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ABSTRACT

Large language models have demonstrated impressive performance when inte-
grated with vision models even enabling video understanding. However, evalu-
ating these video models presents its own unique challenges, for which several
benchmarks have been proposed. In this paper, we show that the currently most
used video-language benchmarks can be solved without requiring much temporal
reasoning. We identified three main issues in existing datasets: (i) static infor-
mation from single frames is often sufficient to solve the tasks (ii) the text of the
questions and candidate answers is overly informative, allowing models to an-
swer correctly without relying on any visual input (iii) world knowledge alone
can answer many of the questions, making the benchmarks a test of knowledge
replication rather than visual reasoning. In addition, we found that open-ended
question-answering benchmarks for video understanding suffer from similar is-
sues while the automatic evaluation process with LLMs is unreliable, making it an
unsuitable alternative. As a solution, we propose TVBench, a novel open-source
video multiple-choice question-answering benchmark, and demonstrate through
extensive evaluations that it requires a high level of temporal understanding. Sur-
prisingly, we find that most recent state-of-the-art video-language models perform
similarly to random performance on TVBench, with only a few models such as
Qwen2-VL, and Tarsier clearly surpassing this baseline.

1 INTRODUCTION

Vision Language Models have gained popularity, benefiting from both the progress made in natural
language processing and the surge of foundation models for vision tasks with strong generalization
capabilities. Recently, video-language models have been introduced (Xu et al., 2021; Lin et al.,
2023; Xue et al., 2023), aiming to replicate the success achieved in the image domain. To evaluate
their performance, visual question answering has emerged as a key task requiring both textual and
visual reasoning. With the rapid model development and release cycles, having a reliable and robust
benchmark is crucial in measuring progress and guiding research efforts.

There are two main approaches to designing question-answering benchmarks for videos: multiple-
choice question answering (MCQA) (Wang et al., 2024c; Li et al., 2024b) and open-ended question
answering (Yu et al., 2019; Xu et al., 2017). The most popular and commonly used benchmark
for MCQA is MVBench (Li et al., 2024b), which is the most downloaded video dataset with over
104K monthly downloads as of September 2024 and the second most downloaded across both im-
age and video visual question-answering benchmarks on Hugging Face despite being released only
recently. As such, its reliability as a valid benchmark is of utmost importance. But how much video
understanding does MVBench truly measure?

Previous analysis in image question answering benchmarks (Goyal et al., 2017b) has demonstrated
that poorly formulated benchmarks could bias the development of new models towards learning
strong text representations while ignoring visual information. This is especially relevant for the
video-language community, where benchmarks must account not only for visual but also for tempo-
ral understanding.

In this work, we conduct a comprehensive analysis of widely used video question-answering bench-
marks, revealing that temporal information is poorly evaluated. Furthermore, in MCQA tasks, prior
world knowledge, combined with overly informative questions and answer choices, often allows
questions to be answered solely through text, without the need for visual input. Our results also
indicate that automatic open-ended evaluation is unreliable, with significant evaluation discrepan-
cies in results across different models for the same task. We assess the substantial shortcomings of
MVBench and propose as a solution a new benchmark TVBench that requires temporal understand-
ing to be solved, providing an effective evaluation tool for current video-language models:
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Figure 1: TVBench a temporal video-language benchmark. In TVBench, state-of-the-art text-
only, image-based, and most video-language models perform close to random chance, with only the
latest strong temporal models, such as Tarsier, outperforming the random baseline. In contrast to
MVBench, the performance of these temporal models significantly drops when videos are reversed.

• MVBench contains unlikely candidate answers easily dismissed from a single frame.
→ We provide only temporal challenging candidate answers, requiring models to leverage
temporal information to answer correctly.

• MVBench contains QA pairs with obvious solutions due LLM biased generation.
→ We design task-specific templates to generate questions that are not overly informative
such that they cannot be answered solely by text.

• MVBench contains QA pairs that can be solved by solely relying on prior world knowledge.
→ We design questions that can only be answered from the video content, without relying
on prior world knowledge.

As a result, TVBench measures the temporal understanding of video-language models in contrast to
MVBench, as shown in Fig. 1. In this setting, text-only and single-frame models, such as Gemini
1.5 Pro and GPT-4o, perform at random chance levels on TVBench, despite achieving competi-
tive results on MVBench. Surprisingly, even recent state-of-the-art video-language models perform
close to random chance on TVBench, with only a few models such as Qwen2-VL and Tarsier outper-
forming the random baseline. For these models, shuffling and reversing the videos lead to significant
performance drops, unlike in MVBench, further verifying TVBench as a temporal video benchmark.

2 RELATED WORK

Traditional video evaluation benchmarks focused on specific tasks such as action recognition (Goyal
et al., 2017a; Kay et al., 2017) or video description (Das et al., 2013; Xu et al., 2016; Wang et al.,
2019). With the emergence of Vision Language Models (VLMs), there is a growing need for more
comprehensive evaluation protocols to effectively evaluate models with increasingly advanced gen-
eralization capabilities. Current video-language benchmarks focus on solving QA pairs that require
a certain level of multimodal understanding. There are two major trends in the QA format: open-
ended QA and multiple-choice QA (MCQA).

Open-ended question answering. Evaluating open-ended QA introduces new challenges, as tra-
ditional evaluation metrics such as ROUGE (Lin, 2004), METEOR (Banerjee & Lavie, 2005), and
CIDEr (Vedantam et al., 2015) fail to analyze discrepancies of more complex and elaborated an-
swers. Alternatively, Maaz et al. (2023) introduces a novel quantitative evaluation pipeline for open-
ended QA datasets. The proposed method relies on GPT-3.5 to determine the correctness of the
predicted answer and provides a matching score with the ground truth. Commonly used datasets
for evaluating models in this context include MSRVTT-QA (Xu et al., 2017), MSVD-QA (Xu et al.,
2017), TGIF-QA (Jang et al., 2017) and ActivityNet-QA (Yu et al., 2019). In general, any open-
ended QA benchmarks can be evaluated following this protocol. As shown in our analysis, Large
Language Model (LLM) based evaluations are prone to hallucinations, leading to unreliable con-
clusions. In contrast, MCQA benefits from a more straightforward evaluation process, based on the
accuracy score.
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Figure 2: Spatial bias of MVBench video-language benchmark. We show different tasks of the
MVBench benchmark and observe that the question can be answered without requiring temporal
understanding. For quantitative results see Table 1.

