 25.1 (22.8, 27.2) 27.3 (25.1, 29.8) 20.8 (19.6, 21.8)

jungle 1056 10.4 (9.2, 11.6) 11.6 (10.1, 13.2) 5.7 (5.0, 6.5) 5.1 (4.4, 5.8) 5.2 (3.0, 7.4)

3200 3.5 (3.1, 3.9) 8.3 (7.2, 9.4) 1.9 (1.5, 2.3) 2.2 (1.8, 2.7) 3.0 (2.0, 4.0)

random 1056 18.8 (17.3, 20.3) 27.5 (25.6, 29.5) 11.3 (10.0, 12.5) 12.5 (11.3, 13.5) 11.0 (9.2, 13.0)

3200 8.3 (7.0, 9.4) 22.1 (19.6, 24.4) 5.0 (4.3, 5.8) 5.3 (4.4, 6.1) 3.8 (2.2, 5.4)

Table 9: SHD with 90% confidence intervals (in the parenthesis), for synthetic data and for low and regular data
regimes (N = 1056 and N = 3200 resp.).
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AIT CBED Random GIT (ours) priv. GIT

alarm 1056 35.76 (34.04, 37.52) 28.44 (26.68, 30.16) 26.0 (24.71, 27.29) 19.84 (19.0, 20.68) 25.0 (23.2, 27.0)

3200 26.15 (24.15, 28.23) 24.33 (21.67, 27.0) 16.0 (14.57, 17.14) 20.0 (18.67, 21.33) 15.2 (14.6, 15.8)

asia 1056 2.0 (1.2, 2.68) 1.96 (1.44, 2.4) 0.96 (0.8, 1.12) 1.2 (1.0, 1.36) 1.2 (0.8, 1.4)

3200 1.56 (1.12, 1.92) 1.28 (1.0, 1.48) 0.88 (0.79, 1.0) 1.12 (0.96, 1.24) 0.8 (0.6, 1.2)

cancer 1056 1.72 (1.48, 2.0) 2.2 (2.0, 2.4) 2.28 (2.04, 2.48) 2.12 (1.84, 2.4) 2.2 (1.8, 2.4)

3200 1.8 (1.6, 2.0) 1.96 (1.72, 2.2) 1.84 (1.6, 2.12) 2.0 (1.76, 2.24) 2.4 (2.0, 2.8)

child 1056 7.32 (5.92, 8.68) 6.36 (5.52, 7.16) 3.52 (2.84, 4.2) 3.72 (3.2, 4.24) 2.8 (1.4, 4.0)

3200 3.2 (2.56, 3.8) 4.68 (3.8, 5.48) 1.04 (0.7, 1.35) 2.16 (1.8, 2.52) 1.8 (0.4, 3.0)

earthquake 1056 0.12 (0.0, 0.2) 0.12 (0.0, 0.2) 0.0 (0.0, 0.0) 0.24 (0.08, 0.36) 0.0 (0.0, 0.0)

3200 0.04 (-0.04, 0.08) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.2 (0.08, 0.32) 0.0 (0.0, 0.0)

sachs 1056 0.84 (0.68, 1.0) 1.28 (0.96, 1.6) 0.6 (0.4, 0.8) 0.52 (0.32, 0.72) 0.4 (0.0, 0.8)

3200 0.48 (0.32, 0.64) 1.48 (1.16, 1.76) 0.24 (0.08, 0.36) 0.48 (0.28, 0.68) 0.0 (0.0, 0.0)

Table 10: SHD with 90% confidence intervals (in the parenthesis), for real-world data and for low and regular
data regimes (N = 1056 and N = 3200 resp.).

F.2.4 ENCO - Training Curves
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Figure 5: Expected SHD metric for different acquisition methods on top of the ENCO framework, for synthetic
graphs with 25 nodes. 95% bootstrap confidence intervals are shown.
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Figure 6: Expected SHD metric for different acquisition methods on top of the ENCO framework, for graphs
from BnLearn dataset. 95% bootstrap confidence intervals are shown.
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F.3 ENCO - Correlation Scores

In Figure 7, we present the correlation of scores of the tested targeting methods. Importantly, the
high correlation of GIT and GIT-privileged supports the hypothesis that imaginary gradients are a
credible proxy of the true gradients and thus validates GIT. Otherwise, correlations are relatively
small, suggesting that the studied methods use different decision mechanisms. Understanding this
phenomenon is an interesting future research direction.

