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Abstract
State-of-the-art text-to-speech (TTS) systems have utilized pre-
trained language models (PLMs) to enhance prosody and cre-
ate more natural-sounding speech. However, while PLMs have
been extensively researched for natural language understanding
(NLU), their impact on TTS has been overlooked. In this study,
we aim to address this gap by conducting a comparative anal-
ysis of different PLMs for two TTS tasks: prosody prediction
and pause prediction. Firstly, we trained a prosody prediction
model using 15 different PLMs. Our findings revealed a loga-
rithmic relationship between model size and quality, as well as
significant performance differences between neutral and expres-
sive prosody. Secondly, we employed PLMs for pause predic-
tion and found that the task was less sensitive to small models.
We also identified a strong correlation between our empirical
results and the GLUE scores obtained for these language mod-
els. To the best of our knowledge, this is the first study of its
kind to investigate the impact of different PLMs on TTS.
Index Terms: pretrained language models, text-to-speech

1. Introduction
The advent of Transformer-based pretrained language models
(PLMs) has revolutionized natural language processing (NLP).
Initially, Transformers [1] were proposed as an attention-based
encoder-decoder architecture for machine translation. But the
Transformer decoder was rapidly adopted for text generation
with GPT-2 [2] and its successors, and the transformer encoder
for natural language understanding (NLU) with BERT [3]. Re-
garding transformer encoders for NLU, since the emergence of
BERT, many BERT-like models have been released with more
pretraining data [4, 5], novel pretraining methods [6], more ef-
ficient architectures [7], or smaller architectures with faster in-
ference [8, 9, 10, 11]. Generally, these models are trained on
a two-step setup. First, they are pretrained from scratch on
task-agnostic objectives such as masked language modelling,
next sentence prediction, or replaced token detection. Self-
supervised pretraining enables the model to learn from large
unlabeled corpora like Wikipedia or the Book corpus [12]. Sec-
ond, they are fine-tuned on a task-specific objective and corpus.

The success of pretrained language models on NLU has in-
spired research in other fields. In text-to-speech (TTS), sev-
eral studies have incorporated pretrained language models to
Tacotron2 [13], an encoder-decoder TTS system relying on at-
tention. Fang et al. [14] enhance Tacotron2 by adding BERT
as a secondary encoder. Thus, the decoder attends to both
the subword-level representations generated by BERT and the
output of the original Tacotron2 encoder. In a similar fash-
ion, Hayashi et al. [15] compare subword-level and phrase-level
representations from BERT-large as extra inputs to Tacotron2

decoder. They conclude that text context helps in generating
more natural speech specially at the granularity of subwords.
Xiao et al. [16] include Chinese BERT to improve prosody in
Tacotron2. They also leverage the pretrained language model to
predict pauses between Chinese characters. Alternatively, Xu
et al. [17] propose using BERT embeddings to generate con-
text vectors from neighboring sentences to improve prosody
modelling. Away from Tacotron 2, Kenter et al. [18] include
small versions of BERT in an RNN-based TTS system and high-
light the importance of fine-tuning the pretrained model. They
present an ablation study on the size of the language model for
F0 prediction. More recently, Makarov et al. [19] demonstrate
that BERT enhances prosody prediction specially when it is fed
with multiple sentences. Karlapati et al. [20] present CopyCat2,
a TTS system that learns a prosodic space and subsequently pre-
dicts prosody representations based on contextualized subword
embeddings from BERT. Similarly, eCat [21] is introduced as a
system that predicts prosody with RoBERTa and blocks of nor-
malizing flows.

PLMs have been widely surveyed [22, 23, 24, 25] and com-
pared empirically [26, 27, 28] for various NLP tasks. They are
often compared on GLUE [29], an NLU benchmark combin-
ing 9 tasks such as natural language inference, sentiment anal-
ysis, and sentence similarity. Notwithstanding the numerous
works studying the impact of PLMs in NLP and the positive re-
sults of PLMs in TTS systems, they have not been surveyed nor
compared for TTS tasks, leaving many questions unanswered.
First, although several models have outperformed BERT for
NLP tasks recently, there is almost no empirical data on how
PLMs other than BERT perform in TTS systems. Second, there
is little information about the relation between model proper-
ties (e.g., size, architecture, and pretraining methodology) and
their performance in TTS tasks. Third, there is no compari-
son of PLMs’ performance on NLU and TTS tasks like prosody
prediction. This relation would be beneficial to link results of
PLMs in NLU to potential findings in TTS.

