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Abstract

Analyzing time series data is crucial to a wide
spectrum of applications, including economics,
online marketplaces, and human healthcare. In
particular, time series classification plays an in-
dispensable role in segmenting different phases
in stock markets, predicting customer behavior,
and classifying worker actions and engagement
levels. These aspects contribute significantly to
the advancement of automated decision-making
and system optimization in real-world applica-
tions. However, there is a large consensus that
time series data often suffers from domain shifts
between training and test sets, which dramatically
degrades the classification performance. Despite
the success of (reversible) instance normalization
in handling the domain shifts for time series re-
gression tasks, its performance in classification
is unsatisfactory. In this paper, we propose FIC-
TSC, a training framework for time series classi-
fication that leverages Fisher information as the
constraint. We theoretically and empirically show
this is an efficient and effective solution to guide
the model converge toward flatter minima, which
enhances its generalizability to distribution shifts.
We rigorously evaluate our method on 30 UEA
multivariate and 85 UCR univariate datasets. Our
empirical results demonstrate the superiority of
the proposed method over 14 recent state-of-the-
art methods.

1Clemson University, USA. 2Arizona State University, USA.
3Washington University in St. Louis, USA. 4University of Arizona,
USA 5University of Massachusetts Boston, USA . Correspon-
dence to: Xiwen Chen <xiwenc@g.clemson.edu>, Abolfazl Razi
<arazi@clemson.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Time series analysis is crucial in a wide range of applica-
tions, such as network traffic management (Ferreira et al.,
2023), healthcare (Vrba & Robinson, 2001; Niknazar &
Mednick, 2024), environmental science (Wu et al., 2023b),
and economics (Sezer et al., 2020). This is due to the fact
that much of the data they generate or collect naturally fol-
lows a time series format. Representative examples include
stock prices in finance, electrocardiogram (ECG) signals in
healthcare monitoring, and network traffic, activity logs, and
social media data. In this work, we focus on the study of the
time series classification (TSC) problem, one of the most
important tasks in time series analysis (Bagnall et al., 2017;
Chen et al., 2024; Ruiz et al., 2021; Wang et al., 2024c),
which enables the categorization of these data sequences
into distinct behaviors or outcomes.

There is broad consensus that time series data often ex-
periences training/testing domain shifts, where the testing
time series distribution differs significantly from that of
the training data, resulting in a significant drop in perfor-
mance (Kim et al., 2022b). This domain shift issue is largely
attributed to several factors, including sensor variability, en-
vironmental changes, differences in measurement or pre-
processing methods, and data collection at different times.
A common approaches to mitigate domain shifts involve
designing normalization to reduce domain-specific biases,
enhance feature invariance, mitigate covariate shifts, and
promote more generalizable representation learning (Ioffe
& Szegedy, 2015; Ulyanov et al., 2016; Wu & He, 2018;
Li et al., 2018). One representative normalization method
is Reversible Instance Normalization (RevIN, Kim et al.,
2022b; Liu et al., 2023), which has been widely used in
time series forecasting (regression) tasks. However, ad-
justing normalization may pose significant challenges to
model training, e.g., gradient instability, increased sensi-
tivity to hyperparameters, difficulty in optimizing the loss
landscape, and potential overfitting to the training domain.
Consequently, this leads to a mismatch between training and
inference loss (Dinh et al., 2017b; Zhou et al., 2021). More
importantly, its effectiveness in time series classification
remains unexplored in previous literature.
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To fill this gap, our study starts the investigation of domain
shifts in time series classification task across several datasets.
We confirm that the domain shift issue is also common in
time series classification tasks. We further conduct an addi-
tional analysis of RevIN in time series classification tasks,
revealing that it is surprisingly ineffective this task. This
motivates us to develop a method that is more tailored to
domain shift issues in time series classification tasks. To this
end, we propose a novel learning method based on Fisher
information, which measures the amount of information
an observable random variable carries about an unknown
parameter (Ly et al., 2017). In this context, we can utilize
it as a measure of a neural network’s sensitivity to small
changes in input data. However, directly applying Fisher
information as a regularization term in gradient-based op-
timization suffers from a high computational and memory
cost: (i) the Fisher Information Matrix (FIM), a matrix that
contains the Fisher information for all parameters, is pro-
hibitively large due to its quadratic complexity w.r.t. the
number of parameters; (ii) it needs to back-propagate twice
(the first pass for computing the FIM and the second for
updating the neural network), which introduces relatively
substantial computation. To this end, we utilize diagonal
approximation and propose gradient re-normalization based
on FIM to tackle these challenges.

We find our method is surprisingly effective and has a nice
theoretical interpretation. First, it is easy to be integrated
into the existing learning framework with automatic differ-
entiation without an additional back-propagation. It only
requires aO(n) memory complexity w.r.t. n number of neu-
ral network parameters. Second, our method can guide the
neural network to converge to a flat local minimum, poten-
tially resulting in better generalizability in dealing with the
issue of domain shifts (see e.g., Keskar et al., 2016; Zhang
& Xu, 2024). Finally, we show that despite the constraints,
the theoretical convergence rate remains on par with that of
standard neural network training.

In summary, our contributions are two-fold: (i) We analyze
the domain shift problem in time series classification and
highlight the ineffectiveness of previous methods in address-
ing this issue in classification tasks. (ii) To resolve this, we
propose FIC-TSC, a time series classification model trained
with a novel Fisher Information Constraint. We rigorously
evaluate our approach on 30 UCR multivariate time series
classification datasets (Bagnall et al., 2018) and 85 UEA
univariate time series classification datasets (Chen et al.,
2015), demonstrating the superiority of our method over
state-of-the-art methods.

2. Related Work
Time Series Classification. Traditional methods for TSC
focus on similarity measurement techniques (Berndt & Clif-
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Figure 1. A conceptual visualization of Flat and Sharp Minima.
The Y-axis indicates loss, and the X-axis represents the variables
(neural network parameters). Under train (blue) and test (purple)
data domains, due to potential distribution shift, the landscapes
differ, i.e., with the same network parameter, the loss is often
different. A flat minimum can potentially lead to a low test error,
while a sharp minimum potentially leads to a high test error.

ford, 1994; Seto et al., 2015), while further, the advent of
deep learning has transformed TSC by enabling automated
feature extraction and improving performance significantly.
They employ or develop based on different architectures,
such as CNN/LSTM hybrid (Karim et al., 2019; Zhang et al.,
2020), purely CNN (Ismail Fawaz et al., 2020; Li et al.,
2021; Wu et al., 2023a), and Transformer (Zerveas et al.,
2021; Nie et al., 2023; Foumani et al., 2024; Eldele et al.,
2024). Instead of supervised learning, there are also recent
methods that benefit from self-supervised pre-training, such
as (Lin et al., 2023; Li et al., 2024). However, one significant
issue is the non-convex nature of the optimization problem
inherent in training deep neural networks. Due to the com-
plex structure of these models, the loss landscape is often
filled with numerous local minima. This non-convexity
poses challenges in finding a global minimum or even a suf-
ficiently good local minimum. Hence, our proposed method
can be one of the elegant solutions to mitigate this issue
and guide the neural network to converge to a flat minimum
with desirable generalizability (for details, see Sec. 4.2).

Sharpness and Model Generalizability. In the context of
deep learning optimization, sharpness refers to the curva-
ture of the loss landscape. Several works have illustrated
that sharper minima often lead to poor generalization per-
formance (see e.g., Keskar et al., 2016; Neyshabur et al.,
2017; Zhang & Xu, 2024). This is because models that
converge to sharp minima may overfit the training data,
leading to a larger generalization gap. In contrast, a flat
minimum is less sensitive to the small perturbation of pa-
rameters, and hence, is more robust to domain shifts (see
Fig. 1 for illustration). Accordingly, some works (Foret
et al., 2020; Andriushchenko & Flammarion, 2022; Kim
et al., 2022a; Yun & Yang, 2024) have been proposed to ac-
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count for the sharpness of minima during training explicitly.
They achieve this by modifying the traditional gradient-
based optimization process: at each iteration, they compute
the loss gradient w.r.t. parameters perturbed with small
noise. This perturbation encourages the optimizer to move
toward regions of the loss landscape where the loss remains
low over a larger neighborhood (i.e., flatter minima). Re-
cent work (Ilbert et al., 2024) designed for forecasting also
falls into this category. However, the obvious issue is that
they need to back-propagate twice at each training iteration,
which introduces considerable computational and memory
overheads. Consequently, their methods may have not been
widely applied. In contrast, our method only requires a
single back-propagation at each iteration, just like the stan-
dard model training. More importantly, we demonstrate that
despite the inclusion of the constraint, the convergence rate
of our method is on par with standard training processes.

