
Online Non-convex Learning in Dynamic
Environments

Zhipan Xu1, Lijun Zhang1,2,∗
1National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

2School of Artificial Intelligence, Nanjing University, Nanjing, China
xuzhipan@smail.nju.edu.cn, zhanglj@lamda.nju.edu.cn

Abstract

This paper considers the problem of online learning with non-convex loss functions
in dynamic environments. Recently, Suggala and Netrapalli [2020] demonstrated
that follow the perturbed leader (FTPL) can achieve optimal regret for non-convex
losses, but their results are limited to static environments. In this research, we
examine dynamic environments and choose dynamic regret and adaptive regret
to measure the performance. First, we propose an algorithm named FTPL-D
by restarting FTPL periodically and establish O(T

2
3 (VT + 1)

1
3) dynamic regret

with the prior knowledge of VT , which is the variation of loss functions. In
the case that VT is unknown, we run multiple FTPL-D with different restarting
parameters as experts and use a meta-algorithm to track the best one on the fly.
To address the challenge of non-convexity, we utilize randomized sampling in the
process of tracking experts. Next, we present a novel algorithm called FTPL-A
that dynamically maintains a group of FTPL experts and combines them with an
advanced meta-algorithm to obtain O(

√
τ log T) adaptive regret for any interval of

length τ . Moreover, we demonstrate that FTPL-A also attains an Õ(T
2
3 (VT + 1)

1
3)

dynamic regret bound. Finally, we discuss the application to online constrained
meta-learning and conduct experiments to verify the effectiveness of our methods.

1 Introduction

Online learning is a powerful model for sequential decision-making tasks, supported by well-
established theoretical guarantees [Cesa-Bianchi and Lugosi, 2006, Orabona, 2019]. It can be
regarded as a repeated game between a learner and an adversary. In each round t, the learner first
selects a decision xt ∈ K, where K is a candidate set. Then a loss function ft(·) : K → R is revealed
and the learner suffers a loss ft(xt). The goal of the learner is to minimize the cumulative loss∑T
t=1 ft(xt) over all rounds. Traditionally, the performance measure is static regret or simply regret

R(T) =

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x), (1)

defined as the difference between the cumulative loss of the online learner and that of the optimal
decision chosen in hindsight. During the past decades, numerous algorithms and theories have been
developed to minimize static regret. An extensively researched setting is online convex optimization
(OCO) [Shalev-Shwartz et al., 2012], in which the losses are assumed to be convex and Lipschitz-
continuous. For OCO, many efficient methods such as online gradient descent (OGD) attain O(

√
T)

regret [Zinkevich, 2003], which is known to be minimax optimal [Abernethy et al., 2008].

∗Lijun Zhang is the corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

On the other hand, when the losses are non-convex, minimizing regret becomes computationally
challenging. This is because minimizing regret implies optimization, and general non-convex
optimization is known to be NP-hard. In light of this computational barrier, some recent works
examine the notion of local regret instead [Hazan et al., 2017, Aydore et al., 2019, Hallak et al.,
2021, Guan et al., 2023]. However, these researches focus on finding local optima and hence do
not guarantee vanishing regret that grows sublinear in T . To ensure vanishing regret, another class
of studies assumes access to a sampling oracle [Krichene et al., 2015, Yang et al., 2018, Héliou
et al., 2020] or an offline optimization oracle [Agarwal et al., 2019, Suggala and Netrapalli, 2020].
Particularly, Suggala and Netrapalli [2020] have demonstrated that for general non-convex and
Lipschitz-continuous losses, FTPL can achieve O(

√
T) regret, which matches the optimal result

in the convex setting. However, their study solely focuses on static environments, as it uses regret
as the only metric to measure the performance. In dynamic environments, the distribution of loss
functions may change over time, causing a shift in the optimal decision. In this scenario, the static
regret in (1) is not a suitable measure since the comparator is fixed [Zhang, 2020, Cesa-Bianchi and
Orabona, 2021]. To overcome this limitation, studies in OCO have introduced new performance
metrics: dynamic regret [Zinkevich, 2003, Zhang et al., 2018a] and adaptive regret [Hazan and
Seshadhri, 2007, Daniely et al., 2015].

In dynamic regret [Zinkevich, 2003], the learner is compared against a sequence of local minimizers:

R∗D = RD(x∗1, . . . ,x
∗
T) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t), (2)

where x∗t ∈ arg minx∈K ft(x) is a minimizer of ft(x) over domain K. It is recognized that in the
worst-case scenario, achieving sublinear dynamic regret is impossible unless we introduce certain
constraints on the comparator sequence or the function sequence [Jadbabaie et al., 2015]. One such
example is the functional variation defined below

VT =

T∑
t=2

max
x∈K
|ft(x)− ft−1(x)|. (3)

If the value of VT is known in advance, Besbes et al. [2015] showed that a restarted OGD achieves
O(T

2
3 (VT + 1)

1
3) dynamic regret for convex functions.

Strongly adaptive regret [Daniely et al., 2015] is another widely used performance metric in
dynamic environments. It is defined as the maximum static regret over any interval of length τ :

RA(T, τ) = max
[s,s+τ−1]⊆[T]

{
s+τ−1∑
t=s

ft(xt)−min
x∈K

s+τ−1∑
t=s

ft(x)

}
. (4)

Given the dynamic nature of environments, where the optimal decisions can vary across intervals,
minimizing static regret over any interval of length τ is essentially competing against changing
comparator. For convex functions, the best known result for strongly adaptive regret is O(

√
τ log T)

[Jun et al., 2017].

In this paper, we consider minimizing dynamic regret and adaptive regret in the non-convex setting.
For dynamic regret minimization, we first propose an algorithm named FTPL-D by restarting FTPL
periodically and establish an O(T

2
3 (VT + 1)

1
3) dynamic regret bound, which requires the prior

knowledge of VT to set the optimal restarting frequency. To get rid of this limitation, we then propose
the second algorithm named FTPL-D+ by running multiple instances of FTPL-D with different
restarting frequencies and combining them with a meta-algorithm to track the best one. Given that the
loss functions are non-convex, deterministic algorithms cannot achieve a vanishing regret [Suggala
and Netrapalli, 2020]. Hence, we choose Hedge [Cesa-Bianchi and Lugosi, 2006] with randomized
sampling as our meta-algorithm. Correspondingly, in each round, we sample one expert based on
their weights instead of computing the weighted average of all experts. We prove that FTPL-D+
enjoys the same order of dynamic regret bound as that of FTPL-D without the prior knowledge of VT .

For adaptive regret minimization, we propose an algorithm named FTPL-A, where we construct
a set of intervals dynamically and instantiate an expert of FTPL to minimize the static regret for
every interval. To combine these experts whose numbers vary at different time steps, we use
AdaNormalHedge [Luo and Schapire, 2015] that can deal with sleeping experts as our meta-algorithm

2

Table 1: Summary of dynamic regret and strongly adaptive regret bounds. The symbol * indicates that the
algorithm requires prior knowledge of VT . The Õ(·)-notation omits logarithmic factors on T . Abbreviations:
dynamic regret→ D-R, strongly adaptive regret→ SA-R.

Method Loss Metric Regret Bounds

*Restarted OGD [Besbes et al., 2015] convex D-R O(T
2
3 (VT + 1)

1
3)

*FTPL-D (ours) non-convex D-R O(T
2
3 (VT + 1)

1
3)

FTPL-D+ (ours) non-convex D-R O(T
2
3 (VT + 1)

1
3)

FTPL-A (ours) non-convex D-R Õ(T
2
3 (VT + 1)

1
3)

CBCE [Jun et al., 2017] convex SA-R O(
√
τ log T)

FTPL-A (ours) non-convex SA-R O(
√
τ log T)

and again employ randomized sampling in it to select experts. We prove that FTPL-A achieves
an O(

√
τ log T) adaptive regret bound for any interval of length τ . Besides, we demonstrate that

our FTPL-A also obtains an Õ(T
2
3 (VT + 1)

1
3) dynamic regret bound, indicating its effectiveness

in minimizing dynamic regret and adaptive regret simultaneously. In brief, our dynamic regret and
strongly adaptive regret for non-convex loss functions are on the same order as those for convex
functions. We compare our results and previous ones in Table 1.

Moreover, we discuss the application of our methods to online constrained meta-learning [Xu and
Zhu, 2023] and conduct experiments. The empirical results demonstrate the effectiveness of our
methods in dynamic regret and adaptive regret minimization. We highlight the main contributions of
this paper below.

• For dynamic regret minimization, we first propose a novel algorithm named FTPL-D and es-
tablish O(T

2
3 (VT + 1)

1
3) dynamic regret. To eliminate the dependence on prior knowledge

of VT , we then propose FTPL-D+ and provide a dynamic regret bound of the same order.
• For adaptive regret minimization, we develop a novel algorithm named FTPL-A and establish

an O(
√
τ log T) strongly adaptive regret bound. Moreover, we prove that FTPL-A also

ensures an Õ(T
2
3 (VT + 1)

1
3) dynamic regret bound.

• We discuss the application to online constrained meta-learning and conduct experiments to
verify the effectiveness of our methods.

2 Related Work

In this section, we give a brief introduction to previous works in OCO and online non-convex learning.
More related works are reviewed in Appendix B.

Online Convex Optimization The existing works in OCO mostly focus on static regret. For
instance, OGD [Zinkevich, 2003] and follow the regularized leader [Hazan et al., 2016] both achieve
an O(

√
T) regret bound. The O(

√
T) regret bound for Lipschitz-convex functions is known to be

minimax optimal [Abernethy et al., 2008]. To cope with dynamic environments, Zinkevich [2003]
introduced the dynamic regret in (2), and there are numerous studies dedicated to the worst-case
scenario because of its mathematical tractability [Besbes et al., 2015, Jadbabaie et al., 2015, Mokhtari
et al., 2016, Yang et al., 2016, Zhang et al., 2017, Baby and Wang, 2019, Zhao and Zhang, 2021, Wan
et al., 2023]. As mentioned earlier, dynamic regret is often bounded in terms of certain regularities of
the comparator sequence or the function sequence. In particular, Besbes et al. [2015] proposed the
functional variation in (3) to evaluate the movement of loss functions. They equipped restarted OGD
with an O(T

2
3 (VT + 1)

1
3) dynamic regret bound, but require to know VT beforehand.

Besides dynamic regret, another metric in dynamic environments is adaptive regret. Adaptive regret
has been examined under the setting of prediction with expert advice (PEA) [Littlestone and Warmuth,
1994, Freund et al., 1997, Gyorgy et al., 2012, Adamskiy et al., 2012, Luo and Schapire, 2015]
and OCO [Hazan and Seshadhri, 2007, Daniely et al., 2015, Jun et al., 2017, Zhang et al., 2019,
2021, Yang et al., 2024]. In the following, we focus on the latter one. To minimize (4), Daniely
et al. [2015] developed a meta-algorithm called strongly adaptive online learner and used it to design

3

two-layer structured online algorithms, which enjoy an O(
√
τ log T) strongly adaptive regret bound

for convex functions. Later, Jun et al. [2017] proposed a novel meta-algorithm and improved the
strongly adaptive regret bound to O(

√
τ log T).

