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Abstract

Although multi-agent systems based on large001
language models show strong capabilities on002
multiple tasks, they are still limited by high003
computational overhead, information loss, and004
robustness. Inspired by ResNet’s residual learn-005
ing, we propose Residual Mixture-of-Agents006
(RMoA), integrating residual connections to007
optimize efficiency and reliability. To max-008
imize information utilization from model re-009
sponses while minimizing computational costs,010
we innovatively design an embedding-based011
diversity selection mechanism that greedily se-012
lects responses via vector similarity. Further-013
more, to mitigate iterative information degrada-014
tion, we introduce a Residual Extraction Agent015
to preserve cross-layer incremental informa-016
tion by capturing inter-layer response differ-017
ences, coupled with a Residual Aggregation018
Agent for hierarchical information integration.019
Additionally, we propose an adaptive termina-020
tion mechanism that dynamically halts process-021
ing based on residual convergence, further im-022
proving inference efficiency. RMoA achieves023
state-of-the-art performance on the benchmarks024
of across alignment, mathematical reasoning,025
code generation, and multitasking understand-026
ing, while significantly reducing computational027
overhead. Code is available at https://028
anonymous.4open.science/r/RMoA-E3D7/.029

1 Introduction030

Large language models (LLMs) (Achiam et al.,031

2023; Team et al., 2024; Yang et al., 2024) have032

achieved significant advancements in extensive nat-033

ural language processing tasks (Wang et al., 2022;034

Xu et al., 2024). Recently, researchers have pro-035

posed several policy-based methods that enhance036

model performance without model scaling. No-037

table approaches include Chain-of-Thought (Wei038

et al., 2022), which enhances multi-step reasoning;039

Retrieval-Augmented Generation (RAG) (Lewis040

et al., 2020), which leverages external information041

sources; and Multi-Agent Systems (MAS) (Liang 042

et al., 2023; Li et al., 2023a). Among these innova- 043

tions, MAS has garnered significant attention due 044

to exceptional flexibility and broad compatibility. 045

Recently, iterative collaboration strategies have 046

been shown to enhance the capabilities of MAS. 047

Wang et al. (2025) proposed the Mixture-of-Agents 048

(MoA) architecture. This architecture leverages a 049

hierarchical processor design that enables multi- 050

ple layers of agents to process queries in parallel, 051

significantly improving computational efficiency. 052

Then, MoA employs an aggregator to integrate 053

the outputs from these agents, generating the fi- 054

nal response. Subsequently, Sparse Mixture-of- 055

Agents (SMoA) (Li et al., 2024) were introduced 056

to reduce the large number of tokens involved in 057

parallel queries under MoA, thus lowering infer- 058

ence costs. These approaches incorporate a judge 059

model (Zheng et al., 2023) to evaluate the quality 060

of responses generated by different models, thereby 061

reducing the number of tokens processed by the ag- 062

gregator. While this strategy somewhat alleviates 063

computational overhead, it still faces challenges in 064

ensuring the robustness of quality differentiation 065

among responses (Dhurandhar et al., 2024). More- 066

over, as the number of processing layers increases, 067

MoA may suffer from the loss of critical informa- 068

tion during aggregation (Tworkowski et al., 2024), 069

leading to inaccurate responses and ultimately com- 070

promising the overall stability and reliability . 071

To address these challenges, we propose RMoA, 072

an improved MoA-based architecture inspired by 073

residual connections. Unlike existing approaches, 074

we do not employ a judge model to select the opti- 075

mal response. Instead, we introduce an embedding 076

model to convert responses into vector represen- 077

tations and compute their similarities. A greedy 078

strategy is then applied to select K responses with 079

the highest diversity, ensuring greater information 080

heterogeneity. Additionally, we design a Residual 081

Extraction Agent to capture differences between re- 082
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sponses at successive layers. These residuals, along083

