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ABSTRACT

We present a method for graph node classification that allows a user to pre-
cisely select the resolution at which the graph in question should be simplified
and through this provides a way of choosing a suitable point in the performance-
complexity trade-off. The method is based on refining a reduced graph in a tar-
geted way following the node classification confidence for particular nodes.

1 INTRODUCTION

Machine learning on graphs has, in recent years, seen an explosion in popularity, the underlying
graph topology has, however, received much less attention. The main aim of this work is to ex-
plore the performance-complexity characteristics in the context of graph learning, as introduced in
Procházka et al. (2022), mainly to enable learning on graphs that would otherwise be prohibitively
large. Consider an undirected graph G. The result of a repeated application of graph coarsening
(such as a contraction of a subset of its edges) is a sequence of graphs G0, G1, G2, . . . , GL where
G0 = G. Given a model M that operates on graphs, a performance metric, and a complexity
metric, the sequence G0, G1, . . . , GL corresponds to points in the performance-complexity plane,
where advancing along the sequence generally hurts performance and decreases complexity. This
performance-complexity characteristic allows for a choice of a working point tailored to the spe-
cific scenario. The method proposed in the rest of this work evaluates the graphs in reverse order, i.e.
starting with the simplest one. As such, the algorithm only trains the model on a subset of simpler
graphs, lowering the complexity of selecting the working point.

2 A METHOD FOR FLEXIBLE PERFORMANCE-COMPLEXITY BALANCING

Our work builds on the HARP method Chen et al. (2018a) for pretraining methods such as node2vec
Grover & Leskovec (2016) on coarsened graphs. The sequence G0, G1, G2, . . . , GL is generated
in HARP consecutively. In an overview, the HARP algorithm first ahead-of-time consecutively
coarsens the graph. The method itself can then be executed by repeating the following steps on the
graphs from the coarsest to the finest (i.e., from GL to G0):

1. Training on an intermediary graph. The graph embedding model is trained on Gi, pro-
ducing its embedding ΦGi

.
2. Embedding prolongation. The embedding ΦGi

is prolonged into ΦGi−1
by copying em-

beddings of merged nodes. ΦGi−1
is then used as the starting point for training on Gi−1.

While the prolongation used by HARP is sufficient when used as a means of pre-training, the ap-
proach is far too crude when studying the relationship between graph complexity and the quality of
graph embedding. In order to overcome this limitation, we present the adaptive prolongation ap-
proach. This algorithm works with the pre-coarsened graphs produced by HARP, however, the em-
bedding is learned in a different manner. There are K prolongation steps (where generally K 6= L)
and each of them uses all graphs GL, . . . , G0. The prolongation steps are driven by local proper-
ties of the graph with relation to the downstream task, allowing for different levels of granularity
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Figure 1: A schematic explanation of the adaptive prolongation algorithm for obtaining the embed-
ding Ψi from Ψi+1.
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Figure 2: Downstream classifier test-set accuracies at different steps of adaptive prolongation.
Dashed line shows the baseline node2vec model accuracy. The node count is taken relative to the
total node count in each dataset. The results are averaged over ten runs, with the solid line repre-
senting the mean and the shaded area denoting one standard deviation.

in different parts of the graph. Let us denote ΨK , . . . ,Ψ0 the resulting embedding sequence. The
algorithm starts with the coarsest graph GL, trains a graph model to compute its embedding ΨK and
gradually refines it until reaching the embedding Ψ0. These prolongation steps are interlaid with
continued training of the graph model, as in standard HARP. A description of a single prolongation
step from Ψi+1 to Ψi is schematically outlined in Figure 1 and described in detail in Appendix A.

3 EXPERIMENTAL EVALUATION

The proposed methods were experimentally verified on 10 publicly available datasets. The node2vec
algorithm was used for generating the node embeddings, with an MLP classifier providing the pre-
dictions for node classification. A detailed description of the used datasets and hyperparameter setup
is available in Appendix B. In order to study the effect of adaptive prolongation, for each prolonga-
tion step, the intermediary embedding was fully prolonged to obtain an embedding of the original
graph G. A classifier was then trained with this embedding as input. This setup allows us to compare
classification accuracy at each step of the adaptive prolongation, as shown in Figure 2.

The results were statistically validated by comparing the adaptive prolongation model to the baseline
model at k-th deciles of node count using the Bayesian Wilcoxon signed-rank test Benavoli et al.
(2014). The results of note are that at 60% complexity, the models have over a 99% probability of
being within 10 percentage points of performance on the full graph and at 80% complexity, they
have over 99% probability of being withing 5 percentage points of performance.