Online Non-convex Learning To avoid the NP-hardness of non-convex optimization, Hazan et al.
[2017] proposed a computational tractable notion of local regret and developed algorithms that attain
the optimal local regret bound efficiently. Hallak et al. [2021] extended the local regret minimization
framework to non-smooth settings. Guan et al. [2023] further examined the cases where a limited
number of gradient oracles or value oracles are available. Although these techniques can efficiently
minimize local regret, they do not guarantee to find the global optima and achieve vanishing regret.

Another line of work still focuses on the notion of static regret, but assumes access to a sampling
oracle or an offline optimization oracle. Assuming access to a sampling oracle, Krichene et al. [2015]
proved that the Hedge algorithm is capable of achieving O(

√
T log T) regret over a specific feasible

set. Yang et al. [2018] later improved the regret bound to O(
√
T) by partitioning the feasible set with

a layered structure and using a novel weighting method. Besides, Héliou et al. [2020] examined the
dual averaging (DA) algorithm with an imperfect value-feedback model of the loss function, which
also attained an O(

√
T) regret bound. However, these algorithms rely on a sampling oracle on a

continuum that is computationally intractable.

Under the hypothesis that the algorithm has access to an offline optimization oracle, Agarwal et al.
[2019] showed that FTPL achievesO(T

2
3) regret for general non-convex loss functions with Lipschitz

continuousity. In the same setting, Suggala and Netrapalli [2020] improved the regret bound to
O(
√
T). It should be noted that assuming access to an offline optimization oracle is reasonable since

some simple algorithms such as stochastic gradient descent, are able to find approximate global
optima quickly, even for non-convex objective functions.

By contrast, the studies on dynamic environments are limited. Aydore et al. [2019] introduced a
variant of local regret for dynamic environments and proposed a novel algorithm to minimize it.
Héliou et al. [2020] obtained O(T

2
3 (VT + 1)

1
3) dynamic regret with their imperfect feedback method.

However, it needs the prior knowledge of VT to choose the optimal stepsize in DA and still relies on
a computationally intractable sampling oracle.

3 Preliminaries

In this section, we introduce the problem setting and FTPL [Suggala and Netrapalli, 2020].
Assumption 1. The feasible set K is bounded and has `∞-diameter at most D, i.e., for all x,y ∈ K,
‖x− y‖∞ ≤ D.
Assumption 2. The sequence of loss functions ft(·) are L-Lipschitz with respect to `1-norm, i.e., for
all x,y ∈ K, |ft(x)− ft(y)| ≤ L ‖x− y‖1.

We proceed to introduce FTPL in Algorithm 1, which is the subroutine of our algorithms. FTPL
relies on the offline optimization oracle below [Suggala and Netrapalli, 2020].
Definition 1. An offline optimization oracle takes input as a function f(·) : K → R and a d-
dimensional vector σ, and returns an approximate minimizer of x 7→ f(x)− 〈σ,x〉. An optimization
oracle is called “(α, β)-approximate optimization oracle” if it returns x∗ ∈ K such that

f(x∗)− 〈σ,x∗〉 ≤ inf
x∈K

[f(x)− 〈σ,x〉] + (α+ β ‖σ‖1) .

We denote such an optimization oracle with Oα,β (fi − σ).

Given the access to an (α, β)-approximate optimization oracle, the main idea of FTPL is to add a
small perturbation to the cumulative loss and follow the “perturbed” leader:

xt = Oα,β

(
t−1∑
i=1

fi − 〈σt, ·〉

)
, (5)

where σt ∈ Rd is a random perturbation such that σt,j , the j-th coordinate of σt, is sampled from the
exponential distribution with parameter η, that is

{σt,j}dj=1

i.i.d∼ Exp(η). (6)

4

Algorithm 1 Follow the Perturbed Leader (FTPL)

1: Input: feasible set K, approximation optimization oracle Oα,β , parameter of exponential distri-
bution η

2: for t = 1 to T do
3: Generate random vector σt by (6)
4: Predict xt according to (5)
5: Observe loss function ft(·)
6: end for

Algorithm 2 FTPL-D

1: Input: feasible set K, length of interval γ, approximation optimization oracle Oα,β , parameter
of exponential distribution η

2: for t = 1 to T do
3: Compute sγ = b(t− 1)/γc ∗ γ + 1
4: Generate random vector σt by (6)
5: Predict xt according to (7)
6: Observe loss function ft(·)
7: end for

Remark. We choose FTPL as our subroutine due to its simplicity and reasonable assumption of the
optimization oracle. However, it is worth noting that our methods are not limited to FTPL alone. We
can choose any algorithm that has a static regret guarantee in online non-convex learning and extend
it to dynamic environments.

4 Online Non-convex Learning with Dynamic Regret

In this section, we propose our first algorithm named FTPL-D based on FTPL and establish a dynamic
regret bound with the prior knowledge of VT . After that, we propose the second algorithm named
FTPL-D+ which is equipped with the same bound without the prior knowledge of VT .

4.1 Follow the Perturbed Leader with Dynamic Regret

Let dynamic regret defined in (2) be the performance measure. Our goal is to bound the dynamic
regret by the functional variation VT .

Following the work of Besbes et al. [2015], we apply the restarting strategy to FTPL. The key idea
is to partition the time horizon T into consecutive intervals, where the length of each interval is
controlled by a parameter γ, and then restart FTPL at the beginning of each interval. Our algorithm,
which we call follow the perturbed leader with dynamic regret (FTPL-D), is described in Algorithm
2. At each time step t, we mark the beginning of the current interval as sγ in Step 3. Then FTPL-D
follows the perturbed leader within the current interval, which spans from sγ to t. Specifically,

xt = Oα,β

 t−1∑
i=sγ

fi − 〈σt, ·〉

 . (7)

The following theorem presents the dynamic regret of Algorithm 2 for general non-convex functions.
Theorem 1. Under Assumptions 1 and 2, and setting η = 1/

√
dγ, Algorithm 2 ensures

E [R∗D] ≤ 2c(α, β, γ)T
√
γ

+ 2γVT ,

where

c(α, β, γ) = 125DL2d
3
2 +

(21βγ +D)d
3
2

20
+

21α
√
γ

20
+ 2dLβγ. (8)

If the value of VT is known, by choosing γ = min
{⌊

(T
VT

)
2
3

⌋
, T
}

, we have

E [R∗D] ≤ O
(

(1 + α
√
T + βT)T

2
3 (VT + 1)

1
3

)
.

5

Algorithm 3 FTPL-D+

1: Input: feasible set K,H = {γ1, ..., γN}, step size ρ
2: Activate a set of experts {Ei | γi ∈ H} by invoking Algorithm 2 for each γi ∈ H
3: For each expert Ei, set wi1 = 1/N for i ∈ [N]
4: for t = 1 to T do
5: Receive xit from each expert Ei
6: Draw xt according to P

(
xt = xit

)
= wit

7: Output xt and observe loss function ft(·)
8: Update the weight of experts according to (9)
9: Send loss function ft(·) to each expert Ei

10: end for

Remark. Theorem 1 demonstrates that for general non-convex functions, when α = O(1/
√
T) and

β = O(1/T), which mirrors the settings used by Suggala and Netrapalli [2020, Page 4], our FTPL-D
achieves an O(T

2
3 (VT + 1)

1
3) dynamic regret bound that matches the existing bound for convex

functions [Besbes et al., 2015].

4.2 FTPL-D+

The dynamic regret in Theorem 1 requires the prior knowledge of VT to choose the optimal parame-
ter γ. However, in practice, VT is usually unknown, posing a challenge in selecting the best γ. Studies
on OCO also encounter the problem of searching for the optimal parameter for their algorithms
[van Erven and Koolen, 2016, Zhang et al., 2018a, Wan et al., 2021, 2024]. The main idea in their
solutions is activating multiple instances of their algorithms as experts, and tracking the best one with
a meta-algorithm such as Hedge [Cesa-Bianchi and Lugosi, 2006], which assigns a weight to each
expert and computes the weighted average of their advice.

Inspired by the above idea, we choose FTPL-D as the expert algorithm and propose our second
algorithm called improved FTPL-D (FTPL-D+). Note that both the loss functions and the feasible
set are non-convex, so we cannot combine different experts’ predictions by the weighted average.
According to the discussion of Cesa-Bianchi and Lugosi [2006, Chapter 4.1], we can tackle this issue
by randomized sampling, where we sample one expert according to the weights, and then output the
prediction of that expert.

The details of FTPL-D+ are shown in Algorithm 3, and we describe the main steps below. We
first define a set H = {γ1, ..., γN} of N values for parameter γ. Then we activate a set of experts
{Ei | γi ∈ H} by invoking Algorithm 2 as Ei = FTPL-D(K, γi,Oα,β , η). For each expert Ei, we
denote its weight at round t as wit, which is initiated as wi1 = 1/N . At each round t, we receive
a prediction xit from the expert Ei. To utilize these predictions {xit | i ∈ [N]}, we select xit with
the probability wit and submit it as the output xt, i.e., P

(
xt = xit

)
= wit. After the loss function is

revealed, we update the weights according to the following rule [Cesa-Bianchi and Lugosi, 2006]:

wit+1 =
wite
−ρft(xit)∑N

j=1 w
j
t e
−ρft(xjt)

, (9)

where ρ > 0 is the step size. We present the dynamic regret of Algorithm 3 in the following theorem.

Theorem 2. LetH =
{
γi = 2i | i = 1, · · ·N

}
where N = blog2 T c, and ρ = 1

dDL

√
8 lnN
T . Under

Assumptions 1 and 2, Algorithm 3 ensures

E [R∗D] ≤ O
(

(1 + α
√
T + βT)T

2
3 (VT + 1)

1
3

)
.

Remark. Theorem 2 shows that our FTPL-D+ achieves the same order of dynamic regret bound as
Algorithm 2 without the prior knowledge of VT .

6

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
I0 [] ...
I1 [] [] [] [] [] [] [] [] [] [...
I2 [] [] [] [] [...
I3 [] [...
I4 [...

Figure 2: Graphic illustration of Geometric Covering intervals [Daniely et al., 2015] from Figure 1 of Zhang
et al. [2019]. In the figure, each interval is denoted by [].

Algorithm 4 FTPL-A

1: for t = 1 to T do
2: for I ∈ Ct do
3: Create an expert EI which runs FTPL with η = 1/

√
d|I|

4: For the expert EI , set Rt−1,I = Ct−1,I = 0
5: Add expert ESI to the set of active experts At
6: end for
7: Remove all experts who end at the round t from At
8: Receive the predictions xt,I of each expert EI ∈ At and calculate its weight wt,I by (10)
9: Draw xt according to P (xt = xt,I) = wt,I

10: Output xt and observe loss function ft(·)
11: Compute the instantaneous expected loss defined in (11)
12: For each expert EI ∈ At, update Rt,I and Ct,I by (12)
13: Send loss function ft(·) to each expert EI ∈ At
14: end for

5 Online Non-convex Learning with Adaptive Regret

In this section, we further consider strongly adaptive regret defined in (4) as the performance metric
in dynamic environments. We develop our third algorithm, named follow the perturbed leader with
adaptive regret (FTPL-A), and establish its adaptive and dynamic regret bounds.