with the selected diverse responses, are fed into the084

aggregator, preserving incremental information and085

mitigating the loss of key content during deep ag-086

gregation.087

To conserve computational resources, we incor-088

porate an Adaptive Termination Mechanism, which089

dynamically determines when to halt processing090

based on response variations between iterations,091

thereby reducing unnecessary overhead. Further-092

more, to foster diverse and creative reasoning, each093

agent is assigned a distinct role-playing persona.094

To comprehensively evaluate the effectiveness095

of our approach, we conduct extensive experiments096

on alignment, mathematics, code generation, and097

multi-task understanding. Experimental results098

demonstrate that RMoA achieves state-of-the-art099

performances with lower computational costs. Ad-100

ditionally, a series of ablation studies validate the101

effectiveness of each component in RMoA. Fi-102

nally, we investigate RMoA’s performance under103

increased computational budgets, showing that for104

models with strong general capabilities, deeper ar-105

chitectures tend to yield improved performance106

across most datasets.107

Overall, our contributions consist of three parts.108

• We introduce RMoA, an improved MoA ar-109

chitecture with an embedding-based selection110

mechanism, a Residual Extraction Agent, and111

an Adaptive Termination Mechanism to en-112

hance efficiency and diversity.113

• We validate RMoA on multiple benchmarks,114

demonstrating superior performance with115

lower computational cost. Ablation studies116

confirm the effectiveness of each component.117

• We analyze RMoA under varying computa-118

tional budgets, showing that deeper architec-119

tures improve performance and providing in-120

sights into scalable multi-agent systems.121

2 Related Work122

2.1 LLM Reasoning123

Recent advancements in LLM reasoning have intro-124

duced various prompt strategies to improve down-125

stream tasks. Chain of Thought (CoT) (Wei et al.,126

2022; Kojima et al., 2022) prompting guides the127

model to explicitly output the intermediate step-128

by-step reasoning before providing the final an-129

swer. To address errors in CoT, such as missing130

steps or inconsistent logic, Auto-CoT (Zhang et al., 131

2022) automates the generation of diverse demon- 132

strations, while Reprompting (Xu et al., 2023a) 133

iteratively refines prompts to enhance reasoning. 134

Plan-and-Solve (PS) (Wang et al., 2023) Prompting 135

introduces a planning phase to break tasks into sub- 136

tasks with detailed instructions. Additionally, Logi- 137

CoT (Liu et al., 2023) integrates symbolic logic 138

to validate reasoning processes and reduce errors. 139

Building on the linear structure of CoT, Tree of 140

Thought (ToT) (Yao et al., 2023) expands CoT with 141

a tree-like structure, considering multiple reason- 142

ing paths and self-evaluating choices, and Graph 143

of Thought (GoT) (Besta et al., 2024) represents 144

reasoning steps as graph nodes, incorporating oper- 145

ations like aggregation and refinement for complex 146

tasks. Addtionally, Cumulative Reasoning (CR) 147

(Zhang et al., 2023) simulates human-like itera- 148

tive reasoning, while LeMa (An et al., 2023) uses 149

GPT-4 as an error-correcting agent to revise faulty 150

reasoning steps and fine-tune LLMs. However, 151

the existing topological relationship (such as linear 152

chain or tree structure) is usually fixed in advance , 153

which lacks dynamic adaptability and extensibility. 154

2.2 Collaborative Agents 155

Collaborative Agents in LLM-based systems en- 156

hance task performance by enabling agents to work 157

together, share knowledge, and dynamically adjust 158

their strategies to solve complex problems. Peer 159

Review Collaboration (Xu et al., 2023b) refines so- 160

lutions based on feedback from other agents. The 161

Chain of Experts framework (Xiao et al., 2023) 162

coordinates agents with specialized knowledge to 163

solve complex tasks, while Theory of Mind (Li 164

et al., 2023b) improves collaboration by enabling 165

agents to predict each other’s intentions. Besides, 166

frameworks like MetaGPT (Hong et al., 2023) 167

and Chatdev (Qian et al., 2024) utilize specialized 168

agents for modular tasks, such as programming, 169

while MapCoder (Islam et al., 2024) extends this 170

approach by integrating agents for code retrieval, 171

planning, and debugging. Dynamic frameworks 172

like DyLAN (Liu et al., 2024) and MACNET (Qian 173

et al., 2025) organize agent interactions based on 174

task importance, improving scalability and solution 175

quality in large collaborations. Wang et al. (2025); 176

Li et al. (2024) proposed Mixture-of-Agents archi- 177

tecture for iterative collaboration. However, they 178

are still limited by high computational overhead, 179

information loss, and robustness. 180
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Figure 1: MoA-RMoA Structural Comparison.