Fisher Information in Time Series Analysis. We notice
some conventional approaches (i.e., not based on deep learn-
ing) have utilized Fisher information as a tool for time se-
ries analysis. For example, authors in (Dobos & Abonyi,
2013) use the Fisher Information to identify changes in
the statistical properties of time-series data, facilitating the
segmentation of the data into homogeneous intervals. Like-
wise, authors in (Telesca & Lovallo, 2017; Wang & Shang,
2018; Contreras-Reyes & Kharazmi, 2023) employ Fisher
information and Shannon Entropy to measure the temporal
properties of time series in dynamic systems. In this con-
text, the parameters often represent statistical properties of
the series, like mean, variance, or even parameters defining
windowed segments of the series for localization analysis.
Therefore, our methods are essentially different from theirs,
where we propose the Fisher information-based constraint
to guide the optimization of the neural networks.

Domain adaptation. It addresses distribution shifts by
enabling models trained on a source domain to general-
ize to a related target domain. Common strategies include
aligning feature distributions by minimizing statistical dis-
tances (Chen et al., 2020) or using adversarial training to
make features indistinguishable across source and target
domains (Purushotham et al., 2017; Jin et al., 2022). In con-
trast, our method is orthogonal to these approaches. It does
not require access to target domain data or labels during
training, making it suitable when the target distribution is
unknown or unavailable. Importantly, domain adaptation
could be applied as a post-training or downstream enhance-
ment once target domain data becomes available. Hence,
our method and these techniques can be complementary.

3. Preliminary Analysis
Distribution Discrepancy. First, we validate our conjec-
ture of the distribution discrepancy between the training and

testing sets on several datasets. For convenience, following
(Kim et al., 2022b), in each dataset, we illustrate the his-
togram of the first channels of all samples from both training
and test sets, offering a statistical perspective to interpret
the distribution. As shown in Fig. 2, the observation is
aligned with (Kim et al., 2022b), and it is evident that the
distribution discrepancy is a common phenomenon across
different datasets from two perspectives: (i) distribution
between the entire training and testing sets and (ii) distribu-
tions of the same class from the training set and test set. We
further employ the Wasserstein-1 distance to evaluate the
distribution distance, which can be mathematically defined
as below,

Definition 1. ((Peyré et al., 2019)) The Wasserstein-1
distance between two probability distributions P and
Q with cumulative distribution functions (CDFs) FP (x)
and FQ(x) is defined as:

W1(P,Q) = inf
γ∈Γ(P,Q)

E(x,y)∼γ [d(x, y)] (1)

where Γ(P,Q) is the set of all couplings (joint distribu-
tions) γ(x, y) with marginals P and Q, and d(x, y) =
|x − y| is a absolute value distance function between
points x and y.

Here, we used the discrete case Wasserstein-1 distance
to calculate the distance between 1D discrete distribu-
tions (Ramdas et al., 2017). The dissimilarity matrices of
these datasets are also shown in Fig. 2, where each element
denotes class distribution from different sets. For example,
the upper left element represents the distance between class
1 from the training set and class 1 from the test set. It is
worth mentioning that we apply min-max normalization
here for better visualization. We observe that the within-
class distance (i.e., the same class distributions from differ-
ent sets) can even be equal or greater than between-class
distance (i.e., different classes from the same set), such as
FaceDetection and SelfRegulationSCP1. These
results reveal some potential reasons why the general clas-
sification methods have poor performance on time series
data, and they motivate us to develop a method that can be
somewhat robust for the distribution discrepancy.

Effectiveness of RevIN. The invention of Reversible In-
stance Normalization (Kim et al., 2022b) is designed to
solve the train/test domain shift and has substantially pro-
moted the performance of machine learning methods for
sequence-to-sequence regression tasks, particularly fore-
casting tasks. This method applies instance normalization
at the beginning to remove the non-stationary information
(i.e., subtracting the mean and dividing by the standard de-
viation. This leads the sequence to be a zero-mean and
standard deviation of one) and perform denormalization at
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Figure 2. Histograms representing sequences from the two selected classes of exemplary datasets with train/test distribution shift. The
dissimilarity matrix illustrates the min-max normalized Wasserstein-1 distance between class distribution from different sets. A
lower value implies two distributions are more similar. It is observed that distribution shifts exist between the entire training and testing
sets and within the same classes across these sets.

the end to restore that information. In the classification
task, only normalization at the beginning is appropriate
since the output is logits rather than a sequence. Hence, we
just use the term IN in the following text. However, this
technique has not illustrated any benefits in classification.
This is reasonable since although IN reduces the distribu-
tion shifts between the entire training and testing sets, it
can also reduce the distances between different class dis-
tributions within the same set. We show this fact in Fig.
3. We further empirically evaluate this technique on ten
datasets: EC: EthanolConcentration, FD: FaceDetection,
HW: Handwriting, HB: Heartbeat, JV: JapaneseVowels,
SCP1: SelfRegulationSCP1, SCP2: SelfRegulationSCP2,
SAD: SpokenArabicDigits, UW: UWaveGestureLibrary,
and PS: PEMS-SF. According to the results shown in Fig.
4, IN does not positively affect most datasets’ performance.
In some datasets, IN even suppresses the performance. Ap-
plying IN finally lowers the average accuracy, aligning with
our conjecture. Therefore, IN is not a desirable solution to
solve the distribution discrepancy issue for the classification
task. Thus, we seek to propose a new method for addressing
this issue, and we will discuss it in the next section.

4. Method
4.1. Problem Formulation

Time series data can be presented as {X1, · · · ,Xn}, where
Xi =

{
x1
i , · · · ,xT

i

}
denotes a time sequences containing

T time points, with each time point x⊤
i ∈ Rd being a vector

with a dimension of d. The goal of the task is to learn a
machine-learning model that directly maps feature space
X to target space Y . The d = 1 implies this sequence is

Figure 3. An illustration of the negative effect of Instance Nor-
malization (IN). Left: The original input, and Right: Input after
applying IN. It is observed that IN can reduce the difference of
two class distributions. This may be disadvantageous for classifi-
cation.
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Figure 4. Comparison of classification accuracy between base-
line and the model applying IN. Avg. indicates Average
accuracy across all datasets. It is observed that IN does
not have any positive effect on the model for most datasets. A
statistical test is conducted in Appendix E.1.

univariate, while d > 1 is multi-variate. Our work can be
generalized for both cases.

4.2. Learning with the FIM constraint

As discussed in Section 3, while normalization can miti-
gate train-test distribution shifts, it may also reduce inter-
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class distances, potentially hindering training effectiveness.
Hence, we believe this is not a feasible solution for the clas-
sification task. In contrast, we expect to train a more robust
network to handle the distribution difference among training
and test sets from a gradient optimization perspective. To
this end, we propose an FIC-constrained strategy to guide
the optimization of the network.

FIM is used to measure the amount of informa-
tion/sensitivity about unknown parameters Θ carried by
the data D, and lower Fisher information often represents
the parameters that are less sensitive to a small change of
the data, which potentially improves its robustness. We first
give its definition here:

Definition 2. ((Kay, 1993)) Given a model parameter-
ized by Θ and an observable random variable D, the
Fisher Information Matrix (FIM) is defined as,

F(Θ) (2)

=Ep(D|Θ)

[
(∇Θ log p(D | Θ))(∇Θ log p(D | Θ))⊤

]
,

where log p(D | Θ) denotes the log-likelihood.

Remark 1. In the context of the classification task, this log-
likelihood can be interpreted as the negative cross-entropy
(maximizing the log-likelihood is empirically equivalent to
minimizing cross-entropy loss). To this end, we present the
commonly used cross-entropy loss here.

L({Di}ni=1 | Θ) = − 1

n

n∑
i=1

log P̂ (Di | Θ), (3)

where Di denotes a training pair, n denotes the number
of samples, log P̂ (Di | Θ) denotes the logarithm of the
predicted probability of the true label.
Remark 2. Directly computing FIM suffers from large com-
putation and memory costO(n2), where n denotes the num-
ber of parameters.

Remark 2 naturally motivates the simplification of the com-
putation to facilitate the broader adoption of our method,
particularly for users with limited computational resources.
Hence, we apply the diagonal approximation, which ignores
the off-diagonal elements and only interest diag(F(Θ)) in
the FIM. Here, diag(·) denotes the diagonal elements of a
matrix. This drastically reduces the computational burden
and memory needs to O(n). More importantly, it still has
reasonable information, and we will employ this approxima-
tion in our theoretical justification later. Empirically, given
a set of data pairs {Di}ni=1, the FIM is estimated as,

diag(F(Θ)) = ∇ΘL(Θ) ◦ ∇ΘL(Θ), (4)

where ◦ denotes the element-wise product and again the
off-diagonal elements of F(Θ) is zero.

