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Abstract

The sampling problem under local differential privacy has recently been studied
with potential applications to generative models, but a fundamental analysis of
its privacy-utility trade-off (PUT) remains incomplete. In this work, we define
the fundamental PUT of private sampling in the minimax sense, using the f -
divergence between original and sampling distributions as the utility measure. We
characterize the exact PUT for both finite and continuous data spaces under some
mild conditions on the data distributions, and propose sampling mechanisms that are
universally optimal for all f -divergences. Our numerical experiments demonstrate
the superiority of our mechanisms over baselines, in terms of theoretical utilities
for finite data space and of empirical utilities for continuous data space.

1 Introduction

Privacy leakage is a pressing concern in the realm of machine learning (ML), spurring extensive
research into privacy protection techniques [1–4]. Among these, local differential privacy (LDP) [5]
stands out as a standard model and has been deployed in industry, e.g., by Google [6, 7], Apple [8],
Microsoft [9]. In the LDP framework, individual clients randomize their data on their own devices
and send it to a potentially untrusted aggregator for analysis, thus preventing the user data from being
inferred. However, this perturbation inherently diminishes data utility. Consequently, the central
challenge in privacy mechanism design lies in optimizing utility while preserving the desired level of
privacy protection. This goal involves characterizing the optimal balance between privacy parameter
and utility, referred to as the privacy-utility trade-off (PUT). The analysis of the PUT and the proposal
of privacy mechanisms have been actively conducted for various settings of statistical inference and
machine learning [10–27].

Most research in this field focuses on scenarios where each client has only a single data point.
However, there are increasingly more applications where each client has a large local dataset with
multiple data records. One can formulate the privacy requirement in these cases by assuming that
clients have datasets of the same size, generated independently from an underlying distribution [28–
34]. This probabilistic assumption, however, restricts practical flexibility. The work [35] explored a
scenario where clients have large datasets that may vary in size and seek to privately release another
dataset that closely resembles their original dataset. In this scenario, local datasets can be represented
by an empirical distribution, allowing each client to be seen as holding a probability distribution and
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Figure 1: Original Gaussian ring distribution and the sampling distributions of the baseline [35] and
our proposed mechanism for privacy budget ϵ = 0.5. The implementation details are in Appendix F.

generating a private sample from it. This setup, which is called private sampling, is the main focus of
this paper.

Private sampling has recently found applications in the private fine-tuning of large language mod-
els [36]. Additionally, private sampling is connected to the challenge of learning private generative
models, a topic often explored in the central DP model [37–44]. While there exist studies on pri-
vate generative models within the local model [45–48], all these works assume a single data point
per client. Very recently, the work [49] considered a setup where each client holds a probability
distribution, but in a different context of query estimation.

The private sampling mechanism in [35] can be described as follows. Initially, given a probability
distribution P representing a local dataset, the mechanism assumes a fixed reference distribution. It
then constructs what is termed the “relative mollifier”, a closed ball centered around the reference
distribution with a radius equivalent to half of the privacy budget, within the space of probability
distributions. Subsequently, the mechanism computes the projection of P onto the relative mollifier,
utilizing the Kullback-Leibler (KL) divergence. This projected distribution serves as the sampling
distribution for generating a sample (see Section 2.3 for more details). However, this mechanism has
a notable shortcoming: the sampling distribution is only locally optimal within the relative mollifier.
This, in turn, implies that the optimality of the sampling distribution depends on the choice of the
reference distribution. A more fundamentally intriguing goal would be to formulate and characterize
the PUT without such an ambiguity in the choice of reference distribution.

In this paper, we establish the optimality of locally private sampling in the minimax sense, and
identify optimal private samplers. Our primary contributions are summarized as follows:

• The fundamental PUT of private sampling is rigorously defined in terms of minimax utility,
which is commonly used in the literature of private estimation [10, 11, 13, 30]. We impose
some minimal assumptions on client’s distributions as in [38] (which studies sampling under
central DP, a weaker privacy model than the local model [50]). For utility measure, we use
the f -divergence [51, 52] between the original and the sampling distributions, that includes
KL divergence, total variation distance, squared Hellinger distance, and χ2-divergence as
special cases.

• We characterize the exact PUT for both finite and continuous data spaces, and present optimal
sampling mechanisms achieving the PUT. Surprisingly, our mechanisms are universally
optimal under any choice of f -divergence for utility measure.

• We numerically demonstrate that our proposed mechanism outperforms the baseline method
presented in [35]. Specifically, for finite data spaces, we derive a closed-form expression
for the utility of both our mechanism and the baseline, allowing for an exact comparison
of their utilities. In the case of continuous data spaces, a closed-form expression for the
baseline is not available, so we use empirical utility for the comparison. Figure 1 illustrates
our proposed mechanism outputs a distribution closer to the original, than the baseline.

All codes for experiments and figures are attached as a supplementary material, and can be found at
the online repository1. The instructions to reproduce the results in the paper are in Appendix H.

1https://github.com/phy811/Optimal-LDP-Sampling.
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2 Problem Formulation

2.1 Notations and preliminaries

Notations. For a sample space X , let P(X ) be the set of all probability distributions on X . For
each n ∈ N, let C(Rn) be the set of all continuous probability distributions on Rn. For each positive
integer k ∈ N, let [k] := {1, 2, · · · , k}. For a subset A ⊂ X , 1A : X → {0, 1} denotes the
indicator function, defined as 1A(x) = 1 for x ∈ A and 1A(x) = 0 for x /∈ A. Also, for s1 ≤ s2
and x ∈ R, let clip(x; s1, s2) := max{s1,min{s2, x}}. We refer to Appendix A for the rigorous
measure-theoretic assumptions underlying the paper.

f -divergence. For a convex function f : (0,∞) → R satisfying f(1) = 0 and two probability
distributions P,Q ∈ P(X ) on the same sample space X , let Df (P∥Q) denote the f -divergence
[51, 52]. The general definition of f -divergence is given in Appendix B. For X = Rn and P,Q ∈
C(Rn) with P ≪ Q (that is, P (A) = 0 whenever Q(A) = 0), it is defined as

Df (P∥Q) =

∫
x:q(x)>0

q(x)f

(
p(x)

q(x)

)
dx, (1)

where p, q are pdfs of P,Q, respectively, and we define f(0) = limx→0+ f(x) ∈ (−∞,∞]. For
finite X , we can replace the integral with the sum and replace p, q with P,Q. Several well-known
distance measures between distributions are examples of f -divergence with different convex functions.
For instance, KL divergence (relative entropy), total variation distance, squared Hellinger distance,
and χ2-divergence are f -divergences with f(x) = x log x, f(x) = |x − 1|/2, f(x) = (1 −√

x)2,
and f(x) = x2 − 1, respectively. Two important properties of general f -divergence are keys for this
work. First, Df (P∥Q) ≥ 0, and equality holds if P = Q. Furthermore, we have

Df (P∥Q) ≤Mf := lim
x→0+

f(x) + xf(1/x), (2)

where equality holds if P and Q are mutually singular (that is, they have disjoint supports). For a
more comprehensive list of such f -divergences and their properties, we refer the readers to [52].

We denote the KL divergence and the total variation distance as DKL (P∥Q) and DTV (P,Q),
respectively. We note that the total variation distance is in fact a metric on P(X ).

2.2 System model

Suppose a client has access to a distribution P ∈ P(X ) over a sample space X , and wants to produce
a sample in X which looks like being drawn from P and to send it to a data curator. We assume that
there are some constraints on the possible data distribution P , so that P is restricted to be in some
subset P̃ ⊂ P(X ), and both the client and the curator know X and P̃ . However, it is required that a
sampled element does not leak the privacy about the original distribution P . For this purpose, the
client and the curator agree a private sampling mechanism Q, which is a conditional distribution
from P̃ to X . After that, the client produces a sample following the distribution Q(·|P ). To guarantee
the privacy protection, we impose Q to satisfy the local differential privacy (LDP) [10, 35].
Definition 2.1. Let ϵ > 0. A private sampling mechanism Q is said to satisfy ϵ-LDP, or Q is an
ϵ-LDP mechanism, if for any P, P ′ ∈ P̃ and A ⊂ X , we have

Q(A|P ) ≤ eϵQ(A|P ′). (3)

For convenience, for each P ∈ P̃ , let Q(P ) ∈ P(X ) denote the distribution of X given P through
Q, that is Q(P )(A) = Q(A|P ) for each A ⊂ X . In this way, we equivalently see Q as a function
Q : P̃ → P(X ). Let QX ,P̃,ϵ denote the set of all ϵ-LDP mechanisms Q : P̃ → P(X ).

As the utility loss of the private sampling, we use the f -divergence between the original distribution
and the sampling distribution, Df (P∥Q(P )). Since the sampling procedure can be performed across
many clients who may have different data distributions, we measure the utility loss of Q by the
worst-case f -divergence,

Rf (Q) = sup
P∈P̃

Df (P∥Q(P )) . (4)
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Given X , P̃ , ϵ, and f , our goal is to find the smallest possible worst-case f -divergence,

R(X , P̃, ϵ, f) = inf
Q∈QX ,P̃,ϵ

Rf (Q), (5)

and to find a mechanism Q ∈ QX ,P̃,ϵ achieving it. We say that Q ∈ QX ,P̃,ϵ is optimal for (X , P̃, ϵ)
under Df if Rf (Q) = R(X , P̃, ϵ, f).

2.3 Related work

The most closely related work to our work is [35]. The system models are the same as this paper,
except the formulation of PUT. They first fix a reference probability distributionQ0 ∈ P(X ), and only
consider mechanisms Q satisfying e−ϵ/2Q0(A) ≤ Q(A|P ) ≤ eϵ/2Q0(A) for all P ∈ P̃ andA ⊂ X .
In other words, let Mϵ,Q0

= {Q ∈ P(X ) : e−ϵ/2Q0(A) ≤ Q(A) ≤ eϵ/2Q0(A), ∀A ⊂ X}.
Then, they only consider Q such that Q(P ) ∈ Mϵ,Q0

. Note that this guarantees ϵ-LDP. For each
P ∈ P̃ , they sought to find Q ∈ Mϵ,Q0

which minimizes DKL (P∥Q), and set this Q to be Q(P ).
First, they claimed to find a closed-form expression of such a minimizer Q for finite X , given by

Q(x) = clip
(
P (x)/rP ; e

−ϵ/2Q0(x), e
ϵ/2Q0(x)

)
, (6)

where rP > 0 is a constant depending on P ensuring
∑

x∈X Q(x) = 1. Second, they presented an
algorithm, called Mollified Boosted Density Estimation (MBDE), to approximate the optimal solution
for continuous X . However, the utility varies over the choice of reference distribution Q0, and they
left the question of choosing a best Q0 to achieve the best performance in both practice and theory.
Moreover, we found that the closed-form in (6) is incomplete, because for some (P,Q0), there may
be no rP > 0 such that the RHS of (6) does not sum to one. As an example, when P,Q0 are point
masses at different points, then we can easily see that the sum of (6) is e−ϵ/2 for any rP > 0.

3 Main Results

3.1 Optimal private sampling over finite space

First, we consider the finite case, where X = [k] for some k ∈ N. A natural setup for P̃ is that
P̃ = P([k]), i.e. there is no restriction on the client distribution P ∈ P([k]). In this case, we
completely characterize the optimal worst-case f -divergence R(X , P̃, ϵ, f) and find an optimal
private sampling mechanism. Surprisingly, for each k ∈ N and ϵ > 0, we found a single mechanism
which is universally optimal for every f -divergence.
Theorem 3.1. For each k ∈ N, ϵ > 0, and an f -divergence Df , we have

R([k],P([k]), ϵ, f) =
eϵ

eϵ + k − 1
f

(
eϵ + k − 1

eϵ

)
+

k − 1

eϵ + k − 1
f(0). (7)

Moreover, the mechanism Q∗
k,ϵ constructed as below satisfies ϵ-LDP and is optimal for (X =

[k], P̃ = P([k]), ϵ) under any Df :

Q∗
k,ϵ(x|P ) = max

(
1

rP
P (x),

1

eϵ + k − 1

)
∀x ∈ [k], P ∈ P([k]), (8)

where rP > 0 is a constant depending on P so that
∑k

x=1 Q
∗
k,ϵ(x|P ) = 1. Furthermore, rP can be

chosen such that 1 ≤ rP ≤ (eϵ + k − 1)/eϵ.

By definition, we have Q∗
k,ϵ(x|P ) ≥ 1

eϵ+k−1 for all x ∈ X . This also implies that Q∗
k,ϵ(x|P ) =

1 −∑x′∈X\{x} Q
∗
k,ϵ(x

′|P ) ≤ 1 − k−1
eϵ+k−1 = eϵ

eϵ+k−1 . Hence, 1
eϵ+k−1 ≤ Q∗

k,ϵ(x|P ) ≤ eϵ

eϵ+k−1 .
This clearly implies that Q∗

k,ϵ satisfies ϵ-LDP.

Behaviors of the optimal mechanism. Let us observe some behaviors of the proposed mechanism
with respect to the system parameters, whose formal proofs are in Appendix E. We visualize how
the mechanism Q∗

k,ϵ works for different ϵ in Figure 2. Here, we write R to mean R([k],P([k]), ϵ, f)
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for simplicity. If f(0) = ∞, then R = ∞, which means that Rf (Q) = ∞ for any ϵ-LDP sampling
mechanism Q. (Such a phenomenon happens for general (X , P̃), whenever P̃ contains two mutually
singular distributions) Hence, from now on in this paragraph, we assume f(0) <∞. We can observe
that R is decreasing in ϵ and increasing in k. For a fixed k, we have R → 0 as ϵ→ ∞, which makes
sense since ϵ→ ∞ corresponds to the non-private case. Also, as ϵ→ 0, we have Q∗

k,ϵ(x|P ) → 1/k

for every P ∈ P([k]) and x ∈ [k], that is, Q∗
k,ϵ(P ) tends to the uniform distribution over [k] for

every P ∈ P([k]). This fact can be also observed by Figure 2.
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Figure 2: A visualization of the mechanism Q∗
k,ϵ

Remarks about the constant rP . The value
of rP may not be unique, but the mecha-
nism Q∗

k,ϵ does not depend on the choice
of rP . To see this, let us fix P , and let
gr(x) = max

(
1
rP (x),

1
eϵ+k−1

)
. Suppose that∑k

x=1 gr(x) =
∑k

x=1 gr′(x) = 1 for r ≤ r′.
Since gr(x) ≥ gr′(x) for each x ∈ [k], the
equality

∑k
x=1 gr(x) =

∑k
x=1 gr′(x) implies

that gr(x) = gr′(x) for all x ∈ [k]. Hence Q∗
k,ϵ

is uniquely determined. Since r 7→∑k
x=1 gr(x)

is non-increasing and continuous, we can use
the bisection method to find rP . The ‘Further-
more’ part of the theorem statement precisely
means that for r = 1 and r = (eϵ + k − 1)/eϵ,
the value of

∑k
x=1 gr(x) is at least and at most

1, respectively, so that we can perform the bisection method with these two initial endpoints to find r
such that

∑k
x=1 gr(x) = 1.