Multiple-choice question answering. CLEVRER (Yi et al., 2019) assesses reasoning about object
interaction in synthetic videos. Perception Test (Patraucean et al., 2024) was introduced to eval-
uate visual perception in multimodal settings, mainly in indoor scenes. (Bagad et al., 2023) uses
synthetic generated data to evaluate the temporal understanding of early video-language models.
EgoSchema (Mangalam et al., 2024) focuses on MCQA involving long egocentric videos. Recently,
VideoHallucer (Wang et al., 2024c) was introduced as a first attempt to define a video-language
benchmark specifically designed for hallucination detection. MVBench (Li et al., 2024b) aims to
evaluate temporal understanding by defining 20 dynamic tasks specifically designed to require tem-
poral reasoning throughout the entire video. However, our experiments demonstrate that many of
these tasks are highly spatial and textual biased, failing to evaluate temporal understanding effec-
tively. We propose a new benchmark that requires a high level of spatiotemporal understanding
across different tasks in order to be solved.

3 PROBLEMS IN VIDEO MCQA BENCHMARKS

In this section, we identify two key shortcomings in current video multiple-choice question-
answering benchmarks, as demonstrated on MVBench. First, we show that this benchmark contains
strong spatial bias, meaning that questions can be answered without temporal understanding. Sec-
ondly, we demonstrate that MVBench also contains a strong textual bias, as many questions can be
answered without even looking at the visual input. In Appendix A.2.1, we extend our analysis to
NextQA (Xiao et al., 2021).

3.1 DOES TIME MATTER?

Video benchmarks must define tasks that cannot be solved using solely spatial information to ef-
fectively evaluate the temporal understanding of a model. In video MCQA, this means questions
should not be answerable using spatial details from a single random frame or multiple frames e.g.
after shuffling them. However, if no understanding of the sequence of events and temporal local-
ization is needed, the benchmark fails to assess temporal understanding, focusing only on spatial
information which we define as spatial bias.

We analyze the spatial bias in MVBench using state-of-the-art image and video-language models
such as GPT-4o (OpenAI, 2024), Gemini 1.5 Pro (Gemini, 2024), and Tarsier-34B (Wang et al.,
2024a). In Table 1 we focus on four different tasks i) scene transition ii) fine-grained pose iii) fine-
grained action and iv) episodic reasoning. To assess whether solving these tasks requires temporal
understanding, we compare the performance of such models when receiving only a single random
frame, the shuffled videos, and the original videos.

The models receiving only a random frame as input show strong performance across all four tasks in
Table 1, surpassing the random baseline. Notably, GPT-4o achieves the highest average performance
of 62.8% across the four tasks, nearly matching its video performance with 65.8% and other state-
of-the-art video-language models. The lower image performance of Tarsier-34B might stem from
its training data composition, which contains five times more video data than image data. These
findings are unexpected, as task names like Fine-grained Action suggest a need for temporal under-
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Table 1: Spatial bias of the MVBench video-language benchmark. Our analysis reveals that
temporal understanding is not required for solving these temporal tasks of MVBench as they can be
solved with a random frame or shuffled video. Average represents the mean across these four tasks.

Input Fine-grained
Action

Scene
Transition

Fine-grained
Pose

Episodic
Reasoning Average

Random – 25.0 25.0 25.0 20.0 23.8
Gemini 1.5 Pro

image
47.0 78.0 46.5 56.5 57.0

GPT-4o 49.0 84.0 53.0 65.0 62.8
Tarsier-34B 48.5 67.0 22.5 46.0 46.0
Gemini 1.5 Pro

video
50.0 93.3 58.5 66.8 67.2

GPT-4o 51.0 83.5 65.5 63.0 65.8
Tarsier-34B 48.5 89.5 64.5 54.5 64.3
Gemini 1.5 Pro

shuffle
49.5 90.0 54.5 63.0 64.3

GPT-4o 52.0 84.5 69.0 64.5 67.5
Tarsier-34B 51.0 89.0 56.5 51.5 62.0

standing. For this fine-grained task, the image-model GPT-4o achieves 49%, which is even slightly
better than the state-of-the-art model Tarsier, which scores 48.5%. Similarly, for the other three
tasks. Overall, GPT-4o achieves an average accuracy across all 20 tasks of 47.8%, which is 20.5%
higher than the random performance of 27.3% on MVBench. This indicates that a large portion of
the benchmark is affected by spatial bias.

Additionally, shuffling the videos has minimal impact on the performance of all video-language
models with an average difference of 2.3%, indicating that temporal information is not necessary
to solve these tasks. Note, as confirmed in Sec. 5.3, the Tarsier model shows a significant drop in
performance when videos are shuffled for tasks that require temporal understanding. This problem
goes beyond these four tasks as shown in Table 4, Gemini 1.5 Pro and Tarsier achieve an average
accuracy across all 20 MVBench tasks of 60.5% and 67.6%, respectively. Shuffling video frames
causes a performance drop of only 3.8% and 6.4%, respectively, indicating that the spatial bias
affects not only the tasks analyzed in Table 1 but the entire dataset. Additionally, we verify the
agreement between the correct responses of Tarsier-34B across modalities: 91.0% between image
and video inputs, and 93.9% between video and shuffled video. This confirms that current models
heavily rely on spatial biases to solve MVBench.

In Fig. 2 we show examples corresponding to tasks analyzed in Table 1. The example from the
left is taken from the Fine-grained Action recognition task implying that temporal understanding is
needed. The example on the right is from the Fine-grained Pose task. In both cases, the information
provided from any frame is enough to correctly answer the question. In Appendix, in Fig. 14 -20 we
show 34 more examples of spatial bias in MVBench.

Problem 1

The MVBench benchmark has a strong spatial bias meaning questions can be answered with-
out requiring temporal understanding.

3.2 DOES VISION MATTER?

Video benchmarks must be designed to prevent questions from being answered solely through com-
mon sense reasoning. Modern LLMs possess strong reasoning skills, which can exploit the informa-
tion within the question and candidate sets in MCQA video language evaluation benchmarks. This
creates textual bias, enabling models to answer questions without leveraging the video content.

We analyze the impact of textual bias on MVBench in Table 2. We evaluate the performance of state-
of-the-art text-only LLMs, Llama 3 (MetaAI, 2024), and multi-modal LLMs such as Gemini 1.5
Pro (Gemini, 2024), GPT-4o (OpenAI, 2024) and Tarsier (Wang et al., 2024a). Our findings reveal
that LLMs can eliminate incompatible candidates easily, greatly outperforming the random baseline.
Models using only text achieve competitive results compared to video-language models across these
four tasks (Action Count, Unexpected Action, Action Antonym, and Episodic Reasoning). For
instance, Gemini 1.5 Pro achieves an average performance of 62.3% using text-only, compared
to Tarsier-34B’s 67.4% using videos. Additionally, we verify an 85.3% agreement between Tarsier-
34B’s correct text and video responses, confirming its strong reliance on textual biases in MVBench.
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Figure 3: Textual bias of MVBench video-language benchmark. We show different tasks of
MVBench and find that questions can be answered without taking the visual part into account.
This goes beyond the four tasks, as Gemini Pro 1.5 achieves an average performance across all 20

tasks of 38.2%, which is 10.9% higher than the random chance baseline of 27.3%. We have identified
three key sources of this textual bias.

Bias from LLM-based QA generation. Collecting and manually annotating large datasets for
training and evaluation is very costly. Automatic and semi-automatic collection and annotation pro-
cesses are commonly used (Li et al., 2024b; Mangalam et al., 2024). This includes techniques such
as automatic QA pair generation with LLMs. ChatGPT plays a fundamental role in QA generation
for 11 of the 20 tasks in the MVBench dataset. However, this introduces unrealistic candidates and
QA pairs with excessive information. Fig. 3 presents examples of QA pairs that can be resolved
merely with text information. Questions 1 and 2 belong to the Action Antonym task, where an LLM
is prompted to generate the antonym of the actual action shown in the video. The answers generated
are either unrealistic, as one cannot “remove something into something,” or consistently incorrect,
such as “not sure.” Questions 3 and 4 are from the Unexpected Action task. In this task, the LLM is
prompted to generate textual questions and candidates based on the dataset annotations. However, in
Question 3, the subject inquired in the question only occurs in the correct answer, while in Question
4, one of the candidates is a paraphrased version of the question. Hence, the text-only model is able
to identify the correct answer without visual information.

Bias from unbalanced sets. Unbalanced QA sets also hinder a robust evaluation process. For in-
stance, the correct answer for the Action Count task on MVBench is ‘3’ for 90 out of 200 questions,
while ‘9’ is only the correct answer for one question. A model with a similar bias might get higher
results than random by chance. We have observed in our experiments that some text-only models
such as GPT-4o have this bias, predicting ‘3’ for 88 out of 200 samples. This makes GPT-4o perform
on par with the best video model with an accuracy of 44.0% and 46.5% respectively.

Overreliance on world knowledge in questions. Video benchmarks should ensure models cannot
rely solely on memorized world knowledge from an LLM to guess answers without using visual
input. Even with well-designed questions, models might bypass visual reasoning and rely on prior
knowledge to answer correctly. An example of this can be seen in question 5 of Fig. 3. The question
does not exhibit an obvious bias in the QA generation, but it can be correctly answered if the model
has world knowledge of the TV show from which the question was derived as answer 2 are character
names from the House TV show.

In Appendix, in Fig. 21 -25 we show 26 more examples of textual bias in MVBench.

Problem 2

The MVBench benchmark can be partially solved without visual information due to the bias
from LLM QA generation, unbalanced dataset, and overreliance on world knowledge.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Textual bias of the MVBench video-language benchmark. Our analysis reveals that
vision is not required for solving tasks from MVBench as text-only LLMs score high above the
random baseline and nearly on par with video models. Average is with respect to these four tasks.

Input Action
Count

Unexpected
Action

Action
Antonym

Episodic
Reasoning Average

Random – 33.3 25.0 33.3 20.0 27.9
Llama3 70B

text-
only

44.5 63.5 74.5 50.5 58.3
Gemini 1.5 Pro 49.0 68.0 85.5 49.0 62.3
GPT-4o 44.0 69.5 57.5 51.5 55.6
Tarsier-34B 37.0 39.5 66.0 44.0 46.6
Gemini 1.5 Pro

video
41.2 82.4 64.5 66.8 63.7

GPT-4o 43.5 75.5 72.5 63.0 63.6
Tarsier-34B 46.5 72.0 97.0 54.5 67.4

4 OPEN-ENDED QA TO THE RESCUE?

Contrary to multiple-choice question answering (MCQA), open-ended question answering can be
seen as an alternative to solving the aforementioned issues. Without a predefined candidate answer
set, the model cannot rely on textual information to eliminate implausible candidates. However,
open-ended evaluation presents new challenges compared to MCQA. Following Maaz et al. (2023),
LLMs have been widely used for the evaluation of open-ended question-answering in datasets such
as MSVD-QA (Wu et al., 2017), MSRVTT-QA (Xu et al., 2016) and ActivityNet QA (Yu et al.,
2019). Specifically, Maaz et al. (2023) proposed GPT-3.5 as the evaluator model, which makes
the entire evaluation process rely on a private API model. The evaluation model is prompted to
determine if the predicted answer is correct given the question and the ground-truth answer. In
addition, the evaluator also computes a score to measure the answer quality.

We conducted a comparative analysis to assess the influence of the evaluation model on the results.
Table 3 shows the accuracy and average score for different models on three open-ended datasets,
using two evaluators: GPT-3.5 and Llama3-70B. The evaluators produced significantly different
results for the same method on the same dataset, with discrepancies of more than 20 points. Specif-
ically, Llama3 highly increases the accuracy of text-only and single-image models, while providing
similar or even lower results than GPT-3.5 for video models. It is also evident that Llama3 assigns
better metrics to predictions made by the same model. If both the prediction model and the evaluator
contain similar biases, the hallucinations in the predictions may be classified as correct responses by
the evaluator ignoring the correct answer. These findings raise doubt about the reliability of these
evaluations, as different models give completely different results.

Moreover, as shown in Table 3 open-ended QA does not solve the main issues of MCQA. The
performance of text-only models is surprisingly strong; state-of-the-art LLMs can guess the answer
solely from the question text for a significant number of questions, even without a candidate list.
This includes questions such as Which hand of the person in black wears a watch? or What color
is the pants of a person wearing black clothes?, which correct answers are Left hand and Black.
The first question can be answered just with prior knowledge as people commonly wear the watch
on the left hand, while in the second one, the question gives too much information, the person is
wearing black clothes. Similar to the findings for MCQA on spatial bias in Sec. 3.1, when using
a single random frame for image-text models such as GPT-4o, performance reaches 60.6% and
46.4%, approaching the video-language model’s 80.3% and 61.6%, respectively. In addition, the
performance of Tarsier-34B does not significantly drop—on average less than 3%—when the input
videos are shuffled, indicating the low temporal understanding required for solving the benchmarks.
These results show that open-ended video-language benchmarks also exhibit strong spatial bias, not
requiring temporal understanding to be solved.

Fig. 4 shows incorrect evaluations on ActivityNet QA and MSVD QA. In these experiments, we
prompt a Llama3 model to answer the questions in a text-only setting and perform the evaluation
with GPT-3.5. In the first question, it can be seen how the model provides an answer completely
unrelated to the video: “Cacti, succulents, ocotillo, mesquite, creosote bush, ...,” offering general
information about desert plants. This is expected as the model only receives the question without vi-
sual information. The evaluation model classifies this question as correct with the highest matching
score. It seems that the correct answer is disregarded in the evaluation of this example, focusing on
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Figure 4: Unreliability of open-ended video-language benchmarks. GPT 3.5 is commonly used
as an evaluator of open-ended responses, here we use Llama 3 in a text-only setting to generate
answers. GPT gives confusing accuracies and scores. Smiley emoji shows truthful or unreliable
evaluation from GPT 3.5.

the relationship between the questions and the predicted answer. Questions 2 and 3 contain two in-
stances of no/yes QA pairs where the model correctly identifies whether they are correct, but assigns
completely contradictory scores. Questions 4 and 5 contain evaluations in which the correct answer
is man. However, it can be seen how the text-only model answers with specific names rather than
a more general concept. The evaluations are completely different, most probably due to a context
bias, as both Llama3 and the evaluation model –GPT3.5– links the concept keyboard with Elton.

In summary, current open-ended benchmarks are unreliable due to their use of LLMs as evaluators.
This makes them unsuited for evaluating video-language models, especially as they also suffer from
spatial and textual bias. In addition, they rely on closed-source LLMs for evaluation, which incurs
costs to access, and becomes unreproducible when newer versions are released.

5 TVBENCH: A TEMPORAL VIDEO QUESTION ANSWERING BENCHMARK

We propose TVBench, a new benchmark specifically created to evaluate temporal understanding in
video QA. We adopt a multiple-choice QA approach to prevent the problems of open-ended VQA
described in Sec. 4. The main design principles of TVBench are derived from, and address, the
problems listed in Sec. 3. Appendix A.2 provides an overview of the tasks, questions, and answers
candidates used in our benchmark. We verify our choice of tasks and QA templates in Sec. 5.3 by
the performance of multi-modal LLMs with solely a random frame or shuffled videos.

5.1 DEVELOPING A TEMPORAL VIDEO-LANGUAGE BENCHMARK

This section explains the key strategies implemented in TVBench to address the issues identified in
Sec. 3 of current video MCQA evaluation benchmarks.

Strategy 1: Define Temporally Hard Answer Candidates. To address Problem 1, it is crucial
that the temporal constraints in the question are essential for determining the correct answer. This
involves designing time-sensitive questions and selecting temporal challenging answer candidates.

1. We select 10 temporally challenging tasks that require: repetition counting (Action Count), prop-
erties of moving objects (Object Shuffle, Object Count, Moving Direction), temporal localization
(Action Localization, Unexpected Action), sequential ordering (Action Sequence, Scene Transi-
tion, Egocentric Sequence), and distinguishing between similar actions (Action Antonyms).

2. We define hard-answer candidates based on the original annotations to ensure realism and rele-
vance, rather than relying on LLM-generated candidates that are often random and easily disre-
garded, as seen in MVBench. For example, in the Scene Transition task (Fig. 5), we design a QA
template that provides candidates based on the two scenes occurring in the videos for this task,
rather than implausible options like “From work to the gym.” Similarly, for the Action Sequence
task, we include only two answer candidates corresponding to the actions that actually occurred
in the video. More details for the remaining tasks in Appendix A.2.
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Table 3: Unreliability of open-ended video-language benchmark evaluation. Different LLMs
used for evaluation produce varying accuracies and scores, see ∆ column. Additionally, open-ended
benchmarks also exhibit spatial and textual bias, similar to MCQA.

Evaluation method

Benchmark Model Input GPT-3.5 Llama3-70B
∆Acc.Acc. Score Acc. Score

MSVD-QA

Llama3 70B text 29.1 2.6 51.9 2.8 +22.8
GPT-4o text 29.0 2.5 44.2 2.4 +15.2
GPT-4o image 60.6 3.6 75.3 3.8 +14.7
Tarsier-34B video shuffle 76.7 4.0 78.3 4.1 +1.6
Tarsier-34B video 80.3 4.2 78.3 4.1 -2.0

MSRVTT-QA

Lama3 70B text 23.9 2.4 47.8 2.6 +23.9
GPT-4o text 23.3 2.3 42.4 2.3 +19.1
GPT-4o image 34.2 2.7 50.8 2.7 +16.6
Tarsier-34B video shuffle 63.1 3.5 62.7 3.4 -0.4
Tarsier-34B video 66.4 3.7 63.0 3.4 -3.4

ActivityNet-QA

Lama3 70B text 25.3 2.6 32.6 1.9 +7.3
GPT-4o text 27.1 2.5 33.9 1.8 +6.8
GPT-4o image 46.4 3.2 56.2 2.9 +9.8
Tarsier-34B video shuffle 59.9 3.6 60.8 3.4 +0.9
Tarsier-34B video 61.6 3.7 61.3 3.4 -0.3

Standard deviation between GPT3.5 and Llama3 score differences: ± 9.3

Strategy 2: Define QA pairs that are not overly informative. Contrary to LLM-based generation,
we apply basic templates to mitigate the effect of text-biased QA pairs, mitigating Problem 2.

1. We design QA pairs that are concise and not unnecessarily informative by applying task-specific
templates. These templates ensure that the QA pairs lack sufficient information to determine the
correct answer purely from text. An example of Unexpected Action is illustrated in Fig. 6. QA
pairs require the same level of understanding for the model to identify what is amusing in the
video, but without providing additional textual information. Unlike MVBench, the model cannot
simply select the only plausible option containing a dog. We use the same candidate sets across
tasks like Action Count, Object Count, Object Shuffle, Action Localization, Unexpected Action,
and Moving Direction, to ensure balanced datasets with an equal distribution of correct answers,
keeping visual complexity while reducing textual bias. Appendix Table 5 provides an overview of
all tasks, demonstrating that the QA templates are carefully crafted without unnecessary textual
information.

2. Solving the overreliance on world knowledge requires providing questions and candidates that
contain only the necessary information, specifically removing factual information that the LLM
can exploit. We remove tasks such as Episodic Reasoning, that are based on QA pairs about TV
shows or movies.

5.2 DATASET SOURCE

Videos in TVBench are sourced from Perception Test (Patraucean et al., 2024), CLEVRER (Yi
et al., 2019), STAR (Wu et al., 2024), MoVQA (Zhang et al., 2023), Charades-STA (Gao et al.,
2017), NTU RGB+D (Liu et al., 2019), FunQA (Xie et al., 2023) and CSV (Qian et al., 2022).
Overall, TVBench comprises first and third-person perspectives, indoor and outdoor scenes, and
real and synthetic data with 2,654 QA pairs among 10 different tasks. QA pairs are generated based
on original annotations following the model provided in Appendix A.2 for each task.

5.3 TVBENCH EVALUATION

Table 4 provides a detailed performance breakdown of state-of-the-art text (MetaAI, 2024) and
multi-modal LLMs (Zhang et al., 2024a; Li et al., 2024a; Zhang et al., 2024b; OpenAI, 2024; Maaz
et al., 2024; Li et al., 2024b; Xu et al., 2024; Gemini, 2024; Wang et al., 2024a; Lin et al., 2023;
Cheng et al., 2024; Ye et al., 2024; Wang et al., 2024b; Liu et al., 2024; Su et al., 2023) across the 10
TVBench tasks. In addition, we also report a human baseline to verify the quality of the benchmark,
more details see appendix A.2.1. We also include the average performance of these models on
MVBench and TVBench, with the upward arrow ↑ indicating the improvement over random chance.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Strategy 1 of TVBench: Define temporally hard answer candidates. To address the
spatial bias in MVBench, we design answer candidates that are temporally challenging.

Figure 6: Strategy 2 of TVBench: Define questions that are not overly informative. To address
the textual bias in MVBench, we design QA templates that do not contain unnecessary information.
Does time matter? For TVBench, multi-modal LLMs with a single image perform at random
chance, verifying that a random frame is not sufficient for accurate question answering. Specifically,
Gemini 1.5 Pro, the top image-language model on TVBench, outperforms random chance by only
3.0%, compared to a 21.2% improvement on MVBench. Shuffling videos has minimal impact on
the performance of video-language models on MVBench, but significantly degrades their accuracy
on TVBench, where it drops to near-random levels. For example, Tarsier-34B’s accuracy is 33.9%
higher than the random baseline on MVBench when videos are shuffled, while on TVBench, it is
only 4.7% higher under the same conditions. This suggests that temporal understanding is crucial for
TVBench, where visual data alone is insufficient to outperform random chance, unlike MVBench.
In addition, we analyze the effect of reversing videos instead of shuffling them. This significantly
degrades model performance on TVBench, resulting in accuracy below the random baseline for even
the best models. For instance, Tarsier-7B and Tarsier-34B perform worse than random by 6.1% and
4.9%, respectively. This is expected, as top models on TVBench rely on temporal information.
Reversing frames misleads them with incorrect cues while shuffling disrupts the temporal structure
entirely. These results demonstrate that temporal understanding is crucial for TVBench which is in
contrast to MVBench where reversed and non-reversed videos obtain the same performance.

Does vision matter? For TVBench, state-of-the-art LLMs with text-only perform at random levels,
highlighting the effectiveness of our Strategy 2 for Problem 2. Notably, Llama 3 achieves the best
performance, just 1.4% above random chance on TVBench, whereas it performs 10.8% better on
MVBench. This indicates that LLMs cannot determine the answer solely by analyzing the question
and answer candidates or by relying on prior world knowledge. Thus, visual information becomes
key for solving TVBench.

6 DISCUSSION

A sobering view on current models. With our new TVBench, we can accurately assess the tem-
poral understanding of existing video-language models. Surprisingly, we find that recent state-of-
the-art and highly popular models, such as VideoChat2, ST-LLM, PLLava, VideGPT+, GPT-4o,
VideoLLaMA2 7B, mPLUG-Owl3 perform close to random chance on our temporal benchmark,
with the largest gain being only +8.6%. The Gemini 1.5 Pro, Qwen2-VL, LLaVA-Video, IXC-2.5,
and Tarsier models outperform the random baseline, achieving up to +20.5%. The primary distinc-
tion between Tarsier and previous open-sourced models lies in its substantial increase in pretraining
data, leveraging 3.8 million vision-text samples, of which only 1 million are images. From these re-
sults, we observe that TVBench amplifies the performance gaps between models with the strongest
temporal understanding and those with weaker capabilities, as a good benchmark should.

Conclusion. In this work, we highlight major limitations in existing language-video benchmarks,
particularly in the widely used MVBench. Key issues include inadequate temporal evaluation and
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Table 4: Results on TVBench. On TVBench, text-only and image models perform near-random.
Surprisingly, several recent state-of-the-art video-language models, such as ST-LLM, also perform
close to random. With TVBench we can identify temporally strong models like Gemini and Tarsier.
In addition, these models drop significantly in accuracy when the videos are shuffled or reversed,
indicated by the upward arrow ↑ showing the difference to random chance.

MVBench TVBench TVBench
Model Input Average Average AC OC AS OS ST AL AA UA ES MD
Random – 27.3 33.3 25.0 25.0 50.0 33.3 50.0 25.0 50.0 25.0 25.0 25.0
GPT-3.5 Turbo

text-
only

35.0↑7.7 33.1↓0.2 27.2 18.2 44.9 32.0 53.5 26.9 45.9 29.2 26.5 26.7
Llama 3 70B 38.1↑10.8 34.7↑1.4 30.2 27.0 48.7 32.9 55.1 26.9 49.1 23.3 25.5 28.0
GPT-4o 34.8↑7.5 33.8↑0.5 28.0 21.0 48.7 33.3 53.5 25.6 50.9 25.8 28.5 22.4
Gemini 1.5 Pro 38.2↑10.9 33.6↑0.3 25.0 17.6 53.0 33.3 51.9 25.0 54.7 23.3 28.0 24.1
Tarsier-34B 35.7↑8.4 34.4↑1.1 28.7 25.0 50.9 33.3 49.7 26.2 54.7 22.5 23.5 29.7
Idefics3

image

44.2↑16.9 34.5↑1.2 27.1 23.0 56.8 36.9 49.2 25.6 52.2 29.2 25.5 19.8
GPT-4o 47.8↑20.5 35.8↑2.5 30.8 19.6 62.1 33.3 52.4 25.0 52.5 27.5 33.0 21.6
Gemini 1.5 Pro 48.5↑21.2 36.3↑3.0 22.8 21.0 55.9 36.4 51.4 36.9 54.7 35.8 30.0 23.7
Tarsier-34B 45.1↑17.8 35.0↑1.7 30.0 26.4 61.0 27.1 53.0 32.5 49.4 27.5 21.5 22.0
VideoChat2

video
reverse

46.7↑19.4 32.1↓1.2 28.2 22.3 50.6 33.3 38.4 23.1 45.6 33.3 23.0 22.8
ST-LLM 53.4↑26.1 34.7↑1.4 25.4 32.4 55.1 36.9 43.6 30.5 47.5 31.4 23.5 20.3
PLLaVA-7B 45.8↑18.5 34.1↑0.8 32.6 29.1 53.4 33.3 48.6 24.4 48.1 28.3 22.0 21.6
PLLaVA-13B 48.4↑21.1 34.6↑1.3 36.9 27.7 51.9 33.3 52.4 25.0 46.6 34.2 19.5 19.0
PLLaVA-34B 56.2↑28.9 33.4↑0.1 26.1 27.7 51.7 35.1 33.0 26.9 54.1 29.2 26.5 23.7
Gemini 1.5 Pro 53.1↑25.8 27.0↓6.3 29.6 16.9 45.1 32.7 24.7 22.7 26.9 39.8 23.5 7.7
Tarsier-7B 62.5↑35.2 28.4↓4.9 24.3 19.6 41.1 36.0 38.9 24.4 29.4 30.0 24.5 15.9
Tarsier-34B 67.7↑40.4 27.2↓6.1 30.2 25.0 45.1 32.9 31.9 21.9 19.1 38.3 23.0 4.3
VideoChat2

video
shuffle

49.8↑22.5 34.7↑1.4 25.6 27.0 54.0 32.9 56.2 23.1 48.1 33.3 24.5 22.4
ST-LLM 53.9↑26.6 35.0↑1.7 25.6 35.1 50.8 36.9 49.2 31.5 45.6 32.4 23.5 19.4
PLLaVA-7B 46.5↑19.2 34.4↑1.1 34.0 29.1 51.5 33.3 49.7 24.4 49.7 28.3 22.5 21.6
PLLaVA-13B 49.5↑22.2 35.1↑1.8 36.8 25.0 55.5 33.3 51.9 27.5 45.9 35.0 21.0 19.0
PLLaVA-34B 56.7↑29.4 37.2↑3.9 25.9 29.1 58.5 35.1 56.2 34.4 55.9 28.3 25.0 23.7
Gemini 1.5 Pro 56.8↑29.5 36.1↑2.8 26.5 23.7 55.9 35.1 51.4 31.3 51.9 31.7 29 24.6
Tarsier-7B 56.9↑29.6 36.0↑2.7 21.1 38.5 54.5 38.2 53.5 30.0 55.6 27.5 24.0 16.8
Tarsier-34B 61.2↑33.9 38.0↑4.7 30.2 35.8 59.8 34.7 52.4 35.6 55.6 35.0 23.0 18.1
VideoLLaVA 42.5↑15.2 33.8↑0.5 26.3 27.0 54.7 33.8 57.8 23.1 45.7 24.1 22.5 23.3
VideoChat2

video

51.0↑23.7 33.0↓0.3 25.9 21.6 51.7 33.3 48.1 23.1 44.7 34.2 25.0 22.8
ST-LLM 54.9↑27.6 35.3↑2.0 25.0 35.1 49.2 36.0 54.4 31.0 45.6 32.4 24.0 20.3
GPT-4o 49.1↑21.8 39.1↑5.8 26.1 21.3 59.7 33.2 52.4 25.0 78.4 33.3 31.0 30.6
PLLaVA-7B 46.6↑19.3 34.2↑0.9 32.1 25.7 52.1 33.3 52.4 23.8 53.1 27.5 20.5 21.6
PLLaVA-13B 50.1↑22.8 35.5↑2.2 37.3 24.3 57.6 33.3 55.1 28.1 47.8 35.0 19.5 17.2
PLLaVA-34B 58.1↑30.8 41.9↑8.6 27.6 32.4 64.8 35.6 77.8 44.4 58.8 31.7 27.0 19.4
mPLUG-Owl3 54.5↑27.2 41.4↑8.1 27.4 32.4 68.2 37.3 76.8 43.1 56.9 27.5 18.0 26.3
VideoLLaMA2.1 57.3↑30.0 41.4↑8.1 25.4 30.4 70.1 29.8 76.6 46.9 58.1 30.8 23.5 22.4
VideoLLaMA2 7B 54.6↑27.3 41.0↑7.7 30.6 37.8 69.3 33.8 68.1 40.6 56.9 25.8 24.5 22.8
VideoLLaMA2 72B 62.0↑34.7 47.5↑14.2 26.7 46.6 72.0 40.4 81.6 53.1 76.6 29.1 19.5 29.7
VideoGPT+ 58.7↑31.4 41.5↑8.2 30.6 52.0 60.2 36.9 69.2 40.0 53.1 28.3 16.0 28.5
Gemini 1.5 Pro 60.5↑33.2 46.5↑13.2 33.5 22.3 70.4 34.5 82.6 51.6 77.8 33.3 25.0 33.6
Qwen2-VL 7B 67.0↑39.7 43.6↑10.3 27.1 61.5 62.5 38.7 75.7 41.3 63.1 21.7 22.5 22.4
Qwen2-VL 72B 73.6↑46.3 52.5↑19.2 32.6 73.0 68.4 31.1 82.2 45.0 75.3 35.8 19.5 62.1
LLaVA-Video 7B 58.6↑31.3 45.2↑11.9 32.6 23.6 77.7 32.9 81.6 58.8 71.9 26.7 22.5 24.1
LLaVA-Video 72B 64.1↑36.8 49.6↑16.3 38.6 27.0 79.5 33.3 85.9 65.6 66.6 32.5 25.5 41.8
IXC-2.5-7B 69.1↑41.8 50.5↑17.2 32.1 50.7 75.9 37.3 78.4 46.9 60.0 32.5 21.0 70.3
Aria 69.7↑42.4 50.5↑17.2 58.4 60.1 73.9 42.2 81.6 43.1 70.3 29.2 21.0 25.0
Tarsier-7B 62.6↑35.3 45.8↑12.5 22.9 58.8 70.1 35.6 64.9 46.9 75.6 32.5 25.5 25.0
Tarsier-34B 67.6↑40.3 53.8↑20.5 31.7 64.2 77.1 32.1 77.8 58.1 84.4 40.0 24.5 48.3
Human Baseline - 94.8↑61.5 100.0 94.9 100.0 90.6 90.0 96.0 100.0 86.0 90.0 100.0

tasks that do not require visual information, making it ineffective for tracking progress in this do-
main. To address these problems, we introduce TVBench, a benchmark designed to explicitly assess
the temporal understanding of video-language models. Our experiments reveal that on TVBench,
text-only and visual models lacking temporal reasoning perform at random levels, and only few
current models achieve moderately high scores, showing the potential for progress. TVBench thus
provides a reliable yardstick for evaluating future advancements in video-language models.
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A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we will make the full dataset publicly accessible in
raw form, along with comprehensive documentation detailing its structure and usage. Additionally,
we will provide open-sourced evaluation code under a permissive license, enabling researchers to
replicate our experiments and adapt the tools for their own studies.

A.2 DETAILS ON TVBENCH

A.2.1 BENCHMARK CREATION

Table 5 provides the template used to generate the QA pairs for each task on TVBench. For the tasks
Action Count, Object Count, Object Shuffle, Action Localization, Unexpected Action, and Moving
Direction, we use the same set of options for every question. For Action Sequence and Scene Tran-
sition, we generate candidates by selecting an action and a scene from the video to create negative
candidates. The Action Antonym candidate set consists of two similar actions that are difficult to
distinguish without time understanding, such as ’Wear a jacket’ and ’Take off a jacket.’ Finally, for
Egocentric Sequence, we generate random modifications to the correct sequence of actions to create
three negative candidates. Table 5 also details the datasets from which videos for each task were
sourced. Here we give more details for each task and their template:

Action Antonym. We source videos from the NTU (Liu et al., 2019) RGB+D 120 (action classi-
fication dataset). Videos are filtered to retain only those belonging to one of 16 selected categories
(e.g., take off bag, put on bag, putting something into a bag, take something out of a bag). For each
QA, we select the correct option as the label and the alternative option as the opposite action (e.g.,
take off bag vs put on bag).

Action Count. Questions are sourced from the Perception (Patraucean et al., 2024) dataset. QAs
are filtered to always include the same candidate set with four options, each being correct for 25%
of the questions.

Action Localization. Questions are sourced from MVBench(Li et al., 2024b) The candidate set is
balanced, with four options, each being correct 25% of the time.

Action Sequence. Videos are selected from the STAR (Wu et al., 2024) dataset, containing two
actions. The question is always: ”What did the person do first?” Two candidates are provided, each
representing one of the actions depicted in the video.

Egocentric Sequence. We ask for the correct order of tasks performed in egocentric videos taken
from CSV (Qian et al., 2022). The question is: ”What is the sequence of actions shown in the
video?” The correct order is taken from the original annotations. Three negative candidates are
generated by swapping two tasks in the correct order.

Moving Direction. Videos and annotations are taken from CLEVRER(Yi et al., 2019), including
annotations for the positions and directions of each object in the video. The question is: ”Which
direction does the {yellow sphere} move in the video?” Candidates are always the same four options,
each being correct for 25% of the questions: 1. Down and to the left. 2. Down and to the right. 3.
Up and to the right. 4. Up and to the left.

Object Count. Videos and annotations are taken from CLEVRER(Yi et al., 2019) The question is:
”How many moving cylinders are there when the video begins?” The candidate set always consists
of four options, each being correct for 25% of the questions. QAs are selected so that ignoring the
time constraint (e.g., ”when the video begins”) would lead to incorrect answers (e.g., the number of
objects at the beginning is different from at the end).

Object Shuffle. Questions are sourced from Perception(Patraucean et al., 2024) QAs are filtered to
always include the same candidate set with four options, each being correct for 25% of the questions.

Scene Transition. Questions are sourced from MVBench(Li et al., 2024b) (with videos originally
from MoVQA). The original question and correct answer are retained, while incorrect options are
discarded. A hard negative is generated by reversing the sequence in the correct answer.
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Table 5: Overview of all tasks and datasets used in our TVBench benchmark.

Task Source Question Candidates
Action
Count Perception The person makes sets of repeated actions.

How many distinct repeated actions did the person do? 2; 3; 4; 5

Object
Shuffle Perception

The person uses multiple similar objects to play an occlusion game.
Where is the hidden object at the end of the game from the person’s
point of view?

Under the third object from the left.
Under the second object from the left.
Under the first object from the left.

Object
Count CLEVRER How many {metal} objects are moving when {the video begins}? 0; 1; 2; 3

Moving
Direction CLEVRER Which direction does the {gray cube} move in the video?

Down and to the right.
Down and to the left.
Up and to the right.
Up and to the left.

Action
Sequence STAR What did the person do first? 2 actions that actually happened

on the video
Scene
Transition MoVQA What’s the right option for how the scenes in the video change? From {scene1} to {scene2}.

From {scene2} to {scene1}.

Action
Localization Charades During which part of the video does

the action {person takes a blanket} occur?

Throughout the entire video.
At the end of the video.
In the middle of the video.
At the beginning of the video.

Action
Antonym

NTU
RGB+D What is the action being performed in the video? Wear jacket; Take off jacket

Unexpected
Action FunQA Locate the {creative|amusing|mesmerizing} part of the video.

Throughout the entire video.
At the end of the video.
At the beginning of the video.
In the middle of the video.

Egocentric
Sequence CSV What is the sequence of actions shown in the video? GT + Correct sequence changing

the order of actions

Table 6: TVBench Video Statistics for each task.

Task #Videos Average
Frame Length

Action Count 536 628
Object Count 148 127
Action Sequence 528 403
Object Shuffle 225 710
Scene Transition 185 599
Action Localization 160 423
Action Antonym 320 171
Unexpected Action 120 735
Egocentric Sequence 200 562
Moving Direction 232 127

Unexpected Action. Annotations are parsed from the FunQA (Xie et al., 2023) dataset, which pro-
vides the start and end times for each action. The question is: ”Locate the creative — mesmerizing
— surprising part of the video.” The candidate set always consists of the following four options: 1.
”Throughout the entire video.” 2. ”At the beginning of the video.” 3. ”At the end of the video.” 4.
”In the middle of the video.” The correct option is set based on the original annotations.

A.2.2 HUMAN BASELINE STUDY

With 14 annotators we label 400 videos of the TVBench out of the 2,654 videos in the benchmark.
We achieved an average human accuracy of 94.8%.