Additionally, simply applying FIM as regularization suf-
fers double backward passes, where the first backward is
used to compute the FIM and the second backward is used
to impose regularization for updating the neural network.
This again will introduce extra computation. Therefore, to
avoid the computational cost of performing double back-
ward passes, we constrain the optimization by introducing
a normalization strategy. Let ϵ be the pre-defined upper-
bound and ∥F∥1 denote the entrywise 1-norm1 of the FIM.
If ∥F∥1 ≥ ϵ, the gradient of each parameter θi is normalized
as follows:

∇ΘL(Θ)←
√

ϵ

∥F∥1
∇ΘL(Θ). (5)

It is worth mentioning that under the diagonal approxima-
tion, ∥F(Θ)∥1 = ∥diag(F(Θ))∥1, where diag(F(Θ))
is a vector.

Considering these two aspects mentioned above, we sum-
marize the proposed FIC-constrained optimization as,

min
Θ
L(D; Θ) s.t. ∥F(Θ)∥1 ≤ ϵ. (6)

The complete algorithmic summary is provided in Algo-
rithm 1, located in Appendix B.

Theoretical Justification. Now, we will delve into the
theoretical support of our method and illustrate our method
has the potential to lead to a better convergence with a
theoretically guaranteed rate. We first note that there is a
strong relationship between FIM and the second derivative
of the loss,

Lemma 1. At a local minimum, the expected Hes-
sian matrix of the negative log-likelihood is asymp-
totically equivalent to the Fisher Information Matrix,
w.r.t Θ, which is presented as,

Ep(D|Θ)

[
∇2(− log p(D | Θ))

]
= F . (7)

Remark 3. See Appendix A for the proof. As previously dis-
cussed, minimizing the negative log-likelihood is equivalent
to minimizing the loss.

Accordingly, we realize that FIM can be bridged to the
principle of sharpness. Sharpness measures the curvature
around a local minimum in a neural network’s loss land-
scape. It is formally defined as follows,

Definition 3. (Keskar et al., 2016) For a non-negative
valued loss function LΘ, given B2(α,Θ), a Euclidean
ball with radius α centered at Θ, we can define the

1this norm will be utilized in the subsequent operations involv-
ing matrices
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α-sharpness as,

α-sharpness ∝
maxΘ′∈B2(α,Θ) LΘ′ − LΘ

1 + LΘ
. (8)

We observe this can be efficiently estimated at a local mini-
mum,

Corollary 1. At a local minimum, the upper bound
of α-sharpness is able to be approximated via Taylor
expansion as

α-sharpness ∝ α2∥F∥1
2(1 + L(Θ))

. (9)

Proof. Please refer to Appendix A.

It is worth reiterating that a lower sharpness often implies
higher generalizability (Keskar et al., 2016; Zhang & Xu,
2024). Hence, according to Corollary 1, we can conclude:

Proposition 1. (Achievability.) With the same train-
ing loss, appropriately constraining the Fisher in-
formation can potentially converge to flatter minima
and result in better generalizability.

Now, we are interested in the convergence of the proposed
method. We offer the analysis under some mild and common
assumptions.

Theorem 4. Consider a L-Lipschitz objective func-
tion L(Θ), defined such that for any two points Θ1

and Θ2, the inequality ∥∇L(Θ1) − ∇L(Θ2)∥ ≤
L∥Θ1 −Θ2∥ holds. By appropriately choosing the
learning rate η and the FIC constraint ϵ, the conver-
gence rate of gradient descent can be expressed as
O( 1

T ), where T represents the number of iterations.

Proof. Please refer to Appendix A.

Remark 5. This suggests the empirical convergence time
may be a little slow due to the constraint, while asymptot-
ically, the order of the theoretical convergence rate is not
explicitly related to the constraint w.r.t T .

5. Experiment
Setup. To thoroughly evaluate our method, we conducted
experiments on both MTSC and UTSC tasks. Specifically,
we utilized the UEA multivariate datasets (30 datasets)
(Bagnall et al., 2018) and the UCR univariate datasets (85
datasets) (Chen et al., 2015), which are among the most com-
prehensive collections in the field. These datasets involve
a wide range of applications, including but not limited to

traffic management, human activity recognition, sensor data
interpretation, healthcare, and complex system monitoring.
A summary of the datasets is shown in Table 1. Please refer
to Appendix C for more details about the datasets. The data
pre-processing follows (Wu et al., 2023a; Foumani et al.,
2024).

Table 1. A summary of UEA and UCR datasets.
Dataset Statistic # of Variates Length Training Size Test Size # of classes

UEA 30 min 2 8 12 15 2
max 1345 17984 30000 20000 39

UCR 85 min 1 24 16 20 2
max 1 2709 8926 8236 60

Baselines. We compare our method with multiple al-
ternative methods, including recent advanced representa-
tion learning-based approaches: TsLaNet (Eldele et al.,
2024), GPT4TS (Zhou et al., 2023), TimesNet (Wu et al.,
2023a), PatchTST (Nie et al., 2023), Crossformer (Zhang
& Yan, 2023), TS-TCC (Eldele et al., 2021), and includ-
ing classification-specific approaches: ROCKET (Dempster
et al., 2020), InceptionTime (ITime) (Ismail Fawaz et al.,
2020), ConvTran (Foumani et al., 2024) (MTSC only), MIL-
LET (Early et al., 2024), TodyNet (Liu et al., 2024) (MTSC
only), HC2 (Middlehurst et al., 2021) (UTSC only), and
Hydra-MR (Dempster et al., 2023) (UTSC only). Finally,
we involve the model with a single linear layer for compari-
son.

Implementation. As a proof-of-concept, we implement our
algorithm on a network based on ITime (Ismail Fawaz et al.,
2020), while we modify the original one linear classier to a
two-layer MLP. We apply two hyperparameter strategies for
our implementation: (i) Uni.: For the sake of the robustness
and rigor of our method, we apply universal hyperparame-
ters for all datasets in this model. We fixed the ϵ to 2 and
mini-batch size to 64 for UEA datasets and 16 for UCR
datasets, and (ii) Full: To fully explore the ability of our
method, we perform a grid search for hyperparameters for
each dataset. Specifically, we search the mini-batch size
from {16, 32, 64, 128} and ϵ from {2, 4, 10, 20}. We place
their performance aside from the main results. Please refer
to Appendix D for more details about the implementation.

Main Results. We report results on UEA multivariate
datasets in Table 2 averaged over 5 runs. It is worth mention-
ing that this result only includes 26 datasets since several
methods (following TsLaNet (Eldele et al., 2024)) are not
able to process the remaining datasets due to memory or
computational issues. However, our method does not have
any obstacles to learning on these datasets, and hence, we re-
port the comprehensive results with additional metrics (i.e.,
balanced precision, F1 score, precision, recall) in Table 4
and Appendix F. It is known that adjusting hyperparameters
is crucial for maintaining optimal performance across di-
verse datasets, and we note that this strategy is employed by
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Table 2. Comparison of classification accuracy by our method with recent alternative methods for multivariate time series classification
(26 UEA datasets). We highlight the best results in bold and the second-best results with underlining. Uni. indicates we set the consistent
hyperparameters for all datasets, while Full indicates we perform dataset-wise grid search for hyperparameters. To ensure the robustness
and rigor of our approach, we included Full at the end but did not participate in the comparison. The accuracy is averaged over 5 runs.

Dataset Ours
(Uni.)

MILLET
ICLR’24

TodyNet
Inf. Sci.’24

ConvTran
ECML’23

ROCKET
ECML’20

ITime
DMKD’20

TsLaNet
ICML’24

GPT4TS
NeurIPS’23

TimesNet
ICLR’23

CrossFormer
ICLR’23

PatchTST
ICLR’23

TS-TCC
IJCAI’21 Linear Ours

(Full)

