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Abstract

Input saliency aims to quantify the influence of input tokens on the output of large
language models (LLMs), which has been widely used for prompt engineering,
model interpretability, and behavior attribution. Despite the proliferation of saliency
techniques, the field lacks a standardized and rigorous evaluation protocol. In this
work, we introduce a stress-testing framework inspired by the needle-in-a-haystack
(NIAH) setting to systematically assess the reliability of seven popular input
saliency methods. Our evaluation reveals a surprising and critical flaw: existing
methods consistently assign non-trivial importance to irrelevant context, and this
attribution error worsens as input length increases. To address this issue, we propose
a novel saliency method based on Attention Bias Optimization (ABO), which
explicitly optimizes the attention bias associated with each input token to quantify
its causal impact on target token generation. ABO robustly outperforms existing
methods by 10 ∼ 30% in saliency accuracy across diverse NIAH tasks, maintains
effectiveness up to 10K-token prompts, and enables practical applications including
zero-shot detoxification, sentiment steering, and reasoning-error correction. Our
findings highlight the limitations of prevalent attribution methods and establish
ABO as a principled alternative for accurate token attribution.

1 Introduction

What makes a particular word in a prompt important to a large language model (LLM)? This question
lies at the heart of input saliency analysis, a field that seeks to quantify how much each input token
contributes to the model’s output [1–8]. As LLMs become increasingly embedded in downstream
tasks ranging from coding assistants [9, 10] to open-ended reasoning agents [11], understanding their
decision-making process is essential for safety, interpretability, and controllability [12, 13]. Input
saliency provides a foundation for prompt engineering by identifying which tokens most influence
the model’s behavior [14, 15], and it offers researchers a window into the inner workings of attention
mechanisms and token interactions [16, 17]. As such, saliency analysis has emerged as a cornerstone
in the interpretability toolkit for modern language models [18–20].

Diverse input attribution techniques already exists, spanning perturbation-based masking [7, 21],
gradient and interaction methods [8, 12], vector-space decompositions [17, 22], Shapley values [23],
and linear approximations [12, 24]. Each line of work claims to reveal the “true” importance of input
tokens. Yet the field lacks a rigorous, model-agnostic benchmark for judging whether these scores
separate meaningful signal from contextual noise, especially in the long-context prompts that define
contemporary LLM use. Without such a benchmark, practitioners risk acting on attribution maps that
are noisy, unstable, or flat-out wrong.
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To close this gap we design a stress test inspired by the classic “needle-in-a-haystack” (NIAH)
evaluation [25]. We embed a single secret message inside a span of distractor text and ask the model
to reproduce that message verbatim. Because the distractors have zero causal influence on the output,
the ground-truth saliency distribution must concentrate on the secret message (and the final query).
This controlled setting lets us audit attribution methods with surgical precision. Our evaluation of
six popular techniques [1–6] uncovers a systemic flaw: every method assigns a substantial fraction
of saliency to irrelevant tokens, which grows as the context length increases. The misattribution
reaches over 90% of the total score for 10K-token prompts, implying that the interpretability tools
most widely used today can be actively misleading in long-context scenarios.

Motivated by the observation that reweighting an input token’s attention can deterministically sway the
model’s output when two contradictory messages are present, we recast attribution as an optimization
over attention biases. ABO injects a small, learnable bias term into each attention head and solves
for the minimal intervention that maximizes the probability of a target output token. The resulting
bias magnitudes serve as faithful saliency scores: they are causal by construction, differentiable, and
inexpensive to compute. Empirically, ABO withstands our NIAH stress test and remains robust up
to 10K-token inputs. Beyond evaluation, ABO proves useful for zero-shot detoxification, sentiment
steering, input token pruning, and rectifying errors in the reasoning traces. To summarize, our
contributions are as follows:

•We introduce a stress-testing framework for LLM saliency based on the needle-in-a-haystack
task, enabling fine-grained diagnosis under long-context inputs.

• We reveal systemic reliability failures in six widely-used attribution methods and show that
misattribution to irrelevant tokens can exceed over 90 % in 10 K-token prompts, quantifying the
brittleness of existing saliency tools.

•We propose Attention Bias Optimization (ABO), a principled, optimization-based technique that
delivers token-level saliency scores with superior causal fidelity and scalability to long-contexts.

•We demonstrate ABO’s broad practical utility across sentiment control, toxic prompt detoxifica-
tion, and LLM error correction, underscoring its value for both research and real-world deployment.

2 Related Work

LLM input saliency methods. Understanding how large language models (LLMs) attribute gen-
erated outputs to their preceding input tokens is crucial for model interpretability, debugging, and
effective prompt engineering. Several attribution methods have been proposed to elucidate these rela-
tionships, typically categorized into gradient-based, vector-based, and perturbation-based approaches.
Gradient-based methods measure token importance via gradients obtained through backpropagation.
Examples include gradient norm [26–28], gradient-input production [29–31], Layer-wise Relevance
Propagation (LRP-XAI) [32, 33], and Generic Attention Explainability (GAE) [8]. Although these
methods have demonstrated their value across diverse NLP models and tasks, they predominantly
rely on local linear approximations, potentially accumulating errors in deeply stacked transformer
layers. Vector-based methods leverage internal model representations, typically attention weights,
to infer token importance, exemplified by Attention Rollout [34], GlobEnc [35], and ALTI [36].
However, these approaches implicitly assume linearity in attention score combinations across layers,
limiting their fidelity as model depth and complexity increase. Alternatively, perturbation-based
techniques [23, 37, 38] measure token significance by assessing changes in model confidence upon
token removal or masking. Representative methods include AtMan [6], which combines perturbation
strategies with attention mechanisms specifically optimized for transformer models. The evalua-
tions of existing methods typically involve short-context scenarios with limited causal interactions.
Consequently, existing benchmarks neither sufficiently explore attribution accuracy under realistic
long-context scenarios nor rigorously stress-test the methods’ robustness against irrelevant contextual
noise. Our work fills this critical gap by introducing a systematic long-context stress-test framework,
providing insights into the limitations of current attribution methodologies when applied to LLMs.