Previous research on adaptive regret [Hazan and Seshadhri, 2007, Daniely et al., 2015, Wang et al.,
2024] has adopted a two-layered framework to design adaptive online algorithms. The basic idea is
to dynamically construct a set of intervals and run an expert algorithm to minimize the static regret
within each interval. These experts are then combined by a meta-algorithm. Building upon this idea,
our FTPL-A includes three components: an expert algorithm, a set of intervals, and a meta-algorithm.
In the following, we illustrate them separately.

First, we use FTPL as the expert algorithm, which enjoys O(
√
|I|) static regret for a given interval I

[Suggala and Netrapalli, 2020]. Then, following the work of Daniely et al. [2015], we build geometric
covering (GC) intervals shown in Fig. 2:

I =
⋃
k∈N
Ik, Ik =

{
[i · 2k, (i+ 1) · 2k − 1] : i ∈ N

}
.

That is, each Ik is a partition of N\{1, . . . , 2k − 1} into consecutive intervals of length 2k. For each
interval I ∈ I, we activate an instance of FTPL as the expert EI to minimize the regret over I .

Next, we choose AdaNormalHedge [Luo and Schapire, 2015] to track the best expert. Similar to the
Hedge forecaster we used in FTPL-D+, we maintain a weight for each expert, but in a specific form
of a potential function:

Φ(R,C) = exp

(
[R]2+
3C

)
,

where [x]+ = max(0, x) and Φ(0, 0) is defined to be 1, and the weight function is determined by

w(R,C) =
1

2
(Φ(R+ 1, C + 1)− Φ(R+ 1, C − 1)) .

Due to the non-convexity of the loss functions, as explained in Section 4.2, we use randomized
sampling to generate the output.

7

The procedure of FTPL-A is summarized in Algorithm 4. We describe the main steps below. For
brevity, we denote the set of intervals starting from round t as Ct, and the set of active experts at
round t asAt. In Step 3, for each interval I ∈ Ct, we run an instance of FTPL as EI with the optimal
parameters. In Step 4, the two variables Rt−1,I and Ct−1,I are initialized as 0 for EI , where Rt−1,I

denotes the expected regret of EI up to round t− 1, and Ct−1,I denotes the expected absolute regret.
In Steps 5 and 7, the active expert set At is maintained by adding new experts and removing expired
ones. In Step 8, the expert’s weight is calculated by [Luo and Schapire, 2015]:

wt,I =
w(Rt−1,I , Ct−1,I)∑

EI∈At w(Rt−1,I , Ct−1,I)
. (10)

Similarly, we sample one expert (prediction) according to the weights in Step 9, and submit it as the
output in Step 10. In Step 11, the instantaneous expected loss is computed as the weighted average of
different experts’ losses:

f̃t(xt) =
∑
EI∈At

wt,Ift(xt,I), (11)

where xt,I denotes the prediction of expert EI at round t. In Step 12, we update Rt,I and Ct,I by

Rt,I = Rt−1,I +
f̃t(xt)− ft(xt,I)

dDL
, Ct,I = Ct−1,I +

|f̃t(xt)− ft(xt,I)|
dDL

. (12)

The following theorem demonstrates the strongly adaptive regret bound of Algorithm 4 for general
non-convex loss functions.
Theorem 3. Under Assumptions 1 and 2, Algorithm 4 ensures

E [RA(T, τ)] ≤
(

8c(α, β, τ) + 8
√

3dDLg(T)
)√

τ = O
(√

τ log T + ατ + βτ
3
2

)
,

where g(T) ≤ 1 + lnT + ln (1 + log2 T) + ln 5+3 ln (1+T)
2 and c(α, β, τ) is given in (8).

Remark. Theorem 3 demonstrates that when α = O(1/
√
τ) and β = O(1/τ), FTPL-A is strongly

adaptive with the same order of O(
√
τ log T) regret as that for convex functions [Jun et al., 2017].

Furthermore, we notice that Zhang et al. [2018b] investigated the relationship between adaptive regret
and dynamic regret. They showed that dynamic regret can be bounded by the strongly adaptive regret
and the functional variation. According to their findings, we have the following theorem that presents
the dynamic regret bound of Algorithm 4.
Theorem 4. Under Assumptions 1 and 2, Algorithm 4 ensures

E [R∗D] ≤ Õ
(

(1 + α
√
T + βT)T

2
3 (VT + 1)

1
3

)
.

Remark. Theorem 4 shows that FTPL-A achieves nearly the same dynamic regret as FTPL-D+,
indicating its ability to minimize adaptive and dynamic regret simultaneously. However, compared
to FTPL-A, FTPL-D+ does not require the construction of GC intervals and uses a simpler meta-
algorithm, making it easier to implement.

6 Application to Online Constrained Meta-Learning

Online non-convex learning offers a wide range of applications [Neel et al., 2020, Vietri et al.,
2020, Ghai et al., 2021, Castiglioni et al., 2022]. By applying our methods, we can extend these
applications to dynamic environments. In this section, we discuss the application to online constrained
meta-learning [Xu and Zhu, 2023] and conduct experiments to support our theoretical results.

Online constrained meta-learning. Meta-learning, also known as learning-to-learn, focuses on
acquiring a prior meta-parameter that enables fast adaptation to new tasks. Recently, Xu and Zhu
[2023] proposed the setting of online constrained meta-learning, which aims to learn the meta-
parameter from a sequence of constrained learning tasks {T1, . . . , TT }. Each task Tt is characterized
by its data distributions Dt and constraint limits ct. At each round t, a training dataset Dtrt , which
contains data sampled i.i.d. from Dt, is available to the learner. Then the learner adapts the meta-
parameter φt to the task-specific parameter θt by a within-task algorithm Alg with Dtrt and ct. After

8

0 50 100 150 200
Round (task index)

0

50

100

In
st

an
ta

ne
ou

s l
os

s FTPL
FTPL-A
FTPL-D+

(a) Env1: instantaneous loss

0 50 100 150 200
Round (task index)

0

2

4

Cu
m

ul
at

iv
e

lo
ss

×103

FTPL
FTPL-A
FTPL-D+

(b) Env1: cumulative loss

0 50 100 150 200
Round (task index)

0

20

40

60

In
st

an
ta

ne
ou

s l
os

s FTPL
FTPL-A
FTPL-D+

(c) Env2: instantaneous loss

0 50 100 150 200
Round (task index)

0

1

2

Cu
m

ul
at

iv
e

lo
ss

×103

FTPL
FTPL-A
FTPL-D+

(d) Env2: cumulative loss

Figure 3: Results of meta-imitation learning in two types of dynamic environments. The first two figures are for
abruptly changing environments (Env1), while the latter ones are for gradually evolving environments (Env2).

the learner deploys θt, it obtains a validation dataset Dvalt by sampling data from Dt and defines the
meta-objective function at current round as

Lvalt (φ) = L(Alg(φ,Dtrt , ct),Dvalt),

where L(θ,Dvalt) denotes the loss of θ on Dvalt . Xu and Zhu [2023] updated the meta-parameter by
using FTPL to the non-convex meta-objective function on all revealed tasks. With this approach,
they effectively controlled the static regret of the meta-objective function between φt and the fixed
optimal meta-parameter φ∗. However, when the distribution of tasks is shifting, the fixed φ∗ may not
be adapted to each task well. In such a scenario, it is better to use dynamic regret or adaptive regret as
the performance metric, since they measures the learner’s performance against the changing optimal
meta-parameter. By applying Algorithms 3 and 4, we can minimize the two metrics efficiently. To
evaluate our methods, we conduct experiments on a sequence of tasks in imitation learning and
another in few-shot learning, respectively.

6.1 Experiments on meta-imitation learning

Setup. We use the demonstration data given by Huang et al. [2019] and set the total number of
tasks T = 200. At each round t ∈ [T], a human expert writes a different letter in a free space without
obstacle. The learner can observe a demonstration of the letter and is asked to write the same letter
in a cluttered environment. We provide the details of problem formulation and implement setting
in Appendix C.1. By controlling the letter to be imitated for each task, we simulate two types of
dynamic environments: (i) abruptly changing environments; (ii) gradually evolving environments.
In (i), we split the time horizon evenly into 4 stages, and set the imitation target as capital letters
"M", "E", "T" and "A" for the 4 stages. In this way, the optimal meta-parameter φ∗ drifts notably
every 50 round. In (ii), we choose the capital letter "A" as the imitation target. Additionally, we
rotate the letter "A" at a small random angle δt ∈ (0, 0.05] in each round. This ensures the optimal
meta-parameter φ∗ undergoes slow and smooth shifts. We compare our FTPL-D+ and FTPL-A with
FTPL [Suggala and Netrapalli, 2020] in the above two scenarios.

Results. We repeat the experiments five times with different random seeds and plot the loss
(mean and standard deviation) in Fig. 3. More results are provided in Appendix C.1. For abruptly
changing environments, Fig. 3(a) shows that, in comparison to FTPL, our methods adapt more
quickly to the new task distribution after the demonstration shifts, which occurs at T = 50, 100, and
150. Fig. 3(b) demonstrates that our methods perform significantly better than FTPL in terms of
cumulative loss. For gradually evolving environments, it can be observed from Fig. 3(c) that as the
angle of rotation increases, both our methods maintain low loss, while FTPL exhibits a significant
increase in instantaneous loss after T = 100. Fig. 3(d) also shows a notable advantage in cumulative
loss. Moreover, our FTPL-D+ and FTPL-A achieve comparable performance in the two types of
dynamic environments.

6.2 Experiments on few-shot image classification with robustness

Setup. We conduct the experiments on CUB-200-2011 (referred to as CUB) dataset [Wah et al.,
2011], which includes 200 fine-grained categories of birds. There are T = 150 of robust 5-way 5-shot
image classification tasks, each task containing images from 5 classes with only 5 training samples
per class. At each round t ∈ [T], the model is updated using a few data samples and is required
to have high accuracy on both clean and perturbed test data. We provide the details of problem

9

0 50 100 150
Round (task index)

0.40

0.45

0.50

0.55

0.60

Cl
ea

n
ac

cu
ra

cy

FTPL
FTPL-A
FTPL-D+

(a) Clean accuracy

0 50 100 150
Round (task index)

0.30

0.35

0.40

0.45

0.50

0.55

PG
D

ac
cu

ra
cy

FTPL
FTPL-A
FTPL-D+

(b) PGD accuracy

0 50 100 150
Round (task index)

0.30

0.35

0.40

0.45

0.50

0.55

B-
sc

or
e

FTPL
FTPL-A
FTPL-D+

(c) B-score

Figure 4: Results of robust few-shot learning on the CUB dataset (5-way 5-shot) in dynamic environments.

formulation and implement setting in Appendix C.2. We resize the input images to 84 × 84, and apply
the same data augmentation as in Ye et al. [2021] and Xu and Zhu [2023]. A four-layer convolutional
neural network (Conv-4) is employed as the backbone, comprising four blocks. Each block consists
of a convolutional layer with 64 kernels of size 3 × 3, stride 1, and zero padding, followed by a batch
normalization layer, a ReLU activation function, and lastly a 2 × 2 max-pooling layer. Following the
convolutional layers, the network uses a fully connected linear layer with 5 neurons as a classifier to
output the prediction for the input image. To simulate real-world dynamic environments, we select
three groups of bird categories from the CUB dataset based on their habitats: water birds, forest birds,
and grassland birds. We then split the time horizon T evenly into 3 stages, within each stage the
tasks are sampled from one group of bird categories. This simulates abruptly changing environments
where the optimal meta-parameter φ∗ drifts every 50 round. We compare our FTPL-D+ and FTPL-A
with FTPL [Suggala and Netrapalli, 2020].