ArticularyWordRecognition 99.3 99.0 98.2 98.3 99.3 98.5 99.0 93.3 96.2 98.0 97.7 98.0 93.1 99.8
AtrialFibrillation 56.7 43.3 46.7 40.0 20.0 44.0 40.0 33.3 33.3 46.7 53.3 33.3 46.7 60.0
BasicMotions 100.0 100.0 100.0 100.0 100.0 100.0 100.0 92.5 100.0 90.0 92.5 100.0 85.0 100.0
Cricket 100.0 100.0 98.6 100.0 98.6 98.6 98.6 8.3 87.5 84.7 84.7 93.1 91.7 100.0
Epilepsy 98.9 98.6 96.4 98.6 98.6 97.2 98.6 85.5 78.1 73.2 65.9 97.1 60.1 100.0
EthanolConcentration 39.2 32.3 42.4 36.1 42.6 36.3 30.4 25.5 27.7 35.0 28.9 32.3 33.5 40.1
FaceDetection 68.4 69.2 67.7 67.2 64.7 66.6 66.8 65.6 67.5 66.2 69.0 63.1 67.4 69.2
FingerMovements 65.0 64.0 62.5 56.0 61.0 60.0 61.0 57.0 59.4 64.0 62.0 44.0 64.0 71.5
HandMovementDirection 49.3 50.7 54.1 40.5 50.0 44.9 52.7 18.9 50.0 58.1 58.1 64.9 58.1 54.7
Handwriting 61.6 69.8 47.9 37.5 48.5 60.1 57.9 3.8 26.2 26.2 26.0 47.8 22.5 73.0
Heartbeat 81.0 76.8 79.0 78.5 69.8 78.8 77.6 36.6 74.5 76.6 76.6 77.1 73.2 82.0
InsectWingbeat 71.1 72.0 63.0 71.3 41.8 70.9 10.0 10.0 10.0 10.0 10.0 10.0 10.0 72.3
Japanese Vowels 99.1 99.6 97.6 98.9 95.7 97.6 99.2 98.1 97.8 98.9 98.7 97.3 97.8 99.6
Libras 79.4 91.1 84.4 92.8 83.9 68.1 92.8 79.4 77.8 76.1 81.1 86.7 73.3 91.7
LSST 65.3 50.2 65.1 61.6 54.1 52.9 66.3 46.4 59.2 42.8 67.8 49.2 35.8 66.8
MotorImagery 65.0 61.5 64.0 56.0 53.0 60.2 62.0 50.0 51.0 61.0 61.0 47.0 61.0 68.5
NATOPS 98.9 98.3 95.6 94.4 83.3 96.8 95.6 91.7 81.8 88.3 96.7 96.1 93.9 99.2
PEMS-SF 79.2 63.0 96.1 82.8 75.1 60.4 83.8 87.3 88.1 82.1 88.4 86.7 82.1 87.9
PenDigits 97.6 92.6 98.7 98.7 97.3 95.7 98.9 97.7 98.2 93.7 99.2 98.5 92.9 98.5
PhonemeSpectra 31.3 34.3 31.2 30.6 17.6 30.1 17.8 3.0 18.2 7.6 11.7 25.9 7.1 32.3
RacketSports 89.8 88.2 84.5 86.2 86.2 87.9 90.8 77.0 82.6 81.6 84.2 84.9 79.0 90.8
SelfRegulationSCP1 90.1 88.1 90.4 91.8 84.6 88.1 91.8 91.5 77.4 92.5 89.8 91.1 88.4 90.3
SelfRegulationSCP2 59.4 59.4 59.4 58.3 54.4 56.4 61.7 51.7 52.8 53.3 54.4 53.9 51.7 60.8
SpokenArabicDigits 99.9 99.9 99.1 99.5 99.2 99.7 99.9 99.4 98.4 96.4 99.7 99.8 96.7 100.0
StandWalkJump 63.3 53.3 36.7 33.3 46.7 49.3 46.7 33.3 53.3 53.3 60.0 40.0 60.0 66.7
UWaveGestureLibrary 90.2 90.8 86.3 89.1 94.4 84.8 91.3 84.4 83.1 81.6 80.0 86.3 81.9 93.0

Avg. 76.9 74.8 74.8 73.0 70.0 72.5 72.7 58.5 66.6 66.8 69.1 69.4 65.6 79.6

Table 3. Comparison of classification accuracy by our method with recent alternative methods for univariate time series classification (85
UCR datasets). We highlight the best results in bold and the second-best results with underlining. Please see the full results in Appendix
F.

Method Ours
(Uni.) MILLET HC2 Hydra-MR ITime ROCKET TsLaNet GPT4TS TimesNet CrossFormer PatchTST TS-TCC Linear Ours

(Full)

AVg. 86.2 85.6 86.0 85.7 85.6 83.1 83.2 61.6 65.3 73.4 71.8 75.1 69.7 87.3

Table 4. Classification results obtained using our method, evalu-
ated across a comprehensive set of metrics. Acc.: Accuracy, Bal.
Acc.: Balanced Accuracy, F1: F1 score, P: Precision, R: Recall.

Dataset Model Acc. Bal. Acc. F1 P R

UEA 30 Uni. 78.0 76.7 76.3 78.0 76.7
Full 80.9 79.7 79.3 80.7 79.7

UCR 85 Uni. 86.2 83.4 83.3 85.2 83.4
Full 87.3 84.8 84.8 86.4 84.8

several models, such as TodyNet and TimesNet. However,
the main observation is that even with universal hyperparam-
eters, our method can achieve the best overall performance
and obtain a gain over previous SOTA methods (TodyNet
and MILLET) with an average of 2.1% accuracy improve-
ment.

We also present the single-tailed Wilcoxon signed rank
test to compare our methods against the most compet-
itive candidates (MILLET and TodyNet) in the fol-
lowing table, which confirms the statistical superiority.
More surprisingly, our full model can achieve an aver-
age accuracy of over 79.6%, with an additional 2.7%
boosting of our model with universal hyperparameters.

Comparison p-Value

Uni. vs MILLET 0.039
Uni. vs TodyNet 0.020

A similar conclusion can
be reached on UCR uni-
variate datasets as the re-
sults presented in Table
3, where we achieve a 0.2% gain over the previous SOTA
method (HC2). Our full model can obtain a 1% further en-
hancement over our method with universal hyperparameters.
This is reasonably significant as we evaluate models across
85 datasets as optimal hyperparameters in different datasets
can be various. We also realize that HC2 is an ensemble
method of multiple different classifiers with expensive com-
putational costs. Therefore, our method not only improves
performance but also offers a more efficient solution. In
conclusion, all these results highlight the effectiveness of
our method.

6. Model Analysis
In this section, we will delve into the analysis of our model
from several perspectives. We will use the ten datasets as
the same as those used in Section 3 since they are com-
monly selected by previous works (Zerveas et al., 2021;
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Wu et al., 2023a). We use the model with the universal
hyperparameters in the following investigations.

Ablation Analysis. We first investigate the effectiveness of
our methods over baseline in Fig. 5. It is evident that train-
ing with our proposed constraint can obtain accuracy gain in
all datasets. Particularly, we observe that even though there
are fluctuations on some datasets, setting ϵ to 2 can obtain a
relatively considerable gain with a 4% average improvement.
We include statistical test in Appendix E.2.
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Figure 5. The accuracy improvement of our method over the base-
line (i.e. standard training without using any constraint). We
present the average accuracy improvement at the end.
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Figure 6. Comparison of the classification accuracy between origi-
nal TimesNet and it after applying our proposed method.

Case Study on TimesNet and PatchTST. We conduct a
case study on TimesNet (Nie et al., 2023) and PatchTST
(Wu et al., 2023a) to illustrate the proposed FIC can be
generalized to other models. We implement it using the
open source code2 with default hyperparameters. The results
shown in Figs. 6 and 7, where both models can obtain
around 4% gain in accuracy. This confirms the effectiveness
of our method.

Landscape Analysis. Here, we validate the change in the

2https://github.com/thuml/
Time-Series-Library
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Figure 7. Comparison of the classification accuracy between origi-
nal PatchTST and it after applying our proposed method.
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Figure 8. The sharpness reduction by applying our method.

landscape caused by our method. Specifically, we compute
the sharpness (Eq. 9) between our and the baseline models
after well training. We reiterate here that a lower sharpness
often implies a better generalization. We show the results in
Fig. 8, which confirms that using our method can obtain an
average 40% reduction in the sharpness across all datasets.
We illustrate this by visualizing the landscape in Fig. 9.
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Figure 9. The landscape (error contour lines) of the well-trained
network by baseline (Left) and Ours (Right). The contour lines
of our method are more spread out around the center compared to
the baseline, indicating a flatter region.

Comparison with SAM. We also want to highlight the
advantage of our method over previous sharpness-aware
minimization (SAM) (Foret et al., 2020; Ilbert et al., 2024).
For the sake of the fair test, we fix the mini-batch size to 64
for both cases. We evaluate the accuracy and the runtime
as shown in Table 5. This result demonstrates that our
method improves accuracy by 2.6% and enhances efficiency,
reducing the computation time by half.

Explicit Domain Shift Scenario. Here, we adopt a realistic
evaluation scenario. In real-world healthcare applications,
datasets are commonly partitioned by patient, such that in-
dividuals included in the training set are distinct from those
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Table 5. Comparison of classification accuracy and runtime per
iteration by SAM and our method. We fixed both mini-batch
sizes to 64 for a fair comparison. A statistical test is conducted in
Appendix E.3.

Metrics Accuracy(↑) Runtime (s)(↓)
Dataset SAM Ours SAM Ours

EC 36.1 39.2 0.103 0.046
FD 61.0 68.4 0.057 0.036
HW 58.6 61.6 0.468 0.182
HB 79.0 81.0 0.050 0.032
JV 98.7 99.1 0.045 0.028

SCP1 88.1 90.1 0.061 0.032
SCP2 60.6 59.4 0.072 0.036
SAD 99.9 100.0 0.203 0.091
UW 89.7 90.2 0.048 0.028
PS 69.9 79.2 0.472 0.185

Avg. 74.2 76.8 0.158 0.070

Table 6. Comparison of classification accuracy on healthcare
datasets with explicit domain shift. We include Medformer (Wang
et al., 2024a), a recent SOTA method, for reference.