Comparison with the previous work [35]. The expression of the optimal mechanism in (8)
is similar to (6), the expression of the KL divergence projection onto Mϵ,Q0

derived by Husain
et al. [35]. Since 1

eϵ+k−1 ≤ Q∗
k,ϵ(x|P ) ≤ eϵ

eϵ+k−1 , we can alternatively write Q∗
k,ϵ(x|P ) =

clip
(

1
rP
P (x); 1

eϵ+k−1 ,
eϵ

eϵ+k−1

)
. Hence, our optimal mechanism can be viewed as an instance of

a generalized version of (6), where Q0 is a positive measure, not necessarily a probability measure
summing to one, given by Q0(x) =

eϵ/2

eϵ+k−1 . A natural question is whether Q∗
k,ϵ(P ) is a projection

of P onto Mϵ,Q0
, that is Q∗

k,ϵ(P ) is a minimizer of DKL (P∥Q) among Q ∈ Mϵ,Q0
, where Mϵ,Q0

is similarly defined as in Section 2.3. As we shall discuss in Section 3.3, this statement is true —quite
surprisingly— even when we replace DKL with any other f -divergences. However, our analysis
is more involved, as we need to show the optimality of the proposed mechanism over any other
possible mechanisms, including minimizers with respect to other choices of Q0. Also, in Section
5, we compare the worst-case f -divergence of our optimal mechanism with that of the mechanism
proposed in [35] which restricts Q0 to be a probability distribution.

3.2 Optimal private sampling over continuous space

Next, we consider the continuous case, where X = Rn for some n ∈ N. Some of the natural
setups for P̃ are (i) P̃ = P(Rn), or (ii) P̃ = C(Rn). We can also think some restrictive but still
reasonable setups, such as the setups where (iii) P̃ is the set of empirical distributions supported
on some non-empty open subset of Rn, or where (iv) P̃ is the set of continuous distributions on
[−1, 1]n having smooth pdf and zero mean. However, we show that for a general class of P̃ including
these four cases, any ϵ-LDP sampling mechanisms have the worst-case f -divergence equal to the
maximum value Mf of the f -divergence defined in (2). In the following proposition, X may be a
general sample space, not necessarily Rn or finite space. The proof is in Appendix D.

Proposition 3.2. Suppose that P̃ contains infinitely many distributions which are pairwise mutually
singular. Then, for any ϵ > 0, for any ϵ-LDP mechanism Q ∈ QX ,P̃,ϵ, and for any f -divergence, we
have Rf (Q) =Mf , where Mf is define at (2).
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Hence, we need to consider sufficiently regular but practical setups for P̃ .

Our setup. In this subsection, when P,Q ∈ C(Rn), the corresponding small letters p, q denote
their pdfs. In this paper, we consider the case that

P̃ = P̃c1,c2,h := {P ∈ C(Rn) : c1h(x) ≤ p(x) ≤ c2h(x), ∀x ∈ Rn} (9)

for some pre-known h : X → [0,∞) such that
∫
Rn h(x)dx < ∞ and c2 > c1 ≥ 0. Some of

the sampling tasks and generative models in literature [53, 35] assume that the set of possible data
distributions P̃ satisfies P̃ ⊂ P̃c1,c2,h for some c1, c2, h satisfying the aforementioned condition,
hence (9) is a moderate assumption. One example is the sampling from a Gaussian mixture, which
is one of the canonical sampling tasks in literature [53, 35]. Suppose that P̃ consists of Gaussian
mixtures, where each Gaussian has mean within a unit ball centered at the origin and has unit
covariance. That is, P̃ = {∑k

i=1 λiN (µi, In) : k ∈ N, λi ≥ 0,
∑k

i=1 λi = 1, ∥µi∥ ≤ 1}, where
In is the identity matrix of size n × n. In this case, we can observe that P̃ ⊂ P̃0,1,h for h(x) =

(2π)−n/2 exp(−(max(0, ∥x∥ − 1))2/2), and it can be easily shown that
∫
Rn h(x) <∞.

Without loss of generality, we may assume the following normalization condition on c1, c2, h, ϵ:∫
Rn

h(x)dx = 1, c1 < 1 < c2, c2 > c1e
ϵ. (10)

The reason is as follows. First, if any one of three inequalities
∫
Rn h(x)dx > 0, c1

∫
Rn h(x)dx < 1,

and c2
∫
Rn h(x)dx > 1 is not satisfied, then P̃c1,c2,h is either an empty set or a singleton that consists

of a distribution having pdf c1h(x) or c2h(x), which makes the problem trivial. Hence we impose all
of the three inequalities. Then, we can normalize c1, c2, h, to make

∫
Rn h(x)dx = 1 and c1 < 1 < c2.

Furthermore, if c2 ≤ eϵc1, then for any P1, P2 ∈ P̃c1,c2,h, we have p1(x)/p2(x) ≤ c2/c1 ≤ eϵ,
hence we can easily observe that the mechanism Q defined as Q(P ) = P for all P ∈ P̃c1,c2,h satisfies
ϵ-LDP and Rf (Q) = 0, hence the problem also becomes trivial, giving R(Rn, P̃c1,c2,h, ϵ, f) = 0.
Hence, we may assume (10).

Minimax utility and optimal mechanism. For the aforementioned setup, we can completely
characterize R(X , P̃, ϵ, f) and find a mechanism which is universally optimal for every f -divergence.
The formula is similar to the discrete case, with a carefully chosen clipping bound.
Theorem 3.3. For each c2 > c1 ≥ 0, ϵ > 0, and h : Rn → [0,∞) satisfying the normalization
condition (10), let us define the following constants determined by c1, c2, ϵ:

b =
c2 − c1

(eϵ − 1)(1− c1) + c2 − c1
, r1 =

c1
b
, r2 =

c2
beϵ

. (11)

Then, we have

R(Rn, P̃c1,c2,h, ϵ, f) =
1− r1
r2 − r1

f(r2) +
r2 − 1

r2 − r1
f(r1). (12)

Moreover, the mechanism Q∗
c1,c2,h,ϵ

constructed as below satisfies ϵ-LDP and is optimal for (X =

Rn, P̃ = P̃c1,c2,h, ϵ) under any Df :

For each P ∈ P̃ , Q∗
c1,c2,h,ϵ

(P ) =: Q is defined as a continuous distribution with pdf

q(x) = clip

(
1

rP
p(x); bh(x), beϵh(x)

)
, (13)

where rP > 0 is a constant depending on P so that
∫
Rn q(x)dx = 1. Furthermore, rP can be chosen

such that r1 < rP ≤ r2.

It is also clear that Q∗
c1,c2,h,ϵ

satisfies ϵ-LDP. Also, we note that c1 < b < 1 < beϵ < c2 and
0 ≤ r1 < 1 < r2, which is shown during the proof of Theorem 3.3 in Appendix C.

In practical scenario, it may be hard to expect P̃ = P̃c1,c2,h exactly, and we may only know
P̃ ⊂ P̃c1,c2,h for some c1, c2, h satisfying aforementioned conditions. In such case, we still propose
to use Q∗

c1,c2,h,ϵ
, and in Section 5, we numerically show that this proposed mechanism is better than

previously proposed mechanism [35] in terms of the worst-case f -divergence.
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Behavior of the optimal mechanism. We also observe some behaviors of the proposed mechanism
with respect to the system parameters, whose formal proofs are in Appendix E. Again, we write R to
mean R(Rn, P̃c1,c2,h, ϵ, f) for simplicity. For a fixed (c1, c2), R is decreasing in ϵ. If c1 = 0 (which
implies r1 = 0) and f(0) = ∞, then R = ∞, which means Rf (Q) = ∞ for any ϵ-LDP sampling
mechanism Q. For the behavior at ϵ→ ∞ for a fixed (c1, c2), if c1 > 0, then for sufficiently large
ϵ, we have c1eϵ ≥ c2 , so we fall in the aforementioned trivial case that R = 0. If c1 = 0 and
f(0) <∞, then as ϵ→ ∞, we have R → 0, which again corresponds to the non-private case.

Remarks on the constant rP . By the same reason as in the finite space case, the value of rP
may not be unique, but Q∗

c1,c2,h,ϵ
does not depend on the choice of rP , and rP can be found

by the bisection method with a numerical integration of (13). Note that the continuity of r 7→∫
gr(x)dx, gr(x) = clip

(
1
rp(x); bh(x), be

ϵh(x)
)
, follows from the dominated convergence theorem

[54] since we assume
∫
Rn h(x)dx < ∞. The meaning of ‘Furthermore’ part is also similar to the

finite space case, that is, the value of
∫
gr(x)dx at r = r1 and r = r2 is at least and at most 1,

respectively, so that we can perform the bisection method with initial endpoints (r1, r2) (When
r = 0, we define gr(x) = beϵh(x) whenever p(x) > 0 and gr(x) = bh(x) whenever p(x) = 0). A
corner case is that when r1 = 0, the continuity of r 7→

∫
gr(x)dx does not suffice to guarantee the

existence of strictly positive r such that
∫
gr(x)dx = 1. However, in the proof, we actually show that∫

gr1(x)dx = 1 implies
∫
gr(x)dx = 1 for every r ∈ (r1, r2], which especially implies that even

when r1 = 0, there is a strictly positive r such that
∫
gr(x)dx = 1. This is the reason that we state

the strict inequality r1 < rP .

3.3 Proof sketch of the theorems

The full proofs of the main theorems, Theorems 3.1 and 3.3, are presented in Appendix C. In
Appendix C, we present a generalized theorem which includes Theorems 3.1 and 3.3 as special cases,
where X can be a general sample space and P̃ is similarly defined as in the continuous space case.
The key idea for proofs and proposed mechanisms is to focus on the behavior of Q(P ) when P is
in an extreme case in P̃ . In finite space, point masses are extreme cases, and for continuous space
with P̃ = P̃c1,c2,h, the cases that p(x) ∈ {c1h(x), c2h(x)} for all x ∈ X are the extreme cases. As
implied by the proof, the worst-case f -divergence of the proposed optimal mechanism is attained
when P is in the aforementioned extreme cases. Such an approach using extreme case is a frequently
used technique in PUT analysis [55–58].

Our proof consists of two parts, the achievability part and the converse part. The achievability part is
to show that the worst-case f -divergence Rf (Q

∗) of our proposed mechanism Q∗ is upper-bounded
by the RHS of (7) or (12). The converse part is to show that Rf (Q) of any ϵ-LDP mechanism Q is
lower-bounded by the RHS of (7) or (12). From now, we briefly describe the proof idea of each part.
Here, we omit the subscripts (k, ϵ) or (c1, c2, h, ϵ) for notational convenience.

Achievability part. Let M = {Q∗(P ) : P ∈ P̃}. For finite space, M consists of all distributions
Q ∈ P([k]) such that 1

eϵ+k−1 ≤ Q(x) ≤ eϵ

eϵ+k−1 for every x ∈ [k]. For continuous space, M
consists of all continuous distributions Q ∈ C(Rn) whose pdf q satisfies bh(x) ≤ q(x) ≤ beϵh(x)
for every x ∈ Rn.

We construct a mechanism Q† such that Rf (Q
†) is upper-bounded by the RHS of (7) or (12).

The construction is as follows. First, we set a reference distribution µ ∈ P(X ) and a constant
γ ∈ [0, 1] according to a certain rule specified in Appendix C. Then, for each given P , we generate a
private sample by sampling from the original P with probability γ, and sampling from the reference
distribution µ with probability 1− γ. In other words, we have Q†(P ) = γP + (1− γ)µ. Our choice
of µ and γ makes Q†(P ) ∈ M for every P ∈ P̃ , which especially implies that Q† also satisfies
ϵ-LDP. Furthermore, we can find a bound on the ratio of the pmf or pdf for original distribution to
that for sampling distribution. Then, invoking [59, Theorem 2.1], which bounds f -divergences given
bounds on the ratio between pmf or pdfs, we show that Rf (Q

†) is upper-bounded by the RHS of (7)
or (12).

Next, we demonstrate a non-trivial generalization of the main result of [35] that Q∗(P ) is the
f -divergence projection of P onto M for P ∈ P̃ and for every f -divergence.
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Proposition 3.4. Assuming the setups of (X , P̃, ϵ) in either Theorem 3.1 or 3.3, let Q∗ denote the
proposed mechanism Q∗

k,ϵ or Q∗
c1,c2,h,ϵ

. Also, let M be as described above. Then, for every P ∈ P̃
and every f -divergence Df , we have Df (P∥Q∗(P )) = infQ∈MDf (P∥Q).

Notice that this proposition differs from [35] in that it holds for all general f -divergences (as
opposed to only KL divergence) and general sample spaces, be it discrete or continuous. This
result immediately yields Df (P∥Q∗(P )) ≤ Df

(
P
∥∥Q†(P )

)
, and hence Rf (Q

∗) ≤ Rf (Q
†) ≤

(RHS of (7) or (12)). We remark that combining with the converse part (to be described below), it
implies that the Q† is also optimal in our minimax sense. Nevertheless, Q∗ outperforms Q† in that
Df (P∥Q∗(P )) ≤ Df

(
P
∥∥Q†(P )

)
for every P ∈ P̃ .

Remark 3.5. For the finite case, µ is the uniform distribution over [k] and γ is taken in such a way
that Q† satisfies ϵ-LDP tightly. In this case, an alternative way to implement Q† is as follows. For
each given P , first we sample from P to get a raw sample and then apply the k-ary randomized
response [60] to it.