This work presents a comparative analysis of 15 PLMs for
two TTS tasks: prosody prediction and pause prediction. To
the best of our knowledge, this is the first study of its kind
in the field of TTS. Our contributions are summarized as fol-
lows. Firstly, we conduct an experimental analysis of the 15
PLMs for both prosody and pause prediction. Secondly, the
results for prosody prediction demonstrate a logarithmic rela-
tion between model size and quality, and reveal differences in
performance for neutral and expressive prosody. Thirdly, our
results on pause prediction indicate that the task is less sensi-
tive to smaller language models. Lastly, we compare our find-
ings with the GLUE scores, highlighting similarities between
the performance of PLMs on TTS and NLU.



Language model HuggingFace’s model name Num. parameters (M)

BERTTINY [11] prajjwal1/bert-tiny 4.39
BERTMINI [11] prajjwal1/bert-mini 11.17
ELECTRASMALL [6] google/electra-small-discriminator 13.48
MobileBERT [10] google/mobilebert-uncased 24.58
BERTSMALL [11] prajjwal1/bert-small 28.76
SqueezeBERT [9] squeezebert/squeezebert-uncased 51.09
DistilBERT [8] distilbert-base-cased 65.19
BERTBASE [3] bert-base-cased 108.31
ELECTRABASE [6] google/electra-base-discriminator 108.89
RoBERTABASE [4] roberta-base 124.65
FunnelTransformerSMALL [7] funnel-transformer/small 130.97
FunnelTransformerINTERMEDIATE [7] funnel-transformer/intermediate 177.06
XLM −RoBERTaBASE [5] xlm-roberta-base 278.04
BERTLARGE [3] bert-large-cased 333.58
RoBERTALARGE [4] roberta-large 355.36

Table 1: Selection of pretrained language models downloaded from HuggingFace [30] and their number of parameters.

2. Methods
This study investigates how different PLMs impact two distinct
TTS tasks: prosody prediction and pause prediction. To predict
prosody, we use the prosody predictor from eCat [21], an end-
to-end TTS model. We delve into the creation and prediction
of the latent prosodic space in subsection 2.1. In addition, we
analyze pause prediction as a separate task in subsection 2.2.
Finally, we present the selected PLMs to be tested on the afore-
mentioned tasks and explain their differences in subsection 2.3.

2.1. Prosody prediction

We investigate the impact of PLMs on prosody prediction us-
ing eCat [21] because it is a state-of-the-art TTS system that
operates in a prosodic latent space. eCat latent space is de-
signed in a way to factor out phoneme and speaker information
and capture prosody. It works in a two-step approach where
it first learns word-level acoustic and duration-based prosodic
representations through an auto-encoder step. In the first step,
reference encoders generate the prosodic space based on the
mel-spectrogram, and decoders synthesize the speech wave-
form based on the prosodic representations. The acoustic repre-
sentations are expected to capture the main prosodic character-
istics such as intonation and tone, whereas duration represen-
tations are expected to focus on rhythm, stress, and duration.
In the second step, a prosody prediction model uses a PLM,
followed by Bi-LSTM layers and normalizing flow blocks, to
predict these learned prosodic representations from text. The
language model produces contextualized word embeddings that
capture syntactic and semantic information from text. These
embeddings are then fed through Bi-LSTM layers and com-
bined with speaker embeddings to be used as conditions for
flow layers. The outputs of the prosody prediction model are
used in inference replacing the reference encoder outputs since
mel-spectrograms are not available at test time. In this study, we
aim to replace the default PLM used in the prosody predictor,
i.e. RoBERTa-base, with alternative PLMs and evaluate their
effectiveness.

2.2. Pause prediction

In order to achieve a diverse range of tasks, we examine various
PLMs for pause prediction. The objective of pause prediction is
to predict the probability of a pause after each word, thereby en-
suring that the pauses are accurately placed. Our pausing model

consists of a language model (specifically, RoBERTa-base), a
Bi-LSTM layer, and a dense projection. The model is trained
using binary cross-entropy loss between the predicted values
and the target binary pausing sequence. Our target binary paus-
ing labels are derived from ground-truth durations, where any
silence lasting more than 100ms is considered a pause. This
threshold was chosen empirically. Our aim was to annotate any-
thing that is reasonably a silence in terms of audio signal, rather
than focusing on pauses from a human perception perspective.
During inference, we binarize the predicted probabilities using
a threshold previously computed on the development set. This
model can be used in eCat to override the duration prosodic rep-
resentations of pauses. Similar to prosody prediction, we want
to compare the pause prediction model with alternative PLMs
of different sizes and pretrained with different tasks and data.