Dataset Method Acc. Bal. Acc. F1 P R

Baseline 93.0 93.0 93.0 93.4 93.0
+FIC 96.2 96.2 96.2 96.3 96.2TDBrain
Medformer 89.6 – 89.6 89.7 89.6

Baseline 46.0 43.9 44.0 44.1 43.9
+FIC 52.8 49.9 48.3 52.3 49.9ADFTD
Medformer 53.3 – 50.7 51.0 50.7

Baseline 73.9 59.2 60.0 65.4 59.2
+FIC 75.1 61.4 63.0 68.6 61.4PTB-XL
Medformer 72.9 – 62.0 64.1 60.6

Baseline 85.1 74.3 74.8 76.5 74.3
+FIC 86.7 75.5 75.5 78.3 75.5SleepEDF
Medformer 82.8 – 71.1 71.4 74.7

in the testing set. This setup introduces an explicit domain
shift, as highlighted by Wang et al. (2024b), due to inter-
patient differences in physiological characteristics, signal
noise, and device-specific variations. We select four popular
publicly available datasets: TDBrain (Van Dijk et al., 2022),
ADFTD (Miltiadous et al., 2023b;a), PTB-XL (Wagner
et al., 2020), and SleepEDF (Kemp et al., 2000). As shown
in Table 6, our method can consistently obtain improvement
over the baseline, and can outperform Medformer (Wang
et al., 2024a), a recent SOTA method, in most cases.

Discussion. We have included additional discussion on
model analysis. please refer to Appendix G.

7. Conclusion
In this work, we propose FIC-TS, a novel learning strategy
that leverages Fisher information as a constraint to address
train/test domain shifts in time series classification. Our

approach is both theoretically sound and computationally
efficient, with empirical results that strongly support our the-
oretical insights. Specifically, our method not only achieves
superior performance on both univariate and multivariate
time series datasets compared to several state-of-the-art
methods, but also leads to a notable reduction in sharpness.
These observations confirm that constraining Fisher infor-
mation encourages flatter minima, ultimately enhancing
generalization.
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Impact Statement
This paper proposes FIC-TSC, a novel training framework
for time series classification that leverages Fisher informa-
tion as a constraint. Our approach effectively mitigates the
domain shift problem and enhances model generalization
by guiding optimization toward flatter minima.

(i) Theoretical View. We establish a Fisher Information
Constraint (FIC) to regulate training, theoretically linking it
to sharpness reduction and generalization under distribution
shifts. Our framework maintains competitive convergence
rates while improving robustness.

(ii) Empirical Validation. Our empirical analysis strongly
aligns with our theoretical findings, confirming that con-
straining Fisher information effectively reduces sharpness
and enhances generalization.

(iii) Applicability. FIC-TSC is designed to be broadly ap-
plicable across diverse time series classification tasks. We
validate its effectiveness on 30 UEA multivariate and 85
UCR univariate datasets, which span multiple domains, in-
cluding healthcare, finance, human activity recognition, and
industrial monitoring. By outperforming 14 state-of-the-art
methods, FIC-TSC demonstrates superior robustness to do-
main shifts—a crucial capability for real-world deployment.

In summary, this work sets a foundation for integrating
Fisher information constraints into time series learning,
with broad implications for both theory and practical ap-
plications.
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A. Proofs
Lemma 1. At a local minimum, the expected Hessian matrix of the negative log-likelihood is asymptotically
equivalent to the Fisher Information Matrix, w.r.t Θ, which is presented as,

Ep(D|Θ)

[
∇2(− log p(D | Θ))

]
= F . (10)

Proof. We first obtain,

Ep(D|Θ)

[
∇2(− log p(D | Θ))

]
(11)

= −Ep(D|Θ)

[
∇2(log p(D | Θ))

]
.

Now, we focus on the term ∇2log p(D | Θ),

∇2log p(D | Θ) (12)

=∇ (∇log p(D | Θ)) = ∇
(
∇p(D | Θ)

p(D | Θ)

)
=
∇2p(D | Θ)p(D | Θ)−∇p(D | Θ)∇p(D | Θ)T

p(D | Θ)p(D | Θ)

=
∇2p(D | Θ)p(D | Θ)

p(D | Θ)p(D | Θ)
− ∇p(D | Θ)∇p(D | Θ)T

p(D | Θ)p(D | Θ)

=
∇2p(D | Θ)

p(D | Θ)
−

(
∇p(D | Θ)

p(D | Θ)

)(
∇p(D | Θ)

p(D | Θ)

)T

.

At a local minimum,∇p(D | Θ) = 0. Therefore,

Ep(D|Θ)

[
∇2log p(D | Θ)

]
(13)

=

∫
∇2p(D | Θ)

p(D | Θ)
p(D | Θ)dx

−Ep(D|Θ)

[
∇ log p(D | Θ)∇ log p(D | Θ)T

]
=∇2

∫
p(D | Θ)dx−F

=−F .

Substitute Eq. 13 to Eq. 11, the proof is completed.

Corollary 1. At a local minimum, the upper bound of α-sharpness is able to be approximated via Taylor expansion
as

α-sharpness ∝ α2∥F∥1
2(1 + L(Θ))

. (14)

Proof. We first applying the Taylor expansion for L(Θ′),

L(Θ′) ≈ L(Θ) +∇L(Θ)⊤(Θ′ −Θ)+ (15)

+
1

2
(Θ′ −Θ)⊤∇2L(Θ)(Θ′ −Θ) +O(Θ′ −Θ).

When Θ is a local minimum,∇L(Θ) = 0, accordingly,

L(Θ′)− L(Θ) =
1

2
(Θ′ −Θ)⊤∇2L(Θ)(Θ′ −Θ). (16)
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In this quadratic form, we note that:

maxΘ′∈B2(α,Θ) (L (Θ′)− L(Θ))

1 + L(Θ)
=

α2∥∇2L(Θ)∥2
2(1 + L(Θ))

, (17)

where ∥∇2L(Θ)∥2 denotes the spectral norm of the matrix, which is equal to its largest eigenvalue λmax.

We also note, at a local minimum,∇2L(Θ) is positive semidefinite, hence,

∥diag(∇2L(Θ))∥1 =
∑
i

λi ≥ λmax, (18)

therefore,

maxΘ′∈B2(α,Θ) (L (Θ′)− L(Θ))

1 + L(Θ)
=

α2∥∇2L(Θ)∥2
2(1 + L(Θ))

≤ α2∥∇2L(Θ)∥1
2(1 + L(Θ))

. (19)

Under the diagonal approximation of FIM, after applying Lemma 1 above, the proof is completed.

Theorem 1. Consider a L-Lipschitz objective function L(Θ), defined such that for any two points Θ1 and Θ2, the
inequality ∥∇L(Θ1)−∇L(Θ2)∥ ≤ L∥Θ1 −Θ2∥ holds. By appropriately choosing the learning rate η and the FIC
constraint ϵ, the convergence rate of gradient descent can be expressed as O( 1

T ), where T represents the number of
iterations.

Proof. We first reiterate the update rule at iteration t via gradient descent,

Θt+1 = Θt − η∇L(Θt)
′, (20)

where η denotes the learning rate, and∇L(Θt)
′ denotes the gradient constrained by FIC. The Lipschitz continuity assumption

can bound the change in the loss function:

L(Θt+1) ≤ L(Θt) +∇L(Θt)
⊤(Θt+1 −Θt) +

L

2
∥Θt+1 −Θt∥2. (21)

Substitute Eq. 20 to above equation, and after simplifying and rearranging,

L(Θt+1)− L(Θt) ≤ −η∇L(Θt)
⊤∇L(Θt)

′ +
Lϵη2

2
. (22)

Since ∇L(Θt)
⊤∇L(Θt)

′ ≥ 0 always holds, when selecting a suitable ϵ and η, we can ensure the loss is sufficiently
decreasing. Subsequently, when the model at T th iteration from a initial point Θ1 ,

L(ΘT )− L(Θ1) ≤
T∑

t=1

(
−η∇L(Θt)

⊤∇L(Θt)
′ +

Lϵη2

2

)
. (23)

Suppose a stationary point3 exists during these T iterations, which is denoted as Θ∗. The following inequalities hold,

L(Θ∗)− L(Θ1) ≤ L(ΘT )− L(Θ1), (24)

and

∥∇L(Θ∗)∥2 = min
t∈[T ]

∥∇L(Θt)∥2, (25)

3At this stage, for simplicity, we assume it is a local minimum.
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where [T ] = {1, ..., T}. Substitute Eq. 24 to Eq. 23 and rearrange,

1

T

T∑
t=1

∇L(Θt)
⊤∇L(Θt)

′ ≤ L(Θ1)− L(Θ∗)

ηT
+

Lϵη

2
. (26)

We also have the below inequality,

min
t∈[T ]

∇L(Θt)
⊤∇L(Θt)

′ ≤ 1

T

T∑
t=1

∇L(Θt)
⊤∇L(Θt)

′. (27)

We can select a suitable ϵ (i.e. not too small) such that

min
t∈[T ]

∥∇L(Θt)∥2 = min
t∈[T ]

∇L(Θt)
⊤∇L(Θt)

′. (28)

Consequently, according to Eqs. 25, 26, 27, and 28, we can immediately obtain a convergence rate of O(1/T ), which
demonstrates a sublinear rate of convergence.