Metrics and results. The performance of the task-specific model is evaluated by: (i) clean accuracy;
(ii) PGD accuracy; (iii) B-score. The clean accuracy is the accuracy on the clean test dataset, and PGD
accuracy is the accuracy on the corrupted test dataset, which is obtained by adding perturbation on the
clean test dataset by the Projected Gradient Descent (PGD) method [Kurakin et al., 2018]. Balance
Score (B-score) [Ye et al., 2021] measures both clean accuracy and PGD accuracy. It is defined as
B-score = 2× (CA× PA)/(CA + PA), where CA and PA denote clean accuracy and PGD accuracy
respectively. We report the three metrics against the number of tasks in Fig. 3. As evidenced by the
results, FTPL-D+ and FTPL-A attain comparable performance, and both significantly outperform
FTPL in terms of all three metrics after the environmental changes at T = 50 and 100. This suggests
that our methods are effective in rapidly adapting to the new task distribution.

7 Conclusion and Future Work

This paper investigates online non-convex learning in dynamic environments, using dynamic regret
and adaptive regret as performance metrics. For dynamic regret minimization, we propose FTPL-D
with an O(T

2
3 (VT + 1)

1
3) regret bound. To eliminate the dependence on prior knowledge of VT ,

we propose FTPL-D+, which runs multiple instances of FTPL-D and uses a meta-algorithm to
track the best one. For adaptive regret minimization, we propose FTPL-A with a regret bound
of O(

√
τ log T). Finally, we discuss the application to online constrained meta-learning, and the

conducted experiments verify the effectiveness of our methods.

Currently, we bound the dynamic regret by the functional variation. A natural problem is whether we
can derive regret bounds based on other regularities, such as the path length of comparators that is
widely used in prior works for non-stationary online convex optimization [Zhang et al., 2018a, Zhao
et al., 2020, 2024, Baby and Wang, 2021, Cutkosky, 2020]. This is left as a future work to explore.

Acknowledgements

This work was partially supported by NSFC (62361146852, 62122037), and the Collaborative
Innovation Center of Novel Software Technology and Industrialization.

10

References
Jacob Abernethy, Peter L Bartlett, Alexander Rakhlin, and Ambuj Tewari. Optimal strategies and

minimax lower bounds for online convex games. In Proceedings of the 21st Annual Conference on
Learning Theory, pages 414–424, 2008.

Dmitry Adamskiy, Wouter M Koolen, Alexey Chernov, and Vladimir Vovk. A closer look at adaptive
regret. In Proceedings of the 23rd International Conference on Algorithmic Learning Theory,
pages 290–304, 2012.

Naman Agarwal, Alon Gonen, and Elad Hazan. Learning in non-convex games with an optimization
oracle. In Proceedings of the 32nd Annual Conference on Learning Theory, pages 18–29, 2019.

Sergul Aydore, Tianhao Zhu, and Dean P Foster. Dynamic local regret for non-convex online
forecasting. In Advances in Neural Information Processing Systems 32, pages 7982–7991, 2019.

Dheeraj Baby and Yu-Xiang Wang. Online forecasting of total-variation-bounded sequences. In
Advances in Neural Information Processing Systems 32, page 11071–11081, 2019.

Dheeraj Baby and Yu-Xiang Wang. Optimal dynamic regret in exp-concave online learning. In
Proceedings of the 34th Annual Conference on Learning Theory, pages 359–409, 2021.

Dheeraj Baby and Yu-Xiang Wang. Optimal dynamic regret in proper online learning with strongly
convex losses and beyond. In Proceedings of the 25th International Conference on Artificial
Intelligence and Statistics, pages 1805–1845, 2022.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-stationary stochastic optimization. Operations
research, 63(5):1227–1244, 2015.

Aude Billard, Yann Epars, Sylvain Calinon, Stefan Schaal, and Gordon Cheng. Discovering optimal
imitation strategies. Robotics and autonomous systems, 47(2-3):69–77, 2004.

Matteo Castiglioni, Andrea Celli, Alberto Marchesi, Giulia Romano, and Nicola Gatti. A unifying
framework for online optimization with long-term constraints. In Advances in Neural Information
Processing Systems 35, pages 33589–33602, 2022.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge University
Press, 2006.

Nicolò Cesa-Bianchi and Francesco Orabona. Online learning algorithms. Annual review of statistics
and its application, 8:165–190, 2021.

Luiz Chamon and Alejandro Ribeiro. Probably approximately correct constrained learning. In
Advances in Neural Information Processing Systems 33, pages 16722–16735, 2020.

Ashok Cutkosky. Parameter-free, dynamic, and strongly-adaptive online learning. In Proceedings of
the 37th International Conference on Machine Learning, pages 2250–2259, 2020.

Amit Daniely, Alon Gonen, and Shai Shalev-Shwartz. Strongly adaptive online learning. In
Proceedings of the 32nd International Conference on Machine Learning, pages 1405–1411, 2015.

Yoav Freund, Robert E Schapire, Yoram Singer, and Manfred K Warmuth. Using and combining
predictors that specialize. In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, pages 334–343, 1997.

Xiand Gao, Xiaobo Li, and Shuzhong Zhang. Online learning with non-convex losses and non-
stationary regret. In Proceedings of the 21st International Conference on Artificial Intelligence
and Statistics, pages 235–243, 2018.

Udaya Ghai, David Snyder, Anirudha Majumdar, and Elad Hazan. Generating adversarial disturbances
for controller verification. In Proceedings of the 3rd Learning for Dynamics and Control, pages
1192–1204, 2021.

Ziwei Guan, Yi Zhou, and Yingbin Liang. Online nonconvex optimization with limited instantaneous
oracle feedback. In Proceedings of the 36th Annual Conference on Learning Theory, pages
3328–3355, 2023.

11

András Gyorgy, Tamás Linder, and Gábor Lugosi. Efficient tracking of large classes of experts. IEEE
Transactions on Information Theory, 58(11):6709–6725, 2012.

Nadav Hallak, Panayotis Mertikopoulos, and Volkan Cevher. Regret minimization in stochastic
non-convex learning via a proximal-gradient approach. In Proceedings of the 38th International
Conference on Machine Learning, pages 4008–4017, 2021.

Elad Hazan and Edgar Minasyan. Faster projection-free online learning. In Proceedings of 33rd
Annual Conference on Learning Theory, pages 1877–1893, 2020.

Elad Hazan and Comandur Seshadhri. Adaptive algorithms for online decision problems. Electronic
Colloquium on Computational Complexity, 14(88), 2007.

Elad Hazan, Karan Singh, and Cyril Zhang. Efficient regret minimization in non-convex games. In
Proceedings of the 34th International Conference on Machine Learning, pages 1433–1441, 2017.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Optimiza-
tion, 2(3-4):157–325, 2016.

Amélie Héliou, Matthieu Martin, Panayotis Mertikopoulos, and Thibaud Rahier. Online non-convex
optimization with imperfect feedback. In Advances in Neural Information Processing Systems 33,
pages 17224–17235, 2020.

Amélie Héliou, Matthieu Martin, Panayotis Mertikopoulos, and Thibaud Rahier. Zeroth-order
non-convex learning via hierarchical dual averaging. In Proceedings of the 38th International
Conference on Machine Learning, pages 4192–4202, 2021.

Yanlong Huang, Leonel Rozo, Joao Silvério, and Darwin G Caldwell. Kernelized movement
primitives. The International Journal of Robotics Research, 38(7):833–852, 2019.

Ali Jadbabaie, Alexander Rakhlin, Shahin Shahrampour, and Karthik Sridharan. Online optimization:
Competing with dynamic comparators. In Proceedings of the 18th International Conference on
Artificial Intelligence and Statistics, pages 398–406, 2015.

Kwang-Sung Jun, Francesco Orabona, Stephen Wright, and Rebecca Willett. Improved strongly
adaptive online learning using coin betting. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, pages 943–951, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ArXiv preprint,
arXiv:1412.6980, 2014.

Walid Krichene, Maximilian Balandat, Claire Tomlin, and Alexandre Bayen. The hedge algorithm on
a continuum. In Proceedings of the 32nd International Conference on Machine Learning, pages
824–832, 2015.

Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
In Artificial intelligence safety and security, pages 99–112. Chapman and Hall/CRC, 2018.

Antoine Lesage-Landry, Joshua A Taylor, and Iman Shames. Second-order online nonconvex
optimization. IEEE Transactions on Automatic Control, 66(10):4866–4872, 2020.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212–261, 1994.

Haipeng Luo and Robert E Schapire. Achieving all with no parameters: Adanormalhedge. In
Proceedings of the 28th Annual Conference on Learning Theory, pages 1286–1304, 2015.

Aryan Mokhtari, Shahin Shahrampour, Ali Jadbabaie, and Alejandro Ribeiro. Online optimization in
dynamic environments: Improved regret rates for strongly convex problems. In Proceedings of the
55th IEEE Conference on Decision and Control, pages 7195–7201, 2016.

Seth Neel, Aaron Roth, Giuseppe Vietri, and Steven Wu. Oracle efficient private non-convex
optimization. In Proceedings of the 37th International Conference on Machine Learning, pages
7243–7252, 2020.

12

Francesco Orabona. A modern introduction to online learning. ArXiv preprint, arXiv:1912.13213,
2019.

Abhishek Roy, Krishnakumar Balasubramanian, Saeed Ghadimi, and Prasant Mohapatra. Multi-
point bandit algorithms for nonstationary online nonconvex optimization. ArXiv preprint,
arXiv:1907.13616, 2019.

Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and Trends®
in Machine Learning, 4(2):107–194, 2012.

Arun Sai Suggala and Praneeth Netrapalli. Online non-convex learning: Following the perturbed
leader is optimal. In Proceedings of the 31st International Conference on Algorithmic Learning
Theory, pages 845–861, 2020.

Tim van Erven and Wouter M Koolen. Metagrad: Multiple learning rates in online learning. In
Advances in Neural Information Processing Systems 29, page 3666–3674, 2016.

Giuseppe Vietri, Grace Tian, Mark Bun, Thomas Steinke, and Steven Wu. New oracle-efficient
algorithms for private synthetic data release. In Proceedings of the 37th International Conference
on Machine Learning, pages 9765–9774, 2020.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology,
2011.

Yuanyu Wan, Bo Xue, and Lijun Zhang. Projection-free online learning in dynamic environments. In
Proceedings of the 35th AAAI Conference on Artificial Intelligence, pages 10067–10075, 2021.

Yuanyu Wan, Lijun Zhang, and Mingli Song. Improved dynamic regret for online frank-wolfe. In
Proceedings of the 36th Annual Conference on Learning Theory, pages 3304–3327, 2023.

