
Published in Transactions on Machine Learning Research (02/2025)

Wasserstein Coreset via Sinkhorn Loss

Haoyun Yin yin164@purdue.edu
Department of Statistics
Purdue University

Yixuan Qiu qiuyixuan@sufe.edu.cn
School of Statistics and Data Science
Shanghai University of Finance and Economics

Xiao Wang wangxiao@purdue.edu
Department of Statistics
Purdue University

Reviewed on OpenReview: https: // openreview. net/ forum? id= DrMCDS88IL

Abstract

Coreset selection, a technique for compressing large datasets while preserving performance,
is crucial for modern machine learning. This paper presents a novel method for
generating high-quality Wasserstein coresets using the Sinkhorn loss, a powerful tool with
computational advantages. However, existing approaches suffer from numerical instability in
Sinkhorn’s algorithm. We address this by proposing stable algorithms for the computation
and differentiation of the Sinkhorn optimization problem, including an analytical formula
for the derivative of the Sinkhorn loss and a rigorous stability analysis of our method.
Extensive experiments demonstrate that our approach significantly outperforms existing
methods in terms of sample selection quality, computational efficiency, and achieving a
smaller Wasserstein distance.

1 Introduction

In the last decade, big data stored in databases have grown massively and become difficult to capture, form,
store, manage, share, analyze, and visualize using typical database software tools (Sagiroglu & Sinanc, 2013).
To address this challenge, the coreset technique, also known as representative sampling, has been developed
to select a handful of representative samples that summarize the original dataset. Formalizing the notion of
representative requires care, as a representative sample for a clustering algorithm may differ from that for
a classification algorithm (Claici et al., 2018). Consequently, coreset construction methods usually depend
on specific tasks, such as clustering (Feldman, 2020), classification (Coleman et al., 2019), logistic regression
(Wang et al., 2018), mixture models (Lucic et al., 2018), low-rank approximation (Cohen et al., 2016), matrix
sketching(Drineas et al., 2012), and Bayesian inference (Campbell & Broderick, 2018).

In this context, it is essential to establish a clear framework for discussing coreset problems. Let B denote
the number of samples in a coreset, and define the set ∆B := {νB | νB = 1

B

∑B
i=1 δXi

, Xi ∈ X}, which
consists of all probability measures supported on B points, each having mass 1

B . Given a measure ξ on the
metric space (X , d) and a particular objective function f : X → R, we say that νB ∈ ∆B is a δ-coreset of ξ
for the specific task defined by f if

|Eξ[f(X)]− EνB
[f(X)]| < δ, with B ≪ N.

1

https://openreview.net/forum?id=DrMCDS88IL

Published in Transactions on Machine Learning Research (02/2025)

To extend this notion beyond a single task, we can consider a family F of objective functions f : X → R.
We define the integral probability metric (IPM) associated with F as

dF (ξ, ν) = sup
f∈F
|Eξ[f(X)]− Eν [f(X)]| . (1)

A measure νB ∈ ∆B is then called a task-agnostic δ-coreset of ξ if dF (ξ, νB) < δ, thereby controlling
the approximation error uniformly over all functions in F . This task-agnostic formulation emphasizes the
coreset’s ability to perform well for a wide class of objective functions, rather than being tailored to a single
specific task.

In particular, consider the following two classes of functions:

F1 = {f : |f(x)− f(y)| ≤ d(x, y), ∀x, y ∈ X}

and
F2 = {f : ∥f∥H1(µ) ≤ 1},

where H1 is the Sobolev space {f ∈ L2 : ∂xif ∈ L2} endowned with the norm

∥f∥H1(µ) =
(∫

X
|f(x)|2 dµ(x) +

∫
X
∥∇f(x)∥2 dµ(x)

)1
2

.

For these function classes, with W1 and W2 being the 1-Wasserstein distance and 2-Wasserstein distance,
respectively, one can show that:

(a) dF1(µ, µB) = W1(µ, µB) (Santambrogio, 2015),

(b) dF2(µ, µB) ≤
√
CW2(µ, µB), where C is a constant (Peyré et al., 2019).

These results indicate that the Wasserstein distance provides a suitable upper bound for the relevant integral
probability metrics. Consequently, using a Wasserstein-based objective in coreset construction ensures that
the resulting coreset is task-agnostic. By minimizing the Wasserstein distance, we inherently minimize an
upper bound on the IPM for a broad range of objective functions f ∈ F1 or f ∈ F2, and approximates the
target measure with respect to a large family of tasks.

These insights into task-agnostic coresets rely on integral probability metrics and our specific focus on
Wasserstein-based bounds. However, task-agnostic coreset constructions have also been explored through
other frameworks. A few examples of task-agnostic coresets are the mse-rep-points (Fang & Wang, 1993),
energy-rep-points (Mak & Joseph, 2018), and mmd-rep-points (Dwivedi & Mackey, 2021).

The mse-rep-points, or mean squared error representative points, aim to minimize the expected distance from
a random point drawn from the distribution to its closest representative point. These points, also known as
principal points, have been effectively used in various applications, including quantizer design and optimal
stratified sampling. In practice, they are often generated by performing k-means clustering on a large batch
sample from the distribution, and then using the converged cluster centers as representative points. However,
a primary drawback of mse-rep-points is that they do not necessarily converge to the underlying distribution,
which limits their effectiveness in some scenarios (MacQueen et al., 1967; Graf & Luschgy, 2007).

The second class of coresets, energy-rep-points aim to minimize a measure of statistical potential. This class
includes methods such as minimum-energy designs (Joseph et al., 2015) and minimum Riesz energy points
(Borodachov et al., 2014). Although these point sets converge in distribution, their convergence rate is
slow, and the construction of such point sets can become computationally expensive as the dimensionality
of the data increases. Mak & Joseph (2018) improved these methods and try to generate support points by
minimizing the energy distance. However, energy distance, regarded as a kernel discrepancy for nonuniform
distributions with the specific kernel choice of the negative Euclidean norm, may not be well-suited for high-
dimensional manifold data. Such data is commonly encountered in contemporary machine learning tasks,
where the properties of the negative Euclidean norm can pose challenges.

2

Published in Transactions on Machine Learning Research (02/2025)

A third class of task-agnostic coresets, the mmd-rep-points, aims to minimize the maximum mean discrepancy
(MMD) between the empirical distribution and the distribution of the representative points. The MMD is a
kernel-based metric that quantifies discrepancies between distributions, and mmd-rep-points are constructed
by selecting points that reduce this measure. However, the effectiveness of mmd-rep-points is highly sensitive
to the choice of kernel, which can significantly influence the resulting approximation. Moreover, the method
proposed by Dwivedi & Mackey (2021) requires O(nmin(n, p)) memory storage and does not support
mini-batch operations, making it challenging to apply to large-scale datasets frequently encountered in
contemporary machine learning settings.

In contrast, the Wasserstein distance, the core of optimal transport (OT, Villani (2009)), is recognized as
the natural geometry for probability measures for its efficacy, and has gained widespread use across multiple
machine learning domains, including generative modeling (Arjovsky et al., 2017) and domain adaptation
(Courty et al., 2017). Let (X , d) be a metric space that is Polish. For p ∈ [1,∞), the p-Wasserstein

distance is defined as Wp(µ, ν) =
(

infγ∈Π(µ,ν)
∫

X ×X d(x, y)pγ(dx, dy)
)1/p

, where Π(µ, ν) is the set of all
joint distributions with marginals µ and ν. According to Theorem 1.1 in Kloeckner (2012), we know that if
X = Rd, and let ν∗

B denote the minimizer of Wp(ξ, νB) in the space of all measures supported on at most B
points in X , i.e.,

ν∗
B = argmin

νB∈
{

ν:ν=
∑B

i=1
ωiδXi

}Wp(ξ, νB),

where {ωi}B
i=1 is any set of weights, Xi ∈ X and δX indicates the Dirac measure at X, then it holds that

Wp(ξ, ν∗
B) = Θ(n−1/d).

Despite the various appealing theoretical properties, one major barrier for the wide applications of the
Wasserstein distance is the difficulty in computation, especially when the size of the dataset is large. For
two discrete distributions, OT solves a linear programming problem of nm variables, where n and m are the
number of Diracs that define the two distributions. Assuming n = m, standard linear programming solvers
for OT have a complexity of O(n3 logn) (Pele & Werman, 2009), which quickly becomes formidable as n
increases, except for some special cases (Peyré et al., 2019).

To resolve this issue, many approximate solutions to the Wasserstein distance have been proposed, among
which the Sinkhorn loss has gained massive popularity (Cuturi, 2013). The Sinkhorn loss can be viewed as
an entropic-regularized Wasserstein distance, which adds a smooth penalty term to the original objective
function of OT. The Sinkhorn loss is attractive as its optimization problem can be efficiently solved, at
least in exact arithmetics, via Sinkhorn’s algorithm (Sinkhorn, 1964; Sinkhorn & Knopp, 1967), which
merely involves matrix-vector multiplications and some minor operations. Therefore, it is especially suited
to modern computing hardware, such as GPUs. Recent theoretical advancements indicate that Sinkhorn’s
algorithm achieves an ε-approximation to the unregularized OT problem with a computational complexity
of O(n2 log(n)ε−2) (Dvurechensky et al., 2018). Meanwhile, the accelerated Sinkhorn algorithm improves
this complexity to O(n7/3 log(n)1/3ε−4/3) (Lin et al., 2022).

However, one critical pain point of the Sinkhorn loss, though typically ignored in theoretical studies, is that
Sinkhorn’s algorithm is numerically unstable (Peyré et al., 2019). We show in numerical experiments that
even for very simple settings, Sinkhorn’s algorithm can quickly lose precision. Various stabilized versions
of Sinkhorn’s algorithm, though showing better stability, still suffer from slow convergence in these cases.
Moreover, since modern deep generative models mostly rely on the gradient-based learning framework,
it is crucial to use the Sinkhorn loss with differentiation support. One simple and natural method for
differentiating the Sinkhorn loss is to unroll Sinkhorn’s algorithm, adding every iteration to the auto-
differentiation computing graph (Genevay et al., 2018; Cuturi et al., 2019). However, this approach is
typically costly when the number of iterations are large. The slow convergence rate resulted from numerical
instability of Sinkhorn’s algorithm may further exacerbate this issue.

In this paper, we solve the coreset problem using the Sinkhorn loss. We rigorously analyze both the
computation and differentiation of the Sinkhorn optimization problem, designing corresponding algorithms
that are provably efficient and stable. Utilizing the analytic differentiation of Sinkhorn loss, we have designed
a gradient-based algorithm for the strategic selection of the coreset, which is task-agnostic and suitable for

3

Published in Transactions on Machine Learning Research (02/2025)

high-dimensional manifold data. As a result, it can be applied to a wide range of machine learning tasks.
We have demonstrated the superior performance of our method in extensive simulation studies and practical
applications with image data. Our major contributions are:

(i) We derive an analytic expression for the derivative of the Sinkhorn loss, which can be efficiently
computed during the back-propagation phase in machine learning.

(ii) We have rigorously analyzed the advocated algorithms for Sinkhorn loss computation and differentiation
(SLCD), and show that they have desirable efficiency and stability properties.

(iii) We designed a task-agnostic coreset selection method called Wasserstein coreset via Sinkhorn loss
(WCSL) and highlighted its superior performance in low-budget scenarios, in extensive simulation
studies and practical applications with imaging data.

This paper is organized as follows. In Section 2, we introduce the notation and provide the necessary
background on the Sinkhorn loss. The construction of a Wasserstein coreset can be viewed as a two-layer
optimization problem: the outer layer selects the coreset points, by minimizing the Sinkhorn loss. The
inner layer computes the Sinkhorn loss, which requires optimization of the transport plan. In Section 3, we
present the outer layer, our WCSL algorithm, and explain why computing the derivative of the Sinkhorn loss
is essential. Section 4 addresses numerical challenges in the Sinkhorn algorithm and introduces the SLCD
algorithm to efficiently compute and differentiate the Sinkhorn loss, resulting in the inner layer. Section 5
provides theoretical analysis on the convergence and stability of the SLCD algorithm, the consistency of
the Wasserstein coreset, and the convergence properties of the WCSL algorithm. Finally, Section 6 presents
numerical experiments that demonstrate the performance of WCSL in comparison to several alternative
methods.

2 Background

Throughout this article we focus on discrete OT problems. We denote the (n − 1)-dimensional probability
simplex by ∆n = {w ∈ Rn

+ : wT1n = 1}, and let µ =
∑n

i=1 aiδxi
and ν =

∑m
j=1 bjδyj

be two discrete
probability measures supported on data points {xi}n

i=1 and {yj}m
j=1, respectively, where a = (a1, . . . , an)T ∈

∆n and b = (b1, . . . , bm)T ∈ ∆m. Define Π(a, b) = {T ∈ Rn×m
+ : T1m = a, TT1n = b}, and let

M({xi}n
i=1, {yj}m

j=1) ∈ Rn×m be a cost matrix with entries Mij = d(xi, yj) for any selected distance d(·, ·).
Without loss of generality, we assume that n ≥ m, as their roles can be exchanged. Then we can characterize
the OT problem by the following optimization problem,

W (µ, ν) = min
P ∈Π(a,b)

⟨P,M⟩, (2)

where ⟨A,B⟩ = tr(ATB).

For the Sinkhorn loss, we use the following notation. For x, y ∈ R, x ∧ y means min{x, y}. For a vector v =
(v1, . . . , vk)T, let v−1 = (v−1

1 , . . . , v−1
k)T, ṽ = (v1, . . . , vk−1)T, and use diag(v) to denote the diagonal matrix

formed by v. Let u = (u1, . . . , ul)T be another vector, and use u⊕ v to denote the l× k matrix with entries
(ui + vj). For a matrix A = (aij) = (A1, . . . , Ak) with column vectors A1, . . . , Ak, let Ã = (A1, . . . , Ak−1),
and eλ[A] be the matrix with entries eλaij . The symbol ⊙ denotes the elementwise multiplication operator
between matrices or vectors. ∥ · ∥ and ∥ · ∥F stand for the Euclidean norm for vectors and Frobenius norm
for matrices, respectively.

An optimal solution to (2), denoted as P ∗, is typically called an optimal transport plan, and can be viewed
as a joint distribution whose marginals coincide with µ and ν. The optimal value W (µ, ν) = ⟨P ∗,M⟩ is
then called the Wasserstein distance between µ and ν if the cost matrix M satisfies some suitable conditions
(Proposition 2.2 of Peyré et al., 2019).

Solving the optimization problem (2) can be difficult even for moderate n and m. One approach to
regularizing the optimization problem is to add an entropic penalty term to the objective function, leading

4

Published in Transactions on Machine Learning Research (02/2025)

to the entropic-regularized OT problem (Cuturi, 2013):

S̃λ(µ, ν) = min
T ∈Π(a,b)

⟨T,M⟩ − λ−1h(T), (3)

where h(T) =
∑n

i=1
∑m

j=1 Tij(1 − log Tij) is the entropy term. The new objective function is λ−1-strongly
convex on Π(a, b), so (3) has a unique global solution, denoted as T ∗

λ , i.e.,

T ∗
λ = argmin

T ∈Π(a,b)
⟨T,M⟩ − λ−1h(T).

In this article, T ∗
λ is referred to as the Sinkhorn transport plan. To simplify the notation, we omit the

subscript λ in T ∗
λ hereafter when no confusion is caused. The entropic-regularized Wasserstein distance, also

known as the Sinkhorn distance or Sinkhorn loss in the literature (Cuturi, 2013), is then defined as

Sλ(µ, ν) = ⟨T ∗,M⟩. (4)

It is worth noting that in the literature, Sλ and S̃λ are sometimes referred to as the sharp and regularized
Sinkhorn loss, respectively. In this article we focus on the sharp version Sλ, and simply call it the Sinkhorn
loss for brevity, as Sλ achieves a faster rate at approximating the Wasserstein distance than S̃λ, suggested
by the following proposition.
Proposition 2.1 (Luise et al., 2018). There exist constants C1, C2 > 0 such that for any λ > 0, |Sλ(µ, ν)−
W (µ, ν)| ≤ C1e

−λ and |S̃λ(µ, ν) −W (µ, ν)| ≤ C2/λ. The constants C1 and C2 are independent of λ, and
depend on µ and ν.