Controlled generation and behavior steering for LLMs. A large body of work seeks to steer
language–model behavior at inference time via prompt design. Manual and automated prompting tech-
niques have shown striking gains on downstream tasks [39–41], and toolkits such as PROMPTSOURCE,
RLPrompt, and AutoPrompt make cue construction more accessible [42–46]. Yet LLMs remain
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[System Prompt] You are a helpful AI chat bot that answers questions for a user. Keep your response
short and direct. Don’t present information outside the document below or repeat your findings . . .
[Long Irrelevant Context] July 2006. . . imagine you were going to spend the weekend at a friend’s
house on a little island off the coast of Maine.. . . (irrelevant text continues). . . Quiet is another matter.
[Secret Message] The password to get into the zone of Hagazin is “Yin”. [Irrelevant Text Resumes] I
realize it seems a bit eccentric to take earplugs on a trip to an island off the coast of Maine. If anywhere
should be quiet, that should. But what if the person in the next room snored? . . . Pen and paper wick
ideas. [Query on Secret Message] What is the password to get into the zone of Hagazin? Your answer is:

Figure 1: Color-coded needle-in-a-haystack (NIAH) [25] prompt. System instruction, distractor text, secret
message, and final query are visually distinguished. When calibrating an LLM saliency method with this
example, only saliency score assigned to the non-gray regions (yellow, green, blue) is meaningful; any score
allocated to gray tokens reflects incorrect attribution.

brittle: small lexical changes can flip predictions or derail chain-of-thought reasoning [47, 48]. Com-
plementary to prompt engineering, training-time interventions, e.g. instruction finetuning [49, 50],
RLHF and its variants [51–53], or loss terms that privilege user-marked tokens [54–57], improve
overall steerability but require additional data or compute. Parallel work explores lightweight adapta-
tion via low-rank or quantized updates (LoRA, AdaLoRA, QLoRA, TOAST) [58–61], and targeted
knowledge editing with ROME, MEMIT, MEND, or REMEDI [62–65]. Our saliency-based Attention
Bias Optimization is orthogonal to these approaches: it leaves model weights unchanged, requires
no extra supervision, and instead manipulates generation by amplifying or suppressing precisely the
tokens that the model itself deems most causal.

3 A Stress Test of LLM Input Saliency Methods

While input saliency methods have become ubiquitous tools for interpreting LLM predictions, it
remains uncertain whether these attribution methods accurately capture token importance under
realistic, long-context scenarios. Despite numerous techniques proposed in the literature, their evalua-
tion often relies on relatively simplistic or short-text scenarios [1–3], leaving their generalizability
and reliability largely unchecked. To bridge this gap, this section introduces a novel stress-testing
framework that systematically probes the robustness and reliability of existing saliency methods under
increasingly challenging input conditions. Our aim is twofold: first, to reveal critical limitations of
current attribution techniques when exposed to long-context inputs; second, to motivate the necessity
of a fundamentally more robust attribution strategy.

The needle-in-a-haystack (NIAH) test for saliency assessment. Inspired by the classic needle-
in-a-haystack paradigm [25], originally developed to assess the information-retrieval capabilities
of LLMs in long-context settings, we adapt this experimental setup explicitly for the evaluation
of saliency methods. Our adapted NIAH scenario is carefully constructed to provide an explicit,
ground-truth saliency distribution for rigorous evaluation. Specifically, as illustrated in Fig. 1, we
craft prompts comprising four core components:

• a system prompt to establish the overall context, role, and behavior for the LLM’s responses;

• a lengthy distractor passage sampled from diverse, public-domain texts (e.g., news articles,
Wikipedia entries), explicitly designed to provide irrelevant contextual noise;

• a short, deliberately constructed embedded secret message, which contain keywords (e.g., “Hagazin”
and “Yin” in Fig. 1) are intentionally chosen to be out-of-vocabulary words absent from standard
LLM pre-training corpora, ensuring the uniqueness and singular salience of this message;

• a precise, targeted query placed at the end of the input, asking questions on the secret message
hidden in the context.

Before the evaluation, we first make sure the LLM’s answer to the query is correct. In the case above,
the answer should be “Yin”. Then, we use the saliency method to generate saliency scores to all
the input tokens with respect to the target output token (i.e., “Yin”). The central evaluation metric
employed throughout this analysis is the Hit Ratio:

Hit Ratio =
Saliency Score(system prompt + secret message + query)

Total Saliency
. (1)
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Intuitively, a higher Hit Ratio approaching 1.0 indicates that a method effectively isolates truly salient
tokens, while lower scores indicate a failure in accurately discriminating signal from noise. To
ensure fair comparisons across varying methods (each with potentially different saliency scaling
conventions), we normalize all saliency vectors to sum to one prior to aggregation.

Why is NIAH naturally a better fit for saliency calibration? Critically, the nature of this task
involves pure information retrieval and no inferential reasoning is required. Consequently, the ground-
truth saliency distribution should strictly allocate importance to three well-defined input regions:
(1) the initial system prompt (if present), (2) the embedded secret message, and (3) the final query.
All other input tokens, by experimental construction, are irrelevant and thus should be assigned
negligible saliency scores. Furthermore, following the original NIAH setting [25], we systematically
vary the length of the distractor text from 500 tokens (contexts) up to 4K tokens (contexts), effectively
modulating the signal-to-noise ratio within the input while keeping the informative content fixed. This
controlled manipulation of input length provides a straightforward yet rigorous means to evaluate
each method’s robustness to the increasing complexity of realistic long-context scenarios.

Examination of LLM input saliency via NIAH. To ensure comprehensive coverage, we evaluate
a broad spectrum of seven representative saliency methods widely adopted in the literature. These
methods span diverse methodological paradigms including gradient-based (GRADNORM [4], INPUT
X GRAD [5]), attention-derived (ATMAN [6]), token distribution-based (TDD [2]), Shapley value-
based (TOKENSHAP [1]), and linear modeling (AT2 [3]). As a reference, we also compare these
methods with a random guess method (NAIVE), which assigns each input token equal saliency.
Detailed algorithmic descriptions and hyperparameter selections for each method are provided in
Appx. A to facilitate reproducibility and transparency. Our experiments are primarily conducted on a
frozen LLaMA-2-7B [66] backbone to ensure controlled comparisons.
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Figure 2: Hit ratio of existing
saliency methods on the NIAH
stress testing with different input
length. Hit Ratio is the fraction
of saliency scores assigned to the
true causal tokens.

Fig. 2 presents a comprehensive visualization of Hit Ratio perfor-
mance as a function of input length. Two critical observations im-
mediately emerge: First, there is a steep accuracy collapse at long
contexts. All evaluated methods experience a precipitous drop in
attribution fidelity once the input exceeds approximately 1K tokens.
Alarmingly, at input lengths beyond 2K tokens, several methods
approach random performance (represented by the gray dashed base-
line), highlighting their severe inability to cope with realistic, noisy,
long-text inputs. Second, there is non-trivial misattribution even at
short contexts. Surprisingly, even at the shortest tested context (100
tokens), over half of the attribution mass is consistently misallocated
to irrelevant tokens. This persistent misattribution underscores that
the root cause is not merely extreme input length, but a fundamental
vulnerability in existing methods to structural or positional biases.

To understand the underlying causes of misattribution, Fig. 3 provides a qualitative heatmap of
saliency distributions for representative examples. Strikingly, misattribution does not manifest as

[System Prompt] _You _are _a _helpful _A I _chat _bot _that _answers _questions _for _a _user .
_Keep _your _response _short _and _direct . _Don ’t _present _information _outside _the _document
_below _or _repeat _your _find ings ...
[Long Irrelevant Context] _July _2 0 0 6 ... _imagine _you _were _going _to _spend _the _week end
_at _a _friend ’s _house _on _a _little _island _off _the _coast _of _Maine ... _Qu iet _is _another
_matter .
[Secret Message] _The _password _to _get _into _the _zone _of _H ag az in _is “ _Yin ” .
[Irrelevant Text Resumes] _I _realize _it _seems _a _bit _ecc ent ric _to _take _ear pl ugs _on _a _trip
_to _an _island _off _the _coast _of _Maine . _If _anywhere _should _be _quiet , _that _should . _But
_what _if _the _person _in _the _next _room _sn ored _? ..._Pen _and _paper _w ick _ideas .
[Query on Secret Message] _What _is _the _password _to _get _into _the _zone _of _H ag az in _?
_Your _answer _is :

Figure 3: Token-level saliency heat-map for a NIAH prompt obtained using AT2 with the context
length of 1K. Each word is background-shaded according to the saliency score (darker=higher).
The map reveals substantial saliency weight spilled onto distractor passage, notably high-frequency
function words and punctuation.
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[System Prompt] You are a helpful . . . or repeat your findings . . . [Long Irrelevant Context] July 2006. . .
imagine you . . . (irrelevant text continues). . . Quiet is another matter. [Secret Message 1] [Irrelevant
Text Resumes] I realize it seems a bit eccentric . . . (irrelevant text continues) . . . Pen and paper wick
ideas. [Secret Message 2] [Irrelevant Text Resumes] I hardly ever go back and read stuff . . . (irrelevant
text continues) . . . way of having the next. [Secret Message 3] [Irrelevant Text Resumes] The best
notebooks I’ve found . . . (irrelevant text continues) . . . out of space, like a Latin inscription. [Query on
Secret Message] What is the password to get into the zone of Hagazin? Your answer is:

Figure 4: Contradictory NIAH prompt used for the attention-bias study. The long input is color-segmented into
a system instruction, alternating blocks of irrelevant context, and three mutually conflicting secret messages,
message 1, message 2, and message 3, followed by the final query. The LLM chooses only one secret message
to answer the query.

uniform randomness; instead, existing methods disproportionately latch onto structurally salient
yet semantically irrelevant tokens, such as high-frequency function words (“the”, “is”, “of”) or
syntactic boundaries (sentence breaks, paragraph separations). This critical observation highlights a
fundamental flaw: existing methods systematically confuse tokens that dominate attention structure
due to frequent repetition or positional prominence with tokens genuinely contributing causally to the
model’s output. This exposes a systemic weakness of current input-saliency techniques: they conflate
attention structure with causal contribution, and the error amplifies with additional distractors.

4 Saliency-Biased Attention for Token Attribution

In Sec. 3, we revealed a critical flaw underlying existing saliency methods: their interpretability
severely degrades in long-context scenarios. This limitation naturally raises an important question:
Can we not only diagnose these attribution errors but actively intervene to rectify them? To address
this, we revisit our NIAH paradigm, this time introducing a novel and provocative modification by
embedding multiple contradictory messages into the input.

Contradictory secrets reveal attention bias dynamics. We begin by embedding three conflicting
secret messages into the input context: Message 1. The password to get into the zone of Hagazin
is “Yin”, Message 2. The password to get into the zone of Hagazin is “Vin”, Message 3. The
password to get into the zone of Hagazin is “Kin”. See Fig. 4 as an illustration. At the conclusion
of this deliberately confusing passage, we pose the query: “What is the password to get into the
zone of Hagazin?” Interestingly, we observe a pronounced positional bias in the model’s behavior:
regardless of their semantic content, LLMs consistently favor the first encountered secret message.
This phenomenon suggests that token saliency, model attention toward particular input tokens, may
be implicitly influenced by their position rather than their semantic content alone.
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Figure 5: LLM’s prediction can be shifted
by biasing attention scores. Curves track
the probability that the LLM will output the
first-secret token “Yin” vs. the second-secret
token “Vin”, when a positive attention bias is
gradually injected toward the second secret
message. Increasing the bias drives P(Vin)
upward from ∼14% to ∼40%, while P(Yin)
falls symmetrically, and the two curves cross
once the model’s final answer flips from the
first to the second.

Using attention bias to manipulate LLM’s behaviors.
Inspired by this intriguing observation, we probe deeper
by deliberately manipulating the model’s attention logits,
i.e., the intermediate values computed before the softmax
normalization in the attention mechanism. Recall that in a
standard transformer, the attention score (also called atten-
tion logits) between a query qi and a key kj is computed

as: Lij =
qi · kj√

dk
, where dk is the key dimensionality.

These logits are then passed through a softmax to yield
attention weights. In order to investigate how attention
scores might influence LLM’s outputs, we inject an arti-
ficially positive attention bias toward tokens in the sec-
ond secret message, gradually increasing its magnitude:
Lij ← Lij + αj , where [j] represents the input token IDs
designed to be enhanced with this bias. Fig. 5 vividly
illustrates this experiment: as the bias towards the second
secret grows, the probability of outputting the second mes-
sage’s password (“Vin”) consistently increases, while the
probability associated with the first message’s password
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(“Yin”) correspondingly decreases. Ultimately, the model’s final prediction shifts from “Yin” to
“Vin”. This simple yet profound experiment reveals a deeper insight: attention logits directly govern
token saliency and thus strongly influence model outputs. Consequently, attention biases can
serve as a powerful lever for interpreting and controlling LLM behavior.

From manipulation to attribution: Attention bias optimization (ABO). Motivated by the above
experiment, we propose ABO, a novel attribution framework. The central insight is straightforward
yet compelling: if enhancing a token’s attention logits reliably boosts the model’s probability of
generating a target output, it logically follows that the token is intrinsically salient to that output.
Leveraging this principle, ABO reframes token attribution as a differentiable optimization problem
over attention logits, thus providing a smooth and precise alternative to discrete masking or traditional
gradient-based attribution approaches.

Formally, given an input sequence x = (x1, x2, . . . , xL) of length L and a target model-generated
output token ytarget, we introduce learnable attention biases. Specifically, we assign each input token
xi a scalar bias parameter αi, shared across all attention heads and layers. After injecting these biases,
we apply standard softmax normalization to yield final attention weights. This soft re-weighting
ensures that no token is completely discarded, thus preserving the integrity of the full context. To
derive meaningful, interpretable saliency scores, we optimize the parameters {αi} by maximizing the
biased model’s probability of producing the target token ytarget:

L(α) = − log pbias
(
ytarget | x,α

)
+ λ

L∑
i=1

σ(αi). (2)

Here, the first term ensures tokens that genuinely contribute to generating ytarget receive greater
saliency. The second term is a carefully designed regularizer: by applying a sigmoid transformation
to the biases, it penalizes excessive saliency across irrelevant tokens and promotes sparsity. This
choice ensures numerical stability during optimization and yields a sparse, interpretable saliency
distribution that highlights genuinely influential tokens. Unlike discrete token masking, ABO never
removes tokens but instead smoothly reallocates attention weights across the entire input sequence.
This soft, continuous approach provides clearer interpretability: increased bias for a token directly
translates to increased model attention and influence. Furthermore, ABO addresses key drawbacks
of previous methods, such as instability in gradient-based attribution and arbitrary saliency leakage,
by directly coupling token saliency to the model’s internal attention dynamics. Consequently, it
consistently provides interpretable and robust attributions, even across extremely long contexts.

Isolating the learned bias yields a clearer and more causal attribution signal. An important
design choice in ABO lies in measuring attribution through the optimized attention bias rather than
the sum of the original attention value and bias. While both components jointly influence the model’s
output during inference, isolating the learned bias yields a cleaner and more causally interpretable
signal. Original attention distributions span heterogeneous heads and layers, each capturing structural
or positional regularities that may not directly reflect causal relevance. Aggregating them with the
optimized bias would inevitably entangle genuine influence with such confounding patterns, thereby
weakening attribution clarity. In contrast, the learned attention bias vector forms a unified and
end-to-end optimized space that quantifies the minimal perturbation required for a token to affect the
model’s output. This separation allows ABO to measure causal sensitivity in a stable and comparable
manner across contexts, avoiding complex normalization or scale mismatches that arise from mixing
heterogeneous attention values.

Bias sharing across layers and heads stabilizes optimization and improves practicality. Another
design decision concerns sharing the bias parameters across all attention heads and layers. Early
variants of ABO explored assigning independent bias parameters to each head and layer, but this
additional flexibility did not improve attribution fidelity. Instead, it introduced substantial optimization
instability, as interactions among layers amplified local gradient noise and slowed convergence.
Empirically, the shared-parameter formulation achieved more stable optimization dynamics and
delivered consistently higher saliency precision under equal or lower computational cost. Beyond
performance considerations, parameter sharing also enhances the method’s practicality, reducing
memory footprint, simplifying implementation, and enabling ABO to serve as a lightweight plug-in
interpretability module applicable to diverse transformer architectures.
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Table 1: Hit Ratio on the single output token NIAH stress test across different LLMs and context
lengths. Each cell reports the percentage of saliency mass correctly assigned to the true causal tokens
(system prompt + secret message + query), averaged over multiple secret-message insertion depths
(from 10% to 90%) within each context and normalized to sum to 100. Higher is better.

Method LLaMA2-7B [66] Mistral-7B-Instruct-v0.3 [67] DeepSeek-R1-Distilled-QWen-14B [68]
1K 2K 3K 4K 1K 3K 5K 10K 1K 3K 5K 10K

NAIVE 7.50 3.75 2.50 1.88 7.20 2.40 1.44 0.72 8.20 2.73 1.64 0.82

GRADNORM [4] 11.49 8.21 4.44 2.28 10.22 3.23 2.41 1.17 9.35 2.91 2.32 1.43
INPUT X GRAD [5] 12.20 4.44 3.49 1.68 13.58 3.31 2.28 1.81 10.27 2.96 2.56 1.45
TOKENSHAP [1] 17.73 14.82 9.91 5.24 15.54 10.27 6.37 3.73 16.73 11.43 5.59 3.81
TDD [2] 15.57 10.83 7.29 3.37 13.28 9.23 5.51 4.39 12.71 7.68 4.83 3.51
ATMAN [6] 19.94 16.69 12.67 4.34 20.22 13.33 7.18 3.12 18.88 12.48 6.54 2.83
AT2 [3] 21.15 18.27 12.28 6.62 20.43 14.41 10.03 5.59 21.76 13.65 9.86 4.99

ABO 41.75 31.72 25.54 18.83 45.34 27.77 18.92 15.43 38.89 25.14 17.37 15.44

5 Experiments

To systematically validate the accuracy, robustness, and utility of our proposed ABO method, we
conduct systematic and comprehensive experimental evaluations. The first part (Sec. 5.1) focuses
on quantitatively comparing the attribution accuracy of ABO against several strong baselines in
controlled scenarios, including single-token and multi-token NIAH stress tests, as well as an input
token pruning evaluation in the long-context setting. The second part explores broader applications
of ABO, illustrating how accurate saliency attribution can facilitate model behavior manipulation
(Sec. 5.2 and Sec. 5.3), and error correction on LLM’s input on reasoning tasks (Sec. 5.4).

5.1 Saliency Attribution Accuracy

Single-token NIAH attribution analysis. First, we evaluate methods using the previously described
single-token NIAH setup, measuring their Hit Ratio, i.e., the fraction of saliency correctly attributed
to truly causal tokens. As summarized in Tab. 1, ABO consistently achieves substantial improvements
over all baselines across different models and context lengths. Crucially, ABO maintains a robust
Hit Ratio of approximately 15 ∼ 45%, even as input length expands from 1K to 10K tokens, while
the strongest baseline (TOKENSHAP & AT2) rapidly deteriorates to below 5%. This stark contrast
underscores ABO’s unique resilience in handling long-context noise environments. Additionally,
ABO’s superior performance generalizes robustly across architectures, indicating that its advantage
stems fundamentally from its principled attention bias optimization mechanism, rather than model-
specific artifacts.

Multi-token NIAH attribution analysis. Second, to challenge the saliency methods further, we
extend the NIAH setting to secret messages containing multiple target tokens, requiring methods
to correctly distribute saliency across multiple output tokens. Results presented in Tab. 2 affirm
ABO’s clear superiority: although moving from single-token to multi-token attribution naturally
reduces Hit Ratios slightly for all methods, ABO experiences the mildest performance degradation
(around 4 ∼ 5%), maintaining approximately 13 ∼ 40% accuracy. In contrast, leading baselines
suffer a more substantial drop towards below 10%, highlighting ABO’s superior capability to capture
meaningful attribution across multiple output tokens simultaneously. The persistent robustness of
ABO even under increased complexity strongly advocates for its suitability in realistic applications,
where multiple tokens frequently contribute jointly to model decisions.

Long-context token pruning evaluation. We further validate saliency accuracy in practical sce-
narios by conducting input token pruning experiments on the challenging LongBench-2wikimqa_e
dataset [69]. Tokens are pruned in ascending order of estimated saliency, with QA accuracy measured
at progressively higher pruning ratios (see Tab. 3). Remarkably, ABO outperforms all baselines,
especially under aggressive pruning conditions. For example, at a 95% pruning ratio (retaining only
5% of tokens), ABO achieves a QA accuracy of 51.2% on QWen3-14B, significantly higher than
the best baseline’s 36.2%. Furthermore, ABO exhibits a flatter accuracy degradation curve across
all models tested, demonstrating a stronger ability to reliably identify essential context information.
These results confirm ABO’s practical value: not only does it accurately reflect token importance,
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Table 2: Hit Ratio on the NIAH stress test across with mutiple output tokens different LLMs and
context lengths. Other settings follow Tab. 1.

Method LLaMA2-7B [66] Mistral-7B-Instruct-v0.3 [67] DeepSeek-R1-Distilled-QWen-14B [68]
1K 2K 3K 4K 1K 3K 5K 10K 1K 3K 5K 10K

NAIVE 7.50 3.75 2.50 1.88 7.20 2.40 1.44 0.72 8.20 2.73 1.64 0.82

GRADNORM [4] 8.39 6.04 3.70 2.12 9.28 3.11 2.20 1.75 8.87 2.69 1.89 1.11
INPUT X GRAD [5] 8.73 5.45 3.51 2.03 8.85 2.98 1.92 1.56 9.17 2.82 2.15 1.15
TOKENSHAP [1] 12.13 9.91 4.12 3.98 12.25 10.38 5.73 3.31 11.42 5.51 4.11 2.35
TDD [2] 10.89 8.73 4.31 3.29 9.87 8.82 3.89 2.17 9.91 4.16 3.06 2.05
ATMAN [6] 13.27 10.29 4.98 3.71 15.55 12.27 7.73 5.41 10.40 4.41 3.71 1.51
AT2 [3] 15.37 12.48 5.49 4.41 13.39 10.12 5.32 3.19 16.72 6.75 4.99 2.86

ABO 38.32 28.99 21.45 14.49 40.93 24.49 14.37 13.18 34.79 21.19 15.45 13.61

but it also provides actionable insights enabling substantial runtime efficiency by safely pruning
non-essential tokens.

Table 3: QA accuracy (%) on the LongBench-2wikimqa_e multi-choice task after pruning input
tokens based on saliency scores. Each column indicates the pruning ratio.

Method QWen3-8B Mistral-Small-24B-Instruct-2501 QWen3-14B
10% 50% 90% 95% 97% 10% 50% 90% 95% 97% 10% 50% 90% 95% 97%

NAIVE 48.0 39.5 5.3 0.6 0.0 54.4 42.8 4.3 0.0 0.0 59.0 45.5 3.6 0.0 0.0

GRADNORM 58.6 56.9 35.4 8.9 3.2 66.0 65.3 38.1 9.4 3.6 80.5 79.6 41.0 10.1 4.2
INPUT X GRAD 58.4 56.7 36.0 8.5 2.8 66.9 65.1 38.5 9.0 3.3 80.2 79.3 41.2 9.8 3.8
TDD 58.5 55.6 33.2 7.2 2.4 67.6 63.9 36.8 8.3 2.9 78.4 77.3 39.1 9.1 3.5
ATMAN 59.1 58.6 44.8 28.2 5.2 67.1 66.5 49.5 31.3 8.3 81.8 80.9 54.1 34.1 9.1
AT2 59.4 58.9 46.3 30.0 7.8 67.4 66.9 51.0 32.5 8.7 82.1 81.2 56.0 36.2 9.5

Ours 59.3 59.0 52.6 40.3 9.9 67.5 67.1 58.7 47.0 12.2 82.3 81.7 65.1 51.2 15.6

5.2 LLM Saliency for Zero-Shot Toxicity Suppression.

We further demonstrate the practical utility of accurate saliency attribution through the task of zero-
shot toxic language suppression. Despite recent advancements, LLMs remain prone to generating
toxic outputs in response to certain inputs [70, 71]. Unlike prior reactive approaches aimed at
mitigating toxicity post-generation [72–74, 74], our approach proactively identifies and removes
toxic triggers directly from the prompt, ensuring safer downstream generation.

Table 4: Toxicity suppression results on REALTOXICPROMPTS [72] using Mistral-7B-Instruct-v0.3 [67].
Scores on six toxicity attributes provided by the Perspective API; lower values indicate better suppression.

Method Toxicity Severe
Toxicity

Sexually
Explicit Threat Profanity Identify

Attack
Original 0.53 0.24 0.37 0.23 0.42 0.19

TDD 0.36 0.21 0.29 0.18 0.33 0.14
TOKENSHAP 0.41 0.18 0.17 0.14 0.26 0.12
AT2 0.28 0.15 0.21 0.11 0.14 0.09

ABO 0.24 0.12 0.14 0.08 0.07 0.05

Experiment setup. Specifically, we utilize the REALTOXICPROMPTS [72] dataset, comprising
1,225 prompts known for eliciting highly toxic outputs, and evaluate our method using the Mistral-
7B-Instruct-v0.3 model [67]. Given our rigorous assessment of saliency attribution methods in
the previous subsection, we selectively benchmark against the top-performing saliency approaches,
namely TOKENSHAP [1], AT2 [3], and TDD [2]. During the experiment, we first designate the
predefined toxic words from WORDFILTER [72] as target tokens, identifying critical tokens (toxic
triggers) via saliency scores, which we subsequently neutralize by replacing them with meaningless
space tokens. Following the procedure of prior work [73, 75], we limit generations to 20 tokens and
evaluate the resulting toxicity using six toxicity attributes provided by Perspective API, ensuring a
clear and rigorous comparison of saliency-based toxicity suppression efficacy among our chosen
baseline methods.

Results and analysis. As shown in Tab. 4, our method achieves the lowest toxicity scores across
all six attributes, substantially outperforming all baselines. Compared to the original outputs, ABO

8



Table 5: Sentiment steering results on OPENWEBTEXT [76] using Mistral-7B-Instruct-v0.3 [67]. Generated
outputs are classified via Huggingface sentiment analysis [77]; higher indicate stronger steering efficacy.

Method Neutral→ Negative Neutral→ Positive
Negative Ratio (%) Positive Ratio (%)

Original 53.6 46.4

TDD 75.4 59.9
TOKENSHAP 80.2 68.3

AT2 69.3 66.7

ABO 89.7 81.5

reduces overall toxicity by more than half, and consistently yields the strongest suppression in severe
categories such as threat, profanity, and identity attack. While AT2 emerges as the strongest baseline,
it still lags behind across every metric. These results confirm that our saliency estimates more
accurately pinpoint true toxic triggers, enabling more effective prompt sanitization and offering a
robust foundation for safe LLM deployment.

5.3 LLM Saliency for Sentiment Steering

We next demonstrate ABO’s applicability in zero-shot sentiment steering, an essential task for safely
and reliably guiding LLM-generated content towards a desired sentiment polarity.

Experiment setup. To rigorously assess our approach, we use 5,000 neutral prompts sourced
from the OPENWEBTEXT [76] corpus to feed the Mistral-7B-Instruct-v0.3 model [67]. Specifically,
we designate negative sentiment words from SENTICNET [78] as target tokens and positive words
as alternative tokens when steering towards positive sentiment, and reverse this assignment when
steering negatively. Subsequently, we utilize saliency attribution methods, focusing exclusively on
the highest-performing methods identified previously: TOKENSHAP [1], AT2 [3], and ATMAN [6]
to pinpoint the single most salient sentiment cue within each prompt. This identified token is then
directly replaced by the explicit keyword (either “positive” or “negative” accordingly) to guide the
model’s sentiment. Following prior work [79], each prompt undergoes exactly one token replacement
due to their relatively short lengths. For evaluation, we exclusively report the sentiment distributions
of generated outputs using the Huggingface sentiment analysis classifier [77], clearly reflecting the
efficacy of each method in steering sentiment polarity.

Results and analysis. As shown in Tab. 5, a single ABO-guided token edit shifts 89.7% of neu-
tral prompts to negative and 81.5% to positive sentiment, outperforming the strongest baseline
(TOKENSHAP: 80.2%/68.3%). The gap widens in the harder “neutral→positive” scenario, highlight-
ing ABO’s ability to pinpoint the single most causal sentiment cue. Together, these results confirm
that bias optimization yields sharper, more actionable saliency than existing heuristics, enabling
reliable zero-shot sentiment control with minimal input modification.

[Question] In a dance class of 20 students, 20% enrolled in contemporary dance, 25% of the remaining
enrolled in jazz dance, and the rest enrolled in hip-hop dance. What percentage of the students enrolled
in hip-hop dance?

[Reasoning (Incorrect by Default)] <think>
To determine the percentage of students en-
rolled in hip-hop dance, let’s break down
the information provided: ... Students en-
rolled in Jazz Dance: ( 25% ) of 20 students
\[ 0.25 × 20 = 5 students \] ... <\think>
Final Answer: \(\boxed55%\)

[Reasoning (Correct with Attention Bias)]
<think> To determine the percentage of ...
Students enrolled in Jazz Dance: ( 25% ) of
the remaining students after contemporary
dance \[ 20 - 4 = 16 students \] Then, 25% of
16: \[ 0.25 × 16 = 4 students \]... <\think>
Final Answer: \(\boxed60%\)

Figure 6: Attention bias fixes a reasoning error. Highlighting the token “remaining” (yellow) and adding a
positive bias to its attention logits redirects the model to the correct interpretation, changing the wrong 55%
answer (left, red) to the correct 60% answer (right, green).
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5.4 LLM Error Correction via ABO

Beyond interpretability and behavior steering, our ABO (attention bias optimization) approach
provides a novel pathway for error correction during reasoning tasks performed by LLMs. Despite
their impressive reasoning capabilities, even advanced reasoning-centric models such as DeepSeek-
R1-Distilled-QWen-7B [68] occasionally commit errors due to misreading critical elements within
problem statements. To illustrate this, consider a simple mathematical question from the GSM8K
dataset [80] depicted in Fig. 6. Initially, the model erroneously overlooks the keyword “remaining”,
consequently misunderstanding the problem statement and generating an incorrect answer. However,
by explicitly introducing a positive attention bias to the token corresponding to the overlooked
keyword, we effectively realign the model’s attention, enabling the model to correctly interpret the
question and subsequently correct its output.

Motivated by this observed phenomenon, we systematically examine a broader set of examples to
quantitatively assess the efficacy of our attention-based error correction strategy. Specifically, we
identify 50 distinct math reasoning problems from the GSM8K dataset initially answered incorrectly
due to misreading or overlooking crucial textual cues. For each problem, we manually select
and positively bias the attention logits corresponding to the critical tokens identified as frequently
misinterpreted. Remarkably, after applying such targeted attention biases, 45 out of these 50 problems
(90%) were subsequently answered correctly without any modifications to the input text itself. This
result strongly indicates that the errors were indeed a consequence of attentional oversight rather than
inherent model deficiencies. See Appx. B for more examples.

6 Limitation and Conclusion

We revisited input saliency for LLMs and showed that six popular attribution methods collapse in
long-context settings, misplacing most of their mass on distractors. Our NIAH (needle-in-a-haystack)
stress test makes this failure mode transparent and measurable. Building on the empirical insight
that tiny shifts in attention logits can deterministically flip a model’s choice among contradictory
messages, we introduced ABO, which frames attribution as a lightweight per-token bias optimization
on attention logits. We empirically demonstrated the accuracy of ABO’s saliency scores and its ability
in zero-shot detoxification, sentiment steering, and correction of reasoning errors.

Despite these promising results, this work also reveals a more fundamental limitation of current input
saliency research for LLMs. Our evaluation shows that the gap between how saliency methods are
perceived to work and how they actually behave in practice remains surprisingly large. While ABO
substantially narrows this gap relative to prior methods, its absolute performance still leaves ample
room for improvement. This persistent discrepancy stems from the inherent scale and complexity of
modern LLMs, where attribution noise, token interactions, and non-linear dependencies grow rapidly
with model size. Consequently, even small estimation errors in saliency can accumulate and distort
the interpretation, posing a challenge that goes beyond the reach of any single method.

From an algorithmic perspective, ABO’s per-example optimization introduces additional variance
across runs and examples, especially when the target likelihood landscape is highly non-convex. This
sensitivity makes results less stable in certain contexts and increases computational cost for large-
scale deployment. Future work could explore amortizing bias inference through meta-learning or
distillation-based techniques, allowing approximate but faster and more consistent saliency estimation.
Furthermore, our current stress test mainly targets retrieval-style prompts; extending it to multi-step
reasoning, dialogue, and multimodal tasks would provide a broader view of attribution fidelity under
real-world conditions. Overall, ABO represents an encouraging step toward causally grounded
saliency analysis for large language models. It not only improves attribution fidelity under long-
context noise but also exposes deeper methodological gaps in how we interpret complex neural
systems, gaps that will require sustained community effort to close.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the main claims in the abstract and introduction accurately reflect the
paper’s contributions and scope, including the contributions made in the paper and important
assumptions and limitations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: limitations are discussed in Sec. 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate “Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: the paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed setups and hyper-parmaeters can be found in Appx. A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

18



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The data used in this paper are fully open datasets. The code and instructions
are included in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This paper is inference-time saliency analysis, so does not involve data spliting.
Detailed experiment setups are reported both in Sec. 5 and Appx. A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Although the paper does not explicitly report error bars for each data point,
this is understandable given the large volume of quantitative results, where including error
bars for every entry could significantly reduce readability. However, the authors state that
all reported results are averaged over three independent runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer “Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Detailed computational resources are reported in Appx. A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors confirm that in every respect, the research is not against NeurIPS
code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The societal impact statement is included in Appx. C.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: the paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the open datasets and models are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: the paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Experiment Setup

All saliency methods were normalized to ensure that their respective attribution scores sum to one.

Gradient Norm (GRADNORM) computes saliency scores based on the ℓ2 norm of the gradient of
the model’s output with respect to the input token embeddings. Specifically, the score for each token
xi is calculated by taking the L1 norm of the gradient ∇xi

q(yt|x), where q(yt|x) is the model’s
predicted probability for token yt given input x.

Gradient × Input (INPUT×GRAD) modifies the Gradient Norm approach by calculating the dot
product between each input embedding xi and its gradient ∇xiq(yt|x), thereby emphasizing tokens
highly expressed in the model’s predictive process.

Attention Rollout (ROLLOUT) tracks the flow of attention information through transformer layers
by recursively multiplying attention matrices across layers. Given raw attention matrices A(li) at
each layer li, attention from higher layers is multiplied downwards layer by layer, creating cumulative
attention maps that reflect the propagation of token importance from input layers up to the output
layer (https://github.com/hmohebbi/context_mixing_toolkit).

TokenSHAP (SHAP) estimates Shapley values for tokens via Monte Carlo sampling. The importance
of each token is determined by evaluating its marginal contribution to the model’s output across
randomly sampled subsets of tokens, combining essential combinations with randomly sampled ones
to ensure both computational efficiency and accurate estimation (https://github.com/ronigold/
TokenSHAP).

Token Distribution Dynamics (TDD) analyzes token saliency using token distribution projections
within the embedding space via the language model head. Variants such as forward, backward, and
bidirectional TDD measure token saliency through their distributional shifts and causal contributions
to model predictions (https://github.com/zijian678/TDD).

Attention Manipulation (ATMAN) generates relevance maps through memory-efficient perturba-
tions of transformer attention mechanisms. It applies token-level perturbations directly within the
attention score space, reducing computational overhead and facilitating efficient interpretation of
model decisions (https://github.com/Aleph-Alpha/AtMan).

Attribution with Attention (AT2) treats attention weights from individual heads as learnable features.
This method uses ablation-based training to learn attