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Abstract

We develop an advanced approach for extending Gaussian Differential Privacy
(GDP) to general Riemannian manifolds. The concept of GDP stands out as a
prominent privacy definition that strongly warrants extension to manifold settings,
due to its central limit properties. By harnessing the power of the renowned
Bishop-Gromov theorem in geometric analysis, we propose a Riemannian Gaussian
distribution that integrates the Riemannian distance, allowing us to achieve GDP in
Riemannian manifolds with bounded Ricci curvature. To the best of our knowledge,
this work marks the first instance of extending the GDP framework to accommodate
general Riemannian manifolds, encompassing curved spaces, and circumventing
the reliance on tangent space summaries. We provide a simple algorithm to
evaluate the privacy budget µ on any one-dimensional manifold and introduce a
versatile Markov Chain Monte Carlo (MCMC)-based algorithm to calculate µ on
any Riemannian manifold with constant curvature. Through simulations on one
of the most prevalent manifolds in statistics, the unit sphere Sd, we demonstrate
the superior utility of our Riemannian Gaussian mechanism in comparison to the
previously proposed Riemannian Laplace mechanism for implementing GDP.

1 Introduction

As technological advancements continue to accelerate, we are faced with the challenge of managing
and understanding increasingly complex data. This data often resides in nonlinear manifolds,
commonly found in various domains such as medical imaging [Pennec et al., 2019, Dryden, 2005,
Dryden et al., 2009], signal processing [Barachant et al., 2010, Zanini et al., 2018], computer vision
[Turaga and Srivastava, 2015, Turaga et al., 2008, Cheng and Vemuri, 2013], and geometric deep
learning [Belkin et al., 2006, Niyogi, 2013]. These nonlinear manifolds are characterized by their
distinct geometric properties, which can be utilized to extract valuable insights from the data.

As data complexity grows, so does the imperative to safeguard data privacy. Differential Privacy (DP)
[Dwork et al., 2006b] has gained recognition as a prominent mathematical framework for quantifying
privacy protection, and a number of privacy mechanisms [McSherry and Talwar, 2007, Barak et al.,
2007, Wasserman and Zhou, 2010, Reimherr and Awan, 2019] have been devised with the aim
of achieving DP. Conventional privacy mechanisms, while effective for dealing with linear data,
encounter difficulties when handling complex non-linear data. In such cases, a common approach,
referred to as the extrinsic approach, is to embed the non-linear data into the ambient Euclidean space,
followed by the application of standard DP mechanisms. However, as exemplified in the work of
Reimherr et al. [2021], the intrinsic properties of such non-linear data enable us to achieve better
data utility while simultaneously preserving data privacy. Therefore, it is imperative that privacy
mechanisms adapt to the complexity of non-linear data by employing tools from differential geometry
to leverage the geometric structure within the data.
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Related Work Reimherr et al. [2021] is the first to consider the general manifolds in the DP litera-
ture. It extends the Laplace mechanism for ε-DP from Euclidean spaces to Riemannian manifolds.
Focusing on the task of privatizing Frechet mean, it demonstrates that better utility can be achieved
when utilizing the underlying geometric structure within the data. Continuing its work, Soto et al.
[2022] develops a K-norm gradient mechanism for ε-DP on Riemannian manifolds and shows that it
outperforms the Laplace mechanism previously mentioned in the task of privatizing Frechet mean.
Similarly, Utpala et al. [2023b] extends (ε, δ)-DP and its Gaussian mechanism but only to one specific
manifold, the space of symmetric positive definite matrices (SPDM). Equipping the space of SPDM
with the log Euclidean metric, it becomes a geometrically flat space [Arsigny et al., 2007]. This
allows them to simplify their approach and work with fewer complications, although at the expense
of generality. In contrast to the task of releasing manifold-valued private summary, Han et al. [2022],
Utpala et al. [2023a] focus on solving empirical risk minimization problems in a (ε, δ)-DP compliant
manner by privatizing the gradient which resides on the tangent bundle of Riemannian manifolds.
Working on tangent spaces instead of the manifold itself, they could bypass many of the difficulties
associated with working under Riemannian manifolds.

Motivations Although the ε-differential privacy (DP) and its Laplace mechanism have been ex-
tended to general Riemannian manifolds in Reimherr et al. [2021], there are other variants of DP
[Dwork et al., 2006a, Mironov, 2017, Bun and Steinke, 2016, Dong et al., 2022]. Each of them
possesses unique advantages over the pure DP definition, and therefore their extensions should
be considered as well. As one such variant, GDP offers superior composition and subsampling
properties to that of ε-DP. Additionally, it’s shown that all hypothesis testing-based privacy definitions
converge to the guarantees of GDP in the limit of composition [Dong et al., 2022]. Furthermore,
when the dimension of the privatized data approaches infinity, a large class of noise addition private
mechanisms is shown to be asymptotically GDP [Dong et al., 2021]. These traits establish GDP as
the focal privacy definition among different variants of DP definitions and therefore make it the most
suitable option for generalizing to Riemannian manifolds.

Main Contributions With the goal of releasing manifold-valued statistical summary in a GDP-
compliant manner, we extend the GDP framework to general Riemannian manifolds, establishing
the ability to use Riemannian Gaussian distribution for achieving GDP on Riemannian manifolds.
We then develop an analytical form to achieve µ-GDP that covers all the one-dimensional cases.
Furthermore, we propose a general MCMC-based algorithm to evaluate the privacy budget µ on
Riemannian manifolds with constant curvature. Lastly, we conduct numerical experiments to evaluate
the utility of our Riemannian Gaussian mechanism by comparing it to the Riemannian Laplace
mechanism. Our results conclusively demonstrate that to achieve GDP, our Gaussian mechanism
exhibits superior utility compared to the Laplace mechanism.

2 Notation and Background

In this section, we first cover some basic concepts from Riemannian geometry. The materials covered
can be found in standard Riemannian geometry texts such as Lee [2006], Petersen [2006], Pennec
et al. [2019], Said [2021]. Then we review some definitions and results on DP and GDP, please refer
to Dwork and Roth [2014], Dong et al. [2022, 2021] for more detail.

2.1 Riemannian Geometry

Throughout this paper we let M denote a d-dimensional complete Riemannian manifold unless stated
otherwise. A Riemannian metric g is a collection of scalar products ⟨·, ·⟩x on each tangent space
TxM at points x of the manifold that varies smoothly from point to point. For each x, each such
scalar product is a positive definite bilinear map ⟨·, ·⟩x : TxM× TxM → R.

Equipped with a Riemannian metric g, it grants us the ability to define length and distance on M.
Consider a curve γ(t) on M, the length of the curve is given by the integral

L(γ) =

∫
∥γ̇(t)∥γ(t)dt =

∫ (
⟨γ̇(t), γ̇(t)⟩γ(t)

) 1
2 dt

where the γ̇(t) is the velocity vector and norm ∥γ̇(t)∥ is uniquely determined by the Riemannian
metric g. Note we use ∥ · ∥ to denote the l2 norm throughout this paper.
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It follows that the distance between two points x, y ∈ M is the infimum of the lengths of all piece-
wise smooth curves from x to y, d(x, y) = infγ:γ(0)=x,γ(1)=y L(γ). In a similar fashion, we can
introduce the notion of measure on M. The Riemannian metric g induces a unique measure ν on the
Borel σ-algebra of M such that in any chart U , dν =

√
det gdλ where g = (gij) is the matrix of the

Riemannian metric g in U , and λ is the Lebesgue measure in U [Grigoryan, 2009].