GIT GIT-privileged CBED AIT

GIT

GIT-privileged

CBED

AIT

1.00 0.73 0.13 0.03

0.73 1.00 0.09 0.01

0.13 0.09 1.00 0.15

0.03 0.01 0.15 1.00

Figure 7: Spearman’s rank correlation of the scores produced by different acquisition methods, averaged over
nodes.

GIT GIT-privileged CBED AIT

GIT

GIT-privileged
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AIT

1.00 0.72 0.08 0.01

0.72 1.00 0.06 0.02

0.08 0.06 1.00 0.13

0.01 0.02 0.13 1.00

Figure 8: Pearson correlation of the scores produced by different acquisition methods, averaged over nodes. We
can see similar trends as in the case of Spearman’s rank correlation, in particular, a high correlation of GIT and
GIT-privileged.

Figure 9: The histograms of chosen interventional targets in all data acquisition steps for different strategies
computed on the real-world data.
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Below, we provide more details about computing the correlations. Let us denote by smb,i the score
produced by method m for the batch b and the node i. In order to eliminate effects such as changing
scores scales during the discovery process, we normalize the scores as s̄mb,i :=

smb,i∑N
j=1 s

m
b,j

. For every

pair of methods m, m′ and node i, we compute Spearman’s rank correlation score rs(s̄m·,i, s̄
m′

·,i ). We

average over the nodes to get the scalar correlation value corr(m,m′) :=
∑N

j=1 rs(s̄
m
·,i,s̄

m′
·,i )

N .

In addition, we present Pearson’s correlations in Figure 8. Conclusions from the analysis of the
Spearman’s rank correlation hold; in particular, the correlation between GIT and GIT-privileged is
high.

F.4 Investigating GIT’s intervention target distributions
In order to gain a qualitative understanding of the GIT’s performance, we analyze the node distribu-
tions generated by respective methods on the BnLearn graphs in Figure 10. First, we observe that
GIT typically concentrates on fewer nodes than the other methods, which is confirmed by the low
entropy of the distributions. The entropy of GIT is usually smaller in comparison to other approaches
(consider earthquake, cancer, and asia). In some cases, such as sachs and child, the
distributions of CBED seem to be more concentrated. However, notice that results obtained for CBED
are significantly worse than for GIT (recall Figure 3 or see Figure 6 in the Appendix). We speculate
that GIT strikes a better balance between exploration and exploitation during the causal discovery
process.

Additionally, we observe that GIT often selects nodes with high out-degree, as visible in the
earthquake, cancer, sachs, and child graphs. Intuitively, interventions on such nodes bring
much information, as they affect multiple other nodes. Note also that even though earthquake
and cancer share the same graph structure, their probability distributions are different. Hence,
the interventional target distributions differ as well. In particular, we observe that for these graphs,
GIT opts to perform interventions that allow gathering data points that are hard to acquire in the
observational setting (see the conditional distributions and discussion in Appendix F.5.2).

Finally, we also observe that the most frequently selected nodes in the sachs, child and asia
graphs are also often adjacent to the edges for which there exists a graph in the Markov Equivalence
Class that has the corresponding connection reversed (indicated by the green color in Figure 10). Es-
tablishing the directionality of such an edge (v, w) requires performing interventions on nodes v, w.7

Soundness of GIT. We further explore the interventional targets and verify that GIT is able to
target the most uncertain regions of the graph. In the considered setup, we select a node v in the graph.
Let Ev be edges adjacent to v. We set the structural parameters corresponding to edges e /∈ Ev to the

7For example, in the ENCO framework the directionality parameter θij can only be reliably detected from the
data obtained by intervening either on variable Xj or Xi [24].