4 CONCLUSION

In this work, a novel approach to prolonging graphs in the HARP setting was presented that se-
lectively prolongs the graph in a way that maximizes performance of the considered downstream
task under limited graph size. All of the proposed methods were experimentally verified, with the
headline result being that at about 40% reduction in node count, the accuracy was still reasonably
close to the accuracy on a full graph for most datasets. In future work, a direct way of tackling the
outlined problem may be studied as an alternative to the proposed approach.
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A ONE STEP OF ADAPTIVE PROLONGATION

The sequence G0, G1, G2, . . . , GL as defined in Section 1 is generated in HARP consecutively. Let
ϕi denote the mapping Gi = ϕi (Gi−1). Following Schulz et al. (2019), we restrict the definition
of such a coarsening ϕi to only consist of a series of edge contractions C ⊆ E (G). Let us denote
ΨK , . . . ,Ψ0 the embedding sequence produced by the adaptive prologation schema. A description
of a single prolongation step from Ψi+1 to Ψi follows and is described in further detail in Algorithm
1.

The procedure keeps track of all the edge contractions that were made in the dataset augmentation
part of the algorithm and gradually reverses them. To this end, apart from the embedding Ψi, the set
of all contractions yet to be reversed as of step i is kept as C(i)L , . . . , C(i)0 , with the initial values C(K)

j
corresponding to the underlying coarsening ϕj .

In each prolongation step, the embedding Ψi+1 is prolonged to Ψi by selecting a set of np con-
tractions Cprolong and undoing them by copying and reusing the embedding of the node resulting
from the contraction to both of the contracted nodes. To obtain Cprolong, nodes of G0 are first or-
dered in such a way that corresponds to the usefulness of prolonging them. Subsequently, the set
C(i+1)
L , . . . , C(i+1)

0 is ordered to match this node ordering by considering the nodes that the indi-
vidual contractions affect. Cprolong is then selected by taking the first np contractions. If multiple
contractions affecting the same node are available in the sequence C(i+1)

L , . . . , C(i+1)
0 , one is selected

from C(i+1)
j corresponding to the coarsest-level coarsening. The sequence C(i)L , . . . , C(i)0 is produced

from C(i+1)
L , . . . , C(i+1)

0 by removing all of the edges contained in Cprolong.

To obtain an ordering of nodes of G0 based on the usefulness of their prolongation, the embedding
Ψi+1 is fully prolonged to a temporary embedding of the full graph, Ψtemp

0 . The downstream model
is then trained using this temporary embedding to obtain Ypred, the predicted posterior distribution
of classes for each node in G0. The nodes are ordered by the entropy of the posterior, making the
algorithm prolong the nodes where the classifier is the most uncertain.

B DETAILED EXPERIMENT SETTINGS AND RESULTS

The proposed methods were experimentally verified on 10 publicly available datasets. The datasets
Cora and CiteSeer Yang et al. (2016) were used with the “full” train-test split as in Chen et al.
(2018b). In addition, 2 variants of the Twitch dataset Rozemberczki et al. (2021) with the hignest
node count (DE and EN) were used. Five medium sized datasets were also used, the PubMed dataset
Yang et al. (2016), the DBLP dataset Bojchevski & Günnemann (2018), the IMDB dataset Fu et al.
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Algorithm 1 Adaptive prolongation
Require: G0 . The original graph
Require: ytrain . Training labels
Require: np . The number of nodes to prolong
Require: Ψi+1 . The previous embedding
Require: C(i+1)

L , . . . , C(i+1)
0 . A list of all the contraction sets yet to be reversed

Ensure: Ψi . The next embedding
Ensure: C(i)L , . . . , C(i)0 . Updated contraction list without the prolonged contractions

node_order ← GET_NODE_ORDER(G0,Ψi+1,ytrain, C(i+1)
L , . . . , C(i+1)

0 )

Cprolong ← SELECT_CONTRACTIONS(node_order, np, C(i+1)
L , . . . , C(i+1)

0 )
Ψi ← use Cprolong to prolong the embedding Ψi+1

C(i)L , . . . , C(i)0 ← remove contractions in Cprolong from C(i+1)
L , . . . , C(i+1)

0

function GET_NODE_ORDER(G0,Ψi+1,ytrain, C(i+1)
L , . . . , C(i+1)

0 )
Ψtemp

0 ← use C(i+1)
L , . . . , C(i+1)

0 to fully prolong the current embedding Ψi+1 to G0

model← TRAIN_DOWNSTREAM_MODEL(Ψtemp
0 ,ytrain)

Ypred ← PREDICT(model, node) for each node ∈ V (G0)
entropy_per_node← H (Ypred)
return V (G0), sorted in descending order by entropy_per_node

end function

function SELECT_CONTRACTIONS(ordered_nodes, np, C(i+1)
L , . . . , C(i+1)