2.3. Selection of pretrained language models

We select 15 pretrained language models, including the default
PLM (RoBERTa-base), for both the prosody predictor and the
pause prediction model. All language models are BERT-like
models, i.e., transformer encoders trained with large corpora of
data in a self-supervised fashion. Our selection aims to cover a
broad spectrum of model sizes with diverse pretraining or distil-
lation techniques. In Table 1, we provide a list of the pretrained
language models, along with their corresponding HuggingFace
name and model size. Note that the size refers to the embedding
matrix and model architecture weights combined.

We first select medium- and large-size models that target
NLU performance. BERT [3] (BERT-base, BERT-large) was
the first pretrained transformer encoder achieving state-of-the-
art performance in multiple NLP tasks. It was pretrained on
2 tasks: masked language modelling and next sentence predic-
tion. RoBERTa [4] (RoBERTa-base, RoBERTa-large) leverages
BERT’s architecture but is trained longer over more data with
longer input sequences and bigger batches. Authors removed
the next sentence prediction task, and used masked language
modelling dynamically. Overall, RoBERTa outperforms BERT
in several NLU benchmarks. XLM-RoBERTa [5] is a multilin-
gual version of RoBERTa. It has the largest embedding matrix
out of the selection, consisting of 192 million parameters due
to its coverage of 100 languages. Despite this, it is compara-
ble in architecture size to both BERT-base and RoBERTa-base.
ELECTRA [6] (ELECTRA-base, ELECTRA-small) is trained
with replaced token detection instead of masked language mod-



Figure 1: Euclidean distances between predicted and ground-truth latents for acoustic (left) and duration (right) representations.
Language models are shown in ascending order of size.

elling. A small generator network corrupts the text by replacing
tokens and a discriminator is trained to identify the replaced
tokens. Authors claim a more efficient training while obtain-
ing better results than previous models. Funnel-Transformer
[7] (Funnel-intermediate, Funnel-small) makes an architectural
change by gradually compressing the sequence of hidden states.
It is trained with a similar objective as ELECTRA.

Regarding small models, transfer learning from large-scale
language models and more efficient architectures have reduced
the size and increased speed of language models while retain-
ing performance. DistilBERT [8] is a distilled version of BERT
that reduces BERT size by 40%, while preserving 97% of its
NLU performance. SqueezeBERT [9] uses grouped convolu-
tions instead of fully-connected layers as they account for a
great percentage of FLOPs and latency. MobileBERT [10] is
a deep and thin language model that reduces BERT size by 4. It
is trained through progressive knowledge transfer from a bigger
network. Turc et al. [11] introduce the concept of pretrained dis-
tillation to improve the efficiency of knowledge distillation and
release several distilled versions of BERT (BERT-small, BERT-
mini, BERT-tiny).

3. Experimental setup
3.1. Data

We conducted experiments on an internal dataset containing
recordings of speakers reading excerpts from Wikipedia arti-
cles, news articles, conversations, etc. The dataset comprises
over 20 hours of speech per speaker, recorded from 4 female
speakers of US English. All recordings were sampled at 24kHz
and documents are not shared across data splits (train/dev/test).
All data splits contain utterances with diverse levels of ex-
pressivity. We divided them into utterances with more neutral
speech such as discourse and utterances with highly expressive
speech such as quotes. Differences in expressivity were taken
into account during evaluations (see Section 4.1).

3.2. System configuration

In this work, we did not tune hyperparameters for every model
that was trained. We used the same learning rate and train-
ing steps across all language models to maintain simplicity and
consistency in our experiments. However, we fine-tuned lan-
guage models of diverse sizes and pretraining techniques. This
may have resulted in an advantage for the RoBERTa-base model
compared to the other models, as the hyperparameters were
tuned specifically for this pre-trained language model. For in-
stance, large language models may have been under-trained.