Yuanyu Wan, Chang Yao, Mingli Song, and Lijun Zhang. Non-stationary online convex optimization
with arbitrary delays. In Proceedings of the 41st International Conference on Machine Learning,
pages 49991–50011, 2024.

Yibo Wang, Yuanyu Wan, Shimao Zhang, and Lijun Zhang. Distributed projection-free online
learning for smooth and convex losses. In Proceedings of the 37th AAAI Conference on Artificial
Intelligence, pages 10226–10234, 2023.

Yibo Wang, Wenhao Yang, Wei Jiang, Shiyin Lu, Bin Wang, Haihong Tang, Yuanyu Wan, and Lijun
Zhang. Non-stationary projection-free online learning with dynamic and adaptive regret guarantees.
In Proceedings of the 38th AAAI Conference on Artificial Intelligence, pages 15671–15679, 2024.

Siyuan Xu and Minghui Zhu. Online constrained meta-learning: Provable guarantees for generaliza-
tion. In Advance in Neural Information Processing Systems 37, pages 15531–15544, 2023.

Lin Yang, Lei Deng, Mohammad H Hajiesmaili, Cheng Tan, and Wing Shing Wong. An optimal
algorithm for online non-convex learning. Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 2(2):1–25, 2018.

Tianbao Yang, Lijun Zhang, Rong Jin, and Jinfeng Yi. Tracking slowly moving clairvoyant: Optimal
dynamic regret of online learning with true and noisy gradient. In Proceedings of the 33rd
International Conference on Machine Learning, pages 449–457, 2016.

Wenhao Yang, Wei Jiang, Yibo Wang, Ping Yang, Yao Hu, and Lijun Zhang. Small-loss adaptive
regret for online convex optimization. In Proceedings of the 41st International Conference on
Machine Learning, pages 56156–56195, 2024.

Feiyang Ye, Baijiong Lin, Zhixiong Yue, Pengxin Guo, Qiao Xiao, and Yu Zhang. Multi-objective
meta learning. In Advances in Neural Information Processing Systems 34, pages 21338–21351,
2021.

Lijun Zhang. Online learning in changing environments. In Proceedings of the 29th International
Joint Conference on Artificial Intelligence, pages 5178–5182, 2020.

13

Lijun Zhang, Tianbao Yang, Jinfeng Yi, Rong Jin, and Zhi-Hua Zhou. Improved dynamic regret
for non-degenerate functions. In Advance in Neural Information Processing Systems 30, pages
732–741, 2017.

Lijun Zhang, Shiyin Lu, and Zhi-Hua Zhou. Adaptive online learning in dynamic environments. In
Advances in Neural Information Processing Systems 31, pages 1323–1333, 2018a.

Lijun Zhang, Tianbao Yang, Rong Jin, and Zhi-Hua Zhou. Dynamic regret of strongly adaptive
methods. In Proceedings of the 35th International Conference on Machine Learning, pages
5882–5891, 2018b.

Lijun Zhang, Tie-Yan Liu, and Zhi-Hua Zhou. Adaptive regret of convex and smooth functions. In
Proceedings of the 36th International Conference on Machine Learning, pages 7414–7423, 2019.

Lijun Zhang, Shiyin Lu, and Tianbao Yang. Minimizing dynamic regret and adaptive regret simul-
taneously. In Proceedings of the 23rd International Conference on Artificial Intelligence and
Statistics, pages 309–319, 2020.

Lijun Zhang, Guanghui Wang, Wei-Wei Tu, Wei Jiang, and Zhi-Hua Zhou. Dual adaptivity: A
universal algorithm for minimizing the adaptive regret of convex functions. In Advances in Neural
Information Processing Systems 34, pages 24968–24980, 2021.

Lijun Zhang, Wei Jiang, Jinfeng Yi, and Tianbao Yang. Smoothed online convex optimization based
on discounted-normal-predictor. In Advances in Neural Information Processing Systems 35, pages
4928–4942, 2022.

Peng Zhao and Lijun Zhang. Improved analysis for dynamic regret of strongly convex and smooth
functions. In Proceedings of the 3rd Conference on Learning for Dynamics and Control, pages
48–59, 2021.

Peng Zhao, Yu-Jie Zhang, Lijun Zhang, and Zhi-Hua Zhou. Dynamic regret of convex and smooth
functions. In Advances in Neural Information Processing Systems 33, pages 12510–12520, 2020.

Peng Zhao, Yan-Feng Xie, Lijun Zhang, and Zhi-Hua Zhou. Efficient methods for non-stationary
online learning. In Advances in Neural Information Processing Systems 35, pages 11573–11585,
2022.

Peng Zhao, Yu-Jie Zhang, Lijun Zhang, and Zhi-Hua Zhou. Adaptivity and non-stationarity: Problem-
dependent dynamic regret for online convex optimization. Journal of Machine Learning Research,
25(98):1 – 52, 2024.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning, pages 928–936, 2003.

14

A Theoretical Analysis

A.1 Proof of Theorem 1

Let r = T
γ , qi = (i− 1)γ+ 1 for i = 1, . . . , r, and qr+1 = T + 1 . First, we decompose the dynamic

regret as

R∗D =

T∑
t=1

ft(xt)−
T∑
t=1

min
x∈K

ft(x)

=

r∑
i=1

(
qi+1−1∑
t=qi

ft(xt)−
qi+1−1∑
t=qi

min
x∈K

ft(x)

)

=

r∑
i=1

(
qi+1−1∑
t=qi

ft(xt)−min
x∈K

qi+1−1∑
t=qi

ft(x) + min
x∈K

qi+1−1∑
t=qi

ft(x)−
qi+1−1∑
t=qi

min
x∈K

ft(x)

)
. (13)

Taking expectation with respect to xt on both sides of (13), we have

E [R∗D]

=E

[
r∑
i=1

(
qi+1−1∑
t=qi

ft(xt)−min
x∈K

qi+1−1∑
t=qi

ft(x) + min
x∈K

qi+1−1∑
t=qi

ft(x)−
qi+1−1∑
t=qi

min
x∈K

ft(x)

)]

=

r∑
i=1

E

[
qi+1−1∑
t=qi

ft(xt)−min
x∈K

qi+1−1∑
t=qi

ft(x)

]
︸ ︷︷ ︸

ai

+ min
x∈K

qi+1−1∑
t=qi

ft(x)−
qi+1−1∑
t=qi

min
x∈K

ft(x)︸ ︷︷ ︸
bi

 . (14)

To bound ai, we introduce the following lemma, which presents the static regret of Algorithm 1.
Lemma 1. (Theorem 1 in Suggala and Netrapalli [2020]) Suppose Algorithm 1 is using an (α, β)-
approximate optimization oracle. Under Assumptions 1 and 2, for any fixed η, Algorithm 1 ensures

E

[
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)

]
≤ 125Tηd2DL2 +

d(21βT +D)

20η
+

21αT

20
+ 2βdLT.

By applying Lemma 1 to each interval i ∈ [r], we get

E

[
qi+1−1∑
t=qi

ft(xt)−min
x∈K

qi+1−1∑
t=qi

ft(x)

]
≤ 125γηd2DL2 +

d(21βγ +D)

20η
+

21αγ

20
+ 2βdLγ.

Let η = 1√
dγ

, then we have

ai = E

[
qi+1−1∑
t=qi

ft(xt)−min
x∈K

qi+1−1∑
t=qi

ft(x)

]
≤ c(α, β, γ)

√
γ, (15)

where c(α, β, γ) = 125DL2d
3
2 + (21βγ+D)d

3
2

20 +
21α
√
γ

20 + 2dLβγ.

To bound bi, we follow the proof of Theorem 3 in Zhang et al. [2018b]:

bi = min
x∈K

qi+1−1∑
t=qi

ft(x)−
T∑
t=1

min
x∈K

ft(xt)

≤
qi+1−1∑
t=qi

ft(x
∗
qi)−

qi+1−1∑
t=qi

ft(x
∗
t)

≤ |qi+1 − qi| max
t∈[qi,qi+1−1]

(
ft(x

∗
qi)− ft(x

∗
t)
)
, (16)

15

where x∗t ∈ arg min
x∈K

ft(x).

Define the local functional variation of the i-th interval as

VT (i) =

qi+1−1∑
t=qi

max
x∈K
|ft(x)− ft−1(x)|,

and it is obvious that
∑r
i=1 VT (i) ≤ VT .

For any t ∈ [qi, qi+1 − 1], we have

ft(x
∗
qi)− ft(x

∗
t) =ft(x

∗
qi)− fqi(x

∗
qi) + fqi(x

∗
qi)− ft(x

∗
t)

≤ft(x∗qi)− fqi(x
∗
qi) + fqi(x

∗
t)− ft(x∗t)

≤2VT (i). (17)

Combining (16) and (17), we obtain

bi ≤ 2 |qi+1 − qi|VT (i) ≤ 2γVT (i). (18)

Substituting (15) and (18) into (14), we have

E [R∗D] ≤
r∑
i=1

[c(α, β, γ)
√
γ + 2γVT (i)]

≤c(α, β, γ)

⌈
T

γ

⌉
√
γ +

r∑
i=1

2γVT (i)

≤c(α, β, γ)2T
√
γ

+ 2γVT (19)

where the last inequality uses
∑r
i=1 VT (i) ≤ VT and r =

⌈
T
γ

⌉
≤ T

γ + 1 ≤ 2T
γ .

We proceed to prove the second part of Theorem 1. For brevity, let ĉ = c(α, β, T). By the definition
in (8), we have c(α, β, γ) ≤ ĉ for any γ ≤ T . If VT ≥ 1√

T
, Algorithm 2 with γ =

⌊
(T
VT

)
2
3

⌋
achieves

E [R∗D] ≤
(

2
√

2ĉ+ 2
)
T

2
3V

1
3

T .

If VT ≤ 1√
T

, Algorithm 2 with γ = T ensures

E [R∗D] ≤ (2ĉ+ 2)
√
T .

Combining the results above, with the prior knowledge of VT , we have

E [R∗D] ≤ max
{(

2
√

2ĉ+ 2
)
T

2
3V

1
3

T , (2ĉ+ 2)
√
T
}

= O
(

(1 + α
√
T + βT)T

2
3 (VT + 1)

1
3

)
.

A.2 Proof of Theorem 2

The dynamic regret of the Algorithm 3 can be devided into two parts: expert regret and meta-regret,
as shown below

E [R∗D] =E

[
T∑
t=1

ft(xt)−
T∑
t=1

min
x∈K

ft(x)

]

=E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
i
t)

]
︸ ︷︷ ︸

meta-regret

+E

[
T∑
t=1

ft(x
i
t)−

T∑
t=1

min
x∈K

ft(x)

]
︸ ︷︷ ︸

expert regret

, (20)

where xit denotes the prediction of the i-th expert.