0 )
Cprolong ← {}
for node ∈ ordered_nodes, until |Cprolong| = np do

contraction← RESOLVE_CONTRACTION(node, Cprolong, C(i+1)
L , . . . , C(i+1)

0 )
If contraction 6= null, add contraction to Cprolong

end for
return Cprolong

end function

function RESOLVE_CONTRACTION(node, Cprolong, C(i+1)
L , . . . , C(i+1)

0 )
contraction← null
for j ∈ {0, . . . , L} do . I.e. all steps of the original coarsening from finest to coarsest

contraction_candidate ← find in C(i+1)
j a contraction that affects node, if not found,

continue with j + 1
if contraction_candidate ∈ Cprolong then

return contraction
end if
contraction← contraction_candidate
node ← apply contraction to node, so that in the next loop, a subsequent contraction

may be selected
end for
return contraction

end function
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Table 1: Hyper-parameter values used for different datasets
Hyper-parameter Cora CiteSeer PubMed DBLP Twitch IMDB ArXiv Coauthor
Embedding dimension 128 32 64 32 128 128 128 128
# of random walks 4 5 3 2 10 40 10 40
Random walk length 20 20 40 20 80 100 80 10
Context window size 5 5 20 5 3 5 20 5
Node2vec learning rate 0.01 0.01 0.01 0.01 0.025 0.01 0.01 0.01
Node2vec batch size 128 128 128 128 128 256 128 256
Node2vec epochs 5 7 1 1 5 1 1 1
# of MLP layers 3 3 1 3 2 2 3 2
MLP hidden layer width 128 256 128 256 64 64 256 16
Dropout rate 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
MLP learning rate 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
MLP epochs 30 80 300 300 500 100 300 100

(2020) and both variants of the Coauthor dataset Shchur et al. (2019). Finally, one large dataset was
used, the OGB ArXiv dataset Hu et al. (2021).

The hyper-parameters for both the node2vec model used for the embedding training and the multi-
layer perceptron used for downstream classification were initially set to values used in prior art (see
Hu et al. (2021); Fey & Lenssen (2019)) and then manually fine-tuned for each dataset.

The achitecture of the algorithm was identical accross all datasets, with the only difference being in
the values of the hyper-parameters, as listed in Table 1. For the Cora dataset, the node2vec model
generated an embedding in R128 from 4 random walks of length 20 for each node with a context
window of size 5. The optimizer ADAM Kingma & Ba (2017) was used with a learning rate of 0.01
and batches of 128 samples. The model was trained for 5 epochs and in each step of the adaptive
prolongation, 100 nodes were prolonged, until reaching the original graph (the value of np was cal-
culated so that the total number of training epochs would match baseline model training). The MLP
classifier using the embeddings featured 3 linear layers of 128 neurons with batch normalization af-
ter each layer. Each layer was normalized using dropout Srivastava et al. (2014) with the rate of 0.5.
Finally, a linear layer was used for the class prediction. For the classifier, ADAM with a learning
rate of 0.01 was used for 30 epochs of training with the cross-entropy loss function. Dataset features
weren’t used for the classifier training as the aim of this work is to compare the embeddings. The
experiment was run 10 times end-to-end and results averaged. The experiments were implemented
using PyTorch Paszke et al. (2019) and PyTorch Geometric Fey & Lenssen (2019).

B.1 RESULTS

To study the distribution of model properties, the results were evaluated at k-th deciles of the node
count of the full graph, for all possible values of k. At each decile, the performance of the model
was compared to the baseline node2vec model using the Wilcoxon signed-rank test with the Holm-
Bonferroni correction for multiple hypothesis testing. The hypotheses that the models are equivalent
with the baseline were rejected by the test at the 5% level of significance for k ∈ {1, 2, 3, 4, 5},
suggesting that the adaptive prolongation approach is valid and practically useful in situations where
at least half of the nodes is available.

The results were also studied from the point of view of Bayesian estimation by comparing the
performance of the proposed models to that of the baseline model using the Bayesian Wilcoxon
signed-rank test Benavoli et al. (2014) for 3 different widths of the region of practical equivalence
(ROPE), 1%, 5% and 10%. The probabilities that the two models are practically equivalent are listed
in Table 2.
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Table 2: The probabilities that the adaptive approach will be practically equivalent to node2vec when
compared on different fractions of the full graph and with different widths of the region of practical
equivalence.

Nodes 1% ROPE 5% ROPE 10% ROPE
10% 0% 0.3% 2.5%
20% 0% 0.8% 14.1%
30% 0% 1.7% 35.3%
40% 0% 5.3% 72.0%
50% 0.1% 35.3% 85.7%
60% 0.6% 62.2% 99.7%
70% 32.0% 84.7% 100.0%
80% 30.0% 99.9% 100.0%
90% 48.9% 100.0% 100.0%
100% 87.7% 100.0% 100.0%
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