Given a point p ∈ M and a tangent vector v ∈ TpM, there exists a unique geodesic γ(p,v)(t) starting
from p = γ(p,v)(0) with tangent vector v = γ̇(p,v)(0) defined in a small neighborhood of zero. It can
then be extended to R since we assume M is complete. This enables us to define the exponential
map expp : TpM → M as expp(v) = γ(p,v)(1). For any p ∈ M, there is a neighborhood V of the
origin in TpM and a neighborhood U of p such that expp |V : V → U is a diffeomorphism. Such U
is called a normal neighborhood of p. Locally, the straight line crossing the origin in TpM transforms
into a geodesic crossing through p on M via this map. On the normal neighborhood U , the inverse of
the exponential map can be defined and is denoted by logp. The injectivity radius at a point p ∈ M
is then defined as the maximal radius R such that Bp(R) ⊂ M is a normal neighborhood of p, and
the injectivity radius of M is given by injM = inf{injM(p), p ∈ M}.

2.2 Differential Privacy

We start this section with the definition of (ε, δ)-DP.
Definition 2.1 ([Dwork et al., 2006a]). A data-releasing mechanism M is said to be (ε, δ)-
differentially private with ε ≥ 0, 0 ≤ δ ≤ 1, if for any adjacent datasets, denoted as D ≃ D′,
differing in only one record, we have Pr(M(D) ∈ A) ≤ eε Pr (M (D′) ∈ A)+δ for any measurable
set A in the range of M .

Differential privacy can be interpreted from the lens of statistical hypothesis testing [Wasserman and
Zhou, 2010, Kairouz et al., 2017]. Given the outcome of a (ε, δ)-DP mechanism and a pair of neighbor-
ing datasets D ≃ D′, consider the hypothesis testing problem with H0: The underlying dataset isD
and H1: The underlying dataset isD′. The smaller the ε and δ are, the harder this hypothesis testing
will be. That is, it will be harder to detect the presence of one individual based on the outcome of the
mechanism. More specifically, (ε, δ)-DP tells us the power (that is, 1 - type II error) of any test at
significance level α ∈ [0, 1] is bounded above by eεα+δ. Using this hypothesis testing interpretation,
we can extend (ε, δ)-DP to the notion of Gaussian differential privacy.

Let M(D),M(D′) denote the distributions of the outcome under H0, H1 respectively. Let
T (M(D),M (D′)) : [0, 1] → [0, 1], α 7→ T (M(D),M (D′)) (α) denote the optimal tradeoff
between type I error and type II error. More specifically, T (M(D),M (D′)) (α) is the smallest type
II error when type I error equals α.
Definition 2.2 ([Dong et al., 2022]). A mechanism M is said to satisfy µ-Gaussian Differential
Privacy (µ-GDP) if T (M(D),M (D′)) ≥ Gµ for all neighboring datasets D ≃ D′ with Gµ :=
T (N(0, 1), N(µ, 1)).

Informally, µ-GDP states that it’s harder to distinguish D from D′ than to distinguish between
N(0, 1) and N(µ, 1). Similar to the case of (ε, δ)-differential privacy, a smaller value of µ provides
stronger privacy guarantees. As a privacy definition, µ-GDP enjoys several unique advantages over
the (ε, δ)-DP definition. Notably, it has a tight composition property that cannot be improved in
general. More importantly, a crucial insight in Dong et al. [2022] is that the best way to evaluate the
privacy of the composition of many "highly private" mechanisms is through µ-GDP. More specifically,
it gives a central limit theorem that states all hypothesis testing-based privacy definitions converge to
the guarantees of µ-GDP in the limit of composition. Furthermore, Dong et al. [2021] shows that a
large class of noise addition mechanisms is asymptotic µ-GDP when the dimension of the privatized
data approaches infinity. These distinct characteristics position µ-GDP as the focal privacy definition
among different variants of DP definitions, and we will extend the µ-GDP framework to general
Riemannian manifolds in Section 3.

3 Gaussian Differential Privacy on General Riemannian Manifolds

Our primary objective in this study is to disclose a M-valued statistical summary while preserving
privacy in a GDP-compliant manner. To this end, we first extend the GDP definition to general
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Riemannian manifolds. In Definition 2.2, µ-GDP is defined through the optimal trade-off function
T (M(D),M(D′)), which is challenging to work with on Riemannian manifolds. We successfully
resolve this difficulty by expressing µ-GDP as an infinite collection of (ε, δ)-DP (Corollary 1 in
Dong et al. [2022]). Since (ε, δ)-DP is a well-defined notion on any measurable space [Wasserman
and Zhou, 2010], it readily extends to any Riemannian manifold equipped with the Borel σ-algebra.
Following this methodology, we define µ-GDP on general Riemannian manifolds as follows.
Definition 3.1. A M-valued data-releasing mechanism M is said to be µ-GDP if it’s (ε, δµ(ε))-DP
for all ε ≥ 0, where

δµ(ε) := Φ

(
− ε

µ
+

µ

2

)
− eεΦ

(
− ε

µ
− µ

2

)
.

and Φ denotes the cumulative distribution function of the standard normal distribution.

Similarly, we extend the notion of sensitivity to Riemannian manifolds as well.
Definition 3.2 (Reimherr et al. [2021]). A summary f is said to have a global sensitivity of ∆ < ∞,
with respect to d(·, ·), if we have d (f(D), f (D′)) ≤ ∆ for any two dataset D ≃ D′.

Following the extension of µ-GDP to Riemannian manifolds, it is crucial to develop a private
mechanism that is compliant with µ-GDP. Given that the Gaussian distribution satisfies µ-GDP on
Euclidean space [Dong et al., 2022], we hypothesize that an analogous extension of the Gaussian
distribution into Riemannian manifolds would yield similar adherence to µ-GDP. (e.g., [Reimherr
et al., 2021] for extending Laplace distribution to satisfy ε-DP on Riemannian manifolds). We
introduce the Riemannian Gaussian distribution in the following definition.
Definition 3.3 (Section 2.5 in Pennec et al. [2019]). Let (M, g) be a Riemannian manifold such that

Z(η, σ) =

∫
M

exp

{
−d (y, η)

2

2σ2

}
dν(y) < ∞.

We define a probability density function w.r.t dν as

pη,σ(y) =
1

Z(η, σ)
exp

{
−d (y, η)

2

2σ2

}
. (1)

We call this distribution a Riemannian Gaussian distribution with footprint η and rate σ and denote
it by Y ∼ NM(η, σ2).

The necessity for Z(η, σ) to be finite is generally of little concern, as it has been shown to be so
in any compact manifolds [Chakraborty and Vemuri, 2019] or any Hadamard manifolds1—with
lower-bounded sectional curvature [Said, 2021]. The distribution we introduce has been established
to maximize entropy given the first two moments [Pennec et al., 2019, Pennec, 2006], and has already
found applications in a variety of scenarios [Zhang and Fletcher, 2013, Hauberg, 2018, Said et al.,
2017, Cheng and Vemuri, 2013, Zanini et al., 2018, Chakraborty and Vemuri, 2019]. When M = Rd,
the Riemannian Gaussian distribution reduces to the multivariate Gaussian distribution with a mean
of η and a variance of σ2I.

However, it is critical to highlight that this extension is not the only possible method for integrating
the Gaussian distribution into Riemannian manifolds. Other approaches are available, such as the
heat kernel diffusion process articulated by Grigoryan [2009], or the exponential-wrapped Gaussian
introduced by Chevallier et al. [2022]. For an in-depth exploration of sampling from the Riemannian
Gaussian distribution defined above, we refer readers to Section 4.1.

Furthermore, the subsequent theorem underscores the ability of the Riemannian Gaussian distribution,
as defined herein, to meet the requirements of Gaussian Differential Privacy.
Theorem 3.1. Let M be a Riemannian manifold with lower bounded Ricci curvature and f be a
M-valued summary with global sensitivity ∆. The Riemannian Gaussian distribution with footprint
f(D) and rate σ satisfies µ-GDP for some µ > 0.

Proof. See Appendix A.1.
1A Hadamard manifold is a Riemannian manifold that is complete and simply connected and has everywhere

non-positive sectional curvature.
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While Theorem 3.1 confirms the potential of the Riemannian Gaussian distribution to achieve GDP, it
leaves the relationship between the privacy budget (µ) and the rate (σ) undefined. The subsequence
theorem establishes such a connection:
Theorem 3.2 (Riemannian Gaussian Mechanism). Let M be a Riemannian manifold with lower
bounded Ricci curvature and f be a M-valued summary with global sensitivity ∆. The Riemannian
Gaussian distribution with footprint f(D) and rate σ > 0 is µ-GDP if and only if µ satisfies the
following condition, ∀ε ≥ 0,

sup
D≃D′

∫
A

pη1,σ(y) dν(y)− eε
∫
A

pη2,σ(y) dν(y) ≤ δµ(ε) (2)

where A := {y ∈ M : pη1,σ(y)/pη2,σ(y) ≥ eε} and η1 := f(D), η2 := f(D′).

Proof. See Appendix A.2.

Given the rate σ, Theorem 3.2 provides us a way of computing the privacy budget µ through the in-
equality (2). When M = Rd, the set A enjoys a tractable form, A = {y ∈ Rd : ⟨y − η2, η1 − η2⟩ ≥
1
2 (2σ

2ε/∥η1 − η2∥+ ∥η1 − η2∥)}, and the inequality (2) then reduces to,

sup
D≃D′

Φ

(
− σε

∥η1 − η2∥
+

∥η1 − η2∥
2σ

)
− eεΦ

(
− σε

∥η1 − η2∥
+

∥η1 − η2∥
2σ

)
≤ δµ(ε)

where the equality holds if and only if σ = ∆/µ, which reduces to the Gaussian mechanism on
Euclidean spaces in Dong et al. [2022]. It’s worth pointing out that on Rd, the Pythagorean theorem
allows us to reduce the integrals to one-dimensional integrals resulting in a simple solution for any
dimension d. Unfortunately, the lack of Pythagorean theorem on non-Euclidean spaces makes it
difficult to evaluate the integrals on manifolds of dimensions greater than one. It’s known that any
smooth, connected one-dimensional manifold is diffeomorphic either to the unit circle S1 or to some
interval of R [Milnor and Weaver, 1997]. Therefore, we encompass all one-dimensional cases by
presenting the following result on S1.
Corollary 3.2.1 (Riemannian Gaussian Mechanism on S1). Let f be a S1-valued summary with
global sensitivity ∆. The Riemannian Gaussian distribution NM

(
f(D), σ2

)
is µ-GDP if and only if

µ satisfies the following condition, ∀ε ∈ [0, π∆/(2σ2)], h(σ, ε,∆) ≤ δµ(ε) where

h(σ, ε,∆) =
1

C(σ)

[
Φ

(
−σε

∆
+

∆

2σ

)
− eεΦ

(
−σε

∆
− ∆

2σ

)]
− 1

C(σ)

[
Φ

(
σε

∆
+

∆

2σ
− π

σ

)
− eεΦ

(
σε

∆
− ∆

2σ
+

π

σ
1
ε≤ ∆2

2σ2
− π

σ
1
ε> ∆2

2σ2

)]
− eε1

ε≤ ∆2

2σ2

with C(σ) = Φ(π/σ)− Φ(−π/σ).

Proof. See Appendix A.3.

In summary, Corollary 3.2.1 provides us the analytical form for the integrals in (2). By specifying the
rate σ and sensitivity ∆, it becomes feasible to compute the privacy budget µ, which is the smallest µ
such that h(σ, ε,∆) ≤ δµ(ε) for all ε ∈ [0, π∆/(2σ2)]. The systematic procedure is summarized in
Algorithm 1. It is important to emphasize that the result in Corollary 3.2.1 together with the existing
Euclidean space result covers all one-dimensional cases, and for manifolds with dimension d > 1,
we will tackle it in Section 4.

4 Numerical Approach

In Section 3, we demonstrate that our proposed Riemannian Gaussian distribution can be used to
achieve GDP in Theorem 3.1 and 3.2. Furthermore, we document our method in Algorithm 1 to
compute the privacy budget µ in S1. This and already existing Euclidean results encompass all the
one-dimensional Riemannian manifolds. However, for general Riemannian manifolds of dimension
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Algorithm 1 Computing µ on S1

Input: Sensitivity ∆ ∈ (0, π] , rate σ, number of ε used nε

Output: µ;
1: Set εmax = π∆/(2σ2).
2: for each ε in {k, 2k, . . . , nεk} where k = εmax/nε do
3: Compute lε = h(σ, ε,∆) as in Corollary 3.2.1 and µε through lε = δµ(ε).
4: end for
5: Compute µ = maxε µε.
6: Return: µ.

d > 1, the integrals in inequality (2) are difficult to compute (see Section 3 for more explanation).
One of the central difficulties is the dependence of the normalizing constant Z(η, σ) on the footprint
η makes the expression of A intractable. To avoid this dependence, we introduce the concept of
homogeneous Riemannian manifolds.
Definition 4.1 (Definition 4.6.1 in Berestovskii and Nikonorov [2020]). A Riemannian manifold
(M, g) is called a homogeneous Riemannian manifold if a Lie group G acts transitively and
isometrically on M.

Homogeneous Riemannian manifolds encompass a broad class of manifolds that are commonly
encountered in statistics such as the (hyper)sphere [Bhattacharya and Bhattacharya, 2012, Mardia
et al., 2000], the space of SPD Matrices[Pennec et al., 2019, Said et al., 2017, Hajri et al., 2016], the
Stiefel manifold [Chakraborty and Vemuri, 2019, Turaga et al., 2008] and the Grassmann manifold
[Turaga et al., 2008]. It’s a more general class than Riemannian symmetric space, which is a common
setting used in geometric statistics [Cornea et al., 2017, Asta, 2014, Said et al., 2018, Said, 2021,
Chevallier et al., 2022]. Please refer to Appendix A.4 for more detail.

Informally, a homogeneous Riemannian manifold looks geometrically the same at every point. The
transitive property required in the definition implies that any homogeneous Riemannian manifold M
only has one orbit. Therefore, we have the following proposition.
Proposition 4.1. If M is a homogeneous Riemannian manifolds, then Z(η1, y) = Z(η2, y) for any
η1, η2 ∈ M.

Therefore, on homogeneous Riemannian manifolds, we can simplify the set A in Theorem 3.2
to A =

{
y ∈ M : d(η2, y)

2 − d(η1, y)
2 ≥ 2σ2ε

}
. To further simplify (2), we will need a much

stronger assumption than homogeneous Riemannian manifolds. In particular, we require the condition
of constant curvature.
Theorem 4.1 (Riemannian Gaussian Mechanism on Manifolds with Constant Curvature). Let M
be a Riemannian manifold with constant curvature and f be a M-valued summary with global
sensitivity ∆. The Riemannian Gaussian distribution with footpoint f(D) and rate σ > 0 is µ-GDP
if and only if µ satisfies the following condition: ∃η1, η2 such that d(η1, η2) = ∆ and ∀ε ≥ 0∫

A

pη1,σ(y) dν(y)− eε
∫
A

pη2,σ(y) dν(y) ≤ δµ(ε) (3)

where A =
{
y ∈ M : d(η2, y)

2 − d(η1, y)
2 ≥ 2σ2ε

}
.

Proof. See Appendix A.5.

Theorem 4.1 tells us that instead of evaluating the integrals of 2 on every neighboring pairs η1 and
η2, we only need to check one such pair. Despite the convenience it provides us, evaluating the
integrals remains a challenge, even for an elementary space like Sd with d > 1. To circumvent this
challenge, we employ the MCMC technique for the integral computations. The main idea is simple:
Let Y1, Y2, . . . , Yn be independent and identically distributed random variables from NM(η, σ2), and
denotes Zi = 1

{
1

2σ2

(
−d(η1, Yi)

2 + d(η2, Yi)
2
)
≥ ε

}
. By the strong law of large number [Dudley,

2002], we then have
1

n

n∑
i=1

Zi →
∫
A

pη,σ(y)dν(y) a.s..
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By using 1
n

∑n
i=1 Zi as an approximation, we avoid the challenge of evaluating the integrals analyti-

cally. The detailed algorithm is documented in Algorithm 2. It’s known that any space of constant
curvature is isomorphic to one of the spaces: Euclidean space, sphere, and hyperbolic space [Vinberg
et al., 1993, Woods, 1901]. Therefore, Algorithm 2 offers a straightforward and practical method for
assessing the privacy budget µ on spheres and hyperbolic spaces. Furthermore, Algorithm 2 can be
extended to a more general class of Riemannian manifold by sampling more than one pair of η, η′ in
step 1. The determination of the number of pairs being sampled and the selection method to ensure
sufficient dissimilarity among the sampled pairs is an aspect that requires further investigation.

Algorithm 2 Computing µ on Manifolds with Constant Curvature
Input: Sensitivity ∆, rate σ2, Monte Carlo sample size n, number of ε used nε, maximum ε used
εmax, number of MCMC samples m
Output: privacy budget µ;

1: Sample a random point η on M and another point η′ on the sphere center at η with radius ∆.
2: for each j in 1, 2, . . . ,m do
3: Sample y1j , . . . , ynj ∼ NM(η, σ2), y′1j , . . . , y

′
nj ∼ NM(η′, σ2).

4: Compute dij = d(η′, yij)
2 − d(η, yij)

2 and d′ij = d(η′, y′ij)
2 − d(η, y′ij)

2 for i in 1, 2, . . . , n.
5: for each ε in {k, 2k, . . . , nεk} where k = εmax/nε do
6: Compute l

(j)
ε =

∑n
i=1 1(dij ≥ 2σ2ε)/n− eε

∑n
i=1 1(d

′
ij ≥ 2σ2ε)/n.

7: end for
8: end for
9: Compute lε =

∑m
j=1 l

(j)
ε /m and µε via lε = δµ(ε) for each ε. Compute µ = maxε µε.

10: Return: µ.

4.1 Sampling from Riemannian Gaussian Distribution

The one crucial step in Algorithm 2 involves sampling from the two Riemannian Gaussian dis-
tributions NM(η, σ2) and NM(η′, σ2). Since their densities (1) are known up to a constant, a
Metropolis-Hasting algorithm would be a natural choice. In this section, we describe a general
Metropolis-Hasting algorithm for sampling from a Riemannian Gaussian distribution on an arbitrary
homogeneous Riemannian manifold [Pennec et al., 2019]. However, there are more efficient sampling
algorithms that are tailored to specific manifolds (e.g., [Said et al., 2017, Hauberg, 2018]).

The Metropolis-Hasting algorithm involves sampling a candidate y from a proposal distri-
bution q(·|x). The acceptance probability of accepting y as the new state is α(x, y) =
min{1, q(y|x)pη,σ(y)/[q(x|y)pη,σ(x)]}. A natural choice for the proposal distribution q(·|x) could
be an exponential-wrapped Gaussian distribution [Galaz-Garcia et al., 2022, Chevallier et al., 2022].
Informally, it’s the distribution resulting from "wrapping" a Gaussian distribution on tangent space
back to the manifold using the exponential map. Given the current state x ∈ M, we sample a tangent
vector v ∼ N(0, σ2I) on the tangent space TxM. If ∥v∥ is less than the injectivity radius, we then
accept the newly proposed state y = expx(v) with probability α(x, y). Please refer to Section 2.5 in
Pennec et al. [2019] for the detailed algorithm.

4.2 GDP on R and S1

To evaluate the performance of Algorithm 2, we will conduct simulations on Euclidean space R and
unit circle S1 as the relation between µ and σ is established in Dong et al. [2022] and Corollary 3.2.1.

We fix sensitivity ∆ = 1 and let σ = k/4 with 1 ≤ k ≤ 16. For each σ, we determine the privacy
budget µ using two approaches: (i) using Algorithm 1 with nε set as 1000 for S1 and using µ = 1/σ
for R; (ii) using Algorithm 2 with n = 1000, nε = 1000,m = 100, εmax = π/(2σ2) for S1 and
εmax = max{10, 5/σ + 1/(2σ2)} for R. Since Algorithm 2 is a randomized algorithm, we generate
20 replicates for approach (ii) for each σ. In Figure 1, the first panel plots the sample means of
the µ generated by approach (ii) (in grey with rectangular symbols) with error bars indicating the
minimum & the maximum of the µ’s and the µ computed by approach (i) (in red with circular
symbols). Additionally, as a comparison, we also plot the µ = 1/σ for Euclidean space (in blue
with triangular symbols) in the first plot. As we see from the first plot, the GDP results on S1 are
almost exactly the same as on R for smaller σ. This is expected as manifolds are locally Euclidean,
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Figure 1: First and Second plots: Red lines with circular symbols represent the relation between
privacy budget µ and rate σ on the unit circle S1. Blue lines with triangular symbols represent the
relation in Euclidean space. Gray lines with rectangular symbols plot the sample mean of the µ, across
the 20 repeats, computed at a variety of σ using Algorithm 2. The error bar indicates the minimum
and maximum of the µ’s. Refer to Section 4.2 for details. Third plot: Blue line with triangular
symbols indicates the sample mean, across 100 repeats, of the Riemannian distances d(x̄, x̄laplace),
while the red line with circular symbols indicates the sample mean of the Riemannian distances
d(x̄, x̄gauss). The error bands indicate the sample mean ±4SE. Refer to Section 5.2 for details.

and the smaller the σ the closer the results will be. As the σ gets larger, the privacy budget µ gets
smaller on S1 compared to on R. This can be explained by the fact that S1 is a compact space while
R is not. For the second panel, we plot the exactly same things for Euclidean spaces. As we can
observe from both panels, our Algorithm 2 gives a fairly accurate estimation for larger σ. However,
as σ gets smaller, Algorithm 2 has a tendency to generate estimates that exhibit a higher degree of
overestimation.

5 Simulations

In this section, we evaluate the utility of our Riemannian Gaussian mechanism by focusing on the
task of releasing differentially private Fréchet mean. Specifically, we conduct numerical examples
on the unit sphere, which is commonly encountered in statistics [Bhattacharya and Bhattacharya,
2012, Mardia et al., 2000]. As a comparison to our Riemannian Gaussian mechanism, we use the
Riemannian Laplace mechanism implemented in Reimherr et al. [2021] to achieve GDP. Although the
Riemannian Laplace mechanism is developed originally to achieve ε-DP, it’s shown in Liu et al. [2022]
any mechanism that satisfies ε-DP can achieve µ-GDP with µ = −2Φ−1 (1/(1 + eε)) ≤

√
π/2ε.

Our results show significant improvements in utility for the privatization of the Fréchet mean when
using our proposed Gaussian mechanism, as opposed to the Laplace mechanism, in both examples. In
Section 5.1, we cover some basics on differentially private Fréchet mean. In Section 5.2, we discuss
the numerical results on the sphere. Simulations are done in R on a Mac Mini computer with an
Apple M1 processor with 8 GB of RAM running MacOS 13. For more details on each simulation,
please refer to Appendix A.6. The R code is available in the GitHub repository: https://github.
com/Lei-Ding07/Gaussian-Differential-Privacy-on-Riemannian-Manifolds

5.1 Differentially Private Fréchet Mean

For more details on Fréchet mean under the DP setting, please refer to Reimherr et al. [2021]. Consider
a set of data x1, . . . , xN on M. The Euclidean sample mean can be generalized to Riemannian
manifolds as the sample Fréchet mean, which is the minimizer of the sum-of-squared distances to the
data, x̄ = argminx∈M

∑N
i=1 d (x, xi)

2. To ensure the existence & uniqueness of the Fréchet mean
and to determine its sensitivity, we need the following assumption.

Assumption 1. The data D ⊆ Br (m0) for some m0 ∈ M, where r < r∗ with r∗ =
min {injM, π/(2

√
κ)} /2 for κ > 0 and r∗ = injM/2 for κ ≤ 0. Note κ denotes an upper

bound on the sectional curvatures of M.

Under Assumption 1, we can then compute the sensitivity of the Fréchet mean [Reimherr et al.,
2021]. consider two datasets D ≃ D′. If x̄ and x̄′ are the two sample Fréchet means of D and D′
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respectively, then

d (x̄, x̄′) ≤ 2r(2− h(r, κ))

nh(r, κ)
, h(r, κ) =

{
2r
√
κ cot(

√
κ2r) κ > 0

1 κ ≤ 0

5.2 Sphere

First, we revisit some background materials on spheres, refer to Bhattacharya and Bhattacharya
[2012], Reimherr et al. [2021] for more details. We denote the d-dimensional unit sphere as Sd

and identify it as a subspace of Rd+1 as Sd = {p ∈ Rd+1 : ∥p∥2 = 1}. Similarly, at each
p ∈ Sd, we identify the tangent space TpS

d as TpS
d = {v ∈ Rd+1 : v⊤p = 0}. The geodesics

are the great circles, γp,v(t) = cos(t)p + sin(t)v with −π < t ≤ π where γp,v denotes the
geodesic starts at p with unit direction vector v. The exponential map expp : TpS

d → Sd is
given by expp(0) = p and expp(v)) := cos(∥v∥)p + sin(v)v/∥v∥ for v ̸= 0. The inverse of
the exponential map logp : Sd \ {−p} → TpS

d has the expression logp(p) = 0 and logp(q) =

arccos(p⊤q)[q − (p⊤q)p]
[
1− (p⊤q)2

]−1/2
for q ̸= p,−q. It follows that the distance function is

given by d(p, q) = arccos(p⊤q) ∈ [0, π]. Therefore, Sd has an injectivity radius of π.

We initiate our analysis by generating sample data D = {x1, . . . , xn} from a ball of radius π/8
on S2 and subsequently computing the Fréchet mean x̄. To disseminate the private Fréchet mean,
we implement two methods: (i) We first generate the privatized mean x̄gauss by drawing from
NM(x̄, σ2) employing the sampling method proposed by Hauberg [2018]. The privacy budget µ
is then computed using Algorithm 2. (ii) Next, we convert µ-GDP to the equivalent ε-DP using
ε = log[1− Φ(−u/2))/Φ(−u/2)], and generate the privatized mean x̄laplace by sampling from the
Riemannian Laplace distribution with footprint x̄ and rate ∆/ε using the sampling method introduced
by You and Shung [2022].

Throughout these simulations, we fix the sample size at n = 10 to maintain a constant sensitivity
∆. With ∆ held constant, we let the rate σ = k/4 with 1 ≤ k ≤ 12. The objective here is to discern
the difference between the two distances d(x̄, x̄gauss) and d(x̄, x̄laplace) across varying privacy budgets
µ. The third plot in Figure 1 displays the sample mean of the Riemannian distances d(x̄, x̄gauss) (in
red with circular symbols) and d(x̄, x̄laplace) (in blue with triangular symbols) across 1000 iterations
with the error band indicating the sample mean ±4SE. From observing the third plot, we see that our
Gaussian mechanism achieves better utility, especially with a smaller privacy budget µ. With larger µ,
the gain in utility is less pronounced. One obvious reason is that there are much fewer perturbations
with larger µ for both approaches, so the difference is subtle. The other reason is that Algorithm 2
has a tendency to overestimate µ with smaller σ. Effectively, x̄gauss satisfies µ-GDP with a smaller µ
compared to x̄laplace.

6 Conclusions and Future Directions

In this paper, we extend the notion of GDP over general Riemannian manifolds. Then we showed
that GDP can be achieved when using Riemannian Gaussian distribution as the additive noises.
Furthermore, we propose a general MCMC-based algorithm to compute the privacy budget µ on
manifolds with constant curvature. Lastly, we show through simulations that our Gaussian mechanism
outperforms the Laplace mechanism in achieving µ-GDP on the unit sphere Sd.

There are many future research directions. First of all, the framework established in this paper
can be used for extending (ε, δ)-DP to general Riemannian manifolds. There are several points of
improvement around Algorithm 2 as well. Although Algorithm 2 provides us a general method of
computing the privacy budget µ, it lacks an error bound on its estimation. Furthermore, due to the
random nature of Algorithm 2, a variance estimator of the output is desirable and can better inform the
end user. Though we demonstrate the utility of our mechanism through simulation in Section 5, it’s
difficult to obtain a theoretical utility guarantee due to the lack of simple analytical relation between
µ and rate σ. Furthermore, although Algorithm 1 requires the manifolds to have constant curvature,
it’s possible to extend Algorithm 1 and Theorem 4.1 to a slightly more general class of manifolds.
Additionally, the Riemannian Gaussian distribution defined in this paper is not the only way of
extending Gaussian distribution to Riemannian manifolds as mentioned in Section 3. Potentially, the
two other approaches, the wrapped distribution approach, and the heat kernel approach can also be
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used to achieve GDP on Riemannian manifolds as well. In particular, there are many rich results
around heat kernel on Riemannian manifolds (see Grigoryan [2009] for example). Incorporating the
heat kernel in a privacy mechanism presents ample potential for novel and noteworthy discoveries.
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A Appendix

A.1 Theorem 3.1

First, we need to introduce the notion of privacy profile [Balle et al., 2018]:

The privacy profile δM of a mechanism M is a function associating to each privacy parameter
α = eε a bound on the α-divergence between the results of running the mechanism on two adjacent
datasets, i.e. δM(ε) = supx≃x′ Deε (M(x)∥M (x′) where the α-divergence (α ≥ 1) between two
probability measures µ, µ′ is defined as

Dα (µ∥µ′) = sup
E

(µ(E)− αµ′(E)) =

∫
Z

[
dµ

dµ′ (z)− α

]
+

dµ′(z) =
∑
z∈Z

[µ(z)− αµ′(z)]+ ,

where E ranges over all measurable subsets of Z, [·]+ = max{·, 0}. 2 Informally speaking, the
privacy profile represents the set of all of the privacy parameters under which a mechanism provides
differential privacy. Furthermore, the privacy profile can be computed using Theorem 5 of Balle and
Wang [2018]:

δM(ε) = sup
D≃D′

(
Pr

[
LD,D′

M > ε
]
− eε Pr

[
LD′,D
M < −ε

])
where LD,D′

M is the privacy loss random variable of the mechanism M on inputs D ≃ D′ defined
as LD,D′

M = log (dµ/dµ′) (z), where µ = M(D), µ′ = M (D′), and z ∼ µ. It follows that for our
Riemannian Gaussian mechanism M, the privacy profile δM can be rewritten as

δM = sup
D≃D′

∫
A

pη1,σ(y) dν(y)− eε
∫
A

pη2,σ(y) dν(y)

where A := {y ∈ M : pη1,σ(y)/pη2,σ(y) ≥ eε} and η1 := f(D), η2 := f(D′). This is exactly the
left-hand side of (2).

The following theorem establishes a connection between GDP and privacy profile:

Theorem A.1 (Theorem 3.3 of Liu et al. [2022]). Let µ0 :=
√
limε→+∞

ε2

−2 log δA(ε) . A privacy

mechanism A with the privacy profile δA(ε) is µ-GDP if and only if µ0 < ∞ and µ is no smaller
than µ0.

Theorem A.1 implies that a mechanism with finite µ0 is µ-GDP for some privacy budget µ. Note
that Theorem 3.1 only tells us that Riemannian Gaussian distribution can be used to achieve µ-GDP
for some µ. Therefore, to prove it, we only need to show that µ0 is finite. We will show µ0 < ∞
by demonstrate that − log δA(ε) = O(ε2). To do so, we will need the Bishop-Gromov comparison
theorem:
Theorem A.2 (Bishop-Gromov; Lemma 7.1.4 in Petersen [2006]). Let M be a complete n-
dimensional Riemannian manifold whose Ricci curvature satisfies the lower bound

Ric ≥ (n− 1)K

for a constant K ∈ R. Let Mn
K be the complete n-dimensional simply connected space of constant

sectional curvature K (and hence of constant Ricci curvature (n − 1)K ). Denote by B(p, r) the
ball of radius r around a point p, defined with respect to the Riemannian distance function. Then, for
any p ∈ M and pK ∈ Mn

K , the function

ϕ(r) =
VolB(p, r)

VolB (pK , r)

is non-increasing on (0,∞). As r goes to zero, the ratio approaches one, so together with the
monotonicity this implies that

VolB(p, r) ≤ VolB (pK , r) .

Bishop-Gromov comparison theorem not only gives us the control of volume growth of certain
manifolds but also gives a rough classification by sectional curvature. Besides, this is a global
property in the sense that p and pK can be arbitrary points on the manifolds.

2It is known that a mechanism M is (ε, δ)-DP if and only if Deε (M(D)∥M (D′)) ≤ δ for every D and
D′ such that D ≃ D′.
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A.1.1 Proof of Theorem 3.1

Proof. By A.1, we only need to show that for any η ∈ M, when ε → ∞,∫
A

pη,σ(y)dν(y) = e−O(ε2)

where A is given by
A = {y ∈ M|pη,σ(y)/pη′,σ(y) > eε}

Let’s consider M\A = {y ∈ M : pη,σ(y)/pη′,σ(y) ≤ eε}. We have

log

(
pη,σ(y)

pη′,σ(y)

)
=

1

2σ2
(d(η, y)2 − d(η′, y)2) + C

≤ ∆

2σ2
(2d(η, y) + ∆) + C, by triangular inequality,

where C = log(Z(η, σ))− log(Z(η′, σ)). Thus we have,

d(η, y) ≤ 2σ2(ε− C)−∆2

2∆
=⇒ pη,σ(y)

pη′,σ(y)
≤ eε

Let r = 2σ2(ε−C)−∆2

2∆ , note that since Bη(r) ⊆ M\A, we have A ⊆ M\Bη(r). Thus, we only
need to prove the following: ∫

M\Bη(r)

pη,σ2(y)dν(y) = e−O(ε2)

when ε → ∞. One can easily show the following inequality,∫
Bη(2r)\Bη(r)

pη,σ(y)dν(y) ≤ Z(η, σ) e−
r2

σ2 (VolB(η, 2r)−VolB(η, r)) (4)

By Theorem A.2, we have the following three cases:

1. K > 0. Then the standard space Mn
K is the n-sphere of radius 1/

√
K. (VolB(η, 2r) −

VolB(η, r)) is obviously less than the volume of the whole space Mn
K . Thus we have∫

Bη(2r)\Bη(r)

pη,σ(y)dν(y) ≤ Z(η, σ) e−
r2

σ2 s(n)
√
K

1−n
(5)

where s(n) = 2π
n
2

Γ(n
2 ) is a constant relative to the dimension n. One can easily find that as

ε → ∞, Bη(2r) will cover the Mn
K , and the right-hand side of inequality 5 will approach to

0 as e−O(ε2).