Converse part. For each extreme P , let AP be the “high probability set”, defined as AP = {x ∈
X : P (x) = 1} for finite space and AP = {x ∈ X : p(x) = c2h(x)} for continuous space. Then,
using the data processing inequality of f -divergence [61], we take a lower bound ofDf (P∥Q(P )) by
the f -divergence between the distributions of 1AP

(X) for X ∼ P and that for X ∼ Q(P ). Such a
lower bound becomes a decreasing function of Q(AP |P ) in a certain range. Then, we seek to find an
upper bound on infQ(AP |P ) over extreme P , which gives a lower bound on Rf (Q). This involves
a novel combinatorial argument. We perform a “packing” of u copies of X by t subsets A1, · · · , At

with Ai = APi
for some extreme Pi and appropriately chosen t and u. Then, we decompose the

RHS of u =
∑u

i=1 Q(X|Pi) by an appropriate partition of X involving Ai’s and use the definition
of ϵ-LDP to find an upper bound on infQ(AP |P ).

4 Discussions on the Proposed Mechanism

4.1 Effect of the rP approximation error

In practice, it may not be possible to find the exact value of rP such that the sum or integration of the
RHS of (8) or (13) is 1. For the case of continuous space as in Theorem 3.3, one way to implement
the proposed mechanism Q∗

c1,c2,h,ϵ
in practice is as follows. First, we fix parameters δ1 ∈ [0, 1) and

δ2 ≥ 0 that quantify error tolerance. For a given P , we define gr(x) = clip
(
1
rp(x); bh(x), be

ϵh(x)
)

and find rP > 0 such that
∫
Rn grP (x)dx ∈ [1− δ1, 1 + δ2]; we delineate a numerical algorithm for

this task in Section 3.2 based on the bisection method and a numerical integration method. Then, we
get a private sample by sampling from the distribution with pdf q̂(x) = grP (x)/

∫
Rn grP (x)dx. For

the finite case as in Theorem 3.1, we can implement in the same way, except replacing the integral
with the sum.

It is important to note that q̂(x) ∈
[
bh(x)
1+δ2

, be
ϵh(x)
1−δ1

]
, indicating that the resulting Q∗

k,ϵ and Q∗
c1,c2,h,ϵ

satisfy
(
ϵ+ log 1+δ2

1−δ1

)
-LDP as opposed to ϵ-LDP. Thus, the above implementation yields ϵ-LDP if it

is used to implement Q∗
k,ϵ′ or Q∗

c1,c2,h,ϵ′
, with ϵ′ = ϵ− log 1+δ2

1−δ1
and sufficiently small δ1, δ2 such

that ϵ′ > 0.

4.2 Continuity of the proposed mechanism

In some practical scenarios, the client may not have full access to their distribution P . One example
is that the client can only access to samples from P . In such case, the client may first estimate the
true distribution, and then perturb the estimated distribution through the optimal mechanism. The
question is how the perturbation using the estimated distribution deviates from that using the true
distribution. To answer this, we show that the proposed mechanism satisfies a pointwise Lipschitz
property with respect to the total variation distance, and the Lipschitz constant is closely related to
the factor rP we introduce in Theorems 3.1 and 3.3.
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Proposition 4.1. Assuming the setups of (X , P̃, ϵ) in either Theorem 3.1 or 3.3, let Q∗ denote the
proposed mechanism Q∗

k,ϵ or Q∗
c1,c2,h,ϵ

. Then, for any P, P ′ ∈ P̃ , we have

DTV (Q∗(P ),Q∗(P ′)) ≤ 2

max(rP , rP ′)
DTV (P, P ′) (14)

where rP > 0 is as in Theorem 3.1 or 3.3.

This guarantees that for each given true P and given δ > 0, whenever the approximated P ′ satisfies
DTV (P, P ′) ≤ δrP /2, the perturbed distribution Q∗(P ′) satisfies DTV (Q∗(P ),Q∗(P ′)) ≤ δ.
In theoretical perspective, this proposition implies that Q∗ is continuous when P̃ and P(X ) are
endowed with the metric topology from the total variation distance. The proof of Proposition 4.1 is in
Appendix D.

5 Numerical Results

In this section, we numerically compare the worst-case f -divergence of our proposed mechanism
with that of the previously proposed sampling mechanism. To the best of our knowledge, the only
work about the private sampling under LDP is [35], hence we set the baseline as the mechanism
proposed in [35]. In all the cases, we perform the comparison across three canonical f -divergences:
KL divergence, total variation distance, and squared Hellinger distance, as well as across five values
of ϵ: 0.1, 0.5, 1, 2, and 5.

5.1 Comparison for finite data space

In this subsection, we compare the mechanisms in the finite space, X = [k] and P̃ = P([k]). As
mentioned in Sections 2.3 and 3.1, the baseline mechanism has a hyper-parameter, a reference
probability distribution Q0 ∈ P(X ). We set the baseline as a generalized f -divergence projection
onto the relative mollifier. That is, for each given f -divergence, we set the baseline to satisfy
Q(P ) ∈ argminQ∈Mϵ,Q0

Df (P∥Q), where Mϵ,Q0 is defined in Section 2.3. As expected by
symmetry, for any f , choosing Q0 to be the uniform distribution minimizes the worst-case f -
divergence Rf (Q) among all choices of Q0 for the baseline. Also, even though we do not obtain the
closed-form expression of Q(x|P ) for the baseline, we obtain the value of Rf (Q) when Q0 is the
uniform distribution. The proof of this fact, together with the precise value of Rf (Q) for uniform
Q0, is in Appendix F.1. Hence, we always set Q0 to be the uniform distribution in the result about
the baseline. Since we have the precise values of Rf (Q) for both our proposed mechanism and
the baseline, we plot such values of Rf (Q) in Figure 3. For simplicity, we only provide the plot
for k = 10. More plots for some other k’s can be found in Appendix G. As shown by the figure,
the proposed mechanism has lower worst-case f -divergence than the baseline for all choices of
f -divergences and ϵ in the experiment, with significant gap in medium privacy regime ϵ ∈ [0.5, 2].
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Figure 3: Theoretical worst-case f -divergences of proposed and previously proposed baseline
mechanisms (with uniform Q0) over finite space (k = 10)
(Left: KL divergence, Center: Total variation distance, Right: Squared Hellinger distance)
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5.2 Comparison for 1D Gaussian mixture

In this subsection, we conduct an experiment to compare the mechanisms when the client distributions
are Gaussian mixtures over a real line X = R, which is an instance of a continuous space case. We
consider the case that each client has a Gaussian mixture distribution in R, where each Gaussian
has a mean bounded by 1 and has a unit variance. To avoid arbitrarily large number of Gaussian
distributions to be mixed, we set an upper bound K of the number of Gaussian distributions to be
mixed per client. Also, to make the numerical integration tractable, we truncate the domain of the
distributions to lie inside an interval [−4, 4]. Unlike the finite space case, there is no known closed-
form expression of the worst-case f -divergence for the mechanism in [35]. The set of Gaussian
mixtures is not exactly of the form P̃ = P̃c1,c2,h, hence our proposed mechanism also does not have
a known closed-form expression of the worst-case f -divergence. Hence, instead, we compare the
mechanisms by an empirical worst-case f -divergence.

For an experiment, we randomly construct N Gaussian mixture distributions P1, P2, · · · , PN ∈ P̃ ,
where each Pj is generated independently according to some rules specified in Appendix F.2. After
that, we plot the value of the empirical maximum f -divergence maxj∈[N ]Df (Pj∥Q(Pj)) for
the baseline and our proposed Q. For the baseline mechanism, we use MBDE with the same
hyperparameter setup as [35, Section 5], except a slight modification of the reference distribution to
consider the truncation of the domain. The implementation details are provided in Appendix F.2.

In Figure 4, we present the result forN = 100 andK = 10. We can see that the proposed mechanism
has much lower worst-case f -divergence than the baseline for all choices of f -divergences and ϵ.
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Figure 4: Empirical worst-case f -divergences of proposed and baseline mechanisms over 100
experiments of 1D Gaussian mixture
(Left: KL divergence, Center: Total variation distance, Right: Squared Hellinger distance)

6 Conclusion

In this paper, we characterized the optimal privacy-utility trade-off for the private sampling under LDP
and found the optimal private sampling mechanism in terms of the minimax f -divergence between
original and sampling distributions, for both finite and continuous data spaces. Compared to the
previous work [35] based on relative mollifier with arbitrarily chosen reference distribution, our work
characterizes PUT without dependency on external information other than the original distribution,
and it is shown that the mechanism we found is universally optimal under any f -divergence.

For future works, there may be other P̃ and other measures of utility more appropriate to practical
scenarios, which are not handled in this paper. For example, f -divergence may be an inappropriate
utility loss because it only depends on σ-algebra structure and does not consider additional information
about geometry of X , such as underlying metric on X . Using utility measures involving the geometry,
such as Wasserstein distance [62, 63, 49], may be more appropriate for some scenarios. Also, we can
consider the Bayesian approach instead of the worst-case approach. Furthermore, we only consider
the task of releasing a single sample per client in this paper. We may also consider the case of
releasing multiple samples per client, rather than a single sample.

The limitations and broader impacts of this work are in Appendices I and J, respectively.
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A Assumptions about the Measure Theory

The appendices assume the familiarity with the basic measure theory and real analysis. We refer the
standard textbooks about the measure theory and real analysis, e.g. [54].

Throughout the main paper and the appendices, we assume the followings:

• For each sample space X , a σ-algebra on X is implicitly given. Unless mentioned otherwise,

– the discrete σ-algebra is given for finite X , and
– the Borel σ-algebra is given for X = Rn.

• A “subset” of X always means a “measurable subset”, and similarly A ⊂ X always means
A is a measurable subset.

• The “continuous" distribution precisely means the “absolutely continuous" distribution (with
respect to the Lebesgue measure).

In the appendices, we also introduce the following notations:

• For finite X , # denotes the counting measure.

• For X = Rn, m denotes the Lebesgue measure.

B General Definition and More Properties of f -divergences

In this appendix, we review the general definition and additional properties about the f -divergences
which are important in our analysis. Let a convex function f : (0,∞) → R with f(1) = 0 be given.
For P,Q ∈ P(X ), not necessarily P ≪ Q, we first take a dominating measure µ on X such that
P,Q ≪ µ (e.g., µ = P + Q), and let p = dP/dµ, q = dQ/dµ. The f -divergence Df (P∥Q) is
defined as

Df (P∥Q) =

∫
q(x)f

(
p(x)

q(x)

)
dµ(x). (15)

We note that (15) is invariant under the choice of the dominating measure µ.

Since it is possible that p(x) = 0 or q(x) = 0, we need to define what is the value of the expression
qf(p/q) for p = 0 or q = 0 [51, 52]. It is well-known that any convex function f : (0, 1) → R is
continuous, and the function

f⋆(x) = xf(1/x) (16)

is also convex on (0, 1). Furthermore, any convex function f : (0, 1) → R with f(1) = 0 has a limit
limx→0+ f(x) in R ∪ {+∞}. Hence, we have the continuous extension f : [0,∞) → R ∪ {+∞}
by setting f(0) = limx→0+ f(x), which is proper convex and continuous. By the same way, we have
the continuous extension f⋆ : [0,∞) → R∪{+∞}. Using these extensions, we define 0f(0/0) = 0,
qf(0/q) = qf(0) for q > 0, and 0f(p/0) = pf⋆(0) for p > 0. Especially, if f⋆(0) = ∞, then
Df (P∥Q) = ∞ whenever P ≪ Q does not hold. (This is the case for KL divergence and χ2

divergence for examples) Similarly, if f(0) = ∞, then Df (P∥Q) = ∞ whenever Q ≪ P does
not hold. Also, the maximum value of the f -divergence Mf presented in (2) can be written as
Mf = f(0) + f⋆(0).

The following additional properties of f -divergences are important in our analysis. [61]

Theorem B.1. Any f -divergence is jointly convex, that is for any P1, P2, Q1, Q2 ∈ P(X ) and 0 ≤
λ ≤ 1, we have Df (λP1 + (1− λ)P2∥λQ1 + (1− λ)Q2) ≤ λDf (P1∥Q1)+ (1−λ)Df (P2∥Q2).

Theorem B.2 (Data-Processing Inequality). Let M be a conditional distribution (Markov kernel)
from X to Y . For given P1, P2 ∈ P(X ), let Q1, Q2 ∈ P(Y) be the push-forward measure of P1, P2

through M , respectively. Then for any f -divergence, we have Df (P1∥P2) ≥ Df (Q1∥Q2).

Also, we present several equivalent expressions for the total variation distance [51, 52], which are
used in Appendix D. In below expressions, the assumption is that P,Q ≪ µ for some dominating
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measure µ with p = dP/dµ and q = dQ/dµ.

DTV (P,Q) =
1

2

∫
|p(x)− q(x)|dµ(x) (17)

=

∫
x:p(x)≤q(x)

(q(x)− p(x))dµ(x) (18)

=

∫
x:p(x)≥q(x)

(p(x)− q(x))dµ(x). (19)

We introduce one more notation. For λ1, λ2 ∈ [0, 1], let DB
f (λ1∥λ2) denotes the f -divergence

between Bernoulli distributions with Pr(1) = λ1 and λ2, respectively. That is,

DB
f (λ1∥λ2) = λ2f

(
λ1
λ2

)
+ (1− λ2)f

(
1− λ1
1− λ2

)
. (20)

We should note the following facts:

1. By joint convexity of the f -divergence and continuity of f , DB
f (λ1∥λ2) is continuous and

jointly convex in (λ1, λ2). (But DB
f (λ1∥λ2) may be extended real-valued)

2. For a fixed λ1,DB
f (λ1∥λ2) attains a global minimum 0 at λ2 = λ1. Together with convexity,

we derive that DB
f (λ1∥λ2) is decreasing in λ2 ∈ [0, λ1] and increasing in λ2 ∈ [λ1, 1],

respectively.

C Generalized Main Theorem and Proof

In this appendix, we present the formal proofs of the main theorems, Theorems 3.1 and 3.3. As
mentioned in Section 3.3, we first state the generalized theorem with its proof, and later we show
how this generalized theorem includes the main theorems as special cases.

C.1 Statement of the generalized main theorem

First, let us define the general setup we consider. Let a (general) sample space X be given. For a
positive measure µ on X such that µ(X ) <∞ and c2 > c1 ≥ 0, let us define

P̃c1,c2,µ := {P ∈ P(X ) : P ≪ µ, c1 ≤ dP/dµ ≤ c2 µ-a.e.}. (21)

We generally consider the case that P̃ = P̃c1,c2,µ for some c1, c2, µ. For example, for the setup
of Section 3.2, we have P̃c1,c2,h = P̃c1,c2,µ, where µ is a positive measure with µ ≪ m and
dµ/dm = h. For the setup of Section 3.1, we have P([k]) = P̃0,1,#. By the same reason as in
Section 3.2, we may impose the following normalization condition on c1, c2, µ, ϵ:

µ(X ) = 1, c1 < 1 < c2, c2 > c1e
ϵ. (22)

Note that µ(X ) = 1 means that µ is a probability measure, that is µ ∈ P(X ). Also, note that for
X = [k], we can write in normalized form as P([k]) = P̃0,k,µk

, where µk = 1
k# is the uniform

distribution on [k].