3 Wasserstein Coreset via Sinkhorn Loss (WCSL)

In this section, we will use the sinkhorn loss to generate the Wasserstein coreset. We call this method the
Wasserstein coreset via Sinkhorn loss. The objective of WCSL is to find the empirical distribution of the
Wasserstein coreset:

ν∗
B = argmin

νB∈∆B

W (ξ, νB). (5)

As we have mentioned earlier, the standard solver of Wasserstein distance quickly becomes formidable as n
increases. To address this issue, we propose to use the Sinkhorn loss to approximate the Wasserstein distance
in the coreset problem. The objective of the empirical distribution of the Wasserstein coreset via Sinkhorn
loss is revised as:

ν∗
B = argmin

νB∈∆B

Sλ(ξ, νB). (6)

The algorithm for WCSL (Algorithm 1) is an iterative procedure that seeks to minimize the Sinkhorn loss
between the full measure and the measure uniformly supported on the coreset.

Given a measure ξ, the basic idea of the algorithm is to randomly sample an initial set D(0) consisting of B
i.i.d. sample points from ξ, and then update the points we get with gradient descent based on the gradient
of the Sinkhorn loss between the measure uniformly supported on our selected points and the measure ξ,
until convergence. Then we output the optimized points D∗ as the coreset, given by

D∗ = argmin
{xi}B

i=1

Sλ

(
ξ,

1
B

B∑
i=1

δxi

)
. (7)

With a slight abuse of notation, we denote Sλ

(
{xi}B1

i=1, {yj}B2
j=1
)

as an abbreviation for
Sλ

(
1

B1

∑B1
i=1 δxi

, 1
B2

∑B2
j=1 δyj

)
, where {xi}B1

i=1 and {yj}B2
j=1 are two sets of points.

In detail of WCSL, we use one mini-batch of i.i.d sample Y(l,t) from ξ to update our coreset in each
iteration. The preparation step within each iteration is to compute the matrix M(D(l,t),Y(l,t)), which

5

Published in Transactions on Machine Learning Research (02/2025)

Algorithm 1 Algorithm for Wasserstein coreset via Sinkhorn loss (WCSL)

1: Sample D(0) = {x(0)
i }B

i=1
i.i.d.∼ ξ. Set l = 0.

2: repeat
3: Initialize D(l,0) ← D(l)

4: for t = 0, . . . , T − 1 do
5: Resample Y(l,t) = {x(l,t)

m }b
m=1

i.i.d.∼ ξ
6: Compute M(D(l,t),Y(l,t)) the distance matrix based on the selected distance.
7: Update D(l,t+1) ← D(l,t) + θ · ∇D(l,t)M∇MSλ(D(l,t),Y(l,t)) (Or Adam update)
8: end for
9: Update D(l+1) ← D(l,T)

10: Set l← l + 1.
11: until Sλ(D(l),D(l−1)) < δ
12: return D(l)

holds the pairwise distances, typically the squared L2 norm, between the elements of D(l,t) and Y(l,t). The
squared L2 norm is chosen to ensure compatibility with the definition of the 2-Wasserstein distance (W2).
This distance matrix M is then utilized to update D(l,t) using the chain rule, as ∇D(l,t)Sλ(D(l,t),Y(l,t)) =
∇MSλ(D(l,t),Y(l,t))∇D(l,t)M . In general, we can get ∇D(l,t)M by automatic differentiation. However, the
computation of ∇MSλ(D(l,t),Y(l,t)) poses a significant challenge, and this will be discussed in detail in
Section 4, where the Algorithm 2 for the computation and differentiation of the Sinkhorn loss is presented.

4 Computation and Differentiation of the Sinkhorn Loss

To use the Sinkhorn loss in deep neural networks or other machine learning tasks, it is crucial to obtain
the derivative of Sλ(µ, ν) with respect to the distance matrix. Differentiating the Sinkhorn loss typically
involves two stages: the solution stage and the differentiation stage. In the solution stage, the Sinkhorn loss
or the transport plan is computed using some optimization algorithms, and in the differentiation stage, the
derivative is computed using either an analytic expression or an automatic differentiation technique. Before
we analyze both stages in detail, we first present the issues of Sinkhorn’s algorithm.

4.1 Issues of Sinkhorn’s Algorithm

In the existing literature, one commonly used method for the computation of the Sinkhorn loss is Sinkhorn’s
algorithm (Sinkhorn, 1964; Sinkhorn & Knopp, 1967). Unlike the original linear programming problem (2),
the solution to the Sinkhorn problem has a special structure. Cuturi (2013) shows that the optimal solution
T ∗ can be expressed as

T ∗ = diag(u∗)Mediag(v∗) (8)

for some vectors u∗ and v∗, where Me =
(
e−λMij

)
. Sinkhorn’s algorithm starts from an initial vector

v(0) ∈ Rm
+ , and generates iterates u(k) ∈ Rn

+ and v(k) ∈ Rm
+ as follows:

u(k+1) ← a⊙ [Mev
(k)]−1, v(k+1) ← b⊙ [MT

e u
(k+1)]−1. (9)

It can be proved that u(k) → u∗ and v(k) → v∗, and then the Sinkhorn transport plan T ∗ can be recovered
by (8).

Sinkhorn’s algorithm is very efficient, as it only involves matrix-vector multiplication and other inexpensive
operations. However, one major issue of Sinkhorn’s algorithm is that the entries of Me =

(
e−λMij

)
may

easily underflow when λ is large, making some elements of the vectors Mev
(k) and MT

e u
(k+1) close to zero.

As a result, some components of u(k+1) and v(k+1) would overflow. Therefore, Sinkhorn’s algorithm in its
original form is unstable, and in practice the iterations (9) are typically carried out in the logarithmic scale,
which we call the Sinkhorn-log algorithm for simplicity. In addition, there are some other works that also
attempt to improve the numerical stability of Sinkhorn’s algorithm (Schmitzer, 2019; Cuturi et al., 2022).

6

Published in Transactions on Machine Learning Research (02/2025)

0 20 40 60
0

10

20

30

40

50

60

70

80

90
Truth Sinkhorn Sinkhorn-log Stabilized Greenkhorn L-BFGS

Figure 1: Visualization of Sinkhorn plans computed by different algorithms.

Remark: Due to numerical instability and slow convergence, the transport plan obtained through Sinkhorn’s algorithm
and various widely used algorithms, deviates significantly from the ground truth. In contrast, the transport plan
computed using L-BFGS demonstrates a near-perfect visual alignment with the true solution. Detailed experimental
settings are provided in Appendix B.1.

Algorithm 2 Sinkhorn Loss Computation and Differentiation (SLCD)
1: Solution Stage:
2: Use L-BFGS to solve β∗ = argminβ f(β), where f(β) is defined in (12) and its gradient ∇β̃f in

(13).
3: Compute α∗ using (11) and compute T ∗ using (14).
4: Compute the Sinkhorn loss using (4).
5: Differentiation Stage:
6: Compute the analytical derivative using (15) from Theorem 4.1.

Despite the advancements of Sinkhorn’s algorithm, one critical issue observed in practice is that Sinkhorn-
type algorithms may be slow to converge, especially for small regularization parameters. This would severely
slow down the computation, and may even give misleading results when the user sets a moderate limit on
the total number of iterations.

In Figure 1, we show a motivating example to highlight these issues. Consider two probability measures for
the Sinkhorn problem, and the true T ∗ matrix is visualized in Figure 1, along with the solutions given by
various widely-used algorithms, including Sinkhorn’s algorithm, Sinkhorn-log, the stabilized scaling algorithm
(Stabilized, Algorithm 2 of Schmitzer, 2019), and the Greenkhorn algorithm (Altschuler et al., 2017; Lin et al.,
2022). In Figure 1, it is clear that the plans given by Sinkhorn’s algorithm and Greenkhorn are farthest to the
true value, and Greenkhorn generates NaN values reflected by the white stripes in the plot. In contrast, the
stable algorithms Sinkhorn-log and Stabilized greatly improve them. Sinkhorn’s algorithm and Sinkhorn-log
are equivalent in exact arithmetics, so their numerical differences highlight the need for numerically stable
algorithms. However, Sinkhorn-log and Stabilized still have visible inconsistencies with the truth even after
1000 iterations.

4.2 The Advocated Alternative for Sinkhorn Loss Computation

To solve the numerical instability and slow convergence issue of Sinkhorn’s algorithm, we advocate an
alternative scheme to solve the optimal plan T ∗, as shown in the solution stage of Algorithm 2. Then we
show both theoretically and empirically that this method enjoys great efficiency and stability.

Consider the dual problem of (3), which has the following form (Proposition 4.4 of Peyré et al., 2019):

max
α,β
L(α, β) := max

α,β
αTa+ βTb− λ−1

n∑
i=1

m∑
j=1

e−λ(Mij−αi−βj), α ∈ Rn, β ∈ Rm. (10)

7

Published in Transactions on Machine Learning Research (02/2025)

Let α∗ = (α∗
1, . . . , α

∗
n)T and β∗ = (β∗

1 , . . . , β
∗
m)T be one optimal solution to (10), and then the Sinkhorn

transport plan T ∗ can be recovered as T ∗ = eλ[α∗ ⊕ β∗ − M]. Remarkably, (10) is equivalent to an
unconstrained convex optimization problem, so a simple gradient ascent method suffices to find its optimal
solution. But in practice, quasi-Newton methods such as the limited memory BFGS method (L-BFGS, Liu
& Nocedal, 1989) can significantly accelerate the convergence.

It is worth noting that we can reduce the number of variables to be optimized in (10) based on the following
two findings. First, as pointed out by Cuturi et al. (2019), the variables (α, β) have one redundant degree of
freedom: if (α∗, β∗) is one solution to (10), then so is (α∗ + c1n, β

∗ − c1m) for any c. Therefore, we globally
set βm = 0 without loss of generality. Second, let α∗(β) = arg maxα L(α, β) for a given β = (β̃T, βm)T =
(β̃T, 0)T, and define f(β) = −L(α∗(β), β). Then we only need to minimize f(β) with (m− 1) free variables
to get β∗, and α∗ can be recovered as α∗ = α∗(β∗). As a result, we have the following lemma, with proof
given in Appendix C.2:
Lemma 1. The dual problem (10) is equivalent to minβ f(β), where α∗(β), f(β), and ∇β̃f have the following
simple closed-form expressions:

α∗(β)i = λ−1 log ai − λ−1 log

 m∑
j=1

eλ(βj−Mij)

 , (11)

f(β) = −α∗(β)Ta− βTb+ λ−1, (12)
∇β̃f = T̃ (β)T1n − b̃. (13)

Then for a specific β, we can recover the transport plan T (β) by:

T (β) = eλ[α∗(β)⊕ β −M]. (14)

With f(β) and ∇β̃f , the L-BFGS algorithm can be readily used to minimize f(β) and obtain β∗.
Each gradient evaluation requires O(mn) exponentiation operations, which is comparable to Sinkhorn-log.
Although exponentiation is more expensive than matrix-vector multiplication as in Sinkhorn’s algorithm,
this extra cost can be greatly remedied by modern hardware such as GPUs. On the other hand, we would
show in Section 5 that L-BFGS has a strong guarantee on numerical stability, which is critical for many
scientific computing problems.

Using L-BFGS to solve (10) is a known practice (Cuturi & Peyré, 2018; Flamary et al., 2021), but little is
known about its stability in solving the regularized OT problem. For the motivating example in Section
4.1, we demonstrate the advantage of L-BFGS by showing its transport plan in the rightmost plot of Figure
1. We limit its maximum number of gradient evaluations to 1000, and hence comparable to other methods.
Clearly, the L-BFGS solution is visually identical to the ground truth.

To study the difference between L-BFGS and Sinkhorn’s algorithm in more depth, we compute the objective
function value of the dual problem (10) at each iteration for both Sinkhorn-log and L-BFGS. The results are
visualized in Figure 2, with three different values of λ−1, λ−1 = 0.1, 0.01, 0.001. Figure 2 gives a clear clue
to the issue of Sinkhorn-log: it has a surprisingly slow convergence speed compared to L-BFGS when λ−1 is
small. Theoretically, Sinkhorn algorithms will eventually converge with sufficient iterations, but in practice,
a moderate limit on computational budget may prevent them from generating accurate results. To this end,
L-BFGS appears to be a better candidate when one needs a small λ−1 for better approximation to the OT
problem. In Appendix B.2 We have designed more experiments to study the stability and accuracy of the
Sinkhorn loss computation across different algorithms.

4.3 The Analytic Differentiation of Sinkhorn Loss

For the differentiation stage, one commonly-used method is unrolled Sinkhorn’s algorithm, which is based on
the fact that Sinkhorn’s computation algorithm is differentiable with respect to a, b, and M . Therefore, one
can use automatic differentiation software to compute the corresponding derivatives in the differentiation
stage. This method is used in Genevay et al. (2018) for learning generative models with the Sinkhorn loss,

8

Published in Transactions on Machine Learning Research (02/2025)

0 20 40 60 80 100
2.5

2.0

1.5

1.0

0.5

0.0

0.5
O

bj
ec

ti
ve

 F
un

ct
io

n
Va

lu
e

1 = 0.1

0 100 200 300 400 500
Iteration Count

3.0

2.5

2.0

1.5

1.0

0.5

0.0

1 = 0.01

0 200 400 600 800 1000

3.0

2.5

2.0

1.5

1.0

0.5

0.0

1 = 0.001

Sinkhorn-log
L-BFGS Gradient Eval.
L-BFGS Iteration

Figure 2: Comparing the convergence speed of Sinkhorn-log and L-BFGS.

Remark: Sinkhorn-log converges slowly compared to L-BFGS, especially when the regularization parameter λ−1 of the
Sinkhorn loss is small. Since each L-BFGS iteration may involve more than one gradient evaluation, for L-BFGS we
plot the values against both the outer iteration and gradient evaluation counts.

but in practice it may be extremely slow if the solution stage takes a large number of iterations. To avoid
the excessive cost of unrolled algorithms, various implicit differentiation methods have been developed for
the Sinkhorn loss (Feydy et al., 2019; Campbell et al., 2020; Xie et al., 2020; Eisenberger et al., 2022), but
they still do not provide the most straightforward way to compute the gradient.

To this end, we advocate the analytical differentiation of the Sinkhorn loss, which uses the optimal dual
variables (α∗, β∗) from the solution stage to directly compute the derivative, as presented in the differentiation
stage in Algorithm 2. The analytic form for ∇a,bSλ(µ, ν) has been studied in Luise et al. (2018), and to our
best knowledge, few result has been presented for ∇MSλ(µ, ν). Our first main theorem, given in Theorem
4.1, fills this gap and derives the analytic form for ∇MSλ(µ, ν).
Theorem 4.1. For a fixed λ > 0,

∇MSλ(µ, ν) = T ∗ + λ(su ⊕ sv −M)⊙ T ∗, (15)

where T ∗ = eλ[α∗⊕β∗−M], su = a−1⊙ (µr− T̃ ∗s̃v), sv = (s̃T
v , 0)T, µr = (M ⊙T ∗)1m, µ̃c = (M̃ ⊙ T̃ ∗)T1n,

s̃v = D−1 [µ̃c − T̃ ∗T(a−1 ⊙ µr)
]
, and D = diag(b̃) − T̃ ∗Tdiag(a−1)T̃ ∗. In addition, D is positive definite,

and hence invertible, for any λ > 0, a ∈ ∆n, b ∈ ∆m, and M .

Assuming n ≥ m, the main computational cost is in forming D, which requires O(m2n) operations for
matrix-matrix multiplication, and in computing s̃v, which costs O(m3) operations for solving a positive
definite linear system. Theorem 4.1 provides a simple and efficient way to compute the gradient of the
Sinkhorn loss with respect to the cost matrix M .