2. K = 0. Then the standard space Mn
K is the n dimensional Euclidean space Rn. We have∫

Bη(2r)\Bη(r)

pη,σ(y)dν(y) ≤ Z(η, σ) e−
r2

σ2
πn/2rn

Γ(n2 + 1)
. (6)

The same with above, when ε → ∞, Bη(2r) will cover the Rn and the right-hand side of 6
will approach to 0 as e−O(ε2).

3. K < 0. The standard space Mn(K) is the hyperbolic n-space Hn. The hyperbolic volume
VolB(ηK , r) with any ηk ∈ Hn is given by

VolB(ηK , r) = s(n)

∫ r

0

(
sinh(

√
−Kt)√

−K

)n−1

dt (7)

where the hyperbolic function is given by sinh(x) = (ex − e−x)/2. It’s not hard to see that

sinhn(t) ≤ (n+ 1)ent

2n
. (8)
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Plugging the 8 into 7, we have

VolB(ηK , r) ≤ sn
n

(n− 1)2n−1
√
−K

n e
√
−K(n−1)r. (9)

Combining 9 and 4, we have∫
Bη(2r)\Bη(r)

pη,σ(y)dν(y) ≤ c(n) Z(η, σ) e−
r2

σ2 +
√
−K(n−1)2r. (10)

The principle part of the exponent of the right-hand side of 10 is still −ε2. Thus, when
ε → ∞, it approaches to 0 as e−O(ε2).

A.2 Theorem 3.2

Proof. Follows directly from Definition 2.2, Theorem 3.1 and Theorem 5 in Balle and Wang [2018].

A.3 Corollary 3.2.1

Proof. In this proof, we will parameterize points on S1 using their polar angles.

On S1, the Riemannian Gaussian distribution with footprint η and rate σ has the following density,

pη,σ(θ) =
1

Zσ
e−

1
2σ2 (θ−η mod π)2 , Zσ =

√
2πσ

[
Φ
(π
σ

)
− Φ

(
−π

σ

)]
.

Note that since S1 has constant curvature, we can use Theorem 4.1 instead of Theorem 3.2

WLOG we assume η1 = 2π − ∆
2 and η2 = ∆

2 and thus d(η1, η2) = ∆. Given an arbitrary ε, the set
A takes the following form,

A =

[
π +

σ2ε

∆
, 2π − σ2ε

∆

]
.

and it follows that we must have

ε ∈ [0, π∆/(2σ2)]. (11)

Thus we have∫
A

pη1,σ(y) dν(y)− eε
∫
A

pη2,σ(y) dν(y)

=
1

Zσ

[∫
A

e−
1

2σ2 (η1−θ mod π)2dθ − eε
∫
A

e−
1

2σ2 (η2−θ mod π)2dθ

]

=
1

Zσ

[∫ 2π−σ2ε
∆

π+σ2ε
∆

e−
1

2σ2 (η1−θ mod π)2dθ − eε
∫
A

e−
1

2σ2 (η2−θ mod π)2dθ

]

=
1

Zσ

[∫ 2π−σ2ε
∆

π+σ2ε
∆

e−
1

2σ2 (η1−θ)2dθ − eε
∫
A

e−
1

2σ2 (η2−θ mod π)2dθ

]

=
1

Zσ

[
Φ

(
2π

σ
− σε

∆
− η1

σ

)
− Φ

(π
σ
+

σε

∆
− η1

σ

)
− eε

∫
A

e−
1

2σ2 (η2−θ mod π)2dθ

]
=

1

Zσ

[
Φ

(
−σε

∆
+

∆

2σ

)
− Φ

(
σε

∆
+

∆

2σ
− π

σ

)
− eε

∫
A

e−
1

2σ2 (η2−θ mod π)2dθ

]
.
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We have evaluated the first integral, and now let’s consider the second integral. For ε ≤ ∆2

2σ2 , we have∫
A

e−
1

2σ2 (µ2−θ mod π)2dθ

=

∫ µ2+π

π+σ2ε
∆

e−
1

2σ2 (θ−µ2)
2

dθ +

∫ 2π−σ2ε
∆

µ2+π

e−
1

2σ2 (θ−(2π+µ2))
2

dθ

=
√
2πσ

[
Φ
(π
σ

)
− Φ

(
π

σ
+

σε

∆
− ∆

2σ

)
+Φ

(
−σε

∆
− ∆

2σ

)
− Φ

(
−π

σ

)]
.

Thus for ε ≤ ∆2

2σ2 we have,∫
A

pη1,σ(y) dν(y)− eε
∫
A

pη2,σ(y) dν(y)

=

√
2πσ

Zσ

[
Φ

(
−σε

∆
+

∆

2σ

)
− eεΦ

(
−σε

∆
− ∆

2σ

)]
(12)

−
√
2πσ

Zσ

[
Φ

(
σε

∆
+

∆

2σ
− π

σ

)
− eεΦ

(
σε

∆
− ∆

2σ
+

π

σ

)]
− eε.

Similarly, for ε > ∆2

2σ2 , we have,∫
A

e−
1

2σ2 (µ2−θ mod π)2dθ

=

∫ 2π−σ2ε
∆

π+σ2ε
∆

e−
1

2σ2 (θ−(2π+µ2))
2

dθ

=
√
2πσ

[
Φ

(
−σε

∆
− ∆

2σ

)
− Φ

(
−π

σ
+

σε

∆
− ∆

2σ

)]
.

Thus for ε > ∆2

2σ2 we have,∫
A

pη1,σ(y) dν(y)− eε
∫
A

pη2,σ(y) dν(y)

=

√
2πσ

Zσ

[
Φ

(
−σε

∆
+

∆

2σ

)
− eεΦ

(
−σε

∆
− ∆

2σ

)]
(13)

−
√
2πσ

Zσ

[
Φ

(
σε

∆
+

∆

2σ
− π

σ

)
− eεΦ

(
σε

∆
− ∆

2σ
− π

σ

)]
.

Put (11), (12) and (13) together with Theorem 4.1, we have proved Corollary 3.2.1.

A.4 Homogeneous Riemannian Manifolds

For more detailed treatment on homogenous Riemannian manifolds and related concepts, refers to
Helgason [1962], Berestovskii and Nikonorov [2020], Lee [2006] for details and Chakraborty and
Vemuri [2019] for a more concise summary.

A.4.1 Group actions on Manifolds

In this section, we will introduce some basic facts about group action which will be used to introduce
homogeneous Riemannian manifolds in later section. The materials covered in this section can be
found in any standard Abstract Algebra texts.
Definition A.1. A group (G, ·) is a non-empty set G together with a binary operation · : G×G →
G, (a, b) 7→ a · b such that the following three axioms are satisfied:

• Associativity: ∀a, b, c ∈ G, (a · b) · c = a(b · c)
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• Identity element: ∃e ∈ G,∀a ∈ G, a · e = e · a = a.