16

To bound the meta-regret, we follow the proof of Theorem 2.2 in Cesa-Bianchi and Lugosi [2006]
and introduce a novel quantity ln WT

W0
. We define{

Wt =
∑N
i=1 e

−ρLit , t ≥ 1

W0 = N,

where Lit =
∑t
τ=1 fτ (xiτ) denotes the cumulative loss of the i-th expert and N denotes the number

of experts. Besides, the weight of expert at round t can be writen as

wit =
e−ρL

i
t−1∑N

j=1 e
−ρLjt−1

. (21)

First, we give a lower bound of ln WT

W0
:

ln
WT

W0
= ln

(
N∑
i=1

e−ρL
i
T

)
− lnN

≥ ln

(
max

i=1,...,N
e−ρL

i
T

)
− lnN

=− ρ min
i=1,...,N

T∑
t=1

ft(x
i
t)− lnN. (22)

To upper bound ln WT

W0
, we introduce the following lemma of Hoeffding’s inequality.

Lemma 2. (Lemma A.1 in Cesa-Bianchi and Lugosi [2006]) Let X be a random variable with
a ≤ X ≤ b. Then for any s ∈ R,

lnE
[
esX

]
≤ sEX +

s2(b− a)2

8
. (23)

Note that at each round t, we sample an expert (prediction) by P
(
xt = xit

)
= wit, and incur the

loss of that expert. Hence, the loss incurred by the meta-algorithm is a random variable ft(xt) with
probability P

[
ft(xt) = ft(x

i
t)
]

= wit, and the expected loss is

E [ft(xt)] =

N∑
i=1

witft(x
i
t). (24)

Under Assumptions 1 and 2, the difference between the maximum and minimum of the loss function
at each round can be bounded as

sup
x,y∈K

|ft(x)− ft(y)| ≤ dDL. (25)

Observe that for each t = 1, . . . , T ,

ln
Wt

Wt−1
= ln

∑N
i=1 e

−ρLit−1e−ρft(x
i
t)∑N

j=1 e
−ρLjt−1

(21)
= ln

N∑
i=1

wite
−ρft(xit).

Now using Lemma 2, we have

ln
Wt

Wt−1
= ln

N∑
i=1

wite
−ρft(xit)

(23,25)

≤ −ρ
N∑
i=1

witft(x
i
t) +

ρ2(dDL)2

8

(24)
= −ρE[ft(xt)] +

ρ2(dDL)2

8
. (26)

17

Summing over t = 1, . . . , T , we have

ln
Wt

W0
≤ −ρE

[
T∑
t=1

ft(xt)

]
+
Tρ2(dDL)2

8
. (27)

By combining (22) and (27), we get the meta-regret-bound as follows:

E

[
T∑
t=1

ft(xt)− min
i=1...N

T∑
t=1

ft(x
i
t)

]
≤ lnN

ρ
+
ρT (dDL)2

8
≤ dDL

√
lnNT

2
, (28)

where ρ = 1
dDL

√
8 lnN
T .

We proceed to present the dynamic regret of the best expert. Let H =
{
γi = 2i | i = 1, · · ·N

}
where N = blog2 T c. Assuming the optimal restarting parameter in Theorem 1 is γ∗, then there
exists some k such that γk ≤ γ∗ ≤ γk+1. Moreover, we have

γ∗

2
≤ γk ≤ γ∗ ≤ γk+1 ≤ 2γ∗. (29)

According to Theorem 1, for any expert i, we have

E
[
RiD
]

= E

[
T∑
t=1

ft(x
i
t)−

T∑
t=1

min
x∈K

ft(x)

]
≤ 2ĉT
√
γi

+ 2γiVT , (30)

where ĉ = c(α, β, T) is given in (8).

Then, for expert k and k + 1,

E
[
RkD
] (30)

≤ 2ĉT
√
γk

+ 2γkVT ≤
2ĉT√

1
2γ
∗

+ 2γ∗VT
(29)

≤
√

2

(
2ĉT√
γ∗

+ 2γ∗VT

)
, (31)

and

E
[
Rk+1
D

] (30)

≤ 2ĉT
√
γk+1

+ 2γk+1VT ≤
2ĉT√
γ∗

+ 4γ∗VT
(29)

≤ 2

(
2ĉT√
γ∗

+ 2γ∗VT

)
. (32)

From Theorem 1, it can be inferred that

E
[
R̂∗D

]
≤ 2ĉT√

γ∗
+ 2γ∗VT ≤ max

{
(2
√

2ĉ+ 2)T
2
3V

1
3

T , (2ĉ+ 2)
√
T
}
. (33)

Hence, the dynamic regret of the best expert can be bounded as

min
i=1...N

E
[
RiD
]
≤ min

{
E
[
RkD
]
,E
[
Rk+1
D

]}
(31,32)

≤
√

2

(
2ĉT√
γ∗

+ 2γ∗VT

)
(33)

≤ max
{

(4ĉ+ 2
√

2)T
2
3V

1
3

T , (2
√

2ĉ+ 2
√

2)
√
T
}
. (34)

Substituting (28) and (34) into (20), we get the dynamic regret of Algorithm 3:

E [R∗D] ≤ max
{

(4ĉ+ 2
√

2)T
2
3V

1
3

T , (2
√

2ĉ+ 2
√

2)
√
T
}

+ dDL

√
lnNT

2

= O
(

(1 + α
√
T + βT)T

2
3 (VT + 1)

1
3

)
.

A.3 Proof of Theorem 3

The analysis consists of two parts. We first upper bound the strongly adaptive regret over any interval
J = [i, j] ∈ I. Then, we extend the regret bound to any interval I = [s, s+ τ − 1] ⊆ [T].

18

For any interval J = [i, j] ∈ I, we can decompose the regret as

E

[
j∑
t=i

ft(xt)−min
x∈K

j∑
t=i

ft(x)

]

=E

[
j∑
t=i

ft(xt)−
j∑
t=i

ft(xt,J) +

j∑
t=i

ft(xt,J)−min
x∈K

j∑
t=i

ft(x)

]

=E

[
j∑
t=i

ft(xt)−
j∑
t=i

ft(xt,J)

]
︸ ︷︷ ︸

meta-regret

+E

[
j∑
t=i

ft(xt,J)−min
x∈K

j∑
t=i

ft(x)

]
︸ ︷︷ ︸

expert regret

, (35)

According to Lemma 1 and (15), we have the following expert regret

E

[
j∑
t=i

ft(xt,J)−min
x∈K

j∑
t=i

ft(x)

]
≤ c(α, β, |J |)

√
|J |. (36)

Next, we analyze the meta-regret. Let Nt denote the total number of experts that have been seen up
to round t. Recall the definition of GC intervals:

I =
⋃
k∈N
Ik, Ik =

{
[i · 2k, (i+ 1) · 2k − 1] : i ∈ N

}
.

For every k that satisfies 2k < t, we have that a single interval in Ik contains t. Since we activate an
expert for each interval, the number of active experts at round t is 1 + blog2 tc. Taking each round
into account, it is easy to verify that

Nt ≤ t(1 + log2 t). (37)

For interval J , we denote the regret at round t as rt,J . By (25), we scale rt,J to ensure

rt,J =
1

dDL

(
f̃t(xt)− ft(xt,J)

)
∈ [−1, 1]. (38)

Then, according to Theorems 1 and 3 in Luo and Schapire [2015], we have the following lemma.
Lemma 3. Under Assumptions 1 and 2, for any interval J = [i, j] ∈ I, Algorithm 4 ensures

j∑
t=i

rt,J ≤
√

3g(j)|J |, (39)

where

g(j) ≤ 1 + lnNj + ln
5 + 3 ln (1 + j)

2

(37)

≤ 1 + ln j + ln (1 + log2 j) + ln
5 + 3 ln (1 + j)

2
.

Combining (38) and (39), we obtain that

j∑
t=i

f̃t(xt)−
j∑
t=i

ft(xt,J) = dDL

j∑
t=i

rt,J ≤ dDL
√

3g(j)|J |, (40)

Note that at each round t, we sample xt by P (xt = xt,J) = wt,J . Thus, the expected loss incurred
by the meta-algorithm is

E [ft(xt)] =
∑

EJ∈At

wt,Jft(xt,J). (41)

Also note that f̃t(xt) is defined as the weighted average loss of all experts, which is of the same form
as (41), i.e.

f̃t(xt) =
∑

EJ∈At

wt,Jft(xt,J). (42)

19

Replacing the weighted average loss in (40) by expected loss, we have

E

[
j∑
t=i

ft(xt)−
j∑
t=i

ft(xt,J)

]
≤ dDL

√
3g(j)|J |. (43)

Combining the expert regret in (36) and the meta-regret in (43), we obtain that

E

[
j∑
t=i

ft(xt)−min
x∈K

j∑
t=i

ft(x)

]
≤ c(α, β, |J |)

√
|J |+ dDL

√
3g(j)|J |, (44)

where g(j) ≤ 1 + ln j + ln (1 + log2 j) + ln 5+3 ln (1+j)
2 .

In the following, we extend the regret bound over J to any interval I = [s, s+ τ − 1] ⊆ [T]. We first
introduce a property of GC intervals as below.
Lemma 4. (Lemma 1.2 in Daniely et al. [2015]) For any interval I = [s, s+ τ − 1] ⊆ [T], it can be
partitioned into two sequences of disjoint and consecutive intervals, denoted by I−p, . . . , I0 ∈ D and
I1, . . . , Iq ∈ D, such that

|I−i|/|I−i+1| ≤ 1/2,∀i ≥ 1 and |Ii|/|Ii−1| ≤ 1/2,∀i ≥ 2

According to Lemma 4, we have that

E

[
r+τ−1∑
t=r

ft(xt)−min
x∈K

r+τ−1∑
t=r

ft(x)

]
=

q∑
i=−p

(
E

[∑
t∈Ii

ft(xt)−min
x∈K

∑
t∈Ii

ft(x)

])

≤
q∑

i=−p

(
c(α, β, |Ii|)

√
|Ii|+ dDL

√
3g(s+ τ − 1)|Ii|

)
≤

q∑
i=−p

(
c(α, β, τ)

√
|Ii|+ dDL

√
3g(s+ τ − 1)|Ii|

)
≤2

∞∑
i=0

(
c(α, β, τ)

√
2−iτ + dDL

√
3g(s+ τ − 1)2−iτ

)
≤
(

2c(α, β, τ) + 2dDL
√

3g(s+ τ − 1)
)√

τ

∞∑
i=0

√
2−i

≤
(

8c(α, β, τ) + 8dDL
√

3g(s+ τ − 1)
)√

τ . (45)

Hence, the strongly adaptive regret of Algorithm 4 is

E [RA(T, τ)] = max
[s,s+τ−1]⊆[T]

(
E

[
r+τ−1∑
t=r

ft(xt)−min
x∈K

r+τ−1∑
t=r

ft(x)

])
≤
(

8c(α, β, τ) + 8dDL
√

3g(T)
)√

τ = O(
√
τ log T + ατ + βτ

3
2), (46)

where g(T) ≤ 1 + lnT + ln (1 + log2 T) + ln 5+3 ln (1+T)
2 .

A.4 Proof of Theorem 4

The analysis is similar to Corollary 5 in Zhang et al. [2018b], which exploits the following lemma to
bound the dynamic regret by the strongly adaptive regret and the functional variation.
Lemma 5. (Theorem 3 in Zhang et al. [2018b]) Let u∗t ∈ arg minu∈K ft(u). For all integer k ∈ [T],
we have

RD(u∗1, . . . ,u
∗
T) ≤ min

I1,...,Ik

k∑
i=1

(RA(T, |Ii|) + 2|Ii| · VT (i)) ,

where the minimization is taken over any sequence of intervals.