3 Methodology181

This section begins with an overview of MoA, fol-182

lowed by a comprehensive analysis of RMoA’s core183

components: Greedy Diversity Embedding Selec-184

tion, Residual Agent, and Adaptive Termination185

mechanisms, as depicted in Figure 2. Initially, the186

Greedy Diversity Embedding Selection filters out187

diverse and representative responses, ensuring var-188

ied inputs for further processing. Next, the Resid-189

ual Agent uses these selected responses to pinpoint190

key differences between dialogue rounds, integrat-191

ing them into the reference material to reduce in-192

formation loss. Finally, the Adaptive Termination193

Mechanism continuously monitors the process in194

real-time, deciding whether to continue based on195

residual detection outcomes, thus avoiding unnec-196

essary iterations and potential hallucinations.197

3.1 Mixture-of-Agents198

As shown in Figure 1, MoA employs a multi-199

layered architecture to generate and optimize re-200

sponses. The structure comprises L layers, with201

each layer l consisting of N agents, denoted as202

{Al,1, Al,2, . . . , Al,N}. And an aggregator Ag is203

positioned at the final. Initially, in the first layer,204

multiple proposers independently generate initial205

responses {R1,1, R1,2, ..., R1,N} to a given query206

x. These responses are then concatenated as R1207

and serve as input for the subsequent layer. This208

iterative process continues until reaching the final209

layer, producing output RL. Finally, all inputs are210

fed into Ag for integration and optimization, gener-211

ating the final response RF .212

3.2 Residual Mixture-of Agents213

3.2.1 Greedy Diversity Embedding Selection214

Tworkowski et al. (2024) identified the "Distraction215

issue," where increasing tokens in the self-attention216

mechanism can cause semantic overlap among 217

keys, hindering the model’s focus on relevant in- 218

formation. In the MoA, generating responses by 219

referencing up to N previous models’ responses 220

increases cognitive load. To address this, we use a 221

greedy strategy to maximize diversity, selecting K 222

diverse responses for concatenation. 223

Taking layer l as an example, our objective is to 224

identify a subset containing only K elements from 225

all responses {Rl,1, Rl,2, ..., Rl,N} through maxi- 226

mum semantic diversity. The algorithm follows 227

these steps: 228

In the Similarity Matrix Construction in- 229

volves computing the cosine similarity matrix S ∈ 230

Rn×n for all pairs of responses. Each element of 231

this matrix is defined by the cosine similarity be- 232

tween embedding vectors ei and ej : 233

Si,j = cos(ei, ej) =
ei · ej
∥ei∥∥ej∥

, (1) 234

where ei and ej represent the embedding vectors 235

of Rl,i and Rl,j , respectively. This matrix is sym- 236

metric, meaning that Si,j = Sj,i, and the diagonal 237

elements are equal to 1, Si,i = 1. 238

In the Initialization Phase, we begin by defin- 239

ing the candidate index set C = {1, 2, . . . , N} and 240

the selected index set Q = ∅. The initial element 241

is selected by minimizing the global average simi- 242

larity, which is calculated as: 243

i0 = argmin
i∈C

 1

N

N∑
j=1

Si,j

 . (2) 244

Once the initial element i0 is identified, the sets 245

are updated accordingly: Q← Q ∪ {i0} and C ← 246

C \ {i0}. 247

In the Iterative Selection Phase involves select- 248

ing elements to maximize diversity. For each itera- 249

tion t = 1, . . . ,K − 1, the process begins with the 250

Maximum Similarity Calculation, where for each 251

candidate i ∈ C, the maximum similarity with the 252

already selected set is computed as follows: 253

Φ(i) = max
q∈Q

Si,q. (3) 254

Following this, the Minimization Selection step 255

chooses the candidate that minimizes Φ(i): 256

it = argmin
i∈C

Φ(i). (4) 257

After selecting the candidate, the sets are updated: 258

Q ← Q ∪ {it} and C ← C \ {it}. This iterative 259
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Figure 2: Overview of Residual Mixture-of-Agents Structure.