• Inverse element: ∀a ∈ G,∃a−1 ∈ G, a · a−1 = a−1 · a = e.
Definition A.2. Let G be a group and X be an arbitrary set. A left group action is a map
α : G×X → X , that satisfies the following axioms:

• α(e, x) = x

• α(g, α(h, x)) = α(gh, x)

Note here we use the juxtaposition gh to denote the binary operation in the group. If we shorten
α(g, x) by g · x, it’s equivalent to say that e · x = x, and g · (h · x) = (gh) · x

Note each g ∈ G induces a map Lg : X → X,x 7→ g · x.

A.4.2 Homogeneous Riemannian manifolds, symmetric spaces and spaces of constant
curvature

Let M be a Riemannian manifold and I(M) be the set of all isometries of M, that is, given
g ∈ I(M), d(g · x, g · y) = d(x, y), for all x, y ∈ M. It is clear that I(M) forms a group, and thus,
for a given g ∈ I(M) and x ∈ M, g · x 7→ y, for some y ∈ M is a group action. We call I(M) the
isometry group of M.

Consider o ∈ M, and let H = Stab(o) = {h ∈ G | h ·o = o}, that is, H is the Stabilizer of o ∈ M.
Given g ∈ I(M), its linear representation g 7→ dxg in the tangent space TxM is called the isotropy
representation and the linear group dx Stab(x) is called the isotropy group at the point x.

We say that G acts transitively on M, iff, given x, y ∈ M, there exists a g ∈ M such that y = g · x.
Definition A.3 ([Helgason, 1962]). Let G = I(M) act transitively on M and H = Stab(o), o ∈ M
(called the "origin" of M ) be a subgroup of G. Then M is called a homogeneous Riemannian
manifold and can be identified with the quotient space G/H under the diffeomorphic mapping
gH 7→ g · o, g ∈ G.

By definition, we have d(x, y) = d(g · x, g · y) for any g ∈ G and any x, y ∈ M. More importantly,
any integrable function f : M → R, we have [Helgason, 1962]∫

M
f(x)dν(x) =

∫
M

f(g · x)dν(x)

This property leads to Proposition 4.1.
Definition A.4 ([Helgason, 1962]). A Riemannian symmetric space is a Riemannian manifold M
such that for any x ∈ M, there exists sx ∈ G = I(M) such that sx · x = x and dsx|x = −I . Sx is
called symmetry at x.

That is, a Riemannian symmetric space is a Riemannian manifold M with the property that the
geodesic reflection at any point is an isometry of M. Note that any Riemannian symmetric space is a
homogeneous Riemannian manifold, but the converse is not true.
Definition A.5 ([Vinberg et al., 1993]). A simply-connected homogeneous Riemannian manifold
is said to be a space of constant curvature if its isotropy group (at each point) is the group of all
orthogonal transformations with respect to some Euclidean metric.

Once again, a space of constant curvature is a symmetric space but the converse is not true.

A.5 Theorem 4.1

Proof. Let G be the isometry group of M. Let η1, η2 ∈ M be arbitrary points such that d(η1, η2) =
∆. By Corollary 4.1, the set A reduces to A =

{
y ∈ M : d(η2, y)

2 − d(η1, y)
2 ≥ 2σ2ε

}
.

What we need to show is the following, for any points η′1, η
′
2 ∈ M such that d(η′1, η

′
2) = ∆,∫

A

pη1,σ(y) dν(y)− eε
∫
A

pη2,σ(y) dν(y) =

∫
A′

pη′
1,σ

(y) dν(y)− eε
∫
A′

pη′
2,σ

(y) dν(y)
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where A′ =
{
y ∈ M : d(η′2, y)

2 − d(η′1, y)
2 ≥ 2σ2ε

}
. It’s sufficient to show∫

A

pη1,σ(y) =

∫
A′

pη′
1,σ

(y) dν(y),

∫
A

pη2,σ(y) =

∫
A′

pη′
2,σ

(y) dν(y). (14)

We can separate the proof into three cases: (1) η′1 = η1, η
′
2 ̸= η2; (2) η′1 ̸= η1, η

′
2 = η2; (3)

η′1 ̸= η1, η
′
2 ̸= η2.

Case (1): η′1 = η1, η
′
2 ̸= η2:

It follows that η2 is in the sphere centered at η with radius ∆. (14) then follows from the rotational
symmetry of the constant curvature spaces.

Case (2): η′1 ̸= η1, η
′
2 = η2:

Same as case (1).

Case (3): η′1 ̸= η1, η
′
2 ̸= η2:

For any η′1 ̸= η1, there exists g ∈ G, such that g · η1 = η′1. Denote η′2 = g · η2, we have
gA :={g · y : d(η2, y)

2 − d(η1, y)
2 ≥ 2σ2ε}

={g · y : d(η′2, g · y)2 − d(η′1, g · y)2 ≥ 2σ2ε}
={y : d(η′2, y)

2 − d(η′1, y)
2 ≥ 2σ2ε}

=A′.

Let F (y) := pη1,σ(y)1A(y), we have∫
A

pη1,σ(y) dν(y)

=

∫
M

F ◦ L−1
g (y) dν(y)

=

∫
M

pη1,σ(g
−1 · y)1gA(y) d(L

−1
g )∗ν(y); change of variable formular,

=

∫
M

pη1,σ(g
−1 · y)1gA(y) dν(y); ν is a G-invariant measure,

=
1

Zσ

∫
gA

e−
1

2σ2 d(g−1·y,η1)
2

dν(y)

=
1

Zσ

∫
gA

e−
1

2σ2 d((gg−1)·y,g·η1)
2

dν(y)

=
1

Zσ

∫
gA

e−
1

2σ2 d(y,η′
1)

2

dν(y)

=

∫
gA

pη′
1,σ(y)

dν(y)

=

∫
A′

pη′
1,σ(y)

dν(y).

For
∫
A
pη2,σ(y)dν(y), the proof is the same. Combine with the result of case (1), we have finished

the proof for case (3).

A.6 Simulation Details

For sampling from Riemannian Gaussian distribution NM(θ, σ2) on S1 (section 4.2), we first sample
from truncated normal distribution with µ = 0 and σ2, then embed the sample to R and lastly
counter-wise rotate the sample with degree θ.

For simulation on S2 (section 5.2), we choose the pair of η and η′ to be (1, 0, 0) and (cos(∆), (1−
cos(∆)2)1/2, 0). Though any pair η, η′ ∈ S2 with d(η, η′) = ∆ works, we simply choose this
specific pair for convenience. For Fréchet mean computation, we use a gradient descent algorithm
described in Reimherr and Awan [2019].
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A.6.1 R Codes

For simulations in section 4.2, refer to R files euclid_functions.R & euclid_simulation.R for Euclidean
space and sphere_functions.R & s1_simulation.R for unit circle S1. For simulations in section 5.2,
refer to R files sphere_functions.R & sphere_simulation.R.
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