First, let us define the proposed mechanism, together with the related constants as the same as
Theorem 3.3. For the ease of proof, we introduce an additional constant α over Theorem 3.3.
Definition C.1. Let c1, c2, µ, ϵ satisfying the normalization condition (22) be given, and let P̃ =
P̃c1,c2,µ. First, define the following constants determined by c1, c2, ϵ:

α =
1− c1
c2 − c1

, (23)

b =
c2 − c1

(eϵ − 1)(1− c1) + c2 − c1
=

1

αeϵ + 1− α
, (24)

r1 =
c1
b

=

(
(eϵ − 1)(1− c1) + c2 − c1

c2 − c1

)
c1 = c1(αe

ϵ + 1− α), (25)

r2 =
c2
beϵ

=

(
(eϵ − 1)(1− c1) + c2 − c1

c2 − c1

)
c2
eϵ

=
c2
eϵ
(αeϵ + 1− α). (26)
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Also, define a mechanism Q∗
c1,c2,µ,ϵ ∈ QX ,P̃,ϵ as follows:

For each P ∈ P̃ , Q∗
c1,c2,µ,ϵ(P ) =: Q is defined as a probability measure such that Q≪ µ and

dQ

dµ
(x) = clip

(
1

rP

dP

dµ
(x); b, beϵ

)
, (27)

where rP > 0 is a constant depending on P so that
∫

dQ
dµ dµ(x) = 1. Furthermore, let Mc1,c2,µ,ϵ =

P̃b,beϵ,µ, so that Q∗
c1,c2,µ,ϵ(P ) ∈ Mc1,c2,µ,ϵ for every P ∈ P̃ .

We should note that 1 = c2α+ c1(1−α) = beϵα+ b(1−α). Also, Q∗
c1,c2,µ,ϵ clearly satisfies ϵ-LDP.

By the same reason as in Sections 3.1 and 3.2, the values of rP may not be unique, but the mech-
anism Q∗

c1,c2,µ,ϵ does not depend on the choice of rP . Furthermore, we show that the value of∫
clip

(
1
r
dP
dµ (x); b, be

ϵ
)
dµ(x) at r = r1 and r = r2 are at least and at most 1, respectively.

Proposition C.2. Let c1, c2, µ, ϵ, P̃, α, b, r1, r2 be as in Definition C.1. Then, for any P ∈ P̃ , we
have ∫

clip

(
1

r1

dP

dµ
(x); b, beϵ

)
dµ(x) ≥ 1 ≥

∫
clip

(
1

r2

dP

dµ
(x); b, beϵ

)
dµ(x), (28)

where, in the case of r1 = 0, we define

clip

(
1

r1

dP

dµ
(x); b, beϵ

)
=

{
b, if dP

dµ (x) = 0

beϵ, otherwise
. (29)

Furthermore, if
∫
clip

(
1
r1

dP
dµ (x); b, be

ϵ
)
dµ(x) = 1, then

∫
clip

(
1
r
dP
dµ (x); b, be

ϵ
)
dµ(x) = 1 for

every r ∈ [r1, r2].

This proposition, together with the fact that r 7→
∫
clip

(
1
r
dP
dµ (x); b, be

ϵ
)
dµ(x) is continuous and

monotone decreasing, implies that rP can be chosen such that r1 < rP ≤ r2, as stated in Theorem
3.3. (Again, the continuity is from µ(X ) <∞ and the dominated convergence theorem)

Also, we should remark that 0 < α < 1 and c1 < b < 1 < beϵ < c2. The first one easily follows
from c1 < 1 < c2 and the definition of α. For the second one, first we have 1 < αeϵ + 1− α < eϵ,
as αeϵ + 1− α is a propoer convex combination of 1 and ϵ. This directly implies that b < 1 < beϵ.
Next, by calculations, we can observe that

c1((e
ϵ − 1)(1− c1) + c2 − c1)− (c2 − c1) = (1− c1)(c1e

ϵ − c2) < 0, (30)

which implies c1 < b, and

c2((e
ϵ − 1)(1− c1) + c2 − c1)− eϵ(c2 − c1) = (c2 − 1)(c2 − eϵc1) > 0, (31)

which implies beϵ < c2. Especially, these inequalities imply that 0 ≤ r1 < 1 < r2.

Now, we show that under a mild ‘decomposability’ condition, the proposed mechanism Q∗
c1,c2,µ,ϵ is

universally optimal under any f -divergences for (X , P̃ = P̃c1,c2,µ, ϵ). After that, we show that such
a mild condition holds for the setups of both of the main theorems, which finishes the proofs of the
main theorems.

First, let us state the ‘decomposability’ condition. This condition is a formal definition of the concept
of “packing of u copies of X by t subsets A1, · · · , At”, which is briefly mentioned in Section 3.3,
Definition C.3. Let α ∈ (0, 1) and t, u ∈ N, t > u. We say that a probability measure µ ∈ P(X )
is (α, t, u)-decomposable if there exist t subsets A1, A2, · · · , At ⊂ X such that µ(Ai) = α for all
i ∈ [t], and for every x ∈ X , we have | {i ∈ [t] : x ∈ Ai} | ≤ u.

We say that µ ∈ P(X ) is α-decomposable if for any δ > 0, there exists t, u ∈ N, t > u, such that
α ≤ u/t < α+ δ, and µ is (α, t, u)-decomposable.

We remark that (α, t, 1)-deomposability means that there are t disjoint subsets B1, B2, · · · , Bt such
that µ(Bi) = α for each i ∈ [t]. Also, if α is a rational number with α = u/t, u, t ∈ N, and µ is
(α, t, u)-decomposable, then µ is α-decomposable.
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Then, we state the generalized theorem.

Theorem C.4. Let c1, c2, µ, ϵ, P̃, α, b, r1, r2 be as in Definition C.1. If µ is α-decomposable, then
for any f -divergences Df , we have

R(X , P̃, ϵ, f) = 1− r1
r2 − r1

f(r2) +
r2 − 1

r2 − r1
f(r1), (32)

and furthermore, the mechanism Q∗
c1,c2,µ,ϵ as in Definition C.1 is optimal for (X , P̃, ϵ) under any

f -divergences Df .

As guided in Section 3.3, the proof of this theorem is broken into two parts, the achievability part and
the converse part.

Proposition C.5 (Achievability part). Let c1, c2, µ, ϵ, P̃, α, b, r1, r2 be as in Definition C.1. Then,
for any f -divergences Df , we have

Rf (Q
∗
c1,c2,µ,ϵ) ≤

1− r1
r2 − r1

f(r2) +
r2 − 1

r2 − r1
f(r1). (33)

(Here, we do not need to assume that µ is α-decomposable)

Proposition C.6 (Converse part). Let c1, c2, µ, ϵ, P̃, α, b, r1, r2 be as in Definition C.1, and suppose
that µ is α-decomposable. Then for any f -divergences Df and for any ϵ-LDP mechanism Q ∈
QX ,P̃,ϵ, we have

Rf (Q) ≥ 1− r1
r2 − r1

f(r2) +
r2 − 1

r2 − r1
f(r1). (34)

The remaining of this appendix is organized as follows. We first present the proofs of Propositions
C.5 and C.6 in Appendices C.2 and C.3, in which we grant Proposition C.2 and some intermediate
lemmas. After that, in Appendix C.4, we show that Theorem C.4 contains main theorems, Theorems
3.1 and 3.3, as special cases. Finally, Appendix C.5 presents the proof of Proposition C.2, and
Appendices C.6 and C.7 prove intermediate lemmas.

C.2 Proof of achievability part (Proposition C.5)

As mentioned in Section 3.3, the proof of the achievability part consists of two steps: first presenting
an alternative mechanism and then proving that Q∗

c1,c2,µ,ϵ performs the f -divergence projection for
any general f -divergence.

C.2.1 An alternative mechanism

Let Q†
c1,c2,µ,ϵ ∈ QX ,P̃,ϵ be a mechanism defined as follows:

Q†
c1,c2,µ,ϵ(P ) = γP + (1− γ)µ, (35)

where

γ =
eϵ − 1

(eϵ − 1)(1− c1) + c2 − c1
. (36)

Since c2 > eϵc1, it follows that 0 < γ < 1. Also, a direct computation shows that

b = γc1 + (1− γ), (37)
beϵ = γc2 + (1− γ). (38)

Notice that since c1 ≤ dP
dµ ≤ c2 and

dQ†
c1,c2,µ,ϵ(P )

dµ = γ dP
dµ + (1− γ), we have

dQ†
c1,c2,µ,ϵ(P )

dµ
(x) ≥ γc1 + (1− γ) = b, (39)

dQ†
c1,c2,µ,ϵ(P )

dµ
(x) ≤ γc2 + (1− γ) = beϵ. (40)
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Hence, Q†
c1,c2,µ,ϵ(P ) ∈ Mc1,c2,µ,ϵ for every P ∈ P̃ , implying that Q†

c1,c2,µ,ϵ also satisfies ϵ-LDP.

Now, we show that

Rf (Q
†
c1,c2,µ,ϵ) ≤

1− r1
r2 − r1

f(r2) +
r2 − 1

r2 − r1
f(r1). (41)

To this end, we need to show that for each P ∈ P̃ , we have

Df

(
P
∥∥Q†

c1,c2,µ,ϵ(P )
)
≤ 1− r1
r2 − r1

f(r2) +
r2 − 1

r2 − r1
f(r1). (42)

Fix P ∈ P̃ . Let p = dP/dµ and q = dQ†
c1,c2,µ,ϵ(P )/dµ. First, we claim that

r1 ≤ p(x)

q(x)
≤ r2 (43)

for µ-almost every x ∈ X . We have

p(x)

q(x)
=

p(x)

γp(x) + (1− γ)
(44)

=
1

γ

(
1− 1− γ

γp(x) + (1− γ)

)
, (45)

which is increasing in p(x) ≥ 0. Since c1 ≤ p(x) ≤ c2, we have

c1
γc1 + (1− γ)

≤ p(x)

q(x)
≤ c2
γc2 + (1− γ)

(46)

for µ-almost every x ∈ X . From (37), (38), and Definition C.1, we conclude that

r1 ≤ p(x)

q(x)
≤ r2, (47)

which proves the claim. For the remaining of the proof, we need the following lemma.
Lemma C.7 ([59], Theorem 2.1). Let P,Q ∈ P(X ). Suppose that P,Q ≪ µ for some reference
measure µ on X , and there exist r1, r2 ∈ R with 0 ≤ r1 < 1 < r2 such that the densities
p = dP

dµ , q = dQ
dµ satisfy q(x) > 0 and r1 ≤ p(x)

q(x) ≤ r2 for µ-almost every x ∈ X . Then for any
f -divergence Df , we have

Df (P∥Q) ≤ 1− r1
r2 − r1

f(r2) +
r2 − 1

r2 − r1
f(r1). (48)

This lemma directly implies (42), and consequently (41).

C.2.2 f -divergence projection of the proposed mechanism

Next, we prove that Q∗
c1,c2,µ,ϵ(P ) is the projection of P onto Mc1,c2,µ,ϵ for every f -divergence.

Proposition 3.4 can be stated in a more general way as follows.

Proposition C.8. For any P ∈ P̃ and any f -divergences Df , we have

Df

(
P
∥∥Q∗

c1,c2,µ,ϵ(P )
)
= inf

Q∈Mc1,c2,µ,ϵ

Df (P∥Q) . (49)

This proposition implies that

Df

(
P
∥∥Q∗

c1,c2,µ,ϵ(P )
)
≤ Df

(
P
∥∥Q†

c1,c2,µ,ϵ(P )
)
, (50)

for every P ∈ P̃ , and hence

Rf (Q
∗
c1,c2,µ,ϵ) ≤ Rf (Q

†
c1,c2,µ,ϵ) ≤

1− r1
r2 − r1

f(r2) +
r2 − 1

r2 − r1
f(r1), (51)

which completes the proof of the achievability part.
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Next, we prove Proposition C.8. Fix P ∈ P̃ and p = dP/dµ. If f(0) = ∞ and µ({x : p(x) = 0}) >
0, then Df (P∥Q) = ∞ for every Q ∈ Mc1,c2,µ,ϵ, thus the proposition holds trivially. Consequently,
we assume either f(0) <∞ or µ({x : p(x) = 0}) = 0.

The optimization problem infQ∈Mc1,c2,µ,ϵ
Df (P∥Q) can be cast as the following

inf
q:X→(0,∞)

∫
q(x)f

(
p(x)

q(x)

)
dµ(x) (52)

such that q(x) ≥ b, ∀x, (53)
q(x) ≤ beϵ, ∀x, (54)∫

q(x)dµ(x) = 1, (55)

where q = dQ/dµ. Our goal is to show that q∗ = dQ∗
c1,c2,µ,ϵ(P )/dµ is an optimal solution of the

above optimization problem.

Motivation for the optimality proof. To provide the motivation for the proof of the optimality of
q∗ for the above optimization problem, we first consider the following analogous finite-dimensional
optimization problem

inf
q∈(0,∞)n

n∑
i=1

qif

(
pi
qi

)
(56)

such that qi ≥ b, (57)
qi ≤ beϵ, (58)

n∑
i=1

qi = 1. (59)

for convex function f : (0,∞) → R and pi > 0. The convexity of f⋆(x) = xf(1/x) (see Appendix
B) implies that the above is a convex optimization problem. For simplicity, we assume that f⋆ is
differentiable. However, note that this assumption is only for simplifying the motivation for the proof,
and the result holds for general f or f⋆.

We formulate the Lagrangian for the above optimization as

L(q, ϕ, ψ, ν) =
n∑

i=1

(pif
⋆(qi/pi) + ϕi(b− qi) + ψi(qi − beϵ)) + ν

(
1−

n∑
i=1

qi

)
(60)

with dual variables ϕ, ψ ∈ [0,∞)n and ν ∈ R.