process continues until the termination condition260

|Q| = K is met, resulting in the final selected261

reference text set S = {ri | i ∈ Q}.262

3.2.2 Residual Agent263

In the MoA framework, models may experience in-264

formation loss when referencing multiple responses265

from the previous iteration. This phenomenon can266

lead to a gradual degradation of information, caus-267

ing the model’s performance to decline even in268

early stages (Li et al., 2024). We draw inspiration269

from the residual concept in ResNet and introduce270

a residual extraction agent and a residual aggrega-271

tion agent. The residual extraction agent employs272

predefined prompt templates to identify significant273

variations between consecutive dialogue responses,274

integrating these differential features with the pre-275

vious layer’s output to provide contextual input276

for subsequent processing. At the architecture’s fi-277

nal stage, the residual aggregation agent combines278

the preceding layer’s reference response with the279

current layer’s residual features to generate an opti-280

mized system output.281

Residual Extraction Agent In layer l, fol-282

lowing the execution of Greedy Diversity Embed-283

ding Selection, we obtain K candidate responses284

{Rl,xj
}Kj=1 generated by proposers, along with his-285

torical responses {Rl−1,xj
}Kj=1 from the preceding286

layer (l − 1). These responses are concatenated287

to form composite inputs, which are subsequently288

processed by the Residual Extraction Agent Res289

to identify useful differences. This process can be290

formally represented as follows:291

• Concatenation Operation: Concatenate the292

l-th layer’s responses with the previous layer’s293

aggregated response: 294

Rl = Cat({Rl,xj
}Kj=1, {Rl−1,xj

}Kj=1). (5) 295

• Residual Extraction: Compute the residual 296

using the residual extraction agent Res: 297

∆Rl = Res(Rl, prompt). (6) 298

• Residual Reference: Concatenate the ex- 299

tracted residual ∆Ri with the previous layer’s 300

responses to provide reference for the next 301

layer: 302

R̂l = Cat({Rl−1,xj
}kj=1,∆Rl). (7) 303

It is noteworthy that when l = 1, there is no aggre- 304

gated response from the previous layer, so we set 305

∆R0 to be empty. 306

Residual Aggregation Agent The Residual 307

Aggregation Agent acts on the final layer to inte- 308

grate the model’s responses. Specifically, for the 309

last layer l, after greedy differential embedding 310

selection and residual extraction, the responses ob- 311

tained from the previous round are aggregated with 312

the current round’s residual ∆Rl: 313

Rl = Agg({Rl−1,xj
}kj=1,∆Rl). (8) 314

Through this approach, the RMoA framework ef- 315

fectively captures and integrates differences across 316

iterations, minimizing information loss and enhanc- 317

ing model performance in multi-layer iterative pro- 318

cesses. 319

4



3.2.3 Adaptive Termination320

In the MoA framework, typically l layers of pro-321

cessing are required to obtain the final output of a322

problem. However, sometimes the ideal result may323

be achieved at a shallower layer, and continuing324

the process might lead to unnecessary computa-325

tion or even negative effects. To address this, we326

introduce an adaptive stopping mechanism that de-327

termines whether to continue iteration by detecting328

the presence of residuals in the extraction process.329

Specifically, the core of the adaptive stopping330

mechanism is: if no residuals are detected in the331

current layer and the preceding m consecutive lay-332

ers, the iteration process is terminated early. Math-333

ematically, this can be expressed as:334

For a given layer i, if for all j = 0, 1, . . . ,m−1,335

the values of ∆Ri−j are "no change" or "no up-336

date", then stop the iteration. Otherwise, continue337

processing to the next layer.338

This mechanism reduces unnecessary compu-339

tational resource consumption while ensuring re-340

sult quality, thereby improving the model’s effi-341

ciency and performance. By adaptively determin-342

ing the presence of residuals, the model can dy-343

namically adjust the depth of processing, avoiding344

over-computation and optimizing performance.345

4 Evaluation346

4.1 Setup347

Benchmark To comprehensively evaluate the ef-348

fectiveness of our method, we conduct experiments349

across four critical benchmarks: alignment, math-350

ematical reasoning, general reasoning, and code351

understanding. For alignment assessment, we em-352

ploy AlpacaEval 2.0 (Dubois et al., 2024) with353

gpt-4-1106-preview as the reference model. This354

benchmark utilizes a GPT-4-based evaluator to cal-355

culate length-controlled (LC) win rates, effectively356

mitigating length bias while comparing model re-357

sponses against the reference outputs.358

For mathematical reasoning evaluation, we adopt359

the MATH (Hendrycks et al., 2021) benchmark,360

which contains 5,000 challenging competition-361

level mathematics problems requiring multi-step362

reasoning. The general reasoning capability is mea-363

sured through MMLU-redux (Gema et al., 2024),364

a refined subset of the MMLU (Hendrycks et al.,365

2020) benchmark comprising 3,000 manually re-366

annotated samples that address original dataset er-367

rors while maintaining comprehensive knowledge368

coverage.CRUX (Gu et al., 2024) is a benchmark369

for assessing code understanding, featuring 800 370

Python functions. It evaluates input and output 371

prediction tasks, requiring advanced code compre- 372

hension and reasoning. 373

Implementation Details In our research, we 374

mainly developed RMoA using open-source small 375

models, achieving significant performance im- 376

provements across multiple datasets, including 377

Gemma2-9B-Instruct (Team et al., 2024), Qwen2.5- 378

7b-Instruct (Yang et al., 2024), and Llama3.1-8b- 379

Instruct (Vavekanand and Sam, 2024). We build 380

up to 6 layers of RMOA and select 3 responses 381

on Greedy Diversity Embedding Selection, using 382

the same small model in each layer for consis- 383

tency. To enhance the diversity and creativity 384

of model outputs, we introduced different role- 385

playing mechanisms (Jinxin et al., 2023) for the 386

models. We employed the open-source BGE-m3 387

(Multi-Granularity) model for embeddings, and the 388

same model for residual extraction and aggregation. 389

Since the MoA and SMoA papers did not conduct 390

experiments on small models (e.g., llama3.1-8B- 391

Instruct), the results presented in this section are 392

derived from our own tests. To ensure the reliabil- 393

ity and consistency of the results, we used the same 394

prompts, sampling temperature, and max_tokens 395

across all datasets. In terms of inference, we em- 396

ployed the vllm (Kwon et al., 2023) framework 397

to enhance inference speed, which may result in 398

minor differences compared to existing studies. 399

4.2 Results 400

As shown in Table 1,we conducted a compre- 401

hensive comparison of various MoA methods 402

across multiple datasets, including AlpacaEval2.0, 403

MATH, CRUX, and MMLU-redux. 404

MATH On the MATH benchmark, our method 405

significantly improves model performance. Specif- 406

ically, the Qwen2.5-7B-Instruct model achieves 407

a +2.26% absolute accuracy increase, Gemma2- 408

9B-Instruct shows a breakthrough improvement of 409

+13.8%, and Llama3.1-8B-Instruct sees a +3.92% 410

improvement. Notably, even on the larger GPT- 411

4o model, we observe a significant +4.56% gain, 412

demonstrating the exceptional performance of our 413

method in mathematical reasoning tasks. 414

CRUX On the CRUX dataset, our method 415

achieves optimal performance with Qwen2.5-7B- 416

Instruct (+3.69%) and GPT-4o (+11.57%). While 417

Gemma2-9B-Instruct and Llama3.1-8B-Instruct 418

also show positive gains, their improvements are 419

slightly lower compared to traditional MoA meth- 420
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Model AlpacaEval 2.0 MATH CRUX MMLU-r Average
Qwen2.5-7B-Instruct 37.94 74.94 57.31 69.90 60.02

+MoA 31.77 75.28 56.81 62.70 56.64↓5.63%
+SMoA 40.79 76.98 59.93 72.00 62.43↑4.02%
+RMoA 41.01 77.20 61.00 71.80 62.75↑4.55%

Gemma2-9B-Instruct 45.15 36.64 47.50 63.90 48.30
+MoA 42.73 48.92 51.50 65.73 52.22↑8.12%
+SMoA 43.23 49.96 51.25 65.80 52.56↑8.82%
+RMoA 45.61 50.44 50.50 66.10 53.16↑10.06%

Llama3.1-8B-Instruct 22.93 48.18 40.62 58.60 42.58
+MoA 30.43 50.60 46.12 55.10 45.56↑7.00%
+SMoA 31.99 51.20 44.81 60.86 47.21↑10.87%
+RMoA 32.86 52.10 42.65 61.63 47.41↑11.10%

GPT-4o 55.18 76.60 75.80 83.73 72.83
+MoA 60.55 80.08 86.66 85.80 78.27↑7.47%
+SMoA 56.24 78.08 86.93 84.94 76.55↑5.11%
+RMoA 63.29 81.16 87.37 86.67 79.62↑9.32%

Table 1: Experimental results of various methods on the AlpacaEval2.0, MATH, CRUX, and MMLU-redux datasets,
evaluated using the original benchmark metrics.