5 Stability Analysis and Convergence

With the computation and differentiation algorithms advocated for the Sinkhorn loss in Algorithm 2, we are
able to find the Wasserstain coreset using Algorithm 1 efficiently. In this section, we focus on the theoretical
properties of these algorithms, and show that they enjoy provable efficiency and stability.

5.1 Stability Analysis of Algorithm 2

As a first step, we consider the objective function (12), and show that f(β) has a well-behaved minimizer,
which does not underflow or overflow.
Theorem 5.1. Let f∗ denote the minimum value of f(β) and β∗ an optimal solution, and let α∗ = α∗(β∗).
Then f∗ > −∞, β∗ is unique, ∥α∗∥ < ∞, and ∥β∗∥ < ∞. In particular, let I = arg maxi T

∗
im, amax =

maxi ai, and c = log(n/bm). Then Lαi
≤ Lαi ≤ α∗

i ≤ Uαi and Lβj ≤ β∗
j ≤ Uβj ≤ Uβj for all i = 1, . . . , n

9

Published in Transactions on Machine Learning Research (02/2025)

and j = 1, . . . ,m, where

Uαi = Mim + λ−1 · log(ai ∧ bm), Uβj = MIj−MIm+λ−1 [log(aI ∧ bj) + c] ,
Lαi

= λ−1 · log(ai/m)−max
j

(Uβj
−Mij), Lβj

= λ−1 · log(bj/n)−max
i

(Uαi
−Mij),

Uβj = max
i
{Mij−Mim}+ λ−1 [log(amax ∧ bj) + c] , Lαi

= λ−1 · log(ai/m)−max
j

(Uβj−Mij).

Theorem 5.1 shows that the optimal dual variables γ∗ are bounded, and more importantly, the bounds are
roughly at the scale of the cost matrix entries Mij and the log-weights log(ai) and log(bj). Therefore, at
least the target of the optimization problem is well-behaved. Moreover, one useful application of Theorem
5.1 is to impose a box constraint on the variables, adding further stability to the optimization algorithm.

After verifying the properties of the optimal solution, a more interesting and critical problem is to seek a
stable algorithm to approach the optimal solution. Indeed, in Theorem 5.2 we prove that the solution stage
of Algorithm 2 is one such method.
Theorem 5.2. Let {β̃(k)} be a sequence of iterates generated by the L-BFGS algorithm starting from a fixed
initial value β̃(0), and define β(k) = (β̃(k)T, 0)T, T (k) = eλ[α∗(β(k)) ⊕ β(k) −M], and f (k) = f(β(k)). Then
there exist constants 0 ≤ r < 1 and C1, C2 > 0, such that for each k > 0, let ε(k) := rk(f (0) − f∗):

(a) f (k) − f∗ ≤ ε(k). (Linear convergence for the objective value)

(b) ∥β(k) − β∗∥2 ≤ C1ε
(k). (Linear convergence for the iterates)

(c) T (k)1m=a, ∥∇β̃f(β(k))∥2=∥T̃ (k)T1n − b̃∥2 ≤ C2ε
(k). (Exponential decay of the gradient)

(d) T
(k)
ij < min{ai, bj +

√
C2ε(k)}, 1 ≤ j ≤ m− 1. (T (k) does not overflow)

(e) maxj T
(k)
ij >ai/m, maxi T

(k)
ij >(bj−

√
C2ε(k))/n, 1 ≤ j ≤ m− 1. (T (k) does not underflow)

The explicit expressions for the constants C1, C2, r are given in Appendix A.

Theorem 5.2 reveals some important information. First, both the objective function value and the iterates
have linear convergence speed, so the solution stage using L-BFGS takes O(log(1/ε)) iterations to obtain an
ε-optimal solution. Second, the marginal error for µ, measured by ∥T (k)1m − a∥, is exactly zero due to the
partial optimization on α. The other marginal error ∥T̃ (k)T1n − b̃∥, which is equal to the gradient norm, is
also bounded at any iteration, and decays exponentially fast to zero. This validates the numerical stability
of the L-BFGS algorithm. Third, the estimated transport plan at any iteration k, T (k), is also bounded and
stable. This result can be compared with the formulation in (8): it is not hard to find that u∗, v∗, and Me,
when computed individually, can all be unstable due to the exponentiation operations, especially when λ−1

is small. In contrast, T ∗ and T (k), thanks to the results in Theorem 5.2, do not suffer from this issue.

We emphasize that Theorem 5.2 provides novel results that are not direct consequences of the L-BFGS
convergence theorem given in Liu & Nocedal (1989). First, classical theorems only guarantee the convergence
of objective function values and iterates as in (a) and (b), whereas we provide richer information such as
the marginal errors and transport plans specific to OT problems. More importantly, our results are all
nonasymptotic with computable constants. To achieve this, we carefully analyze the eigenvalue structure of
the dual Hessian matrix, which is of interest by itself.

Likewise, we show that the derivative of∇MSλ(µ, ν) as in Theorem 4.1 can also be computed in a numerically
stable way. Let ∇̂MS be the k-step approximation to ∇MS := ∇MSλ(µ, ν) using the L-BFGS algorithm,
i.e., replacing every T ∗ in ∇MS by T (k). Then we show that the error on gradient also decays exponentially
fast.
Theorem 5.3. Using the symbols defined in Theorems 4.1 and 5.2, let σ = 1/σmin(D), where σmin(D) is
the smallest eigenvalue of D. Assume that for some k0,

ε(k0) < C−1
1

[
min{1, (6σ∥D∥F)−1}

4λ

]2

,

10

Published in Transactions on Machine Learning Research (02/2025)

and then for every k ≥ k0, ∥∇̂MS−∇MS∥F ≤ CS

√
ε(k) = CS

√
f (0) − f∗ ·rk/2, where the explicit expression

for CS is given in Appendix A. k0 always exists as ε(k) decays to zero exponentially fast, which is ensured by
Theorem 5.2(a).

5.2 Consistency of Wasserstein Coreset

We examine the distributional convergence of the empirical measure induced by the Wasserstein coreset to
the target distribution µ.
Theorem 5.4. Let X ∼ µ, XB ∼ µB, where µB is the empirical distribution of Wasserstein coresets, which
is defined in (5). Then as B →∞, XB

d−→ X.

To summarize, the theorem shows that the Wasserstein coreset is indeed representative of the target
distribution, when the number of points B grows large. Consequently, this result implies the consistency of
the Wasserstein coreset, a critical property for any coreset algorithm.
Corollary 5.5. Let X ∼ µ, XB ∼ µB, with µB defined in (5). (a) If g : X → R is continuous, then
g(XB) d−→ g(X). (b) If g is continuous and bounded, then E[g(XB)]→ E[g(X)].

Part (a) of Corollary 5.5 follows from the continuous mapping theorem and Theorem 5.4, and part (b)
holds due to the Portmanteau theorem. The corollary establishes the consistency of the Wasserstein coreset
for integration, thus validating its use in a range of applications. Specifically, part (a) indicates that the
Wasserstein coreset can be effectively employed for uncertainty propagation in stochastic simulations. Part
(b) further demonstrates that any continuous and bounded function g can be accurately estimated using the
Wasserstein coreset, as the sample average of g(XB) converges to the expectation of g(X).

5.3 WCSL Algorithm Convergence Analysis

Without assuming convexity, as convexity may not hold in practical scenarios, our aim is to demonstrate
the convergence of WCSL to a stationary point and establish a robust convergence criterion. First, we
demonstrate that Sλ(ξ,D) converges to a stationary point in Theorem 5.6. We only provide the convergence
guarantee when using the Adam update, as Adam is a better performed optimization algorithm in practice.
We then provide a convergence criterion for the WCSL algorithm in Proposition 5.7.
Theorem 5.6. Using the Adam update, after N iterations for some N ∈ N∗ such that N > β1

1−β1
, where

β1 is the first moment decay rate in Adam, the Sinkhorn loss Sλ(ξ,D(N)) converges to a stationary point.
Specifically, there exists a constant C > 0 such that

E
[∥∥∇D(N)Sλ(ξ,D(N))

∥∥2
]
≤ C logN√

N
.

Theorem 5.6 establishes the theoretical convergence property of WCSL after a finite number of iterations.
Now we need a practical method for monitoring the convergence of the WCSL algorithm and ensuring that
the algorithm is progressing towards a stationary point of the Sinkhorn loss.

As mentioned in the WCSL algorithm (Algorithm 1), the stopping criterion is Sλ(D(l),D(l−1)) < δ. We now
provide justifications for this stopping criterion to be a proper convergence criterion.
Proposition 5.7. Let ξ be the target distribution, and {D(l)}l≥0 be a sequence of representative samples
updated by Algorithm 1. If Sλ(D(l),D(l−1)) < δ, then |Sλ(ξ,D(l))− Sλ(ξ,D(l−1))| < δ.

The convergence of the WCSL algorithm can be characterized by |Sλ(ξ,D(l)) − Sλ(ξ,D(l−1))| < δ, for a
chosen δ > 0. This criterion implies that the difference in the objective function, specifically the Sinkhorn loss
between successive iterations, is sufficiently small, indicating that the algorithm is approaching a stationary
point. Given Proposition 5.7, we know that Sλ(D(l),D(l−1)) serves as an upper bound for |Sλ(ξ,D(l)) −
Sλ(ξ,D(l−1))|. Thus, we can ascertain that the algorithm is progressing towards a stationary point of
Sλ(ξ,D) if Sλ(D(l),D(l−1)), which can be computed efficiently, is small. This provides a practical method
for monitoring the convergence of the WCSL algorithm and ensuring that the iterations yield diminishing
improvements, thus verifying the convergence of the algorithm.

11

Published in Transactions on Machine Learning Research (02/2025)

Figure 3: Comparative visualization of samples selected from 2-dimensional datasets.

6 Numerical Experiments

6.1 Simulations

Several simulations are presented to demonstrate the effectiveness and efficiency of the WCSL method. We
evaluate the sample selection quality of the WCSL method visually and in terms of distance metrics. We
also performed a runtime analysis for the WCSL method. The results provide insights into the practical
applicability of the WCSL method in various data settings.

To evaluate the performance of the WCSL method, we compared it against several alternative sampling
techniques: random sampling, the centroids obtained via k-means clustering, the SCCP method (Mak &
Joseph, 2018), and kernel thinning (Dwivedi & Mackey, 2021). Random sampling, which selects samples
uniformly at random from the dataset, serves as a straightforward benchmark. The k-means centroids
approach involves partitioning the dataset into clusters and then using the resulting cluster centroids as
representative points. The SCCP method compresses a continuous probability distribution into a finite set
of support points that minimize the energy distance. This approach guarantees that the support points
converge in distribution to the original distribution and often yields improved integration error rates for a
broad class of functions compared to standard Monte Carlo methods. Finally, the kernel thinning method
selects representative points by minimizing the maximum mean discrepancy (MMD), thereby providing
another kernel-based strategy for dataset compression.

To visually show the sample selection quality difference between random samples and coreset techiniques,
we present a comparative visualization of subsamples selected from synthetic 2-dimensional datasets. The
experiment settings include datasets of n = 1000 points each, reduced to coresets of B = 100 points. The
three configurations tested are a normal distribution, a 2-dimensional spiral, and a circular distribution.
Figure 3 illustrates the results of coreset techniques. All the coreset techniques demonstrate superior
performance in capturing the original data distributions compared to random sampling. Random sampling is
not consistent and often fails to accurately represent the underlying distribution, highlighting the necessity

12

Published in Transactions on Machine Learning Research (02/2025)

Figure 4: Comparison of different sample selection techniques across various datasets. Lower is better.

of using coreset techniques. Among the methods tested, the WCSL method performed well, effectively
preserving the essential data characteristics in the reduced sample sets. This visual assessment underscores
the potential of the WCSL method in maintaining the integrity of the original data structure in various data
reduction scenarios.

However, visual comparisons alone are insufficient to rigorously determine which coreset method performs
better. Therefore, we compute both the Wasserstein distance and MMD between the full dataset and the
coreset obtained using various techniques. We use a 100-dimensional t-distribution and a 100-dimentional
normal distribution with n = 10000 points as our datasets, and reduce to coresets of various sizes, ranging
from B = 25 to B = 400. In our analysis, we seek to ensure meaningful comparisons across different sample
selection techniques. Consequently, we normalize the computed Wasserstein distance and MMD values by the
distance metrics between the randomly sampled subsets and the full dataset. This normalization procedure
aligns the distance scales, allowing direct comparisons to be made between the various coreset construction
methods.

The results in Figure 4 demonstrate that the coresets generated by WCSL consistently achieve low normalized
MMD and Wasserstein distance values. This indicates that WCSL more effectively preserves the original
data distribution and structure. In contrast, random sampling leads to persistently high distance metrics,
underscoring its limited ability to capture the underlying distribution. While the k-means centroids approach
sometimes outperforms random sampling, it displays instability and can yield results even worse than random
sampling in certain instances. The SCCP and kernel thinning methods perform moderately well, but their
effectiveness varies across different metrics and scenarios. Overall, these findings suggest that WCSL provides
a more robust and reliable representation of the original data, ensuring that its essential statistical properties
are well-maintained.

Before evaluating the computational efficiency of the WCSL method empirically, we first present its time
complexity analysis. The WCSL algorithm involves two layers of optimization: the inner SLCD problem
and the outer coreset construction. To analyze the SLCD problem, we decompose it into a solution stage

13

Published in Transactions on Machine Learning Research (02/2025)

Figure 5: Runtime analysis of the WCSL method with respect to full dataset size n.

and a differentiation stage. In each SLCD step, the solution stage involves computing the distance matrix,
which requires O(m2p) time, where m represents the batch size and p denotes the data dimension. Each
iteration of the L-BFGS optimization procedure has a complexity of O(m2), and the algorithm typically
requires O(log(1/ϵ)) iterations to converge, where ϵ denotes the convergence tolerance. In the differentiation
stage, computing the derivative incurs an additional computational cost of O(m3). As a result, the overall
time complexity of each SLCD step is O(m2(p+log(1/ϵ)+m)). Since m≪ n, where n is the full dataset size,
we treat m as negligible. Consequently, because each iteration processes the entire dataset in mini-batches,
the time complexity of each WCSL iteration simplifies to O(np).

Multiple iterations are typically needed for WCSL to converge, and the number of these iterations depends
on the chosen stopping criterion. Based on our empirical observations, for a fixed stopping criterion, we
assume that O(n) iterations are required. Under this assumption, the overall time complexity is O(n2p),
which remains tractable for large-scale data scenarios.

To further demonstrate the computational efficiency of the method, we measure the execution times for
a range of dataset sizes n while fixing the data dimension p = 10 and coreset size B = 250. We vary
n from 100,000 to 1,000,000, and record the per-iteration runtime. Figure 5 shows that the runtime per
iteration increases proportionally with n, reflecting the anticipated linear scaling in computational demand.
Moreover, the number of required iterations also grows roughly linearly with n, underscoring the suitability
of the WCSL method for large-scale data applications. Together, these results confirm that WCSL provides
an efficient and practical solution for large-scale problems.

We also provide the running time of the WCSL with respect to coreset size B and data dimension p in Figure
6. The running time is measured with the coreset size varied from B = 100 to B = 1000 given sample size
n = 10000 and data dimension p = 25. The running time is also measured with the data dimension varying
from p = 10 to p = 100 given the sample size n = 10000 and the coreset size B = 250. The running time
per iteration increases linearly with respect to the coreset size B and stays almost flat with respect to the
data dimension p, while the number of iterations required for convergence decreases as the coreset size B
increases and increase as the data dimension p increases. These findings highlight the trade-offs between

14

Published in Transactions on Machine Learning Research (02/2025)

Figure 6: Runtime analysis of WCSL with respect to coreset size B and data dimension p.

coreset size and computational efficiency, providing valuable insights for optimizing the WCSL method for
large-scale data applications.