The Karush-Kuhn-Tucker (KKT) condition yields:

(f⋆)′(qi/pi)− ϕi + ψi − ν = 0, ∀i, (61)
(57), (58), (59), (62)
ϕi, ψi ≥ 0, ∀i, (63)

ϕi(qi − b) = ψi(be
ϵ − qi) = 0, ∀i. (64)

Now, suppose that there is a feasible point q∗ ∈ (0,∞)n satisfying (57), (58), and (59) such that
q∗ = clip(pi/r; b, be

ϵ) for some r > 0. We show that q∗ satisfies the KKT condition for some
feasible dual variables (ϕ, ψ, ν).

For (q∗, ϕ, ψ, ν) to satisfy the KKT condition, the following should hold:

• If b < pi/r < beϵ, then we have q∗i = pi/r. From (61) and (64), we must have ϕi = ψi = 0
and ν = (f⋆)′(1/r).

• If pi/r ≤ b, then q∗i = b. Then, ψi = 0 and ϕi = (f⋆)′(b/pi)− ν.
• If pi/r ≥ beϵ, then q∗i = beϵ. Then ϕi = 0 and ψi = ν − (f⋆)′(beϵ/pi).
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Now, since f⋆ is convex, (f⋆)′ is monotonically increasing. Hence, the following should be satisfied:

• If pi/r ≤ b, then (f⋆)′(b/pi)− (f⋆)′(1/r) ≥ 0, and

• If pi/r ≥ beϵ, then (f⋆)′(1/r)− (f⋆)′(beϵ/pi) ≥ 0.

It can thus be verified that (q∗, ϕ, ψ, ν) satisfies the KKT condition with

• ν = (f⋆)′(1/r),

• ϕi =
{
(f⋆)′(b/pi)− (f⋆)′(1/r), if pi/r ≤ b,

0, otherwise,

• ψi =

{
(f⋆)′(1/r)− (f⋆)′(beϵ/pi), if pi/r ≥ beϵ,

0, otherwise.

Optimality proof. Next, we present a proof for the optimality of q∗ for the optimization problem

inf
q:X→(0,∞)

∫
q(x)f

(
p(x)

q(x)

)
dµ(x) (65)

such that q(x) ≥ b, ∀x, (66)
q(x) ≤ beϵ, ∀x, (67)∫

q(x)dµ(x) = 1. (68)

Here, note that we do not assume f is differentiable. To this goal, we first review the following basic
facts about a general convex function f : (0,∞) → R, which may not be differentiable [64, 65]:

• The left derivative f ′−(x) := limh→0−
f(x+h)−f(x)

h and the right derivative f ′+(x) :=

limh→0+
f(x+h)−f(x)

h exist and finite for every x ∈ (0,∞), regardless of whether f is
differentiable or not.

• For every 0 < x < y, we have f ′−(x) ≤ f ′+(x) ≤ f ′−(y) ≤ f ′+(y).

• For every x, y ∈ (0,∞) and any g ∈ [f ′−(x), f
′
+(x)], we have

f(y) ≥ f(x) + g(y − x). (69)

By continuous extension, this holds for y = 0 also. That is, f(0) ≥ f(x) − gx for every
x ∈ (0,∞) and g ∈ [f ′−(x), f

′
+(x)].

Let q : X → (0,∞) be any feasible function satisfying (66) - (68). Recall that f⋆(x) := xf(1/x)
is convex, and we can express q(x)f(p(x)/q(x)) = p(x)f⋆(q(x)/p(x)) whenever p(x) ̸= 0. Also,
whenever p(x) ̸= 0, we bound f⋆(q(x)/p(x)) by the linear approximation of f⋆ at q∗(x)/p(x) using
(69), as follows:

f⋆
(
q(x)

p(x)

)
≥ f⋆

(
q∗(x)

p(x)

)
+ (f⋆)′+

(
q∗(x)

p(x)

)[
q(x)

p(x)
− q∗(x)

p(x)

]
. (70)

Hence, we have

q(x)f

(
p(x)

q(x)

)
= p(x)f⋆

(
q(x)

p(x)

)
≥ q(x)ζ(x) + ξ(x), (71)

where

ζ(x) = (f⋆)′+

(
q∗(x)

p(x)

)
, (72)

ξ(x) = p(x)f⋆
(
q∗(x)

p(x)

)
− q∗(x)(f⋆)′+

(
q∗(x)

p(x)

)
. (73)
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Also, whenever p(x) = 0, we have q(x)f(p(x)/q(x)) = q(x)p(0). Hence, we set ζ(x) = p(0) and
ξ(x) = 0 when p(x) = 0, so that

q(x)f

(
p(x)

q(x)

)
≥ q(x)ζ(x) + ξ(x) (74)

holds for all x ∈ X . We note that ζ(x) and ξ(x) does not depend on the choice of q(x). Also, the
equality holds if q(x) = q∗(x).

Next, as an analogous to ν in the above motivation for the proof, let ν = (f⋆)′+(1/rP ). Since∫
q(x)dµ(x) = 1, we can write∫

q(x)f

(
p(x)

q(x)

)
dµ(x) =

∫
q(x)

(
f

(
p(x)

q(x)

)
− ν

)
dµ(x) + ν (75)

≥
∫

[q(x)(ζ(x)− ν) + ξ(x)] dµ(x) + ν. (76)

Now, we define the following sets which form a partition of X :

L =

{
x ∈ X :

1

rP
p(x) < b

}
, (77)

M =

{
x ∈ X : b ≤ 1

rP
p(x) ≤ beϵ

}
, (78)

U =

{
x ∈ X :

1

rP
p(x) > beϵ

}
. (79)

For each case of x ∈ L,M,U , we have q∗(x) = b, 1
rP
p(x), beϵ, respectively. We observe the

following:

• If x ∈M , then ζ(x) = ν clearly.
• If x ∈ U , then q∗(x)/p(x) < 1/rP . Since (f∗)′+ is monotone increasing, we have
ζ(x) ≤ ν.

• If x ∈ L and p(x) ̸= 0, then q∗(x)/p(x) > 1/rP . Again, since (f∗)′+ is monotone
increasing, we have ζ(x) ≥ ν.

• Finally, if p(x) = 0 (which implies x ∈ L also), then from the definition f⋆(t) =
tf(1/t), we have (f⋆)′+(t) = f(1/t) − 1

t f
′
−(1/t). From (69) with y = 0, we have

ν = (f⋆)′+(1/rP ) = f(rP )− rP f
′
−(rP ) ≤ f(0) = ζ(x).

Hence, ζ(x) ≥ ν for every x ∈ L.

Therefore, since b ≤ q(x) ≤ beϵ, we can write∫
q(x)f

(
p(x)

q(x)

)
dµ(x) ≥

∫
[q(x)(ζ(x)− ν) + ξ(x)] dµ(x) + ν (80)

≥ [b(ζ(x)− ν)1L(x) + beϵ(ζ(x)− ν)1U (x) + ξ(x)]dµ(x) + ν. (81)
The last expression does not depend on the choice of q(x). Also, we observe that all inequalities
become equality if q(x) = q∗(x). This completes the proof for the optimality of q∗, and hence
completes the proof of the achievability part.

C.3 Proof of converse part (Proposition C.6)

Let Q ∈ QX ,P̃,ϵ be given. Let A = {A ⊂ X : µ(A) = α}. For each A ∈ A, let pA(x) ={
c2 if x ∈ A

c1 if x ∈ X\A . Since c2α + c1(1 − α) = 1, we have
∫
pA(x)dµ(x) = 1. Hence for each

A ∈ A, we can define a probability measure PA ∈ P̃ by dPA

dµ = pA. Also, note that PA(A) = c2α.

For each A ∈ A, let βA = Q(A|PA). Then, the push-forward measures of PA and Q(PA) by the
indicator function 1A are Bernoulli distributions with Pr(1) = c2α and βA, respectively. By the data
processing inequality (Theorem B.2), we have

Df (PA∥Q(PA)) ≥ DB
f (c2α∥βA) . (82)
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The main lemma to proceed is the following.
Lemma C.9. Let X be a sample space. Let t, u ∈ N, t > u. Let A1, A2, · · · , At ⊂ X be subsets
such that for each x ∈ X , we have | {i ∈ [t] : x ∈ Ai} | ≤ u. Then for any t probability measures
Q1, · · · , Qt ∈ P(X ) satisfying that Qi(A) ≤ eϵQj(A) for all i, j ∈ [t] and A ⊂ X , we have

min
i∈[t]

Qi(Ai) ≤
(u/t)eϵ

(u/t)eϵ + 1− (u/t)
. (83)

Now, by the assumption that µ is α-decomposable, there exist sequences {tj}∞j=1 , {uj}
∞
j=1 ⊂ N

of positive integers such that tj > uj , α ≤ uj/tj , limj→∞ uj/tj = α, and for each j ∈ N, there
exist tj subsets Aj,1, Aj,2, · · · , Aj,tj ⊂ X such that µ(Aj,i) = α for all i ∈ [tj ], and for every
x ∈ X , we have

∣∣{i ∈ [tj ] : x ∈ Aj,tj

}∣∣ ≤ uj . By applying Lemma C.9 to Qi = Q(PAj,i
), we

obtain mini∈[tj ] βAi,j
≤ (uj/tj)e

ϵ

(uj/tj)eϵ+1−(uj/tj)
. This implies that infA∈A βA ≤ (uj/tj)e

ϵ

(uj/tj)eϵ+1−(uj/tj)

for all j ∈ N, and by taking the limit j → ∞, we have infA∈A βA ≤ αeϵ

αeϵ+1−α = beϵα.

Since beϵ < c2, we have beϵα < c2α. By continuity ofDB
f and the fact thatDB

f (λ1∥λ2) is decreasing
in λ2 ∈ [0, λ1], we have

sup
A∈A

Df (PA∥Q(PA)) ≥ sup
A∈A

DB
f (c2α∥βA) ≥ DB

f (c2α∥beϵα) . (84)

It follows that

Rf (Q) = sup
P∈P̃

Df (P∥Q(P )) ≥ sup
A∈A

Df (PA∥Q(PA)) ≥ DB
f (c2α∥beϵα) . (85)

Furthermore, we have

DB
f (c2α∥beϵα) = beϵαf

( c2α
beϵα

)
+ (1− bαeϵ)f

(
1− c2α

1− beϵα

)
(86)

= beϵαf
( c2α
beϵα

)
+ b(1− α)f

(
c1(1− α)

b(1− α)

)
(87)

= beϵαf(r2) + b(1− α)f(r1), (88)

and we can derive beϵα = 1−r1
r2−r1

and b(1−α) = r2−1
r2−r1

, as follows. From (30), (31) and the definition
of r1, r2, we have

1− r1 = (1− c1)
c2 − c1e

ϵ

c2 − c1
, (89)

r2 − 1 =
c2 − 1

eϵ
c2 − eϵc1
c2 − c1

. (90)

From this, we have

1− r1
r2 − r1

=
1− r1

(r2 − 1) + (1− r1)
(91)

=
(1− c1)e

ϵ

(1− c1)eϵ + (c2 − 1)
(92)

=
(1− c1)e

ϵ

(eϵ − 1)(1− c1) + c2 − c1
(93)

= b× eϵ
1− c1
c2 − c1

(94)

= beϵα. (95)

Also, from above and 1 = beϵα+ b(1− α), we have

r2 − 1

r2 − r1
= 1− 1− r1

r2 − r1
= 1− beϵα = b(1− α). (96)

This ends the proof of the converse part.
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C.4 Deduction to main theorems

In this subsection, we show that Theorem C.4 contains main theorems, Theorems 3.1 and 3.3, as
special cases.

C.4.1 Deduction to Theorem 3.1

Recall that in this setup, X = [k], P̃ = P([k]) = P̃0,k,µk
, where µk is the uniform distribution on

[k]. That is, (c1, c2) = (0, k). The values of the constants α, b, r1, r2 are

α = 1/k, (97)

b =
k

eϵ + k − 1
, (98)

r1 = 0, (99)

r2 =
eϵ + k − 1

eϵ
. (100)

We can easily observe that µk is (α, k, 1)-decomposable, because the sets {i}, i ∈ [k], are disjoint
and µk({i}) = 1

k . It follows that µk is α-decomposable. Hence, we can apply Theorem C.4. By
a direct calculation of R(X , P̃, ϵ, f) = 1−r1

r2−r1
f(r2) +

r2−1
r2−r1

f(r1), we can derive the formula of
R([k],P([k]), ϵ, f) presented in Theorem 3.1. It remains to show that the mechanism Q∗

k,ϵ presented
in Theorem 3.1 is the same as Q∗

0,k,µk,ϵ
, and show the claim about the range of rP . Recall that

Q∗
k,ϵ(x|P ) = max

(
1

rP
P (x),

1

eϵ + k − 1

)
∀x ∈ [k], P ∈ P([k]), (101)

and we claim that rP can be chosen such that 1 ≤ rP ≤ (eϵ + k − 1)/eϵ.

First, as explained in Section 3.1, we can alternatively write

Q∗
k,ϵ(x|P ) = clip

(
1

rP
P (x);

1

eϵ + k − 1
,

eϵ

eϵ + k − 1

)
. (102)

Since P (x) = 1
k

dP
dµk

(x) for each x ∈ [k] and P ∈ P([k]), (102) can be written as

1

k

dQ∗
k,ϵ(P )

dµk
(x) = clip

(
1

rP

1

k

dP

dµk
(x);

1

eϵ + k − 1
,

eϵ

eϵ + k − 1

)
(103)

=
1

k
clip

(
1

rP

dP

dµk
(x);

k

eϵ + k − 1
,

keϵ

eϵ + k − 1

)
, (104)

hence,

dQ∗
k,ϵ(P )

dµk
(x) = clip

(
1

rP

dP

dµk
(x);

k

eϵ + k − 1
,

keϵ

eϵ + k − 1

)
(105)

= clip

(
1

rP

dP

dµk
(x); b, beϵ

)
. (106)

Hence, Q∗
k,ϵ = Q∗

0,k,µk,ϵ
.