ods (∆ = 1.2%−1.8%). This suggests that in code421

understanding tasks, the introduction of redundant422

tokens can positively influence performance by en-423

hancing context modeling.424

MMLU-redux In the MMLU-redux multi-425

domain knowledge evaluation, the RMoA method426

results in an average accuracy increase of +2.51%.427

The SMoA method also shows a +1.86% improve-428

ment. However, for MoA on smaller models (e.g.,429

Qwen2.5-7B-Instruct and Llama3.1-8B-Instruct),430

performance significantly drops below the baseline431

(∆ = −3.50% ∼ −7.20%). This outcome veri-432

fies that redundant information may interfere with433

reasoning processes in knowledge-intensive tasks.434

AlpacaEval 2.0 Due to experimental resource435

constraints, we used the official GPT-4o-mini as436

the evaluator. The results indicate that our method437

consistently achieves optimal performance across438

models of varying scales, particularly with a no-439

table +8.11% improvement on the GPT-4o model.440

It is worth noting that although the improvement441

for Gemma2-9B-Instruct is relatively modest (∆ =442

+0.46%), both SMoA and traditional MoA meth-443

ods experience performance degradation on this444

model (∆ = −1.92% ∼ −2.42%).445

5 Analysis446

In this section, we conduct comprehensive experi-447

ments to thoroughly investigate the mechanisms of448

RMoA. The experiments are primarily divided into449

ablation studies, cost analysis, and case studies.450

5.1 Ablation Study 451

We conducted ablation experiments by fixing each 452

layer’s model to 6 Qwen2.5-7B-Instruct to system- 453

atically analyze the contribution of each RMoA 454

component to model performance. In the follow- 455

ing sections, we will analyze the impact of each 456

component in detail. 457

The number of responses selected through 458

greedy diversity embedding is a critical hyper- 459

parameter. As shown in Table 2, on the MATH 460

and CRUX datasets, model performance increases 461

when the response number K is 2 or 3, but de- 462

creases at K values of 4 and 5. Similarly, on the 463

MMLU-redux dataset, performance improves at K 464

values of 2, 3, and 4, but declines at 5. Therefore, 465

selecting K = 3 strikes a balance between model 466

performance and computational cost. Notably, in 467

SMoA’s response selection process, K = 3 also 468

proves to be an optimal choice. 469

5.2 Budget Analysis 470

Models with strong comprehensive capabilities 471

can enhance the effectiveness of residual ex- 472

traction and aggregation. In our investigation 473

of the impact of different model capabilities on 474

residual extraction and aggregation, we selected 475

Llama3.1-8B-Instruct as the base model for our 476

experiments, with all proposers being Llama3.1- 477

8B-Instruct. For residual extraction, as shown in 478

Table 3, we fixed the residual aggregator as the 479

Llama3.1-8B-Instruct model and varied the resid- 480
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Math CRUX MMLU-r Cost

MoA 75.28 57.31 62.70 176.59

RMOA
w/ K=2 76.24 58.12 71.30 104.47
w/ K=3 77.20 61.00 71.80 121.55
w/ K=4 76.82 60.06 72.26 146.30
w/ K=5 76.78 59.87 72.16 178.62

Table 2: Hyperparameter analysis of the response
count K in Greedy Diversity Embedding Selec-
tion for Qwen2.5-7B-Instruct.

Model Extractor Aggreator
Llama2-7B-Instruct 49.26 49.30
Llama3.1-8B-Instruct 52.10 52.10
Qwen2.5-72B-Instruct 53.38 80.16
DeepSeek-R1-Distill-Llama-70B 56.12 53.52

Table 3: Evaluating the Impact of Models as Residual Extractors
and Aggregators on MATH Dataset. LLaMA-3.1-8B-Instruct
acts as the aggregator when evaluating extractors, and vice versa.
The setup uses four RMoA layers with LLaMA-3.1-8B-Instruct
as the proposer.

Figure 3: Performance comparison of RMoA and MoA
across different layer counts on GPT-4o and Qwen2.5-
7B-Instruct.

Math CRUX MMLU-r Cost

MoA 75.28 57.31 62.70 176.59
RMOA 77.20 61.00 71.80 121.55

w/o ES 76.90 60.37 72.10 207.23
w/o RA 75.90 59.37 71.60 90.37
w/o AT 77.10 59.62 71.70 138.56

Table 4: Ablation study results with Qwen2.5-7B-
Instruct. ES, RA, and AT correspond to Greedy Diver-
sity Embedding Selection, Residual Extraction Agent,
and Adaptive Termination.The cost metric refers to the
total dollar expenditure of the method across the three
datasets. It is calculated based on the Tother API’s pric-
ing model, which charges $0.30 per 1 million tokens.

ual extractor model. The results indicate that using481

the more capable Qwen2.5-72B and Deepseek-R1-482

Distill-Llama-70B models improved performance483

on the MATH task by 1.28% and 4.02%, respec-484

tively. In contrast, the less capable Llama2-7B-485

Instruct led to a performance decrease of 2.84%. A486

similar trend was observed for residual aggregation.487

Notably, when using Qwen2.5-72B-Instruct for ag-488

gregation, performance increased significantly by489

28.06%. This improvement may be attributed to490

the aggregator not only referencing the informa-491

Figure 4: Performance comparison of RMoA and MoA
across different layer counts on Llama3.1-8B-Instruct
and Gemma2-9B-Instruct.

tion provided by the extractor and residuals but 492

also leveraging its own knowledge for aggregation. 493

This phenomenon aligns with previous findings 494

(Xie et al., 2024) on cognitive biases and the curse 495

of knowledge in Large language models. 496

RMoA demonstrates a stronger capability for 497

deep-level iteration. As shown in Figure 3 and 498

Figure 4, the performance of different models on 499

the MATH dataset continuously improves with the 500

increase in layers, whereas MoA exhibits varying 501

degrees of decline across all models. This further 502

indicates that MoA may generate hallucinations 503

during the iteration process, leading to originally 504

correct answers becoming incorrect. In contrast, 505

RMoA completes the task more effectively, show- 506

casing its potential for deeper-level iteration com- 507

pared to MoA. 508

Cost Efficiency Analysis 509

Adaptive Termination mitigates performance 510

degradation caused by hallucinations due to ex- 511

cessive iterations and helps reduce costs. As 512

shown in Table 4, Adaptive Termination led to 513

varying degrees of improvement across different 514

datasets, with the most notable increase of 1.38% 515

7



(a) Performance vs Cost (b) Performance vs TFLOPs

Figure 5: Comparison of Performance Metrics

observed on the CRUX dataset. This improvement516

is likely because smaller models may generate hal-517

lucinations when they continue to update responses518

after already providing correct answers. Addition-519

ally, the implementation of adaptive early stopping520

resulted in a cost savings of $17.01.521

In Figure 5a, we present the relationship between522

ACC and the total inference cost on the MATH523

benchmark. Since we are using local inference,524

accurately quantifying specific costs is challeng-525

ing. Therefore, we utilize model pricing from526

the API website for our calculations. The chart527

illustrates a Pareto frontier, indicating that certain528

models achieve a better balance between cost and529

performance. Models closer to the Pareto frontier530

are more cost-effective. Specifically, our RMoA,531

by selecting three differentiated responses and em-532

ploying Qwen2.5-7B-Instruct as the model for all533

agents, achieves the optimal configuration. Com-534

pared to MoA with the same model configuration,535

RMoA improves performance by 1.92% while cost-536

ing only 68.83% of MoA.537

TFLOPs Analysis Due to the varying laten-538

cies caused by different inference systems, we use539

the number of TFLOPs as a proxy for latency.In540

Figure 5b,the chart describes the relationship be-541

tween ACC and the number of TFLOPs, where542

a Pareto frontier is also observable. Models on543

this frontier effectively utilize their computational544

resources to maximize accuracy on MATH. Specif-545

ically, compared to MoA with the same configura-546

tion, RMoA achieves a 1.92% increase in accuracy547

while reducing TFLOPs by nearly 31.88%.548

5.3 Case Study549

By demonstrating the effectiveness of greedy diver-550

sity selection and residual extraction (more details551

in Figures 14 and 15), we observe that the re-552

sponses from the four models contain a amount of 553

homogeneous content. After applying greedy diver- 554

sity selection, GPT-4o and Qwen2.5-7B-Instruct 555

were chosen. These two responses encompass the 556

vast majority of the content from all responses, 557

highlighting the effectiveness of the greedy diver- 558

sity selection method. Additionally, by performing 559

residual extraction on the responses selected from 560

two consecutive rounds, we identified additional 561

information and detail discrepancies related to the 562

questions. This provides a solid foundation for 563

subsequent residual aggregation. 564

6 Conclusion 565

This paper introduces the RMoA Framewrok, 566

which ultilizes iterative collaboration to improve 567

MAS capabilities. We propose Greedy Differential 568

Embedding Selection, Residual Agent, and Adap- 569

tive Termination Mechanism to achieve diversity 570

maximization and residual compensation. The pro- 571

posed RMoA alleviates the problems of high com- 572

putational overhead, information loss and robust- 573

ness of traditaional MoA architecture. We conduct 574

extensive evaluations across a variety of tasks and 575

explore the potential of RMoA through ablation 576

studies and cost analysis. 577

Limitation 578

In this work, we introduce residuals to mitigate 579

information loss between layers, enabling our 580

method to achieve performance gains even at deep 581

layers. However, due to time and cost constraints, 582

we have not yet explored the performance limits of 583

our approach. In future work, we aim to evaluate 584

the performance limits of various models across 585

different depths and analyze the scaling laws that 586

govern these limits. 587
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A Prompt Design791