15

Published in Transactions on Machine Learning Research (02/2025)

Figure 7: Classification accuracy across various coreset sizes, showcasing the performance of prediction
models trained on subsets selected via different methods.

6.2 Active Learning

One of the potential applications of the Wasserstein coreset is in the field of active learning. In active
learning, it involves the data points X ∈ X and their corresponding labels Y ∈ Y = {1, . . . , C}, with C
being the number of label categories. A labeling function Ω : X → Y determines the accurate label for
any given sample in active learning scenarios. Our primary goal is to minimize the expected risk in a given
data distribution with a parameterized loss function ℓ(X,Y ;w). This objective is formally expressed as
minw E[ℓ(X,Y ;w)]. Ideally, we have access to a labeled dataset of N labeled pairs {(Xi, Yi)}N

i=1 to reduce
the expected risk.

However, in practice, we have an unlabeled dataset of N observations {Xi}N
i=1 and a budget to get Ω(Xi),

the labels of Xi, for B times, where B ≪ N . Building on the work of Sener & Savarese (2018), we recognize
that the expected risk is bounded by the summation of three factors: the generalization error from training
with fully labeled dataset instead of the true population measure, the empirical risk from training on a
selected subset of B points, and the discrepancy in loss between training on the entire dataset versus the
selected subset, the subset loss. The mathematical representation of this constraint is:

E[ℓ(X,Y ;w)] ≤

∣∣∣∣∣E[ℓ(X,Y ;w)]− 1
N

N∑
i=1

ℓ(Xi,Ω(Xi);w)︸ ︷︷ ︸
generalization error

∣∣∣∣∣+ 1
B

B∑
j=1

ℓ(Xj ,Ω(Xj);w)︸ ︷︷ ︸
empirical risk

+ 1
N

N∑
i=1

ℓ(Xi,Ω(Xi);w)− 1
B

B∑
j=1

ℓ(Xj ,Ω(Xj);w)︸ ︷︷ ︸
subset loss

.

The generalization error remains unaffected by the chosen subset, and when B is small, the empirical risk is
typically negligibly small. This suggests that active learning strategies should prioritize minimizing the loss
associated with the chosen subset.

16

Published in Transactions on Machine Learning Research (02/2025)

Figure 8: Comparative visualization of coreset samples on MNIST and FashionMNIST datasets.

Notice that if ℓ ∈ F , then the subset loss would be bounded by the coreset loss:

1
N

N∑
i=1

ℓ(xi,Ω(xi); w)− 1
B

B∑
j=1

ℓ(xj ,Ω(xj); w) ≤ dF (ξ, νB)

This motivates us to use coreset technique in enhancing the efficiency of choosing subsets in active learning.
We consider a family of 500-dimensional t-distributions, categorized into 25 classes. Each class is defined by a
one-unit shift to the right in a randomly selected dimension of the t-distribution. The full dataset comprises
20,000 points. To establish a baseline, we train a logistic regression model on the entire dataset and use this
model to relabel the dataset, treating these labels as the ground truth for subsequent classification tasks.
Subsequently, we generate coresets using random selection, SCCP, and WCSL method. Logistic regression
models are then trained on these coresets of sizes from 25 to 400, with their classification accuracies evaluated
thereafter.

Given the complexity of the dataset with 25 classes, achieving high classification accuracy with small sample
sizes is challenging. Especially for coreset sizes of 25 or 50, it is likely that some classes will not be represented
in the coresets unless an effective coreset selection technique is used. This can lead to high classification error
rates. Despite this challenge, Figure 7 shows that models trained on Wasserstein coreset-selected samples
demonstrated superior performance compared to those trained on coresets generated by random sampling
or SCCP, particularly with smaller coreset sizes. This improvement in classification accuracy underscores
the ability of the Wasserstein coreset approach to capture the underlying distribution of the full dataset
effectively. Consequently, models trained using Wasserstein-selected coresets exhibit enhanced classification
performance, validating the strategic advantage of this method in active learning contexts.

6.3 MNIST & FashionMNIST

To further demonstrate the practical applicability of the WCSL method, we applied it to image datasets, the
MNIST and FashionMNIST datasets. Representative samples generated by the WCSL method are depicted
in Figure 8, demonstrating the ability of the method to retain characteristic data features in the reduced
sample set.

We also evaluate the performance of the WCSL method in terms of distance metrics, comparing it with other
subsampling techniques. The kernel thinning method proves to be very slow on image datasets; thus, we
do not include its results. The results, presented in Figure 9, indicate that the WCSL method consistently

17

Published in Transactions on Machine Learning Research (02/2025)

Figure 9: Comparative visualization of Wasserstein distance and MMD by coreset techniques and size. Lower
is better.

exhibits lower Wasserstein distances and reduced MMD values compared to random subsampling. This
affirms the method’s superior capability in approximating the original data distribution, ensuring that the
reduced samples are highly representative of the full dataset.

7 Discussion

In conclusion, this paper has introduced a novel and robust Wasserstein coreset construction method that
utilizes the entropic-regularized framework of the Sinkhorn loss to effectively approximate large datasets while
preserving their intrinsic geometric structure. Through rigorous analysis and extensive experimentation, we
have demonstrated the stability and efficiency of our computation and differentiation algorithms in settings
that have traditionally posed numerical challenges. Our findings reveal that Wasserstein coresets yield
superior performance in model accuracy, particularly under budget constraints where label scarcity is an
issue in active learning scenarios. This work not only advances the methodology of data distillation, but
also offers tangible benefits for active learning and other machine learning tasks that require fast, accurate,
and cost-effective data approximation techniques. The success of the WCSL method in various practical
scenarios, including imaging data, confirms its potential as a valuable tool in big data analytics, affirming
its role in enhancing the scalability and accessibility of machine learning applications.

In light of these advances, it is pertinent to reflect on two specific aspects of the coreset methodology within
the broader context of data representation and active learning strategies. First, while the coreset is designed
to mirror the underlying data distribution, it does not inherently ensure that the samples are drawn from the
original dataset. This distinction becomes critical in applications where authenticity is paramount, such as
dataset splitting for training and validation in machine learning models, financial audits where transactional
integrity is necessary, or medical studies that require exact patient data without generalizations. Ensuring
the representativeness of coresets drawn from the original dataset might involve additional constraints in the
selection algorithm or post-hoc verification procedures to confirm the origin of the data points. Secondly, the

18

Published in Transactions on Machine Learning Research (02/2025)

active learning framework benefits from the Wasserstein coreset’s efficiency, particularly in the initial stages
of model training. However, as learning progresses, there might be a need for a more explorative approach
to sample selection. This could involve adaptively adjusting the coreset as new labels are acquired or
integrating uncertainty measurements to guide the selection process. Exploration strategies such as entropy
maximization or variance reduction could be particularly beneficial in iterative learning settings, ensuring
that each new query contributes maximal information to the learning model. In both cases, the challenge
lies in striking a balance between representativeness and practical constraints. Future work may explore
hybrid strategies that leverage the Wasserstein coreset’s strengths while addressing its limitations in specific
application scenarios. The goal is to refine the technique to become a versatile tool that is able to handle a
wide array of tasks in the burgeoning field of machine learning.

Acknowledgements

Xiao Wang’s research was supported in part by the NSF Grant SES-2316428. Yixuan Qiu’s work was
supported in part by National Natural Science Foundation of China (12101389), Shanghai Pujiang Program
(21PJC056), MOE Project of Key Research Institute of Humanities and Social Sciences (22JJD110001), and
Shanghai Research Center for Data Science and Decision Technology.

References
Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet. Near-linear time approximation algorithms

for optimal transport via Sinkhorn iteration. In Advances in neural information processing systems 30,
2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv.org, 2017. ISSN 2331-8422.

Sergiy V Borodachov, Douglas P Hardin, and Edward B Saff. Low complexity methods for discretizing
manifolds via riesz energy minimization. Foundations of Computational Mathematics, 14:1173–1208, 2014.

Richard H Byrd, Jorge Nocedal, and Ya-Xiang Yuan. Global convergence of a cass of quasi-Newton methods
on convex problems. SIAM Journal on Numerical Analysis, 24(5):1171–1190, 1987.

Dylan Campbell, Liu Liu, and Stephen Gould. Solving the blind perspective-n-point problem end-to-end with
robust differentiable geometric optimization. In European Conference on Computer Vision, pp. 244–261.
Springer, 2020.

Trevor Campbell and Tamara Broderick. Bayesian coreset construction via greedy iterative geodesic ascent.
arXiv.org, 2018. ISSN 2331-8422.

Sebastian Claici, Aude Genevay, and Justin Solomon. Wasserstein measure coresets. arXiv (Cornell
University), 2018. ISSN 2331-8422.

Michael B Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank approximation
via ridge leverage score sampling. arXiv.org, 2016. ISSN 2331-8422.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy Liang,
Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep learning. arXiv.org,
2019. ISSN 2331-8422.

Nicolas Courty, Remi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for domain
adaptation. IEEE transactions on pattern analysis and machine intelligence, 39(9):1853–1865, 2017. ISSN
0162-8828.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. volume 26, 2013.

Marco Cuturi and Gabriel Peyré. Semi-dual regularized optimal transport. arXiv preprint arXiv:1811.05527,
2018.

19

Published in Transactions on Machine Learning Research (02/2025)

Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. Differentiable ranking and sorting using optimal
transport. volume 32, 2019.

Marco Cuturi, Laetitia Meng-Papaxanthos, Yingtao Tian, Charlotte Bunne, Geoff Davis, and Olivier
Teboul. Optimal transport tools (OTT): A JAX toolbox for all things Wasserstein. arXiv preprint
arXiv:2201.12324, 2022.

Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof of adam
and adagrad. arXiv preprint arXiv:2003.02395, 2020.

Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney, and David P Woodruff. Fast approximation of
matrix coherence and statistical leverage. The Journal of Machine Learning Research, 13(1):3475–3506,
2012.

Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal transport:
Complexity by accelerated gradient descent is better than by Sinkhorn’s algorithm. In International
conference on machine learning, pp. 1367–1376, 2018.

Raaz Dwivedi and Lester Mackey. Kernel thinning. arXiv preprint arXiv:2105.05842, 2021.

Marvin Eisenberger, Aysim Toker, Laura Leal-Taixé, Florian Bernard, and Daniel Cremers. Scalable sinkhorn
backpropagation. OpenReview preprint id:uR77O7SL55h, 2022.

Yizheng Fan. Schur complements and its applications to symmetric nonnegative and Z-matrices. Linear
algebra and its applications, 353(1-3):289–307, 2002.

Kai-Tai Fang and Yuan Wang. Number-theoretic methods in statistics, volume 51. CRC Press, 1993.

Dan Feldman. Coresets: An updated survey. Wiley interdisciplinary reviews. Data mining and knowledge
discovery, 10(1):e1335–n/a, 2020. ISSN 1942-4787.

Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouvé, and Gabriel Peyré.
Interpolating between optimal transport and MMD using Sinkhorn divergences. In The 22nd International
Conference on Artificial Intelligence and Statistics, pp. 2681–2690, 2019.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie Boisbunon, Stanislas
Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, et al. Pot: Python optimal
transport. Journal of Machine Learning Research, 22(78):1–8, 2021.

Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models with sinkhorn divergences. In
International Conference on Artificial Intelligence and Statistics, pp. 1608–1617. PMLR, 2018.

Siegfried Graf and Harald Luschgy. Foundations of quantization for probability distributions. Springer, 2007.

Nicholas J Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

V Roshan Joseph, Tirthankar Dasgupta, Rui Tuo, and CF Jeff Wu. Sequential exploration of complex
surfaces using minimum energy designs. Technometrics, 57(1):64–74, 2015.

Benoît Kloeckner. Approximation by finitely supported measures. ESAIM. Control, optimisation and
calculus of variations, 18(2):343–359, 2012. ISSN 1292-8119.

Tianyi Lin, Nhat Ho, and Michael I Jordan. On the efficiency of entropic regularized algorithms for optimal
transport. Journal of Machine Learning Research, 23(137):1–42, 2022.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

Mario Lucic, Matthew Faulkner, Andreas Krause, and Dan Feldman. Training gaussian mixture models at
scale via coresets. arXiv.org, 2018. ISSN 2331-8422.

20

Published in Transactions on Machine Learning Research (02/2025)

Giulia Luise, Alessandro Rudi, Massimiliano Pontil, and Carlo Ciliberto. Differential properties of sinkhorn
approximation for learning with wasserstein distance. Advances in Neural Information Processing Systems,
31, 2018.

James MacQueen et al. Some methods for classification and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pp.
281–297. Oakland, CA, USA, 1967.

Simon Mak and V. Roshan Joseph. Support points. The Annals of statistics, 46(6A):2562–2592, 2018. ISSN
0090-5364.

Albert W Marshall, Ingram Olkin, and Barry C Arnold. Inequalities: Theory of Majorization and Its
Applications, Second Edition. Springer Science & Business Media, 2011.

Jorge Nocedal and Stephen J Wright. Numerical optimization, 2nd edition. Springer, 2006.

Jorge Nocedal, Annick Sartenaer, and Ciyou Zhu. On the behavior of the gradient norm in the steepest
descent method. Computational Optimization and Applications, 22(1):5–35, 2002.

Ofir Pele and Michael Werman. Fast and robust earth mover’s distances. In 2009 IEEE 12th international
conference on computer vision, pp. 460–467. IEEE, 2009.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data science.
Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

R Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

Seref Sagiroglu and Duygu Sinanc. Big data: A review. In 2013 International Conference on Collaboration
Technologies and Systems (CTS), pp. 42–47. IEEE, 2013. ISBN 1467364037.

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-63):94, 2015.

Bernhard Schmitzer. Stabilized sparse scaling algorithms for entropy regularized transport problems. SIAM
Journal on Scientific Computing, 41(3):A1443–A1481, 2019.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach.
arXiv.org, 2018. ISSN 2331-8422.

Richard Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic matrices. The
annals of mathematical statistics, 35(2):876–879, 1964.

Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matrices. Pacific
Journal of Mathematics, 21(2):343–348, 1967.

Gui-Xian Tian and Ting-Zhu Huang. Inequalities for the minimum eigenvalue of M-matrices. The Electronic
Journal of Linear Algebra, 20:291–302, 2010.

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

HaiYing Wang, Rong Zhu, and Ping Ma. Optimal subsampling for large sample logistic regression. Journal
of the American Statistical Association, 113(522):829–844, 2018.

Yujia Xie, Hanjun Dai, Minshuo Chen, Bo Dai, Tuo Zhao, Hongyuan Zha, Wei Wei, and Tomas Pfister.
Differentiable top-k with optimal transport. In Advances in Neural Information Processing Systems 33,
2020.

21

Published in Transactions on Machine Learning Research (02/2025)

Appendix

A Explicit expressions for constants

We first define a few user constants for the L-BFGS algorithm. Let m0 be the maximum number of correction
vectors used to construct the BFGS matrix Bk, and c1 ∈ (0, 1/2), c2 ∈ (c1, 1) are two constants related to
the Wolfe condition: we assume the L-BFGS algorithm uses some line search algorithm to select the step
sizes αk that satisfy:

f(xk + αkdk) ≤ f(xk) + c1αkg
T
k dk,

g(xk + αkdk)Tdk ≥ c2g
T
k dk,

where f(·) and g(·) stand for the objective function and gradient function, respectively, xk is the k-th iterate,
gk = g(xk), dk = −B−1

k gk is the search direction, and Bk is the BFGS matrix that approximates the Hessian
matrix. m0, c1, and c2 are selected by the user.