B. Algorithm Detail
Please refer to Algorithm 1.

Algorithm 1 FIC-TS (Training Phase)
Input: Initial Neural network Θ, Optimizer, number of iterations T , loss function L, dataset S
Output: Trained network Θ

1: for t = 1 to T do
2: Sample a mini-batch of data (BX ,BY ) ∈ S
3: Forward pass B̂Y i = f(BX ; θ)
4: Compute loss L(B̂Y ,BY )
5: Backward pass ∇θL(B̂Y ,BY )
6: Compute ∥F∥
7: if ∥F∥ ≥ ϵ then
8: ∇L(Θ)←

√
ϵ

∥F∥∇L(Θ)

9: end if
10: Update parameters Optimizer.step()
11: end for

C. Dataset Description
UEA 30 Datasets.The detail of all 30 datasets is provided in Table S7. It should be noteworthy that the datasets
JapaneseVowels and SpokenArabicDigits used in the Group 2 Experiment originally have varied lengths of
sequences. We pre-process data following (Wu et al., 2023a), where we pad them to 29 and 93, respectively.

UCR dataset. We present the full list of UCR datasets in Fig. S10.

D. Implementation Detail
We use AdamW optimizer (Loshchilov & Hutter, 2017) with a learning rate of 5e-3 and a weight decay of 1e-4. We
implemented all experiments on a cluster node with NVIDIA A100 (40 GB). We use Pytorch Library (Paszke et al., 2019)
with version of 1.13. we implement our algorithm on a network based on (Ismail Fawaz et al., 2020). The architecture of the
network can be simply presented as:

X ∈ Rd×T ffeat−−−→X ∈ R128×T mean pool.−−−−−−−→X ∈ R128 fMLP−−→ Ŷ ∈ RC , (29)
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Table S7. Dataset Summary
Dataset Training Size Test Size Dimensions Length Classes

ArticularyWordRecognition 275 300 9 144 25
AtrialFibrillation 15 15 2 640 3
BasicMotions 40 40 6 100 4
CharacterTrajectories 1422 1436 3 182 20
Cricket 108 72 6 1197 12
DuckDuckGeese 60 40 1345 270 5
EigenWorms 128 131 6 17984 5
Epilepsy 137 138 3 206 4
EthanolConcentration 261 263 3 1751 4
ERing 30 30 4 65 6
FaceDetection 5890 3524 144 62 2
FingerMovements 316 100 28 50 2
HandMovementDirection 320 147 10 400 4
Handwriting 150 850 3 152 26
Heartbeat 204 205 61 405 2
JapaneseVowels 270 370 12 29 (max) 9
Libras 180 180 2 45 15
LSST 2459 2466 6 36 14
InsectWingbeat 30000 20000 200 78 10
MotorImagery 278 100 64 3000 2
NATOPS 180 180 24 51 6
PenDigits 7494 3498 2 8 10
PEMS-SF 267 173 963 144 7
Phoneme 3315 3353 11 217 39
RacketSports 151 152 6 30 4
SelfRegulationSCP1 268 293 6 896 2
SelfRegulationSCP2 200 180 7 1152 2
SpokenArabicDigits 6599 2199 13 93 (max) 10
StandWalkJump 12 15 4 2500 3
UWaveGestureLibrary 120 320 3 315 8

Adiac, ArrowHead, Beef, BeetleFly, BirdChicken, Car, CBF, ChlorineConcentration,
CinCECGTorso, Coffee, Computers, CricketX, CricketY, CricketZ, DiatomSizeReduction,
DistalPhalanxOutlineAgeGroup, DistalPhalanxOutlineCorrect, DistalPhalanxTW,
Earthquakes, ECG200, ECG5000, ECGFiveDays, ElectricDevices, FaceAll, FaceFour,
FacesUCR, FiftyWords, Fish, FordA, FordB, GunPoint, Ham, HandOutlines,
Haptics, Herring, InlineSkate, InsectWingbeatSound, ItalyPowerDemand,
LargeKitchenAppliances, Lightning2, Lightning7, Mallat, Meat, MedicalImages,
MiddlePhalanxOutlineAgeGroup, MiddlePhalanxOutlineCorrect, MiddlePhalanxTW,
MoteStrain, NonInvasiveFetalECGThorax1, NonInvasiveFetalECGThorax2, OliveOil,
OSULeaf, PhalangesOutlinesCorrect, Phoneme, Plane, ProximalPhalanxOutlineAgeGroup,
ProximalPhalanxOutlineCorrect, ProximalPhalanxTW, RefrigerationDevices,
ScreenType, ShapeletSim, ShapesAll, SmallKitchenAppliances, SonyAIBORobotSurface1,
SonyAIBORobotSurface2, StarLightCurves, Strawberry, SwedishLeaf, Symbols,
SyntheticControl, ToeSegmentation1, ToeSegmentation2, Trace, TwoLeadECG,
TwoPatterns, UWaveGestureLibraryAll, UWaveGestureLibraryX, UWaveGestureLibraryY,
UWaveGestureLibraryZ, Wafer, Wine, WordSynonyms, Worms, WormsTwoClass, Yoga.

Figure S10. Full list of UCR 85 datasets.

where ffeat denotes the backbone feature extractor, following the specifications detailed by (Ismail Fawaz et al., 2020). The
MLP-based classifier, denoted as fMLP, comprises two sequential layers: the first layer features 128 × 128 neurons with
ReLu activation function, and the second layer, designed to output class probabilities, includes 128× C neurons, where C
represents the number of classes.

17



FIC-TSC: Learning Time Series Classification with Fisher Information Constraint

Table S8. A summary of the Wilcoxon signed-rank test on Effectiveness of RevIN.

Comparison p-Value

w/ RevIN vs w/o RevIN 0.889

Table S9. A summary of the Wilcoxon signed-rank test on Ablation Analysis.

Comparison p-Value

Itime vs Itime+FIC 0.001

E. Additional Statistical Test
As suggested by (Demšar, 2006), we can conduct the Wilcoxon signed-rank test to compare the performance of two
classifiers across different datasets.

E.1. Statistical Test on Effectiveness of RevIN

Please refer to Table S8, which indicates that there is no significant difference in classification performance between using
RevIN and not using RevIN. This suggests that RevIN is not helpful for classification.

E.2. Statistical Test on Ablation Analysis

Please refer to Table S9. Due to the p-value being tiny and much smaller than 0.05, we have the confidence to conclude that
our method is statistically superior to the baseline.

E.3. Statistical Test on SAM and FIC

Please refer to Table S10.

F. Full Results
F.1. Multivariate Time Series Classification

Please refer to Table S11 below.

F.2. Univariate Time Series Classification
Please refer to Table S12 below.

Table S10. A summary of the Wilcoxon signed-rank test on the comparison between SAM and FIC.

Comparison p-Value

Accuracy 0.006
Runtime 0.001
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Table S11. The full results on 30 UEA datasets. We reported multiple metrics, including Accuracy, balanced Accuracy, F1, Precision (P),
and Recall (R).