Second, to prove the claim about the range of rP , let us fix P ∈ P([k]). We need to show that

k∑
x=1

max

(
P (x),

1

eϵ + k − 1

)
≥ 1 ≥

k∑
x=1

max

(
eϵ

eϵ + k − 1
P (x),

1

eϵ + k − 1

)
. (107)

The left inequality can be easily derived by

k∑
x=1

max

(
P (x),

1

eϵ + k − 1

)
≥

k∑
x=1

P (x) = 1. (108)
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For the right inequality, we recall that b = k
eϵ+k−1 . SinceP (x) ≤ 1, we have eϵ

eϵ+k−1P (x) ≤ eϵ

eϵ+k−1 .
Hence, again by using P (x) = 1

k
dP
dµk

(x), we have

max

(
eϵ

eϵ + k − 1
P (x),

1

eϵ + k − 1

)
(109)

=clip

(
eϵ

eϵ + k − 1
P (x);

1

eϵ + k − 1
,

eϵ

eϵ + k − 1

)
(110)

=clip

(
eϵ

eϵ + k − 1

1

k

dP

dµk
(x);

1

eϵ + k − 1
,

eϵ

eϵ + k − 1

)
(111)

=
1

k
clip

(
1

r2

dP

dµk
(x); b, beϵ

)
, (112)

and thus
k∑

x=1

max

(
eϵ

eϵ + k − 1
P (x),

1

eϵ + k − 1

)
(113)

=
k∑

x=1

1

k
clip

(
1

r2

dP

dµk
(x); b, beϵ

)
(114)

=

∫
clip

(
1

r2

dP

dµk
(x); b, beϵ

)
dµk(x). (115)

The desired inequality follows from Proposition C.2.

C.4.2 Deduction to Theorem 3.3

Recall that in this setup, X = Rn, P̃ = P̃c1,c2,h = P̃c1,c2,µ, where µ ≪ m and dµ/dm = h.
Note that the normalization condition (10) about (c1, c2, h, ϵ) implies the normalization condition
(22) about (c1, c2, µ, ϵ). It can be directly observed that Q∗

c1,c2,h,ϵ
= Q∗

c1,c2,µ,ϵ, because for each
P ∈ P̃ with corresponding pdf p(x), the chain rule of the Radon-Nikodym derivative shows that
p(x) = dP

dm = dP
dµ (x)

dµ
dm (x) = dP

dµ (x)h(x). Hence, once we show that µ is α-decomposable,
Theorem C.4 and Proposition C.2 directly contain Theorem 3.3 as a special case. Thus, it remains to
show µ is α-decomposable.

In fact, we prove a stronger statement that: µ is (α, t, u)-decomposable for any t, u ∈ N such that
t > u and α ≤ u/t. Then, since the set of rational numbers is dense in R, this also implies that µ is
α-decomposable.

To prove this, let us first introduce the following lemma.
Lemma C.10. Let α ∈ (0, 1) and t, u ∈ N, t > u, α ≤ u/t. If µ ∈ P(X ) is (α/u, t, 1)-
decomposable, then µ is also (α, t, u)-decomposable.

Proof. In this proof, assume that the sum and subtraction operations performed in subscripts are
modulo t operations, with the identification that 0 = t.

By (α/u, t, 1)-decomposability, there are t disjoint subsets B1, B2, · · · , Bt such that µ(Bi) = α/u
for each i ∈ [t]. Using this, for each i ∈ [t], define Ai as Ai = ∪u−1

j=0Bi+j . As Bi’s are disjoint,
we have µ(Ai) =

∑u−1
j=0 µ(Bi+j) = u × (α/u) = α for all i ∈ [t]. Also, for each x ∈ Bi, x is

contained in exactly u sets among A1, · · · , At, which are Ai, Ai−1, · · · , Ai−u+1. Furthermore, if
x /∈ Bi for all i ∈ [t], then x is contained in none of Ai. Hence | {i ∈ [t] : x ∈ Ai} | ≤ u for all
x ∈ X . Thus µ is (α, t, u)-decomposable.

By this lemma, it suffices to show that for any t ∈ N such that t ≥ 2 and α ≤ 1/t, µ is (α, t, 1)-
decomposable. As µ≪ m, the map s ∈ R 7→ µ((−∞, s]×Rn−1) is continuous, and as s→ −∞ and
∞, we have µ((−∞, s] → 0 and 1, respectively. Hence by the intermediate value theorem, for each
i ∈ [t], there exists si ∈ R such that µ((−∞, s]×Rn−1) = αi. Then, settingA1 = (−∞, s1]×Rn−1

and Ai = (si−1, si]× Rn−1 for i ≥ 2 gives the desired Ai’s in the definition of decomposability.

In conclusion, µ is α-decomposable, and hence Theorem 3.3 can be deduced from Theorem C.4.
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C.5 Proof of Proposition C.2

Let P ∈ P̃ be given. Let p = dP
dµ , and again assume that c1 ≤ p(x) ≤ c2 for all x ∈ X . Similar

to the proof of the achievability part, for each r > 0, let us define the following sets which form a
partition of X :

Lr =

{
x ∈ X :

1

r
p(x) < b

}
, (116)

Mr =

{
x ∈ X : b ≤ 1

r
p(x) ≤ beϵ

}
, (117)

Ur =

{
x ∈ X :

1

r
p(x) > beϵ

}
. (118)

For r = 0, we let L0 = {x ∈ X : p(x) = 0}, U0 = {x ∈ X : p(x) > 0}, M0 = ∅. Also, let
qr(x) = clip

(
1
rp(x); b, be

ϵ
)
. Then, qr(x) = b, 1rp(x), be

ϵ for x ∈ Lr,Mr, Ur, respectively.

First, we show that
∫
qr1(x)dµ(x) ≥ 1. We divide the case of c1 = 0 and c1 > 0.

Suppose first that c1 = 0. Then r1 = 0, α = 1
c2

, and b = c2
eϵ+c2−1 . Observe that

1 =

∫
p(x)dµ(x) =

∫
U0

p(x)dµ(x) ≤ c2µ(U0), (119)

hence µ(U0) ≥ 1/c2. It follows that∫
qr1(x)dµ(x) = bµ(L0) + beϵµ(U0) (120)

= b(1− µ(U0)) + beϵµ(U0) (121)
= b(eϵ − 1)µ(U0) + b (122)

≥ b(eϵ − 1)

c2
+ b (123)

= b× eϵ + c2 − 1

c2
= 1. (124)

Next, suppose that c1 > 0. Then r1 > 0. From p(x) ≥ c1, we have 1
r1
p(x) ≥ c1

r1
= b. Hence

Lr1 = ∅. Thus ∫
qr1(x)dµ(x) =

1

r1

∫
Mr1

p(x)dµ(x) + beϵµ(Ur1) (125)

=
1

r1

(∫
Mr1

p(x)dµ(x) + c1e
ϵµ(Ur1)

)
. (126)

Let S1 =
∫
Mr1

p(x)dµ(x) and T1 = µ(Ur1), so that∫
qr1(x)dµ(x) =

1

r1
(S1 + c1e

ϵT1). (127)

As c1 ≤ p(x) ≤ c2, we have

S1 =

∫
Mr1

p(x)dµ(x) ≥ c1µ(Mr1) = c1(1− µ(Ur1)) = c1(1− T1), (128)

and

1− S1 = 1−
∫
Mr1

p(x)dµ(x) =

∫
Ur1

p(x)dµ(x) ≤ c2µ(Ur1) = c2T1. (129)

From these, we can get

S1 + c1T1 ≥ c1, (130)
S1 + c2T1 ≥ 1. (131)
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As c1 < c1e
ϵ < c2, we can express c1eϵ as a convex combination of c1 and c2, as

c1e
ϵ =

c2 − c1e
ϵ

c2 − c1
c1 +

c1e
ϵ − c1

c2 − c1
c2. (132)

Hence, by taking c2−c1e
ϵ

c2−c1
[equation (130)] + c1e

ϵ−c1
c2−c1

[equation (131)], we get

S + c1e
ϵT ≥ c2 − c1e

ϵ

c2 − c1
c1 +

c1e
ϵ − c1

c2 − c1
(133)

=
c2 − c1e

ϵ + eϵ − 1

c2 − c1
c1 (134)

=
(eϵ − 1)(1− c1) + c2 − c1

c2 − c1
c1 (135)

= r1. (136)

Thus we have
∫
qr1(x)dµ(x) ≥ 1.

Similarly, we show that
∫
qr2(x)dµ(x) ≤ 1. from p(x) ≤ c2, we have 1

r2
p(x) ≤ c2

r2
= beϵ. Hence

Ur2 = ∅. Thus ∫
qr2(x)dµ(x) = bµ(Lr2) +

1

r2

∫
Mr2

p(x)dµ(x) (137)

=
1

r2

(
c2e

−ϵµ(Lr2) +

∫
Mr2

p(x)dµ(x)

)
. (138)

Similar as above, let S2 = µ(Lr2) and T2 =
∫
Mr2

p(x)dµ(x), so that∫
qr2(x)dµ(x) =

1

r2
(c2e

−ϵS2 + T2), (139)

and, we have

T2 =

∫
Mr2

p(x)dµ(x) ≤ c2µ(Mr2) = c2(1− µ(Lr2)) = c2(1− S2) (140)

and

1− T2 = 1−
∫
Mr2

p(x)dµ(x) =

∫
Lr2

p(x)dµ(x) ≥ c1µ(Lr2) = c1S2. (141)

hence

c2S2 + T2 ≤ c2, (142)
c1S2 + T2 ≤ 1. (143)

As c1 ≤ c2e
−ϵ ≤ c2, we have

c2e
−ϵ =

c2 − c2e
−ϵ

c2 − c1
c1 +

c2e
−ϵ − c1
c2 − c1

c2 (144)

and by the same reason, we have

c2e
−ϵS2 + T2 ≤ c2 − c2e

−ϵ

c2 − c1
+
c2e

−ϵ − c1
c2 − c1

c2 (145)

=
1− e−ϵ + c2e

−ϵ − c1
c2 − c1

c2 (146)

=
(eϵ − 1)(1− c1) + c2 − c1

c2 − c1
c2e

−ϵ (147)

= r2. (148)

Thus we have
∫
qr2(x)dµ(x) ≤ 1.
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Finally, we show that
∫
qr1(x)dµ(x) = 1 implies

∫
qr(x)dµ(x) = 1 for all r ∈ [r1, r2]. Let us

assume
∫
qr1(x)dµ(x) = 1. We first claim that: p(x) = c2 for µ-a.e. x ∈ Ur1 , and p(x) = c1 for

µ-a.e. x ∈ X\Ur1 . Again, we divide the case of c1 = 0 and c1 > 0.

Suppose first that c1 = 0. By tracking the proof of
∫
qr1(x)dµ(x) ≥ 1, We can observe that the

equality
∫
qr1(x)dµ(x) = 1 holds if and only if µ(U0) = 1/c2, if and only if p(x) = c2 for µ-a.e.

x ∈ U0. By definition of U0, we have p(x) = 0 = c1 for all x ∈ X\U0. Hence we get the claim.

Next, suppose that c1 > 0. Again, by tracking the proof of
∫
qr1(x)dµ(x) ≥ 1, We can observe that

the equality
∫
qr1(x)dµ(x) = 1 is equivalent to any of the following statements:

• Both S1 + c1T1 = c1 and S1 + c2T1 = 1 holds.
• Both

∫
Mr1

p(x)dµ(x) = c1µ(Mr1) and
∫
Ur1

p(x)dµ(x) = c2µ(Ur1) holds.

• p(x) = c1 for µ-a.e. x ∈Mr1 and p(x) = c2 for µ-a.e. x ∈ Ur1 .

Since Lr1 = ∅, we also get the claim.

WLOG, assume that p(x) = c2 for all x ∈ Ur1 , and p(x) = c1 for all x ∈ X\Ur1 . Then, for every
r ∈ (r1, r2], we have the following:

• For each x ∈ Ur1 , we have 1
rp(x) ≥ c2

r2
= beϵ, hence qr(x) = beϵ.

• For each x ∈ X\Ur1 ,
– If c1 = 0, then p(x) = 0, qr(x) = b, and
– If c1 > 0, then r1 > 0, 1

rp(x) <
c1
r1

= b, hence again qr(x) = b.

Also, we have 1 =
∫
p(x)dµ(x) = c2µ(Ur1) + c1(1 − µ(Ur1)), hence µ(Ur1) = 1−c1

c2−c1
= α.

It follows that for every r ∈ (r1, r2], we have
∫
qr(x)dµ(x) = beϵµ(Ur1) + b(1 − µ(Ur1)) =

beϵα+ b(1− α) = 1. This concludes the proof.

C.6 Proof of Lemma C.7

Although the proof can be found in [59], we present the proof here for the completeness.

If r1 = 0 and f(0) = ∞, then the RHS of the inequality we want to show is ∞, thus it becomes
trivial. Hence, we may assume that either r1 > 0 or f(0) <∞.

By the assumption, p(x)/q(x) is the convex combination of r1 and r2 for µ-a.e. x ∈ X , as follows.

p(x)/q(x) =
(p(x)/q(x))− r1

r2 − r1
r2 +

r2 − (p(x)/q(x))

r2 − r1
r1. (149)

Hence, by the convexity of f and
∫
p(x)dµ(x) =

∫
q(x)dµ(x) = 1, we have

Df (P∥Q) =

∫
q(x)f(p(x)/q(x))dµ(x) (150)

≤
∫
q(x)

(
(p(x)/q(x))− r1

r2 − r1
f(r2) +

r2 − (p(x)/q(x))

r2 − r1
f(r1)

)
dµ(x) (151)

=

∫ (
p(x)− r1q(x)

r2 − r1
f(r2) +

r2q(x)− p(x)

r2 − r1
f(r1)

)
dµ(x) (152)

=
1− r1
r2 − r1

f(r2) +
r2 − 1

r2 − r1
f(r1). (153)

C.7 Proof of Lemma C.9

First, we claim that for each i ∈ [t− u], we can construct a partition {Bi,1, Bi,2, · · · , Bi,u} of Au+i

into u (measurable) sets, such that for each j ∈ [u], the sets Aj , B1,j , B2,j , · · · , Bt−u,j are disjoint.
The construction is in the inductive way as follows: Given i ∈ [t−u], suppose that we have constructed

29



such partitions of Au+1, · · · , Au+i−1 such that for each j ∈ [u], Aj , B1,j , B2,j , · · · , Bi−1,j are
disjoint. Let Ci,j = Aj ∪

(
∪i−1
k=1Bk,j

)
. Then for each x ∈ Au+i, at least one of Ci,1, Ci,2, · · · , Ci,u

does not contain x, because
u∑

j=1

1X\Ci,j
(x) =

u∑
j=1

(
1− 1Ci,j (x)

)
= u−

u∑
j=1

1Ci,j (x) (154)

= u−
u∑

j=1

(
1Aj

(x) +

i−1∑
k=1

1Bk,j
(x)

)
= u−

u∑
j=1

1Aj
(x)−

u∑
j=1

i−1∑
k=1

1Bk,j
(x) (155)

= u−
u∑

j=1

1Aj
(x)−

i−1∑
k=1

u∑
j=1

1Bk,j
(x) = u−

u∑
j=1

1Aj
(x)−

i−1∑
k=1

1Au+k
(x) (156)

≥ u− (u− 1) = 1, (157)

where the last line is from that since x ∈ Au+i, at most u− 1 sets among A1, A2, · · · , Au+i−1 can
contain x. Hence, setting

Bi,j =
{
x ∈ Au+i : j = min

(
j̃ ∈ [u] : x /∈ Ci,j̃

)}
(158)

gives the partition {Bi,1, Bi,2, · · · , Bi,u} of Au+i, such that for each j ∈ [u], Ci,j and Bi,j are
disjoint. This implies that Aj , B1,j , B2,j , · · · , Bi,j are disjoint.