For the prosody predictor, we used the training hyperpa-
rameters from the original eCat [21], which were tuned for
RoBERTa-base. The Bi-LSTM layer had a hidden dimension
of 512. To train the pause predictor, we used a batch size of
32, Adam optimizer with a learning rate of 1e-5 in the language
model and 1e-4 in the rest of the model, with betas of 0.9 and
0.98. The model was trained for 50k steps.

We investigated the effect of different language models on
both TTS tasks. First, we trained the prosody predictor with the
15 PLMs listed in Table 1. Second, we trained and compared the
pause prediction model with a subset of 12 PLMs. BERT-small,
Funnel-small, and Funnel-intermediate were excluded due to
implementation issues. In both setups, the prosody predictor
and pause prediction model were trained end-to-end, meaning
that the losses were back-propagated into the language models
to fine-tune textual representations.

Prosody prediction and pause prediction tasks required the
use of word-level tokens. However, most language model to-
kenizers operate at the word-piece level, breaking words into
smaller subword units. To bridge this gap, we downsampled
the contextualized word-piece embeddings produced by the lan-
guage model. Specifically, we averaged the word-piece embed-
dings that aligned with the same word-level tokens, thus obtain-
ing word-level embeddings.

4. Results
4.1. Language models for prosody prediction

The prosody predictor was trained with every language model
from Table 1. To measure the accuracy of our prosody pre-
diction model objectively, we calculated the Euclidean distance
between the predicted latent samples and the ground-truth ones.
We generated the ground-truth prosody representations by pass-
ing the ground-truth mel-spectrogram through a reference en-
coder. Generally, the closer the predicted latent sample is to the
ground-truth latent, the more coherent and appropriate it is. It is
worth noting that during training, we did not use Euclidean dis-
tance, as we employed negative log-likelihood on normalizing
flows instead. Figure 1 shows Euclidean distance, for acoustic
(left) and duration (right) latents. On the y axis, language mod-
els are sorted by descending size. Results manifest a negative
correlation between size and distance; prosody predictors with
bigger language models reduce the distance to ground-truth rep-
resentations for both acoustic and duration latents. In other
words, bigger language models seem to better predict prosody
latents.

In addition, we conducted subjective evaluations on syn-



Alternative LM eCat with alt. LM eCat with RoBERTa-base Recordings Gap reduction (%) p-value Significance

BERTTINY 73.86± 16.37 74.99± 15.37 78.32± 14.58 -33.73 0 TRUE
BERTMINI 72.77± 16.35 73.64± 15.79 77.31± 15.31 -23.78 0.0026 TRUE
MobileBERT 73.25± 18.32 74.15± 18.14 78.01± 17.40 -23.19 0.0019 TRUE
DistilBERT 69.04± 19.75 69.83± 19.36 75.96± 17.87 -12.86 0.0017 TRUE
RoBERTaLARGE 72.23± 16.36 72.67± 15.76 75.98± 15.30 -13.14 0.0914 FALSE

Table 2: MUSHRA mean scores. Every row is a MUSHRA evaluation with 3 systems: eCat with the alternative LM from the first column,
eCat with RoBERTa-base, and recordings. Gap reduction is the difference between RoBERTa-base and the alternative language model
relative to the difference between recordings and RoBERTa-base.

thetic speech. We launched 5 MUSHRA evaluations compar-
ing recordings, speech from vanilla eCat (i.e., with RoBERTa-
base in the prosody predictor), and speech generated by eCat
with an alternative language model in the prosody predictor.
The alternative language models were selected keeping a broad
range of sizes, namely, RoBERTa-large, DistilBERT, Mobile-
BERT, BERT-mini, and BERT-tiny. All evaluations were con-
ducted with 24 testers and the same 80 utterances, consisting
of 20 utterances per speaker. Approximately half of the sam-
ples per speaker comprised neutral speech while the other half
consisted of highly expressive speech. The MUSHRA question
was about the naturalness of the voice. We expect any changes
to be due to prosody since we are only modifying the prosody
predictor, i.e., only changing the predicted latents. Table 2 sum-
marises results for each MUSHRA evaluation. It displays mean
MUSHRA scores for 3 systems: recordings, vanilla eCat (with
RoBERTa-base), and eCat with an alternative language model in
the prosody predictor. We show the reduction of gap between
vanilla eCat and recordings; negative values indicate a gap in-
crease. Moreover, a two-sided t-test was computed to compare
vanilla eCat against eCat with an alternative language model.
The last two columns show the p-value and whether it was sta-
tistically significant given a significance level of α = 0.05.