Dataset Uni. Full
Accuracy Bal. Accuracy F1 marco P marco R marco Accuracy Bal. Accuracy F1 marco P marco R marco

ArticularyWordRecognition 0.993 0.993 0.993 0.994 0.993 0.998 0.998 0.998 0.998 0.998
AtrialFibrillation 0.567 0.567 0.505 0.486 0.567 0.600 0.600 0.522 0.477 0.600
BasicMotions 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CharacterTrajectories 0.997 0.997 0.997 0.997 0.997 0.999 0.998 0.998 0.999 0.998
Cricket 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DuckDuckGeese 0.650 0.650 0.637 0.694 0.650 0.720 0.720 0.718 0.769 0.720
EigenWorms 0.855 0.797 0.804 0.850 0.797 0.924 0.896 0.893 0.892 0.896
ERing 0.919 0.919 0.919 0.924 0.919 0.954 0.954 0.954 0.955 0.954
Epilepsy 0.989 0.990 0.989 0.989 0.990 1.000 1.000 1.000 1.000 1.000
EthanolConcentration 0.392 0.392 0.386 0.402 0.392 0.401 0.401 0.395 0.418 0.401
FaceDetection 0.684 0.684 0.684 0.685 0.684 0.692 0.692 0.691 0.692 0.692
FingerMovements 0.650 0.647 0.639 0.666 0.647 0.715 0.716 0.714 0.718 0.716
HandMovementDirection 0.493 0.437 0.443 0.506 0.437 0.547 0.514 0.517 0.584 0.514
Handwriting 0.616 0.613 0.591 0.647 0.613 0.730 0.725 0.714 0.740 0.725
Heartbeat 0.810 0.715 0.735 0.780 0.715 0.820 0.746 0.760 0.784 0.746
InsectWingbeat 0.711 0.711 0.711 0.713 0.711 0.723 0.723 0.721 0.722 0.723
JapaneseVowels 0.991 0.989 0.990 0.990 0.989 0.996 0.996 0.996 0.995 0.996
Libras 0.794 0.794 0.790 0.811 0.794 0.917 0.917 0.916 0.923 0.917
LSST 0.653 0.449 0.461 0.597 0.449 0.668 0.443 0.461 0.581 0.443
MotorImagery 0.650 0.650 0.649 0.651 0.650 0.685 0.685 0.683 0.690 0.685
NATOPS 0.989 0.989 0.989 0.989 0.989 0.992 0.992 0.992 0.992 0.992
PEMS-SF 0.792 0.797 0.788 0.796 0.797 0.879 0.878 0.875 0.883 0.878
PenDigits 0.976 0.976 0.976 0.978 0.976 0.985 0.985 0.985 0.986 0.985
PhonemeSpectra 0.313 0.313 0.300 0.318 0.313 0.323 0.323 0.314 0.330 0.323
RacketSports 0.898 0.906 0.904 0.905 0.906 0.908 0.915 0.914 0.915 0.915
SelfRegulationSCP1 0.901 0.901 0.901 0.901 0.901 0.903 0.903 0.903 0.904 0.903
SelfRegulationSCP2 0.594 0.594 0.589 0.599 0.594 0.608 0.608 0.608 0.609 0.608
StandWalkJump 0.633 0.633 0.620 0.640 0.633 0.667 0.667 0.631 0.715 0.667
SpokenArabicDigits 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
UWaveGestureLibrary 0.902 0.902 0.900 0.906 0.902 0.930 0.930 0.929 0.933 0.930

Avg. 0.780 0.767 0.763 0.780 0.767 0.809 0.797 0.793 0.807 0.797
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Table S12. The full results on 85 UCR datasets. We reported multiple metrics, including Accuracy, balanced Accuracy, F1, Precision (P),
and Recall (R).

Dataset Uni. Full
Accuracy Bal. Accuracy F1 marco P marco R marco Accuracy Bal. Accuracy F1 marco P marco R marco

Adiac 0.778 0.780 0.760 0.792 0.780 0.786 0.791 0.774 0.812 0.791
ArrowHead 0.909 0.908 0.906 0.908 0.908 0.911 0.908 0.909 0.913 0.908
Beef 0.800 0.800 0.798 0.825 0.800 0.833 0.833 0.828 0.866 0.833
BeetleFly 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BirdChicken 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Car 0.925 0.914 0.920 0.942 0.914 0.933 0.924 0.931 0.952 0.924
CBF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ChlorineConcentration 0.835 0.806 0.814 0.825 0.806 0.847 0.804 0.823 0.859 0.804
CinCECGTorso 0.785 0.785 0.782 0.796 0.785 0.811 0.811 0.808 0.819 0.811
Coffee 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Computers 0.834 0.834 0.834 0.834 0.834 0.880 0.880 0.880 0.880 0.880
CricketX 0.841 0.843 0.840 0.850 0.843 0.854 0.857 0.853 0.862 0.857
CricketY 0.826 0.827 0.826 0.834 0.827 0.844 0.845 0.843 0.848 0.845
CricketZ 0.850 0.842 0.841 0.849 0.842 0.862 0.854 0.855 0.863 0.854
DiatomSizeReduction 0.979 0.961 0.968 0.978 0.961 0.990 0.982 0.987 0.992 0.982
DistalPhalanxOutlineAgeGroup 0.788 0.789 0.796 0.805 0.789 0.806 0.779 0.806 0.850 0.779
DistalPhalanxOutlineCorrect 0.812 0.790 0.798 0.823 0.790 0.819 0.809 0.812 0.818 0.809
DistalPhalanxTW 0.745 0.577 0.570 0.604 0.577 0.748 0.610 0.586 0.588 0.610
Earthquakes 0.791 0.633 0.640 0.807 0.633 0.802 0.664 0.684 0.767 0.664
ECG200 0.930 0.915 0.923 0.932 0.915 0.935 0.925 0.929 0.933 0.925
ECG5000 0.945 0.554 0.591 0.675 0.554 0.946 0.569 0.616 0.722 0.569
ECGFiveDays 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ElectricDevices 0.740 0.630 0.629 0.671 0.630 0.788 0.722 0.721 0.753 0.722
FaceAll 0.934 0.949 0.925 0.913 0.949 0.959 0.953 0.946 0.943 0.953
FaceFour 0.955 0.958 0.959 0.962 0.958 0.966 0.968 0.970 0.974 0.968
FacesUCR 0.957 0.940 0.943 0.948 0.940 0.960 0.944 0.946 0.949 0.944
FiftyWords 0.803 0.678 0.673 0.707 0.678 0.813 0.685 0.676 0.703 0.685
Fish 0.991 0.993 0.992 0.991 0.993 0.997 0.998 0.997 0.997 0.998
FordA 0.966 0.966 0.966 0.966 0.966 0.967 0.967 0.967 0.967 0.967
FordB 0.862 0.862 0.862 0.862 0.862 0.869 0.869 0.869 0.869 0.869
GunPoint 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Ham 0.824 0.826 0.823 0.834 0.826 0.843 0.844 0.843 0.845 0.844
HandOutlines 0.958 0.947 0.954 0.963 0.947 0.970 0.964 0.968 0.971 0.964
Haptics 0.528 0.528 0.518 0.542 0.528 0.534 0.535 0.523 0.553 0.535
Herring 0.742 0.698 0.697 0.798 0.698 0.750 0.723 0.722 0.778 0.723
InlineSkate 0.356 0.367 0.361 0.381 0.367 0.384 0.395 0.386 0.395 0.395
InsectWingbeatSound 0.627 0.627 0.618 0.637 0.627 0.641 0.641 0.630 0.641 0.641
ItalyPowerDemand 0.974 0.974 0.974 0.974 0.974 0.976 0.976 0.976 0.976 0.976
LargeKitchenAppliances 0.917 0.917 0.917 0.919 0.917 0.932 0.932 0.932 0.932 0.932
Lightning2 0.918 0.919 0.918 0.918 0.919 0.926 0.926 0.926 0.926 0.926
Lightning7 0.897 0.910 0.896 0.896 0.910 0.918 0.923 0.915 0.924 0.923
Mallat 0.970 0.970 0.970 0.970 0.970 0.980 0.980 0.980 0.980 0.980
Meat 0.942 0.942 0.942 0.950 0.942 0.958 0.958 0.958 0.959 0.958
MedicalImages 0.808 0.751 0.761 0.789 0.751 0.818 0.791 0.792 0.808 0.791
MiddlePhalanxOutlineAgeGroup 0.666 0.481 0.497 0.810 0.481 0.679 0.511 0.538 0.789 0.511
MiddlePhalanxOutlineCorrect 0.869 0.858 0.864 0.876 0.858 0.878 0.872 0.875 0.879 0.872
MiddlePhalanxTW 0.627 0.435 0.414 0.429 0.435 0.633 0.468 0.450 0.470 0.468
MoteStrain 0.925 0.925 0.924 0.924 0.925 0.928 0.928 0.927 0.927 0.928
NonInvasiveFetalECGThorax1 0.927 0.926 0.923 0.933 0.926 0.936 0.935 0.934 0.937 0.935
NonInvasiveFetalECGThorax2 0.936 0.934 0.932 0.937 0.934 0.944 0.940 0.938 0.942 0.940
OliveOil 0.800 0.719 0.672 0.714 0.719 0.833 0.764 0.744 0.858 0.764
OSULeaf 0.936 0.922 0.927 0.938 0.922 0.948 0.930 0.939 0.955 0.930
PhalangesOutlinesCorrect 0.857 0.839 0.846 0.857 0.839 0.860 0.840 0.848 0.862 0.840
Phoneme 0.332 0.186 0.188 0.228 0.186 0.350 0.237 0.235 0.278 0.237
Plane 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ProximalPhalanxOutlineAgeGroup 0.885 0.787 0.806 0.836 0.787 0.893 0.825 0.841 0.861 0.825
ProximalPhalanxOutlineCorrect 0.931 0.915 0.920 0.925 0.915 0.940 0.920 0.929 0.941 0.920
ProximalPhalanxTW 0.834 0.575 0.585 0.671 0.575 0.834 0.550 0.539 0.547 0.550
RefrigerationDevices 0.603 0.603 0.597 0.608 0.603 0.611 0.611 0.602 0.612 0.611
ScreenType 0.628 0.628 0.626 0.637 0.628 0.637 0.637 0.635 0.648 0.637
ShapeletSim 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ShapesAll 0.880 0.880 0.878 0.895 0.880 0.883 0.883 0.881 0.902 0.883
SmallKitchenAppliances 0.825 0.825 0.826 0.830 0.825 0.845 0.845 0.847 0.855 0.845
SonyAIBORobotSurface1 0.958 0.957 0.957 0.956 0.957 0.973 0.974 0.973 0.972 0.974
SonyAIBORobotSurface2 0.955 0.957 0.953 0.949 0.957 0.962 0.963 0.960 0.957 0.963
StarLightCurves 0.980 0.961 0.970 0.979 0.961 0.981 0.962 0.972 0.983 0.962
Strawberry 0.976 0.976 0.974 0.971 0.976 0.978 0.977 0.976 0.976 0.977
SwedishLeaf 0.964 0.965 0.964 0.965 0.965 0.965 0.965 0.965 0.966 0.965
Symbols 0.952 0.953 0.952 0.953 0.953 0.974 0.975 0.974 0.975 0.975
SyntheticControl 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ToeSegmentation1 0.974 0.974 0.974 0.974 0.974 0.976 0.977 0.976 0.976 0.977
ToeSegmentation2 0.985 0.983 0.975 0.968 0.983 0.985 0.974 0.974 0.974 0.974
Trace 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TwoLeadECG 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TwoPatterns 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
UWaveGestureLibraryAll 0.845 0.846 0.841 0.854 0.846 0.846 0.847 0.838 0.854 0.847
UWaveGestureLibraryX 0.798 0.796 0.789 0.787 0.796 0.800 0.797 0.792 0.789 0.797
UWaveGestureLibraryY 0.667 0.669 0.665 0.683 0.669 0.691 0.692 0.692 0.697 0.692
UWaveGestureLibraryZ 0.706 0.708 0.701 0.709 0.708 0.721 0.722 0.712 0.726 0.722
Wafer 0.999 0.998 0.997 0.995 0.998 0.999 0.999 0.998 0.998 0.999
Wine 0.759 0.759 0.752 0.799 0.759 0.843 0.843 0.841 0.851 0.843
WordSynonyms 0.683 0.523 0.537 0.600 0.523 0.705 0.566 0.574 0.629 0.566
Worms 0.844 0.819 0.819 0.831 0.819 0.877 0.851 0.861 0.884 0.851
WormsTwoClass 0.857 0.847 0.851 0.864 0.847 0.883 0.877 0.880 0.884 0.877
Yoga 0.848 0.847 0.847 0.847 0.847 0.893 0.892 0.892 0.892 0.892