For Theorem 5.2, let β̃(0) be the initial value, and let µ = MTa and ui = maxj Mij , i = 1, . . . , n. Then we
define the following constants:

Uc = b−1
m

[(
max

1≤j≤m−1
µj

)
+ λ−1

n∑
i=1

ai log ai − λ−1 + f(β(0))
]

+

Ai = λ−1 log ai − Uc − λ−1 log

e−λ(Mim+Uc) +
m−1∑
j=1

e
−λMij

 , i = 1, . . . , n

M1 = λ · n−m+ 2
2(n−m+ 1) · min

1≤i≤n
eλ(Ai−Mim), M2 = λ

[
1−

n∑
i=1

eλ(Ai−Mim)

]
M3 = M2 − logM1 − 1, M4 = m− 1 +m0M2 −m0 [logM1 − log(1 +m0M2)]
C1 = 2/M1, C2 = 2M−1

1 M2
2

r = 1− c1(1− c2)M1/M2e
−(M3+M4).

For Theorem 5.3,

CS = 4λ
√
C1 [∥∇MS∥F + 2λ∥T ∗∥F (Cv + Cu)]

Cv = 2σ(∥µc∥+ 3∥T ∗T(a−1 ⊙ µr)∥+ 3∥D∥F ∥sv∥)
Cu = ∥µr∥+ 2Cv∥diag(a−1)T ∗∥F + ∥a−1 ⊙ (T ∗sv)∥.

B Additional experiment details

B.1 Settings of the motivating example

Consider a small problem of n = 90 and m = 60. Let xi = 5(i − 1)/(n − 1), i = 1, . . . , n be equally-
spaced points on [0, 5], and similarly define yj = 5(j − 1)/(m − 1), j = 1, . . . ,m. The cost matrix is set
to Mij = (xi − yj)2, and the weights a and b are specified as follows. Let f1 be the density function
of an exponential distribution with mean 1, and f2 be the density function of a mixture of two normal
distributions, 0.2 ·N(1, 0.04) + 0.8 ·N(3, 0.25). And then we set ãi = f1(xi), b̃j = f2(yj), ai = ãi/

∑n
k=1 ãk,

and bj = b̃j/
∑m

k=1 b̃k.

For example showed in figure 1 We fix the regularization parameter λ−1 to be 0.001. This value is selected
such that the resulting Sinkhorn plan T ∗

λ is visually close to the OT plan P ∗. The maximum number of
iterations is 10000 for Greenkhorn and 1000 for other algorithms. Other d

In Figure 10, we show the Wasserstein and Sinkhorn transport plans under different values of λ−1. It can
be seen that when λ−1 ≤ 0.001, T ∗

λ is visually indistinguishable from P ∗.

22

Published in Transactions on Machine Learning Research (02/2025)

0 20 40 60
0

10

20

30

40

50

60

70

80

90
Wasserstein Sinkhorn 0.1 Sinkhorn 0.01 Sinkhorn 0.001 Sinkhorn 0.0001

Figure 10: Visualization of Sinkhorn plans with different λ−1 values.

We compute the true T ∗
λ using the ε-scaling algorithm (Algorithm 3 of Schmitzer (2019)). This algorithm

is typically accurate, but it requires solving a sequence of Sinkhorn problems with increasing λ’s, where the
solution corresponding to the previous λ is used as a warm start for the next one. Therefore, its computational
cost is typically large, and it does not compare fairly with other methods. Due to this reason, in this article
we mainly use the ε-scaling algorithm to compute high-precision reference values, and do not include it for
method comparison.

B.2 Sinkhorn Loss Computation stability and accuracy

To further compare the numerical stability and accuracy of different algorithms for computing the Sinkhorn
loss, we consider the following experiment. First, we simulate data X1, . . . , Xn ∼ f1(x) and Y1, . . . , Ym ∼
f2(y) from some specific distributions f1(x) and f2(y), x, y ∈ Rp, and construct the cost matrix asM = (Mij),
where Mij = ∥Xi−Yj∥2. The weights are fixed as a = n−11n and b = m−11m. For each of the five methods
compared in the motivating example in Section 4.1, let T = (Tij) be the computed Sinkhorn transport plan
and T ∗ be the true value (computed using the ε-scaling algorithm), and then we compute two types of errors:
the error on the transport plan,

Errplan(T) =
√∑

i,j

(Tij − T ∗
ij)2,

and the error on the Sinkhorn loss value,

Errloss(T) = |⟨T,M⟩ − ⟨T ∗,M⟩| = |⟨T − T ∗,M⟩| .

For each configuration of the experiment, we simulate the data 100 times, and visualize the distribution of
the errors using boxplots.

In our experiment, we fix n = 150, m = 200, and consider varying dimensions p = 1, 10, 50. The Sinkhorn
regularization parameters compared are λ−1 = 0.01, 0.001, and for each λ−1 we set a specific maximum
number of iterations for all algorithms. Two data generation models are considered:

(a) Both f1(x) and f2(y) are multivariate normal distributions N(0, Ip);

(b) Both f1(x) and f2(y) have independent components. Each marginal distribution of f1 is an exponential
distribution with mean 1, and each marginal distribution of f2 is a mixture of two normal distributions,
0.2 ·N(1, 0.04) + 0.8 ·N(3, 0.25).

The final results are demonstrated in Figure 11, where all the errors are shown in the log-scale.

23

Published in Transactions on Machine Learning Research (02/2025)

Dim: p = 1 Dim: p = 10 Dim: p = 50

D
istribution: norm

al
D

istribution: exp−
m

ix

Sink
ho

rn

Sink
ho

rn
−lo

g

Sta
bil

ize
d

Gre
en

kh
or

n

L−
BFGS

Sink
ho

rn

Sink
ho

rn
−lo

g

Sta
bil

ize
d

Gre
en

kh
or

n

L−
BFGS

Sink
ho

rn

Sink
ho

rn
−lo

g

Sta
bil

ize
d

Gre
en

kh
or

n

L−
BFGS

−6

−4

−2

−6

−4

−2

Algorithm

Lo
g−

sc
al

e
E

rr
or

η/MaxIter

0.01/300
0.01/1000
0.001/600
0.001/2000

Errors on the Sinkhorn transport plan

(a) Sinkhorn transport plan

Dim: p = 1 Dim: p = 10 Dim: p = 50

D
istribution: norm

al
D

istribution: exp−
m

ix

Sink
ho

rn

Sink
ho

rn
−lo

g

Sta
bil

ize
d

Gre
en

kh
or

n

L−
BFGS

Sink
ho

rn

Sink
ho

rn
−lo

g

Sta
bil

ize
d

Gre
en

kh
or

n

L−
BFGS

Sink
ho

rn

Sink
ho

rn
−lo

g

Sta
bil

ize
d

Gre
en

kh
or

n

L−
BFGS

−8

−6

−4

−2

0

2

−4

−2

0

2

Algorithm

Lo
g−

sc
al

e
E

rr
or

η/MaxIter

0.01/300
0.01/1000
0.001/600
0.001/2000

Errors on the Sinkhorn loss value

(b) Sinkhorn loss value

Figure 11: Comparing different algorithms on the errors of Sinkhorn transport plan and loss value. The
missing boxplots indicate that the corresponding results are NaNs.

In Figure 11, many boxplots for the Stabilized and Greenkhorn algorithms are missing, since they produce
all NaN values in the 100 simulations due to numerical overflows. For Sinkhorn, even if it generates no NaNs
values explicitly for λ−1 = 0.001, it does not give any meaningful results either. This implies that numerical
stability is a critical issue in computing the Sinkhorn loss.

For Sinkhorn-log, it gives reasonably small errors when the regularization is large (λ−1 = 0.01) with sufficient
number of iterations, but its accuracy quickly deteriorates when λ−1 decreases to 0.001. Moreover, we can
find that Sinkhorn-log is sensitive to the limits on number of iterations. For example, when p = 1 and

24

Published in Transactions on Machine Learning Research (02/2025)

λ−1 = 0.01, the loss value error can be as small as 10−6 given 1000 maximum number of iterations, but if we
restrict the limit to 200, the error can be as large as 10−2 or even 100, depending on the data distribution.

In contrast, the difference on maximum number of iterations has a minor effect on the L-BFGS algorithm,
indicating that it converges fast, and additional iterations are not needed. These findings demonstrate the
advantage of the advocated L-BFGS method in both numerical stability and accuracy.

B.3 Running time of Solution Stage and Differentiation Stage

In this section we compare the running time of three algorithms on differentiating the Sinkhorn loss.

(a) The proposed algorithm “Analytic”: L-BFGS in the solution stage, and analytic differentiation in the
differentiation stage.

(b) “Implicit” implemented in the OTT-JAX library (Cuturi et al., 2022): Sinkhorn-log in the solution
stage, and implicit differentiation in the differentiation stage.

(c) “Unroll” implemented in the OTT-JAX library: Sinkhorn-log in the solution stage, and unrolled
automatic differentiation in the differentiation stage.

We use the second data generation model in Section B.2 to simulate data points, and use the three algorithms
above to compute the Sinkhorn loss and its derivative with respect to the cost matrix. For each configuration,
we randomly generate the data 100 times, and compute their mean solving time and mean total time. The
stopping rule implemented in the OTT-JAX library is ∥T1m− a∥+ ∥TT1n− b∥ < εott, and one of the terms
would be exactly zero in the last iteration. The stopping rule for L-BFGS is ∥TT1n − b∥∞ < εlbfgs. To
account for such a difference, we set εlbfgs = 10−6, and let εott =

√
max{n,m} · εlbfgs. In fact, this setting

favors the competing method, as its stopping criterion is strictly weaker than the proposed one. To test
whether the algorithms actually converge under the given criteria, we also report the number of converging
cases within the 100 repetitions.

Results for different data dimensions and regularization parameters are given in Table 1 and Table 2, where
the former uses 1000 maximum number of iterations, and the latter uses 10000.

C Proofs of theorems

C.1 Technical Lemmas

In this section we state a few technical lemmas that are used to prove our main theorems. Lemma 2 to
Lemma 4 below are standard conclusions in vector calculus, Lemma 5 and Lemma 6 are derived from the
eigenvalue theory, and Lemma 7 and Lemma 8 are related to the Sinkhorn problem.

We first introduce the following notations. For any x ∈ R, let [x]+ = max{x, 0}. For a matrix A = (aij) ∈
Rn×m, the vectorization operator, vec(A), creates a vector by stacking the column vectors of A together,
i.e.,

vec(A) = (a11, . . . , an1, a12, . . . , an2, . . . , a1m, . . . , anm)T.

For two matrices A = (aij) ∈ Rn×m and B ∈ Rp×q, the Kronecker product of A and B is defined as

A⊗B =

a11B · · · a1mB
...

. . .
...

an1B · · · anmB

 .

For a differentiable vector-valued function f : Rn → Rm, the partial derivative of f with respect to x is
defined as

∂f(x)
∂xT =

∂f1(x)

∂x1
· · · ∂f1(x)

∂xn

...
. . .

...
∂fm(x)

∂x1
· · · ∂fm(x)

∂xn

 .

25

Published in Transactions on Machine Learning Research (02/2025)

Table 1: Running time of three algorithms for differentiating the Sinkhorn loss, with maximum 1000
iterations.

Mean solving
time (ms)

Std. of solving
time

Mean total
time (ms)

Std. of total
time Converged

m = n = 64
p = 8
λ−1 = 0.1

Analytic 19.07 2.11 19.33 2.13 100
Implicit 27.77 0.69 39.66 3.41 0
Unroll 27.53 0.13 101.30 0.36 0

m = n = 64
p = 8
λ−1 = 0.01

Analytic 23.21 3.45 23.48 3.46 100
Implicit 27.33 0.05 50.52 5.19 0
Unroll 27.39 0.12 100.66 0.39 0

m = n = 128
p = 16
λ−1 = 0.1

Analytic 23.79 2.96 24.19 2.96 100
Implicit 29.81 0.61 58.21 4.91 0
Unroll 29.75 0.06 107.18 0.19 0

m = n = 128
p = 16
λ−1 = 0.01

Analytic 32.24 4.99 32.68 5.00 100
Implicit 29.73 0.05 85.56 7.48 0
Unroll 29.65 0.08 106.66 0.46 0

m = n = 256
p = 32
λ−1 = 0.1

Analytic 28.60 3.82 29.40 3.85 100
Implicit 33.69 0.32 82.53 4.21 0
Unroll 33.60 0.23 123.25 0.07 0

m = n = 256
p = 32
λ−1 = 0.01

Analytic 43.94 6.08 44.86 6.12 100
Implicit 33.75 0.20 137.46 11.66 0
Unroll 33.78 0.10 122.99 0.27 0

m = n = 512
p = 64
λ−1 = 0.1

Analytic 41.35 5.64 43.05 5.53 100
Implicit 46.06 0.05 130.96 11.97 0
Unroll 46.02 0.04 167.64 0.22 0

m = n = 512
p = 64
λ−1 = 0.01

Analytic 67.76 9.65 69.42 9.65 100
Implicit 46.08 0.05 230.34 11.72 0
Unroll 46.09 0.05 167.68 0.20 0

We use In to denote the n × n identity matrix, and σmax(·) and σmin(·) stand for the largest and smallest
eigenvalues of some symmetric matrix, respectively.
Lemma 2. Given two matrices A ∈ Rm×n and B ∈ Rn×r,

vec(AB) = (Ir ⊗A)vec(B) = (BT ⊗ Im)vec(A).

Lemma 3. Let f : Rm → Rn and g : Rm → Rn be two vector-valued differentiable functions of x ∈ Rm.
Then

∂

∂xT f(x)Tg(x) = g(x)T ∂f(x)
∂xT + f(x)T ∂g(x)

∂xT .

Lemma 4. Let f : Rm → Rl and g : Rm → Rr be two vector-valued differentiable functions of x ∈ Rm.
Then

∂

∂xT vec(f(x)g(x)T) = (g(x)⊗ Il)
∂f(x)
∂xT + (Ir ⊗ f(x))∂g(x)

∂xT .

Lemma 5. Let A and B be two n× n positive definite matrices, and let α1 ≥ · · · ≥ αn > 0 and β1 ≥ · · · ≥
βn > 0 be the ordered eigenvalues of A and B, respectively. Then for any x ∈ Rn,

xTA1/2BA1/2x ≤ α1β1∥x∥2.

26

Published in Transactions on Machine Learning Research (02/2025)

Table 2: Running time of three algorithms for differentiating the Sinkhorn loss, with maximum 10000
iterations.

Mean solving
time (ms)

Std. of solving
time

Mean total
time (ms)

Std. of total
time Converged

m = n = 64
p = 8
λ−1 = 0.1

Analytic 19.01 2.10 19.27 2.10 100
Implicit 267.95 24.57 277.86 24.58 12
Unroll 269.49 24.76 986.46 90.67 12

m = n = 64
p = 8
λ−1 = 0.01

Analytic 23.28 3.46 23.54 3.48 100
Implicit 275.42 0.34 284.84 4.74 0
Unroll 275.54 0.49 1011.70 0.75 0

m = n = 128
p = 16
λ−1 = 0.1

Analytic 23.76 2.92 24.16 2.90 100
Implicit 297.36 0.34 320.29 4.32 0
Unroll 297.93 0.63 1074.47 1.33 0

m = n = 128
p = 16
λ−1 = 0.01

Analytic 32.21 5.00 32.68 5.01 100
Implicit 297.79 0.30 324.95 9.99 0
Unroll 297.90 0.32 1073.24 0.84 0

m = n = 256
p = 32
λ−1 = 0.1

Analytic 28.72 3.84 29.57 3.83 100
Implicit 342.23 1.53 386.80 9.22 0
Unroll 343.18 0.70 1256.10 2.94 0

m = n = 256
p = 32
λ−1 = 0.01

Analytic 44.45 6.14 45.32 6.18 100
Implicit 343.57 2.01 411.12 18.92 0
Unroll 341.00 2.02 1253.67 3.33 0

m = n = 512
p = 64
λ−1 = 0.1

Analytic 41.50 5.60 43.27 5.53 100
Implicit 469.04 0.77 552.64 15.31 0
Unroll 465.03 1.82 1705.51 6.36 0

m = n = 512
p = 64
λ−1 = 0.01

Analytic 67.97 9.69 69.68 9.67 100
Implicit 464.59 1.04 624.28 26.48 0
Unroll 464.16 0.55 1707.04 3.31 0

Proof. Let U1×n = xTA1/2, and then u := UUT = xTAx ≤ α1∥x∥2, and UBUT = xTA1/2BA1/2x. By
Theorem A.4 in page 788 of Marshall et al. (2011), we immediately get

UBUT = tr(UBUT) ≤ β1u ≤ α1β1∥x∥2.