20

For our randomized algorithm, we take the expectation over both sides

E [R∗D] = E [RD(u∗1, . . . ,u
∗
T)] ≤ min

I1,...,Ik

k∑
i=1

(E [RA(T, |Ii|)] + 2|Ii| · VT (i)) .

Next, we restric to intervals of length τ , and in this case k = T
τ . Then we get

E [R∗D] ≤ min
1≤τ≤T

k∑
i=1

(E [RA(T, τ)] + 2τVT (i))

= min
1≤τ≤T

(
E [RA(T, τ)]T

τ
+ 2τ

k∑
i=1

VT (i)

)

≤ min
1≤τ≤T

(
E [RA(T, τ)]T

τ
+ 2τVT

)
. (47)

Combining (46) and (47), we have

E [R∗D] ≤ min
1≤τ≤T

(

8c(α, β, τ) + 8dDL
√

3g(T)
)
T

√
τ

+ 2τVT

 .

By the fact that

g(T) ≤ 1 + lnT + ln (1 + log2 T) + ln
5 + 3 ln (1 + T)

2
≤ 3 + 3 log T,

we obtain

E [R∗D] ≤ min
1≤τ≤T

((
8c(α, β, τ) + 24dDL

√
1 + log T

)
T

√
τ

+ 2τVT

)
. (48)

In the following, we consider two cases. If VT ≥
√

log T
T , we choose

τ =

(
T
√

log T

VT

)2/3

≤ T,

and have

E [R∗D] ≤
(
8ĉ+ 24dDL

√
1 + log T

)
T

2
3V

1
3

T

log
1
6 T

+ 2T
2
3V

1
3

T log
1
3 T

≤
(8ĉ+ 24dDL)T

2
3V

1
3

T

log
1
6 T

+ (2 + 24dDL)T
2
3V

1
3

T log
1
3 T, (49)

where ĉ = c(α, β, T).

Otherwise, we choose τ = T , and have

E [R∗D] ≤
(

8ĉ+ 24dDL
√

1 + log T
)√

T + 2TVT

≤
(

8ĉ+ 24dDL
√

1 + log T
)√

T + 2T

√
log T

T

≤
(

8ĉ+ (24dDL+ 2)
√

1 + log T
)√

T . (50)

Combining (49) and (50), we have

E [R∗D] ≤ max

 (8ĉ+24dDL)T
2
3 V

1
3
T

log
1
6 T

+ (2 + 24dDL)T
2
3V

1
3

T log
1
3 T(

8ĉ+ (24dDL+ 2)
√

1 + log T
)√

T
(51)

= O
(

max
{

(1 + α
√
T + βT)

√
T log T , (1 + α

√
T + βT)T

2
3V

1
3

T log
1
3 T
})

. (52)

21

B More Related Works

In OCO, the computational effective variants of FTPL are investigated in centralized [Hazan and
Minasyan, 2020] and decentrailized [Wang et al., 2023] setting. In addition to the worst-case dynamic
regret defined in (2), Zinkevich [2003] also introduce the general dynamic regret, which compares
the learner against any sequence of comparators

RD(u1, . . . ,uT) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut), (53)

where u1, . . . ,uT ∈ K. In this pioneer work, Zinkevich [2003] proposed a regularity of comparator
sequence called path-length

PT (u1, . . . ,uT) =

T∑
t=2

‖ut − ut−1‖ ,

and showed that OGD attains anO(
√
T (1+PT)) general dynamic regret bound. Zhang et al. [2018a]

strengthened the general dynamic regret bound to O(
√
T (1 + PT)), which has been shown to be

optimal. Improved results can be obtained when the online functions are smooth [Zhao et al., 2020,
2024], strongly convex [Baby and Wang, 2022] or exp-concave [Baby and Wang, 2021]. Moreover,
the computational efficiency of general dynamic regret optimization is recently considered [Zhao
et al., 2022, Wang et al., 2024].

Notice that by assigning ut ∈ arg minx∈K ft(x) as the local minimizer, we get the worst-case
dynamic regret in (2), and there exist numerous studies on the worst-case scenario. When the
loss functions are strong convex and smooth [Mokhtari et al., 2016], or when they are smooth and
the minimizers lie in the interior of K [Yang et al., 2016], OGD can attain O(P ∗T + 1) dynamic
regret bound, where P ∗T := PT (x∗1, . . . ,x

∗
T) and x∗t ∈ arg minx∈K ft(x). Another regularity of

comparator sequence is the squared path-length [Zhang et al., 2017]:

S∗T := ST (x∗1, . . . ,x
∗
T) =

T∑
t=2

∥∥x∗t − x∗t−1

∥∥2
,

which could be much smaller than the path-length P ∗T when local minimizers move slowly. Zhang
et al. [2017] demonstrated that the dynamic regret bound can be reduced to O(min{P ∗T , S∗T }+ 1)
for (semi-)strongly convex and smooth functions. Moreover, Besbes et al. [2015] demonstrated that
if the value of VT is known, a restarted OGD can achieve O(T

2
3 (VT + 1)

1
3) and O(

√
T (VT + 1))

dynamic regret for convex and strongly convex functions, respectively. Later, Baby and Wang [2019]
improved the dynamic regret to O(T

1
3 (VT + 1)

2
3) for 1-dim square loss. More recently, to exploit

both comparator sequence and function sequence, Zhao and Zhang [2021] refined the analysis for
online multiple gradient descent and attained an O(min{P ∗T , S∗T , VT } + 1) dynamic regret bound
under the same assumption as Zhang et al. [2017].

Besides dynamic regret, another metric in dynamic environments is adaptive regret. Adaptive regret
is introduced by Hazan and Seshadhri [2007] to OCO, but in a weak form:

RA(T) = max
[s,r]⊆[T]

{
r∑
t=s

ft(xt)−min
x∈K

r∑
t=s

ft(x)

}
, (54)

which is defined as the maximum static regret over any contiguous interval. To minimize (54),
Hazan and Seshadhri [2007] proposed follow the leading history (FLH) with O(

√
T log3 T) weakly

adaptive regret for convex functions. However, this metric does not respect short intervals well since
the O(

√
T log3 T) bound is meaningless for those intervals of length O(

√
T). To eliminate the

dominance of long intervals, Daniely et al. [2015] introduced strongly adaptive regret that takes the
interval length τ as a parameter, as we indicate in (4). They also developed two-layer algorithms and
attain O(

√
τ log T) strongly adaptive regret for general convex functions. Later, Jun et al. [2017]

proposed a novel meta-algorithm named sleeping coin betting (SCB) and improved the strongly
adaptive regret bound to O(

√
τ log T).

Although both dynamic regret and adaptive regret are designed for dynamic environments, our
understanding of their relationship remains limited. Zhang et al. [2018b] first demonstrated that

22

dynamic regret can be bounded by the strongly adaptive regret and the functional variation. Recent
studies shows that it is possible to minimize dynamic regret and adaptive regret simultaneously
[Zhang et al., 2020, Cutkosky, 2020, Zhang et al., 2022, Wang et al., 2024].

The metric of dynamic regret has also been investigated in online non-convex learning. Lesage-
Landry et al. [2020] proposed online newton method (ONM), a second-order method, achieving an
O(P ∗T + 1) dynamic regret bound under the conditions that the starting point is located near the
global optimal solution and the loss function is strongly convex around the optimal solution. Gao et al.
[2018] examined a class of non-convex functions that satisfy weak pseudo-convex conditions and
developed online algorithms that attain O(

√
T (VT + 1)) dynamic regret. They also extended their

result to the bandit feedback setting. Roy et al. [2019] studied functions with weak-quasi-convexity
and obtained similar results as Gao et al. [2018]. Furthermore, Héliou et al. [2020] applied their
methods to bandit setting using a kernel-based estimator. In a subsequent work, Héliou et al. [2021]
proposed hierarchical dual averaging (HDA) and improved the dynamic regret bounds under the same
setting.

C Omitted Details for Experiments

All experiments are executed on a computer with a 2.50 GHz Intel Xeon Platinum 8255C CPU and
an RTX 2080Ti GPU. We follow the experiment settings of Xu and Zhu [2023] and implement our
methods based on their code.

C.1 Experiments on meta-imitation learning.

Problem formulation. Imitation learning [Billard et al., 2004] has gained significant attention as a
means of transferring human skills to robots. Huang et al. [2019] presents a novel formulation of
imitation learning using kernelized movement primitives, which considers nonlinear hard constraints
and obstacle avoidance. In their study, the states of the robot are modeled as a linear combination
of basis functions, and the demonstrations provided by humans are modeled by a Gaussian mixture
model (GMM), where the parameters follow a Gaussian distribution. The objective of their approach is
to minimize the divergence between the distributions of the robot state model and the demonstrations,
while ensuring that the hard constraints are satisfied. Building upon this idea, Xu and Zhu [2023]
further model the states of the robot by a neural network instead of the linear combination of basis
functions.

Following the work of Xu and Zhu [2023], in this experiment, we utilize a neural network to model
the states of the robot and GMM to model the demonstrations. Specifically, the robot’s state ξ(w, t),
which includes the joint position q(w, t) ∈ RO and velocity q̇(w, t), is parameterized by w and is
modeled as

ξ(w, t) =

[
q(w, t)
q̇(w, t)

]
,

where q(w, t) is a neural network and takes t as the input and the location q(w, t) as the output. The
dataset of demonstrations consists of H trajectories, where each trajectory contains N time-state
pairs. These pairs, denoted as {{tn,h, ξ̂n,h}Nn=1}Hh=1, are modeled using a GMM. Each demonstration
state ξ̂n associated with tn is described by a conditional probability distribution with mean µ̂n and
covariance Σ̂n, i.e., ξn | tn ∼ N (µ̂n, Σ̂n), where µ̂n and Σ̂n can be computed by the GMM. As
formulated in previous works [Huang et al., 2019, Xu and Zhu, 2023], the imitation learning task can
be cast as the following constrained optimization problem:

min
w

E
t∈[t0,tN]

[
1

2
(ξ(w, t)− µ̂t)>Σ̂−1

t (ξ(w, t)− µ̂t)
]

s.t. gi(ξ(w, t)) ≤ ci, ∀t ∈ [t0, tN], i = 1, . . . ,m,

(55)

where gi is the i-th state constraint, m is the total constraint number, µ̂t and Σ̂t are the mean
and variance of the demonstration state ξ̂(t), i.e., ξ̂ | t ∼ N (µ̂t, Σ̂t). Here, the training dataset
{tn, µ̂n, Σ̂n}Nn=1 is provided by the GMM. It is notable that the demonstrations are collected in a
no-collision environment. Thus, it is possible that these demonstrations may not be able to avoid
collisions effectively.

23

0 50 100 150 200
Round (task index)

0

1

2

3

4

5

6

7
Co

ns
tra

in
t v

io
la

tio
n

FTPL
FTPL-A
FTPL-D+

(a) Constrained violation metric

0 50 100 150 200
Round (task index)

0

20

40

60

80

100

Cu
m

ul
at

iv
e

co
ns

tra
in

t v
io

la
tio

n

FTPL
FTPL-A
FTPL-D+

(b) Cumulative constrained violation metric

Figure 5: Supplementary results for abruptly changing environments.