Avg. 0.862 0.834 0.833 0.852 0.834 0.873 0.848 0.848 0.864 0.848
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G. Discussion
G.1. Why Choose ITime, PatchTST, and Timesnet as baselines?

The selection is based on their impressive impact on the TS community.

G.2. Why choose 10 datasets in the Model Analysis Section?

These are widely chosen in different works, such as TimesNet (Wu et al., 2023a).

G.3. Why is Our Method Potentially Better than SAM in TSC?

As SAM is not central to our work, we defer its detailed theoretical analysis to future work while providing insights for this
superiority. We conjecture the following two reasons as following:

Training sample size. Most SAM papers focus on image datasets (Foret et al., 2020), which typically have large training
sizes (60k 14M). In contrast, TSC datasets often have very limited training sizes, e.g., the UW and SCP2 datasets have only
120 and 200 training samples, respectively. SAM’s effectiveness in such cases remains unexplored.

Sensitive to hyper-parameters. As studied in (Andriushchenko & Flammarion, 2022) (e.g., Fig.16), SAM’s performance is
highly sensitive to its hyper-parameters (e.g., dataset-dependent batch size and perturbation radius). Poor choices can easily
lead to worse performance than standard training. Given diverse TSC datasets, identifying universal hyper-parameters for
SAM performing well on most datasets is challenging.

G.4. Is Diagonal Approximation Necessary?

Yes. DL models typically have huge parameters (e.g., ITime has 600k parameters on SCP1, so Transformer-based models
can have even more parameters). Therefore, computing and storing the full FIM on a typical GPU is extremely inefficient
or even not feasible. We have also tested it on an A100 GPU, and the results support this claim. We also found related
works (Kirkpatrick et al., 2017; Lee et al., 2017; Jhunjhunwala et al., 2024) that consistently apply diagonal approximation to
tackle a similar computational issue, and they mention that the diagonal elements contain sufficiently important information.

It is worth mentioning that EWC (Lee et al., 2017) preserves prior knowledge by penalizing changes to important weights,
using a Gaussian posterior centered at previous weights with precision from the observed Fisher information (Laplace
approximation). Notably, EWC uses a diagonal approximation, aligning with and supporting the efficiency goals of our
work.

Another relevant work, K-FAC (Martens & Grosse, 2015), addresses the high computational cost of the FIM by approximating
large blocks of it, corresponding to entire layers, as the Kronecker product of two much smaller matrices. We consider this a
promising direction for future work to achieve more accurate and efficient FIM approximations.

G.5. Is Analysis of Non-Minimum Points Needed?

No. Our theoretical analysis aims to deliver the achievability of a better convergence. Since the optimizers [by simply
adjusting hyper-parameters], in general, can easily reach local minima after convergence in the TSC task, it is sufficient
to evaluate sharpness at local minima and their neighbors. In Proposition 1, we only claim that an appropriate FIC could
potentially lead to a convergence to flatter minima. Hence, non-minimum points do not affect our conclusion regarding
achievability.

This focus on achievability is analogous to the approach commonly used in Coding Theory (Cover, 1999), where initial
results often emphasize achievable rates to demonstrate feasibility before refining practical implementation further. Similarly,
our work lays the groundwork for future exploration of theoretical optimality.

Moreover, this claim is strongly supported by empirical evidence, where our method achieves ∼ 40% reduction in sharpness
and ∼ 4% gain in accuracy as presented in Figs. 5, 8, and 9. These results validate the practical implications of our
theoretical analysis and demonstrate the effectiveness of our proposed approach.
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G.6. Can FIC Compete Related Methods Related to Domain Shift Problem?

Yes. We compare two related methods that target to solve domain-shift problem:

RevIN. Our method outperforms RevIN, which is the most common approach for addressing domain shift in time series.
The main motivation of our work is that RevIN’s effectiveness in time series classification remains unexplored. Accordingly,
we conducted an empirical investigation that demonstrates RevIN’s ineffectiveness (see Sec. 3).

SAM. Our method outperforms SAM in both accuracy and efficiency in TSC, as presented in Table 5.

G.7. Sharpness and Generalization

While the link between sharpness and generalization is out of our focus, here we want to include more discussion about them.
We fully acknowledge that the relationship between flat minima and generalization remains an open and nuanced research
question. Rather than taking a definitive stance in this ongoing debate, our work aims to contribute to this conversation by
demonstrating that a regularization strategy informed by Fisher information and sharpness can lead to improved robustness
and generalization in real-world time series tasks. Importantly, we have taken care to avoid overclaims in the paper, using
qualified language such as "potential" and "achievable" to reflect the limitations inherent in this area. While authors in (Dinh
et al., 2017a; Petzka et al., 2021) raise concerns about its limitation, these results are derived under specific assumptions (e.g.,
fully connected ReLU networks and carefully constructed reparameterizations). Their applicability to general architectures
and practical training setups remains limited.

Moreover, recent empirical studies (Jiang et al., 2019; Andriushchenko & Flammarion, 2022) suggest that in practical
settings, where such reparameterizations are not applied, sharpness (as commonly measured) can still correlate meaningfully
with generalization. These observations support the idea that sharpness-based metrics, while theoretically imperfect, can
still provide practical value. In addition, as discussed in our related work section, several recent papers (Neyshabur et al.,
2017; Zhang & Xu, 2024; Foret et al., 2020; Andriushchenko & Flammarion, 2022; Kim et al., 2022a; Yun & Yang, 2024)
supported the utility of sharpness-related methods and successfully leveraged them to improve learning outcomes.

Therefore, we believe our results add to this growing body of evidence, particularly in the underexplored domain of time
series data, and we remain cautious yet optimistic about the promise of these methods.

H. Graphic Summary
See Fig. S11.

Figure S11. Comparison of the baseline method (standard training) and our proposed FIC-TSC approach. Training with FIC-TSC leads to
convergence at a flatter minimum, potentially enhancing performance. The additional runtime incurred is insignificant and considered
negligible.
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