Estimating Stastical Error: By having each annotator annotate 40 different videos, resulting in
400 unique annotations across the dataset, we aim to estimate the human performance baseline
with acceptable statistical precision. The total number of videos in the dataset is N = 2654, and
the number of annotated videos is n = 400. Each video is annotated by a single annotator. In
the absence of prior knowledge about the true average human accuracy p, we adopt a conservative
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Table 7: Analysis of spatial and textual bias on NextQA (Xiao et al., 2021). Analysis of the
NextQA(Xiao et al., 2021) benchmark for spatial and textual bias using the Tarsier model. We find
a strong spatial bias, with image performance nearly on par with video, while also having a strong
textual bias, text-only version improves significantly on the random baseline.

Input NextQA
Random – 20.0

Tarsier-34B

text-only 47.6
image 71.3

video shuffle 78.5
video reverse 77.6

video 79.0

approach by assuming p = 0.5, which maximizes the variance p(1 − p). This assumption ensures
that our estimation of the standard error is not underestimated, providing a robust margin of error.
The estimated average accuracy p̂ is given by:

p̂ =
1

n

n∑
i=1

yi,

where yi is an indicator variable that equals 1 if the annotator answered video i correctly, and 0
otherwise. The variance of p̂ with finite population correction is calculated as:

Var(p̂) =
p(1− p)

n
×

(
N − n

N − 1

)
.

Substituting p = 0.5, n = 400, and N = 2654, we have:

p(1− p) = 0.5× 0.5 = 0.25,

N − n

N − 1
=

2654− 400

2654− 1
=

2200

2599
≈ 0.8496.

Therefore, the variance becomes:

Var(p̂) =
0.25

400
× 0.8496 =

0.25× 0.8465

400
=

0.211625

400
= 0.000531.

The standard error (SE) is the square root of the variance:

SE =
√

Var(p̂) =
√
0.000531 ≈ 0.0230.

At a 95% confidence level (with z = 1.96), the margin of error (ME) is:

ME = z × SE = 1.96× 0.0230 ≈ 0.0451.

Thus, the statistical error in estimating human performance is characterized by a standard error of
approximately 0.0230, leading to a margin of error of ±4.51%. This conservative estimate provides
an upper bound on the margin of error, ensuring our results are statistically robust even without prior
knowledge of p.

A.3 EXTENDED ANALYSIS OF VIDEO MCQA BENCHMARKS

We extend our analysis beyond MVBench to evaluate the NextQA benchmark (Xiao et al., 2021),
using the best-performing model, Tarsier-34B. Specifically, we assess performance across five set-
tings: text-only, image-only (random video frame), video, shuffled video, and reversed video. The
results, summarized in Table 7, reveal significant spatial and textual biases in the NextQA bench-
mark. First, we observe a strong spatial bias: the image-only setting achieves a performance nearly
on par with the video setting (71.3% vs. 79.0%). Furthermore, altering the temporal structure of
videos through shuffling or reversing has minimal impact, with performance dropping by only 0.5%
and 1.4%, respectively. Second, the benchmark exhibits a notable textual bias, as many questions
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can be answered using text alone. In the text-only setting, Tarsier-34B achieves 47.6%, substan-
tially outperforming the random chance baseline by 27.6%. This highlights significant room for
improvement in the benchmark’s ability to evaluate genuine temporal reasoning.

A.4 TVBENCH QUALITATIVE EXAMPLES

This section provides qualitative examples for the different TVBench tasks. As shown in Fig.7-
13, temporal information from the input video is indispensable for correctly answering the given
questions.

A.5 SPATIAL AND TEXTUAL BIAS IN MVBENCH

Fig. 14-25 contain several evaluation examples from MVBench that suffer from the issues analyzed
in Sec. 3. This qualitative analysis complements the quantitative results discussed in Sec 6 showing
that these issues affect a large portion of MVBench.
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Figure 7: TVBench: Samples from our benchmark (1). Row 1-5: Action Antonym; Row 6-7:
Action Count.
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Figure 8: TVBench: Samples from our benchmark (2). Row 1-3: Action Count; Row 4-6: Action
Localization.
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Figure 9: TVBench: Samples from our benchmark (3). Row 1: Action Localization; Row 2-6:
Action Sequence; Row 7: Object Count.
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Figure 10: TVBench: Samples from our benchmark (4). Row 1-4: Object Count; Row 5-6:
Moving Direction.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 11: TVBench: Samples from our benchmark (5). Row 1-3: Moving Direction; Row 4-6:
Object Shuffle.
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Figure 12: TVBench: Samples from our benchmark (6). Row 1-2: Object Shuffle; Row 3-6:
Scene Transition.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 13: TVBench: Samples from our benchmark (7). Row 1: Scene Transition; Row 2-6:
Unexpected Action.
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Figure 14: Spatial bias in MVBench (1). Multiple-choice questions from various MVBench tasks
can be solved using only a single frame from the video.
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Figure 15: Spatial bias in MVBench (2). Multiple-choice questions from various MVBench tasks
can be solved using only a single frame from the video.
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Figure 16: Spatial bias in MVBench (3). A single frame containing all characters inquired is
sufficient to answer MVBench.
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Figure 17: Spatial bias in MVBench (4). Temporal understanding is not needed as a single frame
suffices to solve these questions on MVBench.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 18: Spatial bias in MVBench (5). Temporal understanding is not needed as a single frame
suffices to solve these questions on MVBench.
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Figure 19: Spatial bias in MVBench (6). Temporal understanding is not needed as a single frame
suffices to solve these questions on MVBench.
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Figure 20: Spatial bias in MVBench (6). A single frame is sufficient to discard incorrect candidates,
as the scenes described in these candidates never occurred in the video.
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Figure 21: Textual bias in MVBench (1). Answer candidates are generated with an LLM. The
“Not sure” candidate is never correct, while the other incorrect candidate makes no textual sense
e.g. “catching something against something”.
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Figure 22: Textual bias in MVBench (2): Overreliance on world knowledge. Answers can be
inferred using world knowledge of TV shows. Questions cannot be answered from the video only
as answers contain e.g. character names of the TV show.
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Figure 23: Textual bias in MVBench (3). Some candidates in MVBench contain artifacts due to
the automatic LLM-based generation process. In these cases, the correct answers end with “1” or
contain the keyword “true”.

Figure 24: Textual bias in MVBench (4). Since two of the candidate objects cannot be eaten, the
choice is reduced to two remaining candidates.
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Figure 25: Textual bias in MVBench (5). Just one candidate answer is provided for some QA pairs
on MVBench.
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