In this section, we provide all the prompts used by792

RMoA in the experiments. Specifically, Figure 6793

illustrates the prompts used by RMoA’s residual794

extraction and residual aggregation agents. Mean-795

while, Figure 7 displays the prompts employed in796

the baseline models MoA and SMoA, which were797

sourced from their official GitHub projects.798

Additionally, to enhance the distinctiveness of799

model outputs, we assigned different role-playing800

descriptions (Jinxin et al., 2023) to each dataset.801

Specifically, Figure 8 presents the role prompts802

for AlpacaEval 2.0, Figure 9 showcases the role803

prompts for CRUX, and Figures 10 and 11 display804

the role prompts for MATH and MMLU-Redux,805

respectively.806

For different datasets, we employed distinct rea-807

soning modes to optimize performance. As shown808

in Figures 10 and 11, we used a few-shot approach809

for the MATH dataset. Figure 12 illustrates the810

use of Chain-of-Thought (CoT) reasoning for the811

CRUX dataset. Due to the extensive nature of the812

CoT content for MMLU-Redux, the prompts can813

be found in the code’s prompt file. Lastly, for Al-814

pacaEval 2.0, we adopted a zero-shot approach.815

Benchmark Method
MATH Few-Shot
CRUX CoT
MMLU-redux CoT
AlpacaEval 2.0 Zero-Shot

Table 5: Inference Modes for Different Datasets

B Acknowledgment of AI Assistance in816

Writing and Revision817

We utilized ChatGPT-4o for paper refinement and818

grammar correction.819

C More results820

As shown in 6 and 7,the benchmark performance821

of Qwen2.5-7B-Instruct and GPT-4o across differ-822

ent layers on the RMoA framework, as shown in the823

tables, indicates a trend of increasing performance824

with deeper layers. For Qwen2.5-7B-Instruct, there825

is a consistent improvement across the MATH,826

CRUX, and MMLU-r benchmarks, with CRUX827

showing a notable increase from 57.12% at Layer828

1 to 61.00% at Layer 6. Similarly, GPT-4o demon-829

strates an upward trend, with MATH scores rising830

Math CRUX MMLU-r

RMOA
Layer 1 75.32 57.12 69.96
Layer 2 77.02 58.50 70.83
Layer 3 77.10 59.50 70.9
Layer 4 77.14 60.01 70.93
Layer 5 77.26 60.05 71.80
Layer 6 77.20 61.00 71.80

Table 6: The benchmark performance of Qwen2.5-7B-
Instruct at different layers on RMoA.

Math CRUX MMLU-r

RMOA
Layer 1 79.18 86.68 83.73
Layer 2 80.08 86.81 86.06
Layer 3 80.44 87.18 86.56
Layer 4 81.16 87.17 86.62
Layer 5 81.32 87.37 86.68
Layer 6 81.34 87.37 86.67

Table 7: The benchmark performance of GPT-4o at
different layers on RMoA.

from 79.18% at Layer 1 to 81.34% at Layer 6, and 831

comparable improvements in CRUX and MMLU-r 832

benchmarks. These results suggest that the RMoA 833

framework effectively mitigates information loss 834

between layers, leading to enhanced performance 835

in deeper layers, and highlighting the potential for 836

further exploration into layer depth optimization to 837

achieve even greater performance gains. 838

11



Figure 6: Agent Prompt Design-Part One
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Figure 7: Agent Prompt Design - Part two

13



Figure 8: Agent Prompt Design - Part Three
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Figure 9: Agent Prompt Design - Part Four
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Figure 10: Agent Prompt Design - Part five
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Figure 11: Math Few-shot Prompt-Part One
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Figure 12: Math Few-shot Prompt-Part Two
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Figure 13: CRUX Chain-of-Thought Prompt
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Figure 14: An example to demonstrate Greedy Diversity Embedding Selection and Residual Extraction. Part One
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Figure 15: An example to demonstrate Greedy Diversity Embedding Selection and Residual Extraction. Part Two
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