Lemma 6. Let A and B be two symmetric matrices of the same size. Then

σmin(A) + σmin(B) ≤ σmin(A+B) ≤ σmax(A+B) ≤ σmax(A) + σmax(B).

Proof. Using the well-known identity σmax(A) = max∥x∥=1 x
TAx, we have

σmax(A+B) = max
∥x∥=1

xT(A+B)x ≤ max
∥x∥=1

xTAx+ max
∥x∥=1

xTBx = σmax(A) + σmax(B).

Applying the inequality above to −(A+B), we get the result on the opposite direction.

27

Published in Transactions on Machine Learning Research (02/2025)

Lemma 7. Let f(β) be defined as in (12), and let µ = MTa and ui = maxj Mij, i = 1, . . . , n. If f(β) ≤ c,
then we have maxj βj ≤ Uc and minj βj ≥ Lc, where

Uc = b−1
m

[(
max

1≤j≤m−1
µj

)
+ λ−1

n∑
i=1

ai log ai − λ−1 + c

]
+

(16)

Lc = −
(

min
1≤j≤m−1

bj

)−1
[

n∑
i=1

aiui + λ−1
n∑

i=1
ai log ai − λ−1 + c

]
+

. (17)

Proof. By definition,

f(β) = λ−1
n∑

i=1
ai log

 m∑
j=1

eλ(βj−Mij)

− λ−1
n∑

i=1
ai log ai − βTb+ λ−1.

If f(β) ≤ c, then

c0 := c+ λ−1
n∑

i=1
ai log ai − λ−1 ≥ λ−1

n∑
i=1

ai log

 m∑
j=1

eλ(βj−Mij)

− βTb.

By definition we have βm = 0, and let J = arg max1≤j≤m−1 βj . Then

c0 ≥ λ−1
n∑

i=1
ai log

[
eλ(βJ −MiJ)

]
− βTb =

n∑
i=1

ai(βJ −MiJ)−
m−1∑
j=1

βjbj

≥ βJ −
n∑

i=1
aiMiJ − βJ

m−1∑
j=1

bj = bmβJ − µJ ≥ bmβJ − max
1≤j≤m−1

µj ,

which verifies (16) by noting that maxj βj = [βJ]+.

Next, let K = arg min1≤j≤m−1 βj . We can assume that βK < 0, since otherwise the trivial bound minj βj =
βm = 0 is already met. Consider the sets S+ = {j : βj > 0} and S− = {j : βj < 0}. Then clearly,

βTb = βKbK +
∑
j ̸=K
j∈S+

βjbj +
∑
j ̸=K
j∈S−

βjbj ≤ βKbK + [βJ]+ ·
∑
j ̸=K
j∈S+

bj + 0 ≤ βKbK + [βJ]+(1− bm).

Also note that log(
∑m

j=1 e
xj) ≥ maxj xj for any x1, . . . , xn ∈ R, so

λ−1
n∑

i=1
ai log

 m∑
j=1

eλ(βj−Mij)

 ≥ λ−1
n∑

i=1
ai log

 m∑
j=1

eλ(βj−ui)

 = λ−1
n∑

i=1
ai

log

 m∑
j=1

eλβj

− λui

= λ−1 log

 m∑
j=1

eλβj

− n∑
i=1

aiui ≥ λ−1 ·max
j

(λβj)−
n∑

i=1
aiui

= max
j
βj −

n∑
i=1

aiui = [βJ]+ −
n∑

i=1
aiui.

As a result,

c0 ≥ λ−1
n∑

i=1
ai log

 m∑
j=1

eλ(βj−Mij)

− βTb ≥ [βJ]+ −
n∑

i=1
aiui − βKbK − [βJ]+(1− bm)

= bm[βJ]+ −
n∑

i=1
aiui − βKbK ≥ −

n∑
i=1

aiui − βKbK ,

28

Published in Transactions on Machine Learning Research (02/2025)

and then

βK ≥ −b−1
K

[
n∑

i=1
aiui + c0

]
+

≥ −
(

min
1≤j≤m−1

bj

)−1
[

n∑
i=1

aiui + c0

]
+

,

which verifies (17).

Lemma 8. Let T be an n×m matrix with strictly positive entries, and suppose that n ≥ m. Define µ = T1m,
ν = TT1n, and

H =
(

diag(µ) T̃
T̃T diag(ν̃)

)
, D = diag(ν̃)− T̃Tdiag(µ)−1T̃ .

Then

σmax(D) ≤ max
1≤j≤m−1

νj ,

σmin(D) ≥ σmin(H) ≥ n−m+ 2
2(n−m+ 1) · min

1≤i≤n
Tim,

σmin(D) ≥ min
1≤i≤m−1

m−1∑
j=1

Dij = min
1≤j≤m−1

n∑
i=1

µ−1
i TijTim.

Proof. Consider the matrix S = H − sJ , where J is an (n+m− 1)× (n+m− 1) matrix filled of ones, and
s is a positive scalar. Let

Rk =
∑
j ̸=k

|Skj |, k = 1, . . . , n+m− 1.

Suppose s ≤ min1≤i≤n,1≤j≤m−1 Tij ,and then for k = 1, . . . , n, it is easy to find that

Rk = (n− 1)s+
m−1∑
j=1

(Tkj − s) = (n− 1)s+ µk − Tkm − (m− 1)s = (n−m)s+ µk − Tkm,

and for k = n+ 1, . . . , n+m− 1,

Rk = (m− 2)s+
n∑

i=1
(Ti,k−n − s) = (m− 2)s+ νk−n − ns = (m− n− 2)s+ vk−n.

Then it is easy to see that

Skk −Rk =
{
µk −Rk = Tkm − (n−m)s, k = 1, . . . , n
νk−n −Rk = (n+ 2−m)s, k = n+ 1, . . . , n+m− 1

.

Let
min

1≤i≤n
Tim − (n−m)s = (n+ 2−m)s,

and then s = min1≤i≤n Tim/(2n− 2m+ 2), and

Skk −Rk ≥ L := n−m+ 2
2(n−m+ 1) · min

1≤i≤n
Tim > 0

for all k. By the Gershgorin circle theorem, every eigenvalue of S must be greater than L. Since H = S+ sJ
and J is nonnegative definite, we also have σmin(H) ≥ L > 0, implying that H is positive definite.

For the second formula, it is easy to find that theD matrix is the Schur complement of the block diag(µ) of the
H matrix. So by Theorem 3.1 of Fan (2002), we have σmin(D) ≥ σmin(H) and σmax(D) ≤ σmax(diag(ν̃)) =
max1≤j≤m−1 νj .

29

Published in Transactions on Machine Learning Research (02/2025)

Finally, let c = max1≤j≤m−1 νj , and then D can be expressed as D = cIm−1−B, where B = T̃Tdiag(µ)−1T̃+
diag(c1m−1 − ν̃) is a matrix that have nonnegative entries. In addition, we have proved that D is positive
definite, so D is a nonsingular M -matrix by the definition in Tian & Huang (2010). Then Theorem 3.2 of
Tian & Huang (2010) shows that

σmin(D) ≥ min
1≤i≤m−1

m−1∑
j=1

Dij .

Let δ = D1m−1, and then clearly min1≤i≤m−1
∑m−1

j=1 Dij = mini δi. Note that

δ = D1m−1 = ν̃ − T̃Tdiag(µ)−1T̃1m−1 = ν̃ − T̃Tdiag(µ)−1(T1m − Tm)
= ν̃ − T̃Tdiag(µ)−1(µ− Tm) = ν̃ − T̃T1n + T̃Tdiag(µ)−1Tm = T̃Tdiag(µ)−1Tm,

where Tm stands for the m-th column of T . Therefore,

min
1≤i≤m−1

δi = min
1≤j≤m−1

n∑
i=1

µ−1
i TijTim.

C.2 Proof of Lemma 1

Let T = eλ[α⊕ β −M], and then it is easy to find that ∇αL(α, β) = a− T1m and ∇β̃L(α, β) = b̃− T̃T1n.
Since α∗(β) = arg maxα L(α, β), we find that αi ≡ α∗(β)i is the solution to the equation a− T1m = 0. By
definition, we have

ai =
m∑

j=1
eλ(αi+βj−Mij) = eλαi

m∑
j=1

eλ(βj−Mij), i = 1, . . . , n,

so the solution is αi = λ−1 log ai−λ−1 log
(∑m

j=1 e
λ(βj−Mij)

)
. Since T1m = a, we immediately get 1T

nT1m =
1, so

L(α∗(β), β) = α∗(β)Ta+ βTb− λ−11T
nT1m = α∗(β)Ta+ βTb− λ−1,

and we get the expression for f(β) = −L(α∗(β), β). Finally,

∇β̃L(α∗(β), β) =
[
∂α∗(β)
∂β̃T

]T
∇αL(α, β)|α=α∗(β) + ∇β̃L(α, β)

∣∣∣
α=α∗(β)

.

Since α∗(β) = arg maxα L(α, β) implies that ∇αL(α, β)|α=α∗(β) = 0, we have ∇β̃L(α∗(β), β) =

∇β̃L(α, β)
∣∣∣
α=α∗(β)

, and hence

∇β̃f(β) = −∇β̃L(α∗(β), β) = T̃ (β)T1n − b̃.

C.3 Proof of Theorem 4.1

By definition we have
Sλ(µ, ν) = ⟨T ∗,M⟩ = vec(T ∗)Tvec(M),

so Lemma 3 gives
∂Sλ(µ, ν)
∂vec(M)T = vec(M)T ∂vec(T ∗)

∂vec(M)T + vec(T ∗)T ∂vec(M)
∂vec(M)T . (18)

Obviously, ∂vec(M)/∂vec(M)T is the (nm) × (nm) identity matrix I(nm), so the second term of (18) is
essentially vec(T ∗)T, and the remaining task is to derive ∂vec(T ∗)/∂vec(M)T.

Let R = α∗ ⊕ β∗ −M = α∗1T
m + 1nβ

∗T −M , and then T ∗ = eλ[R]. Using the chain rule of derivatives, we
have

∂vec(T ∗)
∂vec(M)T = ∂vec(T ∗)

∂vec(R)T ·
∂vec(R)
∂vec(M)T . (19)

30

Published in Transactions on Machine Learning Research (02/2025)

It is easy to find that ∂vec(T ∗)/∂vec(R)T is an (nm) × (nm) diagonal matrix with diagonal elements
vec(λT ∗), so

vec(M)T ∂vec(T ∗)
∂vec(R)T = λvec(M ⊙ T ∗)T. (20)

Furthermore,

∂vec(R)
∂vec(M)T = ∂vec(α∗1T

m + 1nβ
∗T −M)

∂vec(M)T

= (1m ⊗ In) ∂α∗

∂vec(M)T + (Im ⊗ 1n) ∂β∗

∂vec(M)T − I(nm), (21)

where the second identity is an application of Lemma 4. Combine (19), (20) and (21), and then we get

vec(M)T ∂vec(T ∗)
∂vec(M)T = λvec(M ⊙ T ∗)T ∂vec(R)

∂vec(M)T

= λvec(M ⊙ T ∗)T(1m ⊗ In) ∂α∗

∂vec(M)T

+ λvec(M ⊙ T ∗)T(Im ⊗ 1n) ∂β∗

∂vec(M)T

− λvec(M ⊙ T ∗)T,

which is the first term of (18).

Using the identities in Lemma 2, we have

vec(M ⊙ T ∗)T(1m ⊗ In) =
[
(1m ⊗ In)Tvec(M ⊙ T ∗)

]T =
[
(1T

m ⊗ In)vec(M ⊙ T ∗)
]T

= µT
r := [vec((M ⊙ T ∗)1m)]T ,

vec(M ⊙ T ∗)T(Im ⊗ 1n) =
[
(Im ⊗ 1n)Tvec(M ⊙ T ∗)

]T =
[
(Im ⊗ 1T

n)vec(M ⊙ T ∗)
]T

= µT
c :=

[
vec(1T

n (M ⊙ T ∗))
]T
.

Since we have set β∗
m = 0, (18) simplifies to

∂Sλ(µ, ν)
∂vec(M)T = λ

[
µT

r

∂α∗

∂vec(M)T + µ̃T
c

∂β̃∗

∂vec(M)T − vec(M ⊙ T ∗)T
]

+ vec(T ∗)T. (22)

Let w∗ = (α∗T, β̃∗T)T, and then the main challenge is to calculate ∂w∗/∂vec(M)T.

First, note that the optimality condition for (α∗, β∗) = arg maxα,β L(α, β) is

∇αL(α, β)|(α,β)=(α∗,β∗) = 0, ∇βL(α, β)|(α,β)=(α∗,β∗) = 0. (23)

Section C.2 has shown that ∇αL(α, β) = a− T1m and ∇β̃L(α, β) = b̃− T̃T1n. Moreover,

∇2
αL(α, β) = −λdiag(T1m)
∇2

β̃
L(α, β) = −λdiag(T̃T1n)

∇β̃ (∇αL(α, β)) = −λT̃ .

Define the function
F (w,M) =

(
∇αL(α, β)
∇β̃L(α, β)

)
=
(

a− T1m

b̃− T̃T1n

)
, (24)

where w = (αT, β̃T)T, and then w̃∗ satisfies the equation F (w∗,M) = 0, indicating that w∗ is implicitly a
function of M , written as w∗ = w(M). By the implicit function theorem,

∂w(M)
∂vec(M)T = −F−1

w FM := −
[
∂F (w,M)
∂wT

∣∣∣∣
w=w∗

]−1
∂F (w,M)
∂vec(M)T

∣∣∣∣
w=w∗

.

31

Published in Transactions on Machine Learning Research (02/2025)

Note that

Fw = FT
w = −λ

(
A B̃
B̃T D̃

)
:=
(∇2

αL(α, β) ∇β̃ (∇αL(α, β))[
∇β̃ (∇αL(α, β))

]T
∇2

β̃
L(α, β)

)
Then by the inversion formula for block matrices, we have

F−1
w = −λ−1

(
A B̃
B̃T D̃

)−1

= −λ−1
(
A−1 +A−1B̃∆̃−1

B̃TA−1 −A−1B̃∆̃−1

−∆̃−1B̃TA−1 ∆̃−1

)
,

where ∆̃ = D̃ − B̃TA−1B̃. For g = (µT
r , µ̃

T
c)T, the vector s̃ = (sT

u , s̃
T
v)T = −λF−1

w g̃ has the following
expression:

s̃v = −∆̃−1B̃TA−1µr + ∆̃−1µ̃c

su = A−1µr +A−1B̃∆̃
−1
B̃TA−1µr −A−1B̃∆̃−1µ̃c,

= A−1µr −A−1B̃s̃v.

After some simplification, we obtain

∆̃ = diag(T̃T1n)− T̃Tdiag((T1m)−)T̃
s̃v = ∆̃−1µ̃c − ∆̃−1T̃T((T1m)− ⊙ µr)
su = (T1m)− ⊙ µr − (T1m)− ⊙ (T̃ s̃v).

Next, partition FM as FM =
(
GM

H̃M

)
, where GM ∈ Rn×(nm) and H̃M ∈ R(m−1)×(nm). By definition,

GM =

∂G1

∂vec(M)T

...
∂Gn

∂vec(M)T

 , Gi = −
m∑

j=1
Tij = −

m∑
j=1

eλ(αi+βj−Mij),

so
∂Gi

∂Mkl
=
{

0, i ̸= k

λTkl, i = k
.