Now, let ℓ = mini∈[t]Qi(Ai). Using these partitions, we can now show that

u =

u∑
j=1

Qj(X ) ≥
u∑

j=1

Qj

(
Aj ∪

(
t−u⋃
k=1

Bk,j

))
(159)

=

u∑
j=1

Qj(Aj) +

u∑
j=1

t−u∑
k=1

Qj(Bk,j) =

u∑
j=1

Qj(Aj) +

t−u∑
k=1

u∑
j=1

Qj(Bk,j) (160)

=

u∑
j=1

Qj(Aj) +

t−u∑
k=1

Qj(Au+k) (161)

≥
u∑

j=1

Qj(Aj) +

t−u∑
k=1

e−ϵQu+k(Au+k) (162)

≥ ℓ
(
u+ e−ϵ(t− u)

)
. (163)

Hence

ℓ ≤ u

u+ e−ϵ(t− u)
=

(u/t)eϵ

(u/t)eϵ + 1− (u/t)
. (164)

D Proofs of Remaining Propositions

We present the proofs of remaining propositions in the paper, Propositions 3.2 and 4.1.

D.1 Proof of Proposition 3.2

By the assumption, there are subsets {Ai}∞i=1 of X which are pairwise disjoint and Pi(Ai) = 1

for all i ∈ N. Let us pick P0 ∈ P̃ , and let Q0 = Q(P0). Since Ai’s are disjoint, we have∑∞
i=1Q0(Ai) = Q0 (

⋃∞
i=1Ai) ≤ 1 < ∞. Hence, we have limi→∞Q0(Ai) = 0. Also, by

definition of ϵ-LDP, for any P ∈ P̃ and i ∈ N, we have Q(P )(Ai) ≤ eϵQ0(Ai). Especially, this
implies Q(Pi)(Ai) ≤ eϵQ0(Ai), and thus limi→∞ Q(Pi)(Ai) = 0.
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Now, similar to the converse proof in Section C.3, let βi = Q(Pi)(Ai). Then, the push-forward
measures of Pi and Q(Pi) by the indicator function 1A are Bernoulli distributions with Pr(1) = 1
and βi, respectively. By the data processing inequality (Theorem B.2), we have

Df (Pi∥Q(Pi)) ≥ DB
f (1∥βi) . (165)

Since limi→∞ βi = 0, by continuity of DB
f , we have

Rf (Q) ≥ lim sup
i→∞

Df (Pi∥Q(Pi)) ≥ lim
i→∞

DB
f (1∥βi) = DB

f (1∥0) =Mf , (166)

where the last equality is because two Bernoulli distributions with Pr(1) = 1 and Pr(1) = 0,
respectively, are mutually singular. Hence, we must have Rf (Q) =Mf .

D.2 Proof of Proposition 4.1

For generality, we prove that the statement of Proposition 4.1 holds in the general setup in Definition
C.1. That is, for the setup in Definition C.1, the mechansim Q∗ = Q∗

c1,c2,µ,ϵ satisfies

DTV (Q∗(P ),Q∗(P ′)) ≤ 2

max(rP , rP ′)
DTV (P, P ′) (167)

for all P, P ′ ∈ P̃ . As the mechanisms Q∗
k,ϵ and Q∗

c1,c2,h,ϵ
in the paper are special cases of Q∗

c1,c2,µ,ϵ,
a proof in this general setup induces Proposition 4.1.

Now, let us assume the setup in Definition C.1 Let P, P ′ ∈ P̃ be given. WLOG, assume that rP ≥ rP ′ .
Let p = dP/dµ, p′ = dP ′/dµ, and q(x) = clip

(
1
rP
p(x); b, beϵ

)
, q′(x) = clip

(
1

rP ′
p′(x); b, beϵ

)
,

so that q = dQ∗(P )/dµ and q′ = dQ∗(P ′)/dµ. For simplicity, we denote clip(x) := clip(x; b, beϵ).

We first note the fact that clip(x) is monotone increasing and 1-Lipschitz in x. From this and the
equivalent expressions of the total variation distance in Appendix B, we have

DTV (Q∗(P ),Q∗(P ′)) (168)

=

∫
x:q(x)≥q′(x)

(q(x)− q′(x))dµ(x) (169)

=

∫
x:q(x)≥q′(x)

(
clip

(
1

rP
p(x)

)
− clip

(
1

rP ′
p′(x)

))
dµ(x) (170)

=

∫
x:q(x)≥q′(x)

(
clip

(
1

rP
p(x)

)
− clip

(
1

rP
p′(x)

))
dµ(x)

+

∫
x:q(x)≥q′(x)

(
clip

(
1

rP
p′(x)

)
− clip

(
1

rP ′
p′(x)

))
dµ(x) (171)

≤
∫
x:q(x)≥q′(x)

∣∣∣∣ 1rP (p(x)− p′(x))

∣∣∣∣ dµ(x) + 0 (172)

≤ 1

rP

∫
X
|p(x)− p′(x)|dµ(x) = 2

rP
DTV (P, P ′) . (173)

This ends the proof.

E Behaviors of Proposed Mechanisms

In this appendix, we present the formal proofs for the behaviors of the proposed mechanisms presented
in Sections 3.1 and 3.2.

We first observe that the formula of the optimal worst-case f -divergence in general case

1− r1
r2 − r1

f(r2) +
r2 − 1

r2 − r1
f(r1) (174)
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is the y-coordinate value at x = 1 of the line segment joining (r1, f(r1)) and (r2, f(r2)). As f is
convex, this formula is increasing in r2 and decreasing in r1, provided that r1 < 1 < r2.

Now, let us present the proofs.

• If f(0) = ∞ and P̃ contains two mutually singular distributions, then R(X , P̃, ϵ, f) = ∞.

Proof. Let P1, P2 ∈ P̃ be mutually singular distributions with disjoint supportsA1, A2 ⊂ X
respectively (That is, P1(A1) = P2(A2) = 1 and A1 ∩ A2 = ∅). Suppose that Q is
an ϵ-LDP sampling mechanism for (X , P̃) such that Rf (Q) < ∞. Since f(0) = ∞,
Df (P∥Q) < ∞, implies Q ≪ P . Hence, as Df (Pi∥Q(Pi)) < ∞ and Pi(A

c
i ) = 0,

we have Q(Ac
i |Pi) = 0 for each i = 1, 2. As Q satisfies ϵ-LDP, we have Q(Ac

1|P2) ≤
Q(Ac

1|P1) = 0, Q(Ac
1|P2) = 0. Now, since A1 ∩A2 = ∅, we have Ac

1 ∪Ac
2 = X . But by

the union bound, 1 = Q(X|P2) ≤ Q(Ac
1|P2) +Q(Ac

2|P2) = 0, which is a contradiction.
Hence, Rf (Q) = ∞ for every ϵ-LDP sampling mechanism Q.

From now, assume f(0) <∞.

Let us first prove the behaviors for the case of finite X in Section 3.1.

• R([k],P([k]), ϵ, f) is decreasing in ϵ and increasing in k.

Proof. Recall from Appendix C.4.1 that the case of X = [k], P̃ = P([k]) can be fit into the
general case with

r1 = 0, (175)

r2 =
eϵ + k − 1

eϵ
. (176)

Here, r2 is decreasing in ϵ and increasing in k. As (174) is increasing in r2, we get the
desired claim.

• For a fixed k, we have R([k],P([k]), ϵ, f) → 0 as ϵ→ ∞.

Proof. As ϵ → ∞, we have r2 → 1. As f is continuous, f(1) = 0, and f(0) < ∞, we
obtain from (174) that

R([k],P([k]), ϵ, f) → 1− 0

1− 0
f(1) +

1− 1

1− 0
f(0) = 0 (177)

as ϵ→ ∞.

• For a fixed k, as ϵ→ 0, we have Q∗
k,ϵ(x|P ) → 1/k for every P ∈ P([k]) and x ∈ [k].

Proof. We know that 1
eϵ+k−1 ≤ Q∗

k,ϵ(x|P ) ≤ eϵ

eϵ+k−1 . As ϵ → 0, both of 1
eϵ+k−1 and

eϵ

eϵ+k−1 converges to 1
k , hence we get the desired claim.

Next, let us prove the behaviors for the continuous case in Section 3.2.

• If c1 = 0 and f(0) = ∞, then R(Rn, P̃c1,c2,h, ϵ, f) = ∞.

Proof. Since r2 > 1 and r1 = 0, we have r2−1
r2−r1

= r2−1
r2

> 0. Hence r2−1
r2−r1

f(r1) =
r2−1
r2−r1

f(0) = ∞, which proves R(Rn, P̃c1,c2,h, ϵ, f) = ∞.

• For a fixed (c1, c2), R(Rn, P̃c1,c2,h, ϵ, f) is decreasing in ϵ.

Proof. We can observe that r1 is increasing in ϵ and r2 is decreasing in ϵ. Since (174) is
increasing in r2 and decreasing in r1, we get the desired claim.

• For a fixed (c1, c2) with c1 = 0, as ϵ→ ∞, we have R(Rn, P̃c1,c2,h, ϵ, f) → 0.

Proof. We can observe that r1 = 0 and r2 → 1. Hence, by the same argument as (177), we
have the desired claim.
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F Detailed Explanation of Setups in Numerical Results

We present details about the setups in producing numerical results in Section 5, and generating Figure
1 in Section 1.

In this appendix, for each µ ∈ Rn, Nµ,Σ[x] =
1

(2π)n/2
√

det(Σ)
exp

(
− (x−µ)TΣ−1(x−µ)

2

)
is the pdf

of the n-dimensional Gaussian distribution with mean µ and covariance Σ. Note that we denote
N (µ,Σ) to refer the Gaussian distribution itself with mean µ and covariance matrix Σ.

F.1 Explanation for numerical result for finite data space

In this appendix, we show that among the choices of Q0 in the baseline for X = [k], choosing Q0

to be the uniform distribution minimizes Rf (Q), and present the precise value of Rf (Q) for the
baseline with uniform Q0. From now, let us fix k, ϵ, f , and we denote QQ0

to mean the baseline with
the reference distribution Q0. Also, let δx ∈ P([k]) be the point mass at x ∈ [k]. Recall that

Mϵ,Q0
= {Q ∈ P(X ) : e−ϵ/2Q0(A) ≤ Q(A) ≤ eϵ/2Q0(A), ∀A ⊂ X}, (178)

and we set the baseline to satisfy that

Df (P∥QQ0
(P )) = inf

Q∈Mϵ,Q0

Df (P∥Q) . (179)

First, if Q0(x) = 0 for some x ∈ [k], then QQ0
(x|P ) ≤ eϵ/2Q0(x) = 0, QQ0

(x|P ) = 0 for every
P ∈ P([k]). Especially, QQ0

(x|δx) = 0, and this implies that QQ0
(δx) and δx are mutually singular.

Hence,

Rf (QQ0) ≥ Df (δx∥QQ0(δx)) =Mf , (180)

concluding that Rf (QQ0
) =Mf . Hence, to minimize Rf (QQ0

), it suffices to set Q0(x) > 0 for all
x ∈ [k]. Hence from now, we only consider such Q0.

We note that for every x ∈ [k] and P ∈ P([k]), we have we have QQ0
(x|P ) ≤ eϵ/2Q0(x), and

furthermore

QQ0
(x|P ) = 1−

∑
y∈[k]\{x}

QQ0
(y|P ) (181)

≤ 1−
∑

y∈[k]\{x}

e−ϵ/2Q0(y) (182)

= 1− e−ϵ/2(1−Q0(x)) (183)

= e−ϵ/2Q0(x) + (1− e−ϵ/2). (184)

Letting

B(t) = min{eϵ/2t, e−ϵ/2t+ (1− e−ϵ/2)}, (185)

we have

QQ0
(x|P ) ≤ B(Q0(x)). (186)

Note that B(t) is increasing in t. Now, for any x ∈ [k], we have

Rf (QQ0
) ≥ Df (δx∥QQ0

(δx)) (187)

= QQ0
(x|δx)f

(
1

QQ0(x|δx)

)
+

∑
y∈[k]\{x}

QQ0
(y|δx)f(0) (188)

= QQ0
(x|δx)f

(
1

QQ0
(x|δx)

)
+ (1−QQ0

(x|δx))f(0). (189)

We can observe that the last term can be written in the form of the optimal worst-case f -divergence
(174) with r1 = 0 and r2 = 1/QQ0(x|δx). In other words, let

R(r1, r2) =
1− r1
r2 − r1

f(r2) +
r2 − 1

r2 − r1
f(r1). (190)
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Then we have Rf (QQ0) ≥ R(0, 1/QQ0(x|δx)).
As noted in Appendix E, R(r1, r2) is increasing in r2 for 0 ≤ r1 < 1 < r2. Since QQ0

(x|δx) ≤
B(Q0(x)), we have

Rf (QQ0
) ≥ R(0, 1/B(Q0(x))). (191)

Since this should hold for all x ∈ [k], we have

Rf (QQ0) ≥ max
x∈[k]

R(0, 1/B(Q0(x))). (192)

Since minx∈[k]Q0(x) ≤ 1/k for all Q0 ∈ P([k]), and B(t) is increasing in t, we have

Rf (QQ0) ≥ R(0, 1/B(1/k)). (193)

Now, let µk be the uniform distribution over [k]. We will show that

Rf (Qµk
) = R(0, 1/B(1/k)), (194)

which suffices to prove that Q0 = µk minimizes Rf (QQ0
).