As a result, all alternative models perform statistically
significantly worse than RoBERTa-base except for RoBERTa-
large. Similar to objective metrics, there is a relation between
size and gap reduction. Smaller models have worse degradation
than larger models. Notably, the fourth MUSHRA evaluation
yielded the lowest scores for eCat with DistilBERT and eCat
with RoBERTa-base. We attribute this outcome to the fact that
this specific evaluation took place several weeks after the rest of
the evaluations and involved a different set of listeners.

Furthermore, we examined MUSHRA results for neutral
and expressive speech separately. Our systems were rated worse
on expressive speech and received scores close to recordings
for neutral speech. There were no statistically significant differ-
ences between RoBERTa-base and alternative models on neutral
speech, except for BERT-tiny, the smallest one. On the other
hand, RoBERTa-base was statistical significantly better than all
alternative systems on expressive speech. We hypothesize that
prosody prediction on expressive speech is more challenging
than in neutral speech because of its variance in pitch, tone, and
speed. Prosody predictors with small language models were
able to capture the expressivity involved for neutral speech but
failed to reproduce expressive prosody. Therefore, we find more
suitable to use large language models for expressive speech,
whereas for neutral speech medium-size models would suffice.

Given the objective metrics and subjective evaluations pre-
sented, we identify a relation between size and prosodic qual-
ity. This relation is manifested on objective metrics as shown
in Figures 2a and 2b. We consider Funnel-intermediate an out-

lier as it has architectural changes and might have been under-
trained. Subjective metrics demonstrate a similar trend in Fig-
ure 2c. Overall, the findings suggest that the quality of prosody
improves in a logarithmic fashion as the size of language mod-
els increases. While our results for prosody prediction rely on
eCat, we believe that the conclusions presented in this section
will be applicable to other architectures utilizing prosodic latent
spaces.

4.2. Language models for pause prediction

The pause prediction model was trained with 12 language mod-
els including RoBERTa-base. We trained the language models
in the pause prediction model to predict pause probabilities after
each word. Once trained, a threshold was obtained on the dev
set. We measured precision, recall, and F-scores for the bina-
rized pause predictions on the test set. Table 3 presents results
for every pause prediction model trained. It shows precision,
recall and F -0.5 and F -1 scores. F -0.5 is more aligned with
our objectives as we believe that failing to predict a pause is not
as bad as predicting a wrong pause. Results indicate a relation
between size and performance as larger models like RoBERTa-
large perform better than smaller ones. Actually, the smallest
models (i.e., BERT-tiny and BERT-mini) were substantially be-
hind the rest, but from ELECTRA-small until RoBERTa-large
there was a slighter performance increment. Thus, we hypoth-
esize that there is a minimum size required, e.g., ELECTRA-
small’s size, to perform on par with medium-size models like
RoBERTa-base. We also attribute the outstanding results of both
ELECTRA versions to their discriminative pretraining task, re-
placed token detection, which makes the model learn more effi-
ciently and robustly from all input tokens at the same time.

In conclusion, we believe that predicting pauses in English
only requires a high-level understanding of language, as the task
ambiguity is limited, and small models like ELECTRA-small
are already able to capture it. Compared to prosody predic-
tion, we surmise that there is an order of complexity between
the tasks. Predicting prosody for expressive speech would be
the most challenging task, followed by predicting prosody for
neutral speech. Pause prediction would be less challenging than
predicting prosody. Therefore, small language models could re-
place larger ones as they perform similarly well. It’s important
to note that our findings are specific to the English language,
and further research is required to determine whether the con-
clusions hold true for other languages.

5. Further analysis
5.1. Relation with GLUE scores

We investigated whether there are comparable trends in lan-
guage models performance for TTS and NLU tasks. We com-
pared experimental results for TTS obtained in this study with



(a) GLUE - Distance of acoustic prosodic latents.
Correlation score of -0.84.

(b) GLUE - Distance of duration prosodic latents.
Correlation score of -0.86.

(c) GLUE - MUSHRA gap reduction for prosody prediction.
Correlation score of 0.87.

(d) GLUE - F-0.5 score for pause prediction.
Correlation score of 0.83.