This indicates that GM = λ (diag(T1), . . . ,diag(Tm)), where T1, . . . , Tm are the column vectors of T .
Similarly, for Hj = −

∑n
i=1 Tij ,

H̃M =

∂H1

∂vec(M)T

...
∂Hm−1

∂vec(M)T

 ,
∂Hj

∂Mkl
=
{

0, j ̸= l

λTkl, j = l
,

implying that

H̃M = λ

 TT
1

. . .
TT

m−1 0T
n

 .

As a result,

µT
r

∂α∗

∂vec(M)T + µ̃T
c

∂β̃∗

∂vec(M)T

= (µT
r , µ̃

T
c) ∂w∗

∂vec(M)T = −(µT
r , µ̃

T
c)F−1

w FM

=
[
−λF−1

w

(
µr

µ̃c

)]T(
λ−1GM

λ−1H̃M

)
= (sT

u , s̃
T
v)
(
λ−1GM

λ−1H̃M

)
=
(
(su ⊙ T1)T, . . . , (su ⊙ Tm)T)+

(
s̃v,1T

T
1 , . . . , s̃v,m−1T

T
m−1,0T

n

)
= [vec (diag(su)T + Tdiag(sv))]T . (25)

32

Published in Transactions on Machine Learning Research (02/2025)

Finally, substitute (25) into (22), and we have

∂Sλ(µ, ν)
∂vec(M)T = λ [vec (diag(su)T ∗ + T ∗diag(sv))− vec(M ⊙ T)]T + vec(T)T

Transforming back to the matrix form, and we obtain

∂Sλ(µ, ν)
∂M

= λ(su ⊕ sv −M)⊙ T + T.

Replacing T with T ∗ and noting that a = T ∗1m, b̃ = T̃ ∗T1n, we get the stated result. The positive
definiteness of the ∆̃ matrix is a direct consequence of Lemma 8.

C.4 Proof of Theorem 5.1

In the proof of Theorem 4.1 we have already shown that

∇2
α,β̃
L(α, β) = −λH := −λ

(
diag(T1m) T̃

T̃T diag(T̃T1n)

)
,

where T = eλ[α ⊕ β −M]. Plugging α∗(β) into L(α, β), and then ∇2
β̃
L(α∗(β), β) is the Schur complement

of the top left block of ∇2
α,β̃
L(α, β), given by

∇2
β̃
L(α∗(β), β) = −λ

[
diag(T̃T1n)− T̃Tdiag(T1m)−1T̃

]
.

Since f(β) = −L(α∗(β), β), by Lemma 8 we find that ∇2
β̃
f(β) is positive definite, so f(β) is strictly convex

on β̃, and hence β∗ is unique.

The optimality conditions for (α∗, β∗) are T ∗1m = a and T ∗T1n = b, where T ∗ = eλ[α∗ ⊕ β∗ −M]. Since
T ∗

ij = exp{λ(α∗
i + β∗

j −Mij)} ≥ 0 and ai =
∑m

j=1 T
∗
ij , bj =

∑n
i=1 T

∗
ij , we have T ∗

ij ≤ min{ai, bj} for all i and
j, implying that

α∗
i + β∗

j ≤ Uij := Mij + λ−1 min{log(ai), log(bj)}.

Since β∗
m = 0 by design, we have α∗

i ≤ Uαi
< +∞, i = 1, . . . , n, where Uαi

= Uim = Mim +
λ−1 min{log(ai), log(bm)}. This indicates that α∗

i is upper bounded.

Next, let I = arg maxi T
∗
im. Since T ∗T1n = b implies that bm =

∑n
i=1 T

∗
im ≤ nT ∗

Im, we have

T ∗
Im = exp{λ(α∗

I −MIm)} ≥ bm/n,

and hence α∗
I ≥MIm + λ−1 log(bm/n). Again, since α∗

i + β∗
j ≤ Uij for all i and j, it holds that

β∗
j ≤ UIj − α∗

I ≤ UIj −MIm − λ−1 log(bm/n)
= MIj + λ−1 min{log(aI), log(bj)} −MIm − λ−1 log(bm/n)
= MIj −MIm + λ−1 min{log(naI/bm), log(nbj/bm)}
:= Uβj

< +∞, j = 1, . . . ,m. (26)

On the other hand, T ∗T1n = b implies that bj =
∑n

i=1 T
∗
ij = eλβ∗

j ·
∑n

i=1 e
λ(α∗

i −Mij) for any j, so

log bj = λβ∗
j + log

[
n∑

i=1
eλ(α∗

i −Mij)

]
≤ λβ∗

j + log
[

n∑
i=1

eλ(Uαi
−Mij)

]
.

It is well-known that

max{x1, . . . , xn} ≤ log
(

n∑
i=1

exi

)
≤ max{x1, . . . , xn}+ logn

33

Published in Transactions on Machine Learning Research (02/2025)

for any x1, . . . , xn ∈ R, so

β∗
j ≥ λ−1 log bj − λ−1 log

[
n∑

i=1
eλ(Uαi

−Mij)

]
≥ λ−1 log bj −max

i
(Uαi

−Mij)− λ−1 logn

≥ Lβj
:= λ−1 log(bj/n)−max

i
(Uαi

−Mij) > −∞, j = 1, . . . ,m. (27)

Then (26) and (27) together show that |β∗
j | <∞.

Similarly, T ∗1m = a, so

log ai ≤ λα∗
i + log

 m∑
j=1

eλ(Uβj
−Mij)

 ,
α∗

i ≥ Lαi
:= λ−1 log(ai/m)−max

j
(Uβj −Mij) > −∞, i = 1, . . . , n.

The trivial bounds Lαi
and Uβj

are obtained by removing the unknown index I.

The results above verify that |α∗
i | <∞ and |β∗

j | <∞, and hence ∥α∗∥ <∞ and ∥β∗∥ <∞. Finally, plugging
in β∗ to the objective function, and we immediately get f∗ > −∞.

C.5 Proof of Theorem 5.2

Claims (a) and (b) are direct consequences of the convergence property of the L-BFGS algorithm (Theorem
7.1, Liu & Nocedal (1989)), and we only need to verify its three assumptions. The new results here are
explicit expressions for the constants C1, C2, and r.

First, f is twice continuously differentiable, so Assumption 7.1(1) of Liu & Nocedal (1989) is verified. Second,
f is a closed convex function, and we define the level set of f as Lc = {β̃ ∈ Rm−1 : f(β) ≤ c}. Theorem
5.1 has shown that f∗ > −∞, and when c = f∗, obviously Lc = {β̃∗} is non-empty and bounded. Then
Corollary 8.7.1 of Rockafellar (1970) shows that Lc is bounded for every c. In particular, for a fixed initial
value β̃(0), define L = {β̃ : f(β) ≤ f(β(0))}, and then L is a bounded, closed, and convex set, which verifies
Assumption 7.1(2) of Liu & Nocedal (1989). Third, let H(β) := ∇2

β̃
f(β), and then in the proof of Theorem

5.1 we have already shown that

H(β) = λ
[
diag(T̃T1n)− T̃Tdiag(T1m)−1T̃

]
,

where T = eλ[α∗(β)⊕ β −M]. Lemma 8 verifies that

σmin(H(β)) ≥ λ · n−m+ 2
2(n−m+ 1) · min

1≤i≤n
Tim, σmax(H(β)) ≤ λ · max

1≤j≤m−1
νj ,

where ν = TT1n. On the L set, Lemma 7 shows that maxj βj ≤ Uc and minj βj ≥ Lc, with c = f(β(0)).
Therefore,

αi := λ−1 log ai − λ−1 log

 m∑
j=1

eλ(βj−Mij)

 ≥ λ−1 log ai − λ−1 log

e−λMim +
m−1∑
j=1

eλ(Uc−Mij)

=Ai := λ−1 log ai − Uc − λ−1 log

e−λ(Mim+Uc) +
m−1∑
j=1

e
−λMij

 ,

Tim = eλ(αi−Mim) ≥ eλ(Ai−Mim).

On the other hand, Tij must satisfy Tij > 0 and
∑m

j=1 Tij = ai for any i and j, so for j = 1, . . . ,m− 1, we
have Tij ≤ ai − Tim. Therefore,

vj =
n∑

i=1
Tij ≤

n∑
i=1

(ai − Tim) = 1−
n∑

i=1
Tim ≤ 1−

n∑
i=1

eλ(Ai−Mim), j = 1, . . . ,m− 1.

34

Published in Transactions on Machine Learning Research (02/2025)

This implies that there exist constants M1,M2 > 0 such that

M1∥x∥2 ≤ xTH(β)x ≤M2∥x∥2

for all x ∈ Rm−1 and β̃ ∈ L, with

M1 = λ · n−m+ 2
2(n−m+ 1) · min

1≤i≤n
eλ(Ai−Mim),

M2 = λ

[
1−

n∑
i=1

eλ(Ai−Mim)

]
.

This verifies Assumption 7.1(3) of Liu & Nocedal (1989).

Next, we derive the explicit constants in the theorem. Following the notations in equation (7.3) of Liu &
Nocedal (1989), the BFGS matrix Bk for the L-BFGS algorithm has the following expression

Bk = B(m̃), B(l+1) = B(l) − B(l)sls
T
l B

(l)

sT
l B

(l)sl
+ yly

T
l

yT
l sl

,

where m̃ = min{k+ 1,m0}, m0 is a user-defined constant explained in Section A, and {yl} and {sl} are two
sequences of vectors. We also choose B(0) = I to be the identity matrix.

Fix l = m̃, and let cos θk = sT
l B

(l)sl/(∥sl∥ · ∥B(l)sl∥), ρk = yT
l sl/∥sl∥2, τk = ∥yl∥2/yT

l sl, and qk =
sT

l B
(l)sl/∥sl∥2. Then it can be verified that

tr(B(l+1)) = tr(B(l))− ∥B
(l)sl∥2

sT
l B

(l)sl
+ ∥yl∥2

yT
l sl

= tr(B(l))− qk

cos2 θk
+ τk, (28)

det(B(l+1)) = det(B(l))ρk/qk. (29)

Define ψ(B) = tr(B)−log det(B), and it is known that ψ(B) > 0 for any positive definite matrix B. Equation
(6.50) of Nocedal & Wright (2006) shows that

0 < ψ(B(l+1)) = tr(B(l))− qk

cos2 θk
+ τk − log det(B(l))− log ρk + log qk

= ψ(B(l)) + (τk − log ρk − 1) +
(

1− qk

cos2 θk
+ log qk

cos2 θk

)
+ log cos2 θk.

Under the assumptions verified above, equations (7.8) and (7.9) of Liu & Nocedal (1989) show that M1 ≤
yT

l sl/∥sl∥2 ≤ M2 and ∥yl∥2/yT
l sl ≤ M2 for every l, so M1 ≤ ρk ≤ M2 and τk ≤ M2. Since h(x) =

1− x+ log(x) ≤ 0 for all x > 0, we have

0 < ψ(Bk) +M3 + log cos2 θk, (30)

where M3 := M2 − logM1 − 1. Now we show that ψ(Bk) can be upper bounded. First, Lemma 6 implies
that for l = 0, . . . , m̃− 1,

σmax(B(l+1)) ≤ σmax(B(l)) + 0 + ∥yl∥2/yT
l sl ≤ σmax(B(l)) +M2,

so σmax(Bk) ≤ 1 + m0M2. This also implies that qk ≤ 1 + m0M2. Next, (28) shows that tr(Bk) ≤
m− 1 +m0M2, and (29) gives

log det(B(l+1)) = log det(B(l)) + log ρk − log qk ≥ log det(B(l)) + logM1 − log(1 +m0M2),

implying that log det(Bk) ≥ m0 [logM1 − log(1 +m0M2)]. As a result, we get

ψ(Bk) ≤M4 := m− 1 +m0M2 −m0 [logM1 − log(1 +m0M2)] . (31)

Combining (30) and (31), we have cos2 θk > e−(M3+M4).

35

Published in Transactions on Machine Learning Research (02/2025)

Finally, using the argument in Byrd et al. (1987), we have f (k+1) − f∗ ≤ r(f (k) − f∗), where

r = 1− c1(1− c2)M1/M2 cos2 θk < 1− c1(1− c2)M1/M2e
−(M3+M4),

and c1, c2 are two constants for the Wolfe condition as explained in Section A. The constant C1 is simply
2/M1.

For (c), we follow the analysis in Nocedal et al. (2002). Let g(β) = ∇β̃f(β), and then g(β∗) = 0. By Taylor’s
theorem we have

f(β)− f∗ = 1
2(β̃ − β̃∗)TH1(β̃ − β̃∗), (32)

where H1 = H(ξ) for some ξ in the line segment connecting β̃ and β̃∗. Also,

g(β)− g(β∗) = g(β) = H2(β̃ − β̃∗), H2 =
∫ 1

0
H(β̃ + t(β̃∗ − β̃))dt. (33)

Combining (32) and (33), we get

∥g(β)∥2 = (β̃ − β̃∗)TH2
2 (β̃ − β̃∗) = 2(β̃ − β̃∗)TH2

2 (β̃ − β̃∗)
(β̃ − β̃∗)TH1(β̃ − β̃∗)

· (f(β)− f∗)

for any β̃ ∈ L. Let x = H
1/2
1 (β̃ − β̃∗), and then

∥g(β)∥2 = 2xTH
−1/2
1 H2

2H
−1/2
1 x

∥x∥2 · (f(β)− f∗).

It is easy to find that

σmax(H−1
1) = [σmin(H1)]−1 ≤M−1

1 , σmax(H2
2) = [σmax(H2)]2 ≤M2

2 .

By Lemma 5, we have xTH
−1/2
1 H2

2H
−1/2
1 x ≤ M−1

1 M2
2 ∥x∥2 for any x ∈ Rm−1, and hence ∥g(β)∥2 ≤

C2(f(β) − f∗) for all β̃ ∈ L, where C2 = 2M−1
1 M2

2 . Since f (k) ≤ f (0) due to claim (a), we find that
β̃(k) ∈ L for all k > 0. Therefore,

∥g(γ(k))∥2 ≤ C2(f (k) − f∗) ≤ C2r
k(f (0) − f∗),

and claim (c) is proved.

Claims (d) and (e) can be verified as follows. For any β̃ ∈ L, recall that T = eλ[α∗(β) ⊕ β −M], and then
T1m − a = 0 and

∥T̃T1n − b̃∥∞ ≤ ∥T̃T1n − b̃∥ = ∥∇β̃f(β)∥,

indicating that ∣∣∣∣∣
n∑

i=1
Tij − bj

∣∣∣∣∣ ≤ ∥∇β̃f(β)∥, j = 1, . . . ,m− 1. (34)

Then 0 < Tij ≤
∑m

j=1 Tij = ai and 0 < Tij ≤
∑n

i=1 Tij ≤ bj + ∥∇β̃f(β)∥. The gradient ∥∇β̃f(β)∥ can be
bounded using claim (c), so (d) is also proved. On the other hand, (34) shows that

ai =
m∑

j=1
Tij ≤ m ·max

j
Tij ,

and similarly we have

bj − ∥∇β̃f(β)∥ ≤
n∑

i=1
Tij ≤ n ·max

i
Tij .

Replacing ∥∇β̃f(β)∥ by its upper bound, and claim (e) is verified.

36

Published in Transactions on Machine Learning Research (02/2025)

C.6 Proof of Theorem 5.3

For matrix An×m = (aij), define ∥A∥∞ = maxi,j |aij |, and the notation A ≥ 0 means aij ≥ 0 for all i and
j. First, it is easy to show that ∥A⊙B∥F ≤ ∥A∥∞∥B∥F , since

∥A⊙B∥F =
√∑

i,j

(aijbij)2 ≤
√∑

i,j

∥A∥2
∞b

2
ij = ∥A∥∞∥B∥F .

Next, we show that if Bn×m ≥ 0, Cp×n ≥ 0, and v ≥ 0, where v is a vector, then ∥C(A⊙B)v∥ ≤ ∥A∥∞∥CBv∥.

Proof. Let ui be the i-th element of (A⊙B)v, and then

ui =
m∑

j=1
aijbijvj , |ui| ≤ ∥A∥∞

m∑
j=1

bijvj .