We observe that Mϵ,µk
is a convex set in P([k]). Since Df (P∥Q) is jointly convex in (P,Q),

we obtain that Df (P∥Qµk
(P )) = minQ∈Mϵ,µk

Df (P∥Q) is convex in P by [64, Section 3.2.5].
Hence, the maximum of Df (P∥Qµk

(P )) occurs when P is one of the extreme points of P([k]),
that is, the point masses δx. By the same arguments as in (187)-(189), we have Df (δx∥Q) =
R(0, 1/Q(x)), and hence

Rf (Qµk
) = sup

P∈P([k])

Df (P∥Qµk
(P )) (195)

= max
x∈[k]

Df (δx∥Qµk
(δx)) (196)

= max
x∈[k]

inf
Q∈Mϵ,µk

Df (δx∥Q) (197)

= max
x∈[k]

inf
Q∈Mϵ,µk

R(0, 1/Q(x)) (198)

= R

(
0,

1

minx∈[k] supQ∈Mϵ,µk
Q(x)

)
. (199)

Also, by the same arguments as in (181)-(184), we have

Q(x) ≤ B(1/k), ∀Q ∈ Mϵ,µk
, x ∈ [k]. (200)

Now, we will show that supQ∈Mϵ,µk
Q(x) = B(1/k) for any x ∈ [k]. To show this, we will prove

that there is a distribution Q ∈ P([k]) such that Q(x) = B(1/k) and Q(y) = 1−B(1/k)
k−1 for all

y ∈ [k]\{x}, and this Q is contained in Mϵ,µk
. It suffices to show the followings:

1

k
e−ϵ/2 ≤ B(1/k) ≤ min

{
1,

1

k
eϵ/2

}
, (201)

1

k
e−ϵ/2 ≤ 1−B(1/k)

k − 1
≤ min

{
1,

1

k
eϵ/2

}
. (202)

We note that whenever 0 ≤ t ≤ 1, we have

• B(t) = min{eϵ/2t, e−ϵ/2t+ (1− e−ϵ/2)} ≥ t, and

• B(t) ≤ e−ϵ/2t+ (1− e−ϵ/2) = 1− (1− t)e−ϵ/2 ≤ 1.

From these, we can easily observe that B(1/k) ≤ min
{
1, 1ke

ϵ/2
}

, and

1

k
e−ϵ/2 ≤ 1

k
≤ B(1/k). (203)
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Also,
1−B(1/k)

k − 1
≤ 1− (1/k)

k − 1
=

1

k
≤ min

{
1,

1

k
eϵ/2

}
, (204)

1−B(1/k)

k − 1
≥ 1− [e−ϵ/2(1/k) + (1− e−ϵ/2)]

k − 1
=

1

k
e−ϵ/2. (205)

This shows that supQ∈Mϵ,µk
Q(x) = B(1/k) for any x ∈ [k]. Thus,

min
x∈[k]

sup
Q∈Mϵ,µk

Q(x) = B(1/k), (206)

Rf (Qµk
) = R

(
0,

1

B(1/k)

)
. (207)

This ends the proof that Q0 = µk minimizes Rf (QQ0), and Rf (Qµk
) = R(0, 1/B(1/k)).

F.2 Explanation for the experiment in 1D Gaussian mixture

The precise description of the set of possible client distributions in our experimental setup is as
follows:

P̃ =

{
P : p(x) =

∑k
i=1 λiNµi,1[x]∫ 4

−4

∑k
i=1 λiNµi,1[x]dx

1[−4,4](x), k ∈ [K], λi ≥ 0,

k∑
i=1

λi = 1, |µi| ≤ 1

}
.

(208)

Each of Pj ∈ P̃ is generated by choosing k, λi, and µi in (208) as follows: (i) First, choose the
number of Gaussian distributions k by first sample k̃ from the Poisson distribution with mean k0
(which is chosen beforehand), and let k = min(k̃ + 1,K), and (ii) after that, sample each of
µ1, · · · , µk independently from the uniform distribution on [−1, 1], and sample (λ1, · · · , λk) from
the uniform distribution on P([k]).

The implementation of our proposed mechanism is as follows. We can observe that∫ 4

−4

k∑
i=1

λiNµi,1[x]dx ≥ inf
µ∈[−1,1]

∫ 4

−4

Nµ,1[x]dx =

∫ 4

−4

N1,1[x]dx = Φ(3)− Φ(−5), (209)

where Φ is the cdf of the 1D standard Gaussian distribution, and for each x ∈ [−4, 4], we have
k∑

i=1

λiNµi,1[x]dx ≤ sup
µ∈[−1,1]

Nµ,1[x] =
1√
2π

exp
(
−[max(|x| − 1, 0)]2/2

)
. (210)

Hence, we have P̃ ⊂ P̃0,1,h̃ = P̃0,c2,h, where

h̃(x) =
exp

(
−[max(|x| − 1, 0)]2/2

)
√
2π(Φ(3)− Φ(−5))

1[−4,4](x) (211)

and c2 =
∫
h̃(x)dx, h(x) = h̃(x)/c2. When implementing our proposed mechanism, we use the

bisection method to find a constant rP . We predetermine the error tolerances δ1, δ2 ≥ 0, δ1 < 1, and
we terminate the bisection method to find rP if the integration of (13) lies in the interval [1−δ1, 1+δ2].
As mentioned in Section 4.1, to consider the error tolerances, we actually implement Q∗

0,c2,h,ϵ′
(P ),

with ϵ′ = ϵ− log 1+δ2
1−δ1

.

In the experiment in the paper, we use k0 = 2 and δ1 = δ2 = 10−5.

For the baseline, we use the same hyperparameter setups as in [35, Section 5, Paragraph “Architec-
tures"], except a slight modification in a reference distribution Q0. In [35], they set the standard
Gaussian as the reference distribution, Q0 = N (0, 1). To consider the truncated domain [−4, 4], we
set Q0 as the truncation of the standard Gaussian, that is, Q0 has a pdf

q0(x) =
N0,1[x]∫ 4

−4
N0,1[x]dx

1[−4,4](x). (212)
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The baseline has many other hyperparameters not specified in [35], such as the proposal distri-
bution used for the Metropolis-Hasting algorithm [66, 67], initial model parameters for the weak
learner, etc. We noticed that the code for [35] is available at https://github.com/karokaram/
PrivatedBoostedDensities/tree/master and hence we made every effort to faithfully repro-
duce the baseline with exactly the same hyperparameters, including those not mentioned in the
paper [35]. However, subtle variations may arise due to differences in the programming languages
employed; we used Python, while [35] used Julia.

F.3 Explanation for Figure 1

For k ∈ N and σ > 0, the Gaussian ring distribution with k modes and a component-wise variance
σ2 is the mixture of k Gaussian distributions in R2 with equal weights, where each Gaussian
distribution has the covariance σ2I2 and equally spaced mean in the unit circle, and one of the
Gaussian distribution has mean (1, 0). That is, it has a density 1

k

∑k
i=1 Nµi,σ2I2 [x], with µi =

(cos 2πi
k , sin 2πi

k ). In Figure 1, the left image is the pdf of the Gaussian ring distribution with k = 3

and σ2 = 0.5. It is used as a client’s original distribution.

For our proposed mechanism, similar to Section 3.2, we use the setup that P̃ consists of Gaussian
mixtures, where each Gaussian has mean within a unit ball centered at the origin and has covariance
0.5I2. that is, P̃ = {∑k

i=1 λiN (xi, σ
2I2) : k ∈ N, λi ≥ 0,

∑k
i=1 λi = 1, ∥xi∥ ≤ 1}, with σ2 = 0.5.

We can also observe that P̃ ⊂ P̃0,1,h̃ for h̃(x) = 1
2πσ2 exp

(
− [max(0,∥x∥−1)]2

2σ

)
.

Same as Appendix F.2, we have P̃0,1,h̃ = P̃0,c2,h, where c2 =
∫
h̃(x)dx, h(x) = h̃(x)/c2. Hence,

we use Q∗
0,c2,h,ϵ

. The implementation of Q∗
c1,c2,h,ϵ

(P ) is the same as the description in Appendix
F.2 with δ = 10−5. For the baseline, we also use MBDE with the same hyperparameter setup as [35,
Section 5, Paragraph “Architectures"], with the (untruncated) 2D standard Gaussian as a reference
distribution, Q0 = N (0, I2).
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G Additional Numerical Results for Finite Space

In this appendix, we present more numerical results for the finite space case explained in Section 5.1
for other k. We present the result for k = 5, 20, and 100 in Figures 5-7. As shown by the figures, the
proposed mechanism always has the smaller worst-case f -divergence compared to the baseline, as
the optimality is proved for the proposed mechanism. However, the performance gap between two
mechanisms decreases as ϵ becomes smaller and k becomes larger.

0.1 0.5 1.0 2.0 5.0
0.0

0.5

1.0

1.5

W
o
rs
t
f
-d
iv
er
g
en
ce

KL

0.1 0.5 1.0 2.0 5.0

Privacy budget ǫ

0.0

0.2

0.4

0.6

0.8

TV

0.1 0.5 1.0 2.0 5.0
0.0

0.2

0.4

Sq. Hel

Proposed Baseline

Figure 5: Theoretical worst-case f -divergences of proposed and previously proposed baseline
mechanisms (with uniform Q0) over finite space (k = 5)
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Figure 6: Theoretical worst-case f -divergences of proposed and previously proposed baseline
mechanisms (with uniform Q0) over finite space (k = 20)
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Figure 7: Theoretical worst-case f -divergences of proposed and previously proposed baseline
mechanisms (with uniform Q0) over finite space (k = 100)
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H Instructions for Reproducing Results

In this appendix, we provide instructions for reproducing the experiments and figures in the paper. For
a detailed document about the code, refer to the provided file README.md. For the tasks consuming a
large time, we also specify the running times of such tasks. We do not specify the running times of
the short tasks consuming less than 5 seconds. All experiments are performed on our simulation PC
with the following specifications:

• OS: Ubuntu 22.04.1
• CPU: Intel(R) Core(TM) i9-9900X
• Memory: 64GB

There are a few remarks:

• Although we expect that the codes can be run and reproduce our results on sufficiently recent
versions of Python libraries, we provide the information about the anaconda environment
used in the experiment in environment.yaml for the completeness.

• The provided codes contain some lines to make the figures use TEX fonts. Running such
lines requires the LATEX to be installed in the experimental environment. We can remove the
following lines to disable using TEX:

matplotlib.use("pgf")

"pgf.texsystem": "pdflatex",
’font.family’: ’serif’,
’text.usetex’: True,
’pgf.rcfonts’: False,
’font.serif’ : ’Computer Modern Roman’,

H.1 Instruction for producing Figure 1

Figure 1 can be obtained by running the code plot_GaussRing.py, without any program arguments.
We measure the running time for initializing the mechanism and and calculating the sampling
distribution for the baseline (MBDE [35]) and our proposed mechanism. The measured running times
in our environment are as follows: (unit: second)

• Initializing the mechanism
– Baseline: 0.80
– Proposed: 1.22

• Calculating the sampling distribution
– Baseline: 35.19
– Proposed: 664.18

H.2 Instruction for producing Figure 2

Figure 2 can be obtained by running the code visualize_finiteSpace.py, without any program
arguments.

H.3 Instruction for producing results for finite space

The results about the theoretical worst-case f -divergence for finite space, Figures 3,5,6,7, can be
obtained by running the code plot_finite.py with a program argument --k to specify the value
of k. For example, in the command line, the aforementioned four figures can be generated by the
following commands, respectively:

python plot_finite.py --k 10
python plot_finite.py --k 5
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python plot_finite.py --k 20
python plot_finite.py --k 100

H.4 Instruction for producing results for 1D Gaussian mixture

The experiment of 1D Gaussian mixture in Section 5.2 consists of the following two codes:

1. exp_1DGaussMix.py
This code performs an experiment on a single ϵ. We can provide two program arguments
--eps and --seed to specify the values of ϵ and the random seed, respectively.

2. plot_1DGaussMix.py
This code generate the plot like Figure 4 from the results of exp_1DGaussMix.py

The results in the paper, Figure 4, can be obtained as follows:

1. First, run the following commands:

python exp_1DGaussMix.py --eps 0.1 --seed 1
python exp_1DGaussMix.py --eps 0.5 --seed 2
python exp_1DGaussMix.py --eps 1.0 --seed 3
python exp_1DGaussMix.py --eps 2.0 --seed 4
python exp_1DGaussMix.py --eps 5.0 --seed 5

These can be run in any order or in parallel. Check that all of the five result files
data_1DGaussMix_eps{eps}.npy corresponding to five values of ϵ are generated. In
our environment, running all of the five commands in parallel consumes 3h 13m 35s.

2. Then, run the code plot_1DGaussMix.py without any program arguments.

I Limitations

Our main contribution lies in proposing a minimax-optimal mechanism, and we present several
experimental results based on synthetic data to support the superiority of our mechanism. However,
since we have not conducted experiments based on real datasets, the analysis of performance in
real-world scenarios is insufficient. Also, our PUT formulation in the minimax sense provides optimal
utility in the worst case, which may result in reduced average utility when prior information is given.
Finally, our implementation of the proposed mechanism requires a large amount of running time due
to numerical integration, which makes experiments in multidimensional spaces challenging.

J Broader Impacts

Our proposed mechanism can be utilized for privacy protection in the field of generative models,
which has recently received significant attention. A major deterrent to the adoption of privacy
protection algorithms in real-world scenarios is the potential performance degradation. Our PUT-
optimal mechanism, that minimizes the loss of utility given the privacy budget, can alleviate such
concerns.

We should note that an LDP mechanism provides a certain level of privacy protection but cannot
guarantee complete privacy protection without completely sacrificing utility. Additionally, clients
typically provide multiple data points through various channels, and when these data are combined, it
can lead to greater privacy leakage [68, 69].

39



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly stated the main contributions and scope of our paper in the abstract
and introduction (Section 1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We stated the limitations of our work in Appendix I.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All theorems, propositions, and lemmas in the paper include all the necessary
assumptions, and are accompanied with either the proofs in the appendices or relevant
references.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided instructions to reproduce all the figures and experimental results
in Appendix H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We plan to make the code attached in the supplementary material publicly open
after the review period. Also, the instructions to reproduce the results are fully specified in
Appendix H.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We presented enough details to implement our proposed mechanism, and we
attached the code for implementing both the proposed mechanism and the baseline in the
supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: As the main contribution is theoretically characterizing the worst-case utility,
we focused on extracting the worst-case utility in the experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided the information about the computer resources and running times
for the experiments in Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed both the positive and negative societal impacts in Appendix J.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not recognize any risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: All of the codes only use the basic Python libraries like numpy, scipy, torch,
and so on. No other external assets are used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: As mentioned in Appendix H, we documented the details of our codes in the
file README.md, which is provided by the NeurIPS Code and Data Submission Guidelines.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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