Figure 2: Comparison of GLUE scores with distance of (a) acoustic and (b) duration prosodic latents, (c) MUSHRA gap reduction,
and (d) F-0.5 score for pause prediction. Logarithmic regressions are included for every metric.

Language Model Precision Recall F-0.5 F-1

BERTTINY 0.895 0.828 0.881 0.860
BERTMINI 0.920 0.825 0.899 0.870
ELECTRASMALL 0.934 0.828 0.910 0.877
MobileBERT 0.931 0.832 0.910 0.879
SqueezeBERT 0.938 0.802 0.907 0.865
DistilBERT 0.929 0.831 0.907 0.877
BERTBASE 0.916 0.852 0.902 0.883
ELECTRABASE 0.941 0.811 0.912 0.871
RoBERTaBASE 0.933 0.831 0.911 0.879
XLM -RoBERTa 0.925 0.827 0.904 0.873
BERTLARGE 0.933 0.837 0.912 0.882
RoBERTaLARGE 0.924 0.858 0.910 0.889

Table 3: Results for the pause prediction model with different
language models. Models are shown in ascending order of size.

scores on GLUE test set. GLUE [29] is a benchmark com-
posed of 9 diverse language understanding tasks. Note that
we collected GLUE scores from original publications of lan-
guage models, while the language models used in this work
were downloaded from HuggingFace. We compared the GLUE
scores with the metrics reported for prosody prediction and
pause prediction, and computed correlation scores. Figure 2
shows the comparison of GLUE scores with (a) distance of
acoustic prosody latents to ground-truth, (b) distance of du-
ration prosody latents to ground-truth, (c) MUSHRA gap re-
duction, and (d) F-0.5 score for pause prediction. We com-
puted the correlation coefficient between each pair of score se-
quences, and plotted a logarithmic regression. The compar-
ison reveals a robust correlation between GLUE scores and
the reported metrics, with all absolute correlation scores ex-
ceeding 0.8. These results suggest that language models en-
hance prosody and pause prediction similarly to natural lan-
guage understanding tasks, as demonstrated by the comparison

with GLUE scores. Additionally, the metrics exhibit a loga-
rithmic relationship with size, meaning that an increase in size
generally corresponds to an increase in quality. Based on the
quality-size relationship and the correlation with GLUE scores
described earlier, it seems reasonable to estimate the perfor-
mance of BERT-like language models for prosody and pause
prediction by considering architectural size and their GLUE
score.

5.2. Model throughput analysis

Batch inference time was measured for all prosody predictors
trained with different language models. We used an NVIDIA
Tesla V100 SXM2 32GB GPU with CUDA 11.6 and Pytorch
1.11.0+cu113. 8 iterations were run in a test set of 2500 samples
with a batch size of 32 samples. For a better estimate, the first
batch was discarded to avoid GPU initialization overhead, and
the last one was also discarded as its batch size was smaller.

Figure 3 displays batch inference time for each language
model. All values are relative to the mean batch inference time
of the prosody predictor with RoBERTa-base. The figure on
the right depicts mean batch inference time compared to the
prosody predictor size. The results demonstrate a linear rela-
tion between batch inference time and models size besides a
few outliers. For instance, MobileBERT was slower than mod-
els with similar size. In fact, it was slower than what was re-
ported on the original paper. We attribute this gap to the fact
that the model was not the original, but instead was uploaded
to HuggingFace by an external user. On the other hand, even
though XLM-RoBERTa doubled in total size, its inference time
remained similar to BERT-base. This is because their archi-
tecture sizes are identical, and the increase in size is attributed
to the embedding matrix as XLM-RoBERTa comprises a wide
multilingual vocabulary.



Figure 3: Batch inference time for the prosody predictor, which varies depending on the language model used. All the times are
presented relative to the mean inference time for the prosody predictor when using RoBERTa-base.

6. Conclusion
This work presents a comparative analysis between 15 PLMs
for two TTS tasks in US-English: prosody prediction and pause
prediction. We evaluated language models performance on
prosody prediction with objective and subjective metrics. Re-
sults indicate a logarithmic relation between size and quality.
We expanded to pause prediction, where small language models
performed on par with larger ones. Moreover, we compared this
study’s results with GLUE scores and identified similar trends.
Thus, improvements in language models for NLU can inform
future developments and improvements in TTS. To the best of
our knowledge, this is the first study of this kind for TTS.
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