Consequently,

∥C(A⊙B)v∥ =

√√√√ p∑
k=1

∣∣∣∣∣
n∑

i=1
ckiui

∣∣∣∣∣
2

≤

√√√√ p∑
k=1

(
n∑

i=1
cki|ui|

)2

≤ ∥A∥∞

√√√√√ p∑
k=1

 n∑
i=1

cki

 m∑
j=1

bijvj

2

= ∥A∥∞∥CBv∥.

Similarly, if A ≥ 0 and v ≥ 0, then

∥A(u⊙ v)∥ =

√√√√√ n∑
i=1

∣∣∣∣∣∣
m∑

j=1
aijujvj

∣∣∣∣∣∣
2

≤ ∥u∥∞

√√√√√ n∑
i=1

 m∑
j=1

aijvj

2

= ∥u∥∞∥Av∥.

Moreover, for matrices Bn×m ≥ 0, and Cm×p ≥ 0, let Cj be the j-th column of C, and then

∥(A⊙B)C∥F =

√√√√ p∑
j=1
∥(A⊙B)Ci∥2 ≤ ∥A∥∞

√√√√ p∑
j=1
∥BCi∥2 = ∥A∥∞∥BC∥F .

Let α = α∗ + f and β = β∗ + g for some perturbation vectors f and g, and define T = eλ[α⊕ β −M]. Then
it is easy to find that

T − T ∗ = eλ[α∗ ⊕ β∗ −M + (f ⊕ g)]− T ∗ = eλ[f ⊕ g]⊙ T ∗ − T ∗.

Let ET = eλ[f ⊕ g]− 1n1′
m, so T − T ∗ = ET ⊙ T ∗. Since |ex − 1| < 2|x| for |x| < 1, we have

|(ET)ij | = |eλ(fi+gj) − 1| < 2λ|fi + gj |

as long as λ|fi + gj | < 1. This can be achieved by assuming ε := 2λ(∥f∥∞ + ∥g∥∞) < 1, since in this case
λ|fi + gj | ≤ λ(∥f∥∞ + ∥g∥∞) < 1/2. Then clearly ∥ET ∥∞ < ε.

Consider ŝu = su + δu and ŝv = sv + δv for some perturbation vectors δu and δv, and let

∇̂MS = T + λ(ŝu ⊕ ŝv −M)⊙ T
= T + λ(su ⊕ sv −M)⊙ T + λ(δu ⊕ δv)⊙ T
= ∇MS + ET ⊙∇MS + λ(δu ⊕ δv)⊙ (T ∗ + ET ⊙ T ∗).

37

Published in Transactions on Machine Learning Research (02/2025)

Then we have

∥∇̂MS −∇MS∥F ≤ ∥ET ⊙∇MS∥F + ∥λ(δu ⊕ δv)⊙ (T ∗ + ET ⊙ T ∗)∥F

≤ ∥ET ∥∞∥∇MS∥F + λ∥δu ⊕ δv∥∞∥T ∗ + ET ⊙ T ∗∥F

< ε∥∇MS∥F + λ∥δu ⊕ δv∥∞∥1n1′
m + ET ∥∞∥T ∗∥F

≤ ε∥∇MS∥F + λ∥δu ⊕ δv∥∞(1 + ∥ET ∥∞)∥T ∗∥F

< ε∥∇MS∥F + λ(1 + ε)∥δu ⊕ δv∥∞∥T ∗∥F

< ε∥∇MS∥F + 2λ∥T ∗∥F (∥δu∥∞ + ∥δv∥∞).

Therefore, we just need to show proper bounds for ∥δu∥∞ and ∥δv∥∞.

Consider µ̂r = (M ⊙ T)1m and µ̂c = (M ⊙ T)T1n, and then

µ̂r = (M ⊙ (T ∗ + ET ⊙ T ∗))1m = µr + δr := µr + (ET ⊙M ⊙ T ∗)1m,

µ̂c = (M ⊙ (T ∗ + ET ⊙ T ∗))T1n = µc + δc := µc + (ET ⊙M ⊙ T ∗)T1m.

It can be easily verified that

∥a− ⊙ δr∥ = ∥diag(a−)(ET ⊙M ⊙ T ∗)1m∥ ≤ ∥ET ∥∞∥diag(a−)(M ⊙ T ∗)1m∥ < ε∥µr∥,
∥T ∗T(a− ⊙ δr)∥ = ∥T ∗Tdiag(a−)(ET ⊙M ⊙ T ∗)1m∥ ≤ ∥ET ∥∞∥T ∗Tdiag(a−)(M ⊙ T ∗)1m∥

< ε∥T ∗T(a− ⊙ µr)∥,
∥δc∥ = ∥(ET ⊙M ⊙ T ∗)T1m∥ ≤ ∥ET ∥∞∥(M ⊙ T ∗)T1m∥ < ε∥µc∥.

Define bv = µc − T ∗T(a− ⊙ µr) and b̂v = µ̂c − TT(a− ⊙ µ̂r), and we have

b̂v = µc + δc − (T ∗ + ET ⊙ T ∗)T(a− ⊙ (µr + δr))
= µc + δc − T ∗T(a− ⊙ (µr + δr))− (ET ⊙ T ∗)T(a− ⊙ (µr + δr))
= µc − T ∗T(a− ⊙ µr) + δc − T ∗T(a− ⊙ δr)− (ET ⊙ T ∗)T(a− ⊙ (µr + δr))

As a result,

∥b̂v − bv∥ = ∥δc − T ∗T(a− ⊙ δr)− (ET ⊙ T ∗)T(a− ⊙ (µr + δr))∥
≤ ∥δc∥+ ∥T ∗T(a− ⊙ δr)∥+ ∥ET ∥∞∥T ∗T(a− ⊙ (µr + δr))∥
< ε∥µc∥+ ε∥T ∗T(a− ⊙ µr)∥+ ε∥T ∗T(a− ⊙ µr)∥+ ε∥T ∗T(a− ⊙ δr)∥
< ε∥µc∥+ ε∥T ∗T(a− ⊙ µr)∥+ ε∥T ∗T(a− ⊙ µr)∥+ ε2∥T ∗T(a− ⊙ µr)∥
< ε∥µc∥+ 3ε∥T ∗T(a− ⊙ µr)∥.

On the other hand, let t̂ij be the (i, j) element of the matrix T̃Tdiag(a−)T̃ , and tij be the (i, j) element of
T̃ ∗Tdiag(a−)T̃ ∗. Then

t̂ij =
n∑

k=1
TkiTkj/ak =

n∑
k=1

[1 + (ET)ki][1 + (ET)kj]T ∗
kiT

∗
kj/ak,

|t̂ij − tij | =

∣∣∣∣∣
n∑

k=1
[(ET)ki + (ET)kj + (ET)ki(ET)kj]T ∗

kiT
∗
kj/ak

∣∣∣∣∣
≤ (2ε+ ε2)

n∑
k=1

∣∣T ∗
kiT

∗
kj/ak

∣∣ < 3εtij .

This implies that

∥D̂ −D∥F = ∥T̃ ∗Tdiag(a−)T̃ ∗ − T̃Tdiag(a−)T̃∥F =
√∑

i,j

|t̂ij − tij |2 ≤ 3ε∥D∥F .

38

Published in Transactions on Machine Learning Research (02/2025)

Then by Theorem 7.2 of Higham (2002), if 3εσ∥D∥F < 1, we have

∥δv∥
∥sv∥

≤ εσ

1− 3εσ∥D∥F

(
∥µc∥+ 3∥T ∗T(a− ⊙ µr)∥

∥sv∥
+ 3∥D∥F

)
.

where σ = ∥D−1∥op = 1/σmin(D). Assume that ε < min{1, 1/(6σ∥D∥F)}, then with slight simplification,
we have ∥δv∥∞ ≤ ∥δv∥ ≤ Cvε, where

Cv = 2σ(∥µc∥+ 3∥T ∗T(a− ⊙ µr)∥+ 3∥D∥F ∥sv∥).

On the other hand,

∥δu∥∞ ≤ ∥δu∥ ≤ ∥a− ⊙ δr∥+ ∥a− ⊙ (T ŝv − T ∗sv)∥
≤ ε∥µr∥+ ∥a− ⊙ (T ∗ŝv + (ET ⊙ T ∗)ŝv − T ∗sv)∥
≤ ε∥µr∥+ ∥a− ⊙ (T ∗δv)∥+ ∥a− ⊙ ((ET ⊙ T ∗)ŝv)∥
≤ ε∥µr∥+ ∥a− ⊙ (T ∗δv)∥+ ∥diag(a−)(ET ⊙ T ∗)ŝv∥
≤ ε∥µr∥+ ∥a− ⊙ (T ∗δv)∥+ ε∥diag(a−)T ∗ŝv∥
= ε∥µr∥+ ∥a− ⊙ (T ∗δv)∥+ ε∥diag(a−)T ∗(sv + δv)∥
≤ ε∥µr∥+ (1 + ε)∥a− ⊙ (T ∗δv)∥+ ε∥diag(a−)T ∗sv∥
≤ ε∥µr∥+ (1 + ε)∥diag(a−)T ∗∥F ∥δv∥+ ε∥a− ⊙ (T ∗sv)∥
≤ ε(∥µr∥+ 2Cv∥diag(a−)T ∗∥F + ∥a− ⊙ (T ∗sv)∥).

Combining the results together, we get

∥∇̂MS −∇MS∥F ≤ ε [∥∇MS∥F + 2λ∥T ∗∥F (Cv + Cu)] ,

where Cu = ∥µr∥+ 2Cv∥diag(a−)T ∗∥F + ∥a− ⊙ (T ∗sv)∥.

Finally, Theorem 5.2(b) shows that ∥g∥∞ ≤ ∥g∥ = ∥β(k) − β∗∥ ≤
√
C1ε(k). In addition, by (11) we have

α
(k)
i := α∗(β(k))i = λ−1 log ai − λ−1 log

 m∑
j=1

eλ(β
(k)
j

−Mij)

 .
Then using Lemma (??), we obtain

|α(k)
i − α∗| = λ−1

∣∣∣∣∣∣log

 m∑
j=1

eλ(β
(k)
j

−Mij)

− log

 m∑
j=1

eλ(β∗
j −Mij)

∣∣∣∣∣∣ ≤ λ−1∥λ(β(k)
j − β∗

j)∥∞ = ∥g∥∞,

implying that ∥f∥∞ = ∥α∗(β(k)) − α∗∥∞ ≤ ∥g∥∞ ≤
√
C1ε(k). As a result, ε = 2λ(∥f∥∞ + ∥g∥∞) ≤

4λ
√
C1ε(k).

C.7 Proof of Theorem 5.4

Lemma 9. Let (X , d) be a Polish space, and p ∈ [1,∞). Denote the space of Borel probability measures on
X as P (X). The Wasserstein space of order p is defined as Pp(X) =

{
µ ∈ P (X);

∫
X d(x0, x)p µ(dx) <∞

}
,

where x0 ∈ X is arbitrary. Let (µk ∈ Pp(X))k∈N be a sequence of probability measure, and µ ∈ Pp(X). If
Wp(µ, µk)→ 0, then µk

d−→ µ.

This lemma is a direct result of Theorem 6.9 in Villani (2009).
Lemma 10. Let ∆̃N := {νN |νN =

∑N
i=1 ωiδXi

,∀Xi ∈ X , ωi ≥ 0,
∑N

i=1 ωi = 1}, meaning the set of all
probability measures on X supported on at most N points. Then

min
µ̃N ∈∆̃N

Wp(µ, µ̃N)→ 0

39

Published in Transactions on Machine Learning Research (02/2025)

This lemma is proved in Theorem 1.1 of Kloeckner (2012).

Now we use the above two lemmas to prove Theorem 5.4.

Let µ̃∗
N = argmin

µ̃N ∈∆̃N

Wp(µ, µ̃N), µ∗
B = argmin

µB∈∆B

Wp(µ, µB).

By Lemma 10, we have Wp(µ, µ̃∗
N) → 0. Therefore, ∀ϵ > 0,∃N ∈ N, s.t. Wp(µ, µ̃∗

N) < ϵ/2. Note that with
B large enough, we can always construct µB ∈ ∆B to approximate µ̃∗

N well. For example, we can construct
the µ̂B ∈ ∆B as empirical distribution of samples generated from X ∼ µ̃N , i.e. for each N , ∃BN ∈ N,
s.t.∀B ∈ N, B > BN , Wp(B̃∗

N , µ̂B) < ϵ/2.

Since µ∗
B is the minimizer of Wp(µ, µB) over µB ∈ ∆B , ∀ϵ, ∃N,BN ∈ N, ∀B ∈ N, B > BN , s.t.:

Wp(µ, µ∗
B) ≤Wp(µ, µ̂B) (35)
≤Wp(µ, µ̃∗

N) +Wp(µ̃∗
N , µ̂B)

< ϵ.

Therefore, Wp(µ, µ∗
B)→ 0.

By lemma 9, we have µ∗
B

d−→ µ.

C.8 Proof of Theorem 5.6

The proof is a direct result of the Theorem 4 of Défossez et al. (2020). In order to apply the theorem, There
are three conditions in Section 2.3 of Défossez et al. (2020). Slightly revised to be more suitable in our
situation, the three conditions are:

(a) The function Sλ(Y,D) is bounded below, i.e.,∃C∗ ∈ R, s.t.

∀Y ∈ X b, ∀D ∈ XB , Sλ(Y,D) ≥ C∗.

(b) The gradient of Sλ(Y,D) is uniformly almost surely bounded, i.e.,∃R ≥
√
ϵ (
√
ϵ is used here to simplify

the final bounds), s.t.
∥∇DSλ(Y,D)∥∞ ≤ R−

√
ϵ.

(c) The gradient of Sλ(Y,D) is L-Lipschitz continuous with respect to the l2-norm, i.e., ∃L > 0, s.t.

∥∇D1Sλ(Y,D1)−∇D2Sλ(Y,D2)∥2 ≤ L∥D1 −D2∥2.

Since ∇DSλ(Y,D) = ∇MSλ(Y,D)∇DM and notice that ∇DM is just derivative of point-wise l2-norms, it
is sufficient to verify that∇MSλ(Y,D) satisfies these properties.

According to the analytic form for ∇MSλ provided in Theorem 4.1, reviewing the required properties by
definitions, it is trivial to verify the three conditions.

Hence, we have, ∃C, s.t.:

E
[
∥∇D(T)Sλ(ξ,D(T))∥2

]
≤ CR2(R2 +RL+ L2) logN√

N
.

Let C∗ = CR2(R2 +RL+ L2), and we proved the theorem.

C.9 Proof of Proposition 5.7

The proof is a direct consequence of the triangle inequality of the Sinkhorn loss (Luise et al., 2018). If
Sλ(D(l),D(l−1)) < δ, then

|Sλ(Y,D(l))− Sλ(Y,D(l−1))| ≤ Sλ(D(l),D(l−1)) < δ.

40

	Introduction
	Background
	Wasserstein Coreset via Sinkhorn Loss (WCSL)
	Computation and Differentiation of the Sinkhorn Loss
	Issues of Sinkhorn's Algorithm
	The Advocated Alternative for Sinkhorn Loss Computation
	The Analytic Differentiation of Sinkhorn Loss

	Stability Analysis and Convergence
	Stability Analysis of Algorithm 2
	Consistency of Wasserstein Coreset
	WCSL Algorithm Convergence Analysis

	Numerical Experiments
	Simulations
	Active Learning
	MNIST & FashionMNIST

	Discussion
	Explicit expressions for constants
	Additional experiment details
	Settings of the motivating example
	Sinkhorn Loss Computation stability and accuracy
	Running time of Solution Stage and Differentiation Stage

	Proofs of theorems
	Technical Lemmas
	Proof of Lemma 1
	Proof of Theorem 4.1
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Theorem 5.3
	Proof of Theorem 5.4
	Proof of Theorem 5.6
	Proof of Proposition 5.7