In our scenario, we have a series of imitation learning tasks that are revealed sequentially. In each
round t, a new task of Problem (55) is revealed, and its dataDtrt = {tn, µ̂n, Σ̂n}Nn=1 and the collision
area denoted by {gi}mi=1 and {ci}mi=1 are given. Then we apply the framework of online constrained
meta-learning [Xu and Zhu, 2023] and construct the meta objective at round t as

L(Alg(λ, φ,Dtrt),Dvalt) (56)

with

Alg(λ, φ,Dtrt) = arg min
w

L(w,Dtrt) +
λ

2
‖w − φ‖2

s.t.
1

N

∑
n=[N]

gi(ξ(w, tn)) ≤ ci, i = 1, . . . ,m,
(57)

where L(w,Dtr) is the loss function of the model parameter w on a dataset Dtr = {tn, µ̂n, Σ̂n}Nn=1,
and

L(w,Dtr) =
1

N

N∑
n=1

1

2
(ξ(w, tn)− µ̂n)

>
Σ̂−1
n (ξ(w, tn)− µ̂n) . (58)

Next, we update φt by our algorithms and compute wt = Alg(λ, φt,Dtrt) as the task-specific model.

General setup. We use the demonstration data given by Huang et al. [2019]. In each round, the
robot needs to imitate the given demonstration and write a capital letter. The demonstration dataset,
denoted as Dtrt = {tn, µ̂n, Σ̂n}Nn=1, consists of the sizes, angles, and locations of the letter. These
sizes, angles, and locations are randomly sampled from a Gaussian distribution. The robot also
needs to avoid a circle collision area, which defines m, g1, and c1 in (55) as m = 1, c1 = 0.5
and g1(x) = σ(−

√
(x1 − d1)2 + (x2 − d2)2 + r), where σ(x) = β log(1 + exp(βx)) is a barrier

function and, r is the radius of the collision area and r = 2. The center of the collision area, denoted
by (d1, d2), is sampled from the Gaussian distribution N (0, 1) for each task. Furthermore, in each
task, the robot can access the full shot of demonstrations including 400 data points.

We model the position of the robot by a four-layer neural network with 128 which consists of an
input layer of size 8, followed by 3 hidden layers of size 128 with the ReLU nonlinearities and an
output layer of size 2. The neural network takes {t, t2, t3, t4, sin(t), cos(2t), sin(2t), cos(2t)} as
the inputs and q(w, t) as the outputs. We use the Adam optimizer [Kingma and Ba, 2014] with a
learning rate of 0.001 for the optimization.

We simulate two types of dynamic environments: abruptly changing environments and gradually
evolving environments. For abruptly changing environments, we use the demonstration data of capital
letters "M", "E", "T" and "A" for the 4 stages. For gradually evolving environments, we rotate the
letter "A" at a small random angle δt ∈ (0, 0.05] in each round. Specifically, at round t, we compute

24

0 50 100 150 200
Round (task index)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Co
ns

tra
in

t v
io

la
tio

n

FTPL
FTPL-A
FTPL-D+

(a) Constrained violation metric

0 50 100 150 200
Round (task index)

0

5

10

15

20

25

30

35

Cu
m

ul
at

iv
e

co
ns

tra
in

t v
io

la
tio

n

FTPL
FTPL-A
FTPL-D+

(b) Cumulative constrained violation metric

Figure 6: Supplementary results for gradually evolving environments.

the rotation angle δ =
∑t
τ=1 δτ , define a rotation matrix

Rδ =

[
cos θ − sin θ
sin θ cos θ

]
,

and then transform µ̂n and Σ̂n of the dataset by{
µ̂′n = µ̂nRδ
Σ̂′n = RTδ Σ̂nRδ

.

Supplementary results. Apart from the loss shown in Fig 3, the constrained violation is another
metric considered in Xu and Zhu [2023]. We plot the constrained violation in Fig 5 and Fig 6. The
results show that our methods sustain the same and even less constrained violation than FTPL. This is
reasonable and can be explained by Proposition 5 in Xu and Zhu [2023] that the constrained violation
bound holds for any meta-parameter sequence φ1:T = {φ1, · · · , φT }.

C.2 Experiments on few-shot image classification with robustness

Problem formulation. Following the problem formulation in Chamon and Ribeiro [2020] and Xu
and Zhu [2023], the problem of robust learning for a single image classification task Tt can be written
as

θ∗t = argmin
θ∈Θ

Ez∼Dt [`(θ, z)]

s.t. Ez∼Dt,[P]
[`(θ, z)]− (1 + α)Ez∼Dt [`(θ, z)] ≤ 0,

(59)

where 0 < α < 1 is the robustness tolerance parameter, ` is the loss function, Dt is the distribution
of the original data, and Dt,[P] is the distribution of the perturbed data, which is generated by the
PGD method on Dt.
In our setting, a series of robust 5-way 5-shot image classification tasks are revealed sequentially. In
each round t, a new task of Problem (59) is revealed, which consists of a 5-shot meta-training dataset
Dtrt (the support dataset), and a meta-validation dataset Dvalt (the query dataset). Additionally, the
dataset Dtrt,[P] is also 5-shot and generated by the PGD method [Kurakin et al., 2018] on Dtrt . Then
the meta objective at round t can be written as

L(Alg(λ, φ,Dtrt),Dvalt) (60)
with

Alg(λ, φ,Dtrt) = arg min
θ

L(θ,Dtrt) +
λ

2
‖θ − φ‖2

s.t. L(θ,Dtrt,[P])− (1 + α)L(θ,Dtrt) ≤ 0,

(61)

where L(w,Dtrt) is the loss function of the model parameter θ on a dataset Dtrt . Next, we update φt
by our algorithms and compute θt = Alg(λ, φt,Dtrt) as the task-specific model. In the experiment,
we select α = 0.3 and λ = 1.0.

25

Black Footed Albatross Brandt Cormorant

Laysan Albatross Sooty Albatross

(a) Water birds

Cardinal Gray Catbird

Yellow Billed Cuckoo Spotted Catbird

(b) Forest birds

Eastern Towhee Scissor Tailed Flycatcher

Horned Lark Bobolink

(c) Grassland birds

Figure 7: Example images of birds from different habitats.

General setup. We conduct the experiments on CUB-200-2011 (referred to as CUB) dataset [Wah
et al., 2011]. The input image processing and network architecture are fully provided in Section 6.2.
To simulate real-world dynamic environments, we select three groups of bird categories from the
CUB dataset based on their habitats: water birds, forest birds, and grassland birds. We show example
images in Fig. 7 and provide a full list of classes for each group in Table 2. For each group, we
randomly allocate 50% of the classes for training data, 25% for validation data, and 25% for test
data. The time horizon T is then evenly divided into three stages, with tasks sampled from one group
of bird categories in each stage. Specifically, in each round, we sample a 5-way 5-shot task from
the training data classes, involving the selection of 5 classes with 5 images per class. During the
meta-testing phase, we sampled 600 5-way 5-shot tasks from the test data classes.

We use the Adam optimizer [Kingma and Ba, 2014] with a learning rate of 0.001 for the optimization
and use cross-entropy as the loss function. The adversarial attack on the query set is performed using
the PGD method with a perturbation size of ε = 2/255. This process involves 7 iterative steps, each
with a step size of 2.5ε.

26

Table 2: Bird species by habitat type in the CUB dataset.

Habitat Type CUB Label Names
Water 001.Black_footed_Albatross, 002.Laysan_Albatross, 003.Sooty_Albatross,

023.Brandt_Cormorant, 024.Red_faced_Cormorant, 025.Pelagic_Cormorant,
050.Eared_Grebe, 051.Horned_Grebe, 052.Pied_billed_Grebe,
053.Western_Grebe, 058.Pigeon_Guillemot, 059.California_Gull,
060.Glaucous_winged_Gull, 061.Heermann_Gull, 062.Herring_Gull,
064.Ring_billed_Gull, 065.Slaty_backed_Gull, 066.Western_Gull,
071.Long_tailed_Jaeger, 072.Pomarine_Jaeger, 084.Red_legged_Kittiwake,
086.Pacific_Loon, 089.Hooded_Merganser, 090.Red_breasted_Merganser,
100.Common_Yellowthroat, 101.White_Pelican, 106.Horned_Puffin

Forest 017.Cardinal, 018.Spotted_Catbird, 019.Gray_Catbird, 033.Yel-
low_billed_Cuckoo, 035.Purple_Finch, 038.Great_Crested_Flycatcher,
054.Blue_Grosbeak, 057.Rose_breasted_Grosbeak, 067.Anna_Hummingbird,
068.Ruby_throated_Hummingbird, 070.Green_Violetear, 073.Blue_Jay,
075.Green_Jay, 095.Baltimore_Oriole, 096.Hooded_Oriole, 103.Sayornis,
111.Loggerhead_Shrike, 152.Blue_headed_Vireo, 154.Red_eyed_Vireo,
158.Bay_breasted_Warbler, 160.Black_throated_Blue_Warbler,
162.Canada_Warbler, 166.Golden_winged_Warbler, 175.Palm_Warbler,
183.Northern_Waterthrush, 185.Bohemian_Waxwing,
188.Pileated_Woodpecker, 193.Carolina_Wren, 195.House_Wren, 200.Com-
mon_Yellowthroat

Grassland 009.Brewer_Blackbird, 010.Red_winged_Blackbird, 013.Bobolink, 021.East-
ern_Towhee, 041.Scissor_tailed_Flycatcher, 085.Horned_Lark, 104.Ameri-
can_Pipit, 110.Geococcyx, 113.Baird_Sparrow, 114.Black_throated_Sparrow,
115.Brewer_Sparrow, 116.Chipping_Sparrow, 121.Grasshopper_Sparrow,
127.Savannah_Sparrow, 128.Seaside_Sparrow, 129.Song_Sparrow, 131.Ves-
per_Sparrow, 140.Scarlet_Tanager, 146.Forsters_Tern, 149.Brown_Thrasher,
150.Sage_Thrasher

27

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 4 proposes algorithms for dynamic regret minimization. Section 5
provides the algorithm for adaptive regret minimization. Section 6 reports the application
and the experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the future work in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

28

Answer: [Yes]

Justification: Section 3 presents the assumptions. Appendix A provides the proofs of the
theorems.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our algorithms in Sections 4 and 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

29

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and data are included in supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 6 and Appendix C.1 for experimental details. Full details are
available in the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See the results in Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix C.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and conform to it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work does not present any foreseeable societal consequence.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

31

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite Xu and Zhu [2023] properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

32

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

	Introduction
	Related Work
	Preliminaries
	Online Non-convex Learning with Dynamic Regret
	Follow the Perturbed Leader with Dynamic Regret
	FTPL-D+

	Online Non-convex Learning with Adaptive Regret
	Application to Online Constrained Meta-Learning
	Experiments on meta-imitation learning
	Experiments on few-shot image classification with robustness

	Conclusion and Future Work
	Theoretical Analysis
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	More Related Works
	Omitted Details for Experiments
	Experiments on meta-imitation learning.
	Experiments on few-shot image classiﬁcation with robustness