Figure 10: The interventional target distributions obtained by different strategies on real-world data. The
probability is represented by the intensity of the node’s color. The green color represents the edges for which
there exists a graph in the Markov Equivalence Class that has the corresponding connection reversed. The
number below each graph denotes the entropy of the distribution.
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Figure 11: Histograms of intervention targets chosen by GIT. In this experiment, a node v was chosen (denoted
by a red color; v’s parents are indicated by green). Parameters were initialized so that the model is only unsure
about the neighborhood of v. The solid lines denote known edges and dashed ones are to be discovered.

ground truth values and initialize in the standard way the parameters for e ∈ Ev. Such a model is
only unsure about the connectivity around v, while the rest of the solution is given. We then run the
ENCO framework with GIT and report the intervention target distributions in Figure 11.

The interventions concentrate on v (red color) and its parents (green color). This indicates the
soundness and efficiency of our approach, as these are most relevant to discovering the graph structure.
Indeed, to recover the solution, only the parameters for e ∈ Ev need to be found. Intervening on v
changes the distributions of its descendants, providing information on the existence of edges between
these variables. The remaining variables are either the predecessors of v or are not directly connected
with v. In the former case, an intervention on the parent node is needed to uncover its relation with v.

F.5 ENCO - Intervention Targets Distribution
In this section, we provide additional histograms and plots with regard to the interventional target
distributions obtained by different intervention methods as discussed in Section F.4 in the main text.

In Figure 9, we present the histograms of the target distributions for the real graphs for each of the
intervention acquisition methods. Note that those histograms represent the same information as the
node coloring in Figure 10. It may be observed that the distributions obtained by GIT concentrate on
fewer nodes than those obtained by the AIT and CBED approaches. The only exceptions being the
sachs and child datasets, for which the entropy of CBED approach is smaller (recall Figure 10).
Note, however, that CBED underperforms on those graphs (recall Figure 3 in the main text or see
Figure 6). This is in contrast to GIT, which maintains good performance.

Figure 12: The interventional target distribution for the alarm graph. The green color represents the edges for
which there exists a graph in the Markov Equivalence Class that has the corresponding connection reversed.
Black color is used to indicate node for each no data is collected. We may observe that each method intervenes
on at least one node incident to the critical edges. However, both AIT and CBED do not converge for this dataset
and struggle to achieve good results.
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Figure 13: The interventional target distributions obtained by different strategies on synthetic data. The
probability is represented by the intensity of the node’s color. For clarity of the presentation, we choose not
to color the critical edges in the corresponding Markov Equivalence Classes. This is because all edges of all
the presented graphs would need to be colored. The only exception is the collider graph, which is alone in its
Markov Equivalence Class.

Finally, in Figure 12, we present the interventional target distribution on the alarm graph. We
observe that each method intervenes on at least one node incident to the critical edges in the Markov
Equivalence Class (as indicated by the green color in the plot). However, both AIT and CBED
struggle to achieve convergence and suffer low performance, as can be observed in Figure 6.

F.5.1 ENCO - Obtained Synthetic Graphs

In addition, we present the results obtained for the synthetic graphs in Figure 13 and the corresponding
histograms in Figure 14. Note that in this case the results are also averaged by different ground truth
distributions, which means that any regularities in selecting the nodes come rather from the graph
structure than from data distribution.

Interestingly, we may observe that for the jungle and chain graphs GIT often intervenes on the
nodes which are the first ones in the topological order (as indicated by low node numbers in the plots).
This is again intuitive, as intervening on those nodes can impact more variables lower in the hierarchy.
In addition, note that for the chain graph, knowing its MEC class and setting the directionality of an
edge automatically makes it possible to determine the directionality of edges for all subsequent nodes
in the topological order. Hence intervening on the nodes which are the first ones in the ordering may
convey more information and is desired.

We may also observe that the CBED seems to focus only on the first nodes in the topological order,
despite the data distribution, which in some graphs (as the chain graph) may be desired, but in
others seems to be an oversimplified solution. Note that CBED often struggles to converge – this may
be observed in Figure 5.

F.5.2 Discussion on Small Real-World Graphs

We provide a more detailed discussion on the differences between the earthquake and cancer
graph distributions and the way it affects the GIT method.

Consider Figure 10 in the main text. Note that the middle node in the earthquake graph corre-
sponds to setting off a burglary alarm, an event very unlikely to happen in observational data but
which, when occurs, triggers a change in the distributions of the nodes lower in the hierarchy (see
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Figure 14: The histograms of chosen interventional targets in all data acquisition steps for different strategies
computed on the synthetic data.

Variable Parents Values Distribution

Burglary – [True, False] [0.01, 0.99]

Earthquake – [True, False] [0.02, 0.99]

Alarm Burglar=True, Earthquake=True [True, False] [0.95, 0.05]
Alarm Burglar=False, Earthquake=True [True, False] [0.29, 0.71]
Alarm Burglar=True, Earthquake=False [True, False] [0.94, 0.06]
Alarm Burglar=False, Earthquake=False [True, False] [0.001, 0.999]

John Calls Alarm=True [True, False] [0.9, 0.1]
John Calls Alarm=False [True, False] [0.05, 0.95]

Mary Calls Alarm=True [True, False] [0.7, 0.3]
Mary Calls Alarm=False [True, False] [0.01, 0.99]

Table 11: The conditional distribution in the earthquake graph.

the conditional distributions in Table 11). The chance of starting an alarm is also very high in case a
burglary has happened (the left-most node in the graph). Hence the GIT concentrates on those two
nodes as they have the largest impact on the entailed distribution.

A similar situation can be observed for the cancer graph, where the middle node corresponds to a
binary variable indicating the probability of developing the illness. Even though the two parents of
the cancer variable (pollution and smoke, represented by nodes 0 and 1, respectively) share a causal
relationship with cancer, their impact on the cancer variable is limited. In other words, the chances of
developing cancer, no matter whether being subject to high or low pollution or being a smoker or
not, remain rather small (see the conditional distributions for cancer variable in Table 12). Hence,
the only way in which one can gather more information about the impact of having cancer on the
distributions of its child variables (nodes 3 and 4) is by performing an intervention. In consequence,
it may be observed that GIT prefers to select nodes that allow to gather data that otherwise would be
hard to acquire in the purely observational setting.

F.6 ENCO - Experiments with Pre-Initialization

In addition to the discussion on the target distributions in the case of pre-initializing parts of the graph
with the ground truth solution (presented in the main text for synthetic graphs in Section F.4), we
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Variable Parents Values Distribution

Pollution – [Low, High] [0.9, 0.1]

Smoker – [True, False] [0.3, 0.7]

Cancer Pollution=Low, Smoker=True [True, False] [0.03, 0.97]
Cancer Pollution=High, Smoker=True [True, False] [0.05, 0.95]
Cancer Pollution=Low, Smoker=False [True, False] [0.001, 0.999]
Cancer Pollution=High, Smoker=False [True, False] [0.02, 0.98]

Xray Cancer=True [True, False] [0.9, 0.1]
Xray Cancer=False [True, False] [0.2, 0.8]

Dyspnoea Cancer=True [True, False] [0.65, 0.35]
Dyspnoea Cancer=False [True, False] [0.3, 0.7]

Table 12: The conditional distribution in the cancer graph.
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Figure 15: Histograms of intervention targets chosen by GIT. The red color corresponds to the selected node,
while the green color indicates the node’s parents. The edges on which standard initialization was used are
indicated by gray dashed lines. The rest of the solution is given in the initialization.

present results of the same experiment computed on the real-world graphs. The results are presented
in Figure 15.

Similarly as for the synthetic graphs, here we also observe that the GIT concentrates either on the
selected node v or on its parents (denoted respectively by red and green colors in the plots).

G Limitations and future work
Method Requirements. GITmakes some assumptions about the underlying causal discovery method
(access to a distribution over graphs, possibility of sampling data from the current belief, access to
the gradients of the loss function).

Performance in Higher Data Regimes. Our method significantly outperforms other methods in low
data regime. In future work, we plan to understand this better, and, in particular, try to achieve similar
effects in the other regimes.

Targeting Granularity. GIT only selects the intervention target. Setting additionally the value on
the intervened node might be also useful.

Use of Heuristics. Existing approaches to intervention targeting either rely on heuristics or heavy
use of approximations, potentially limiting performance and interpretability. We think a promising
avenue for future research would be developing solutions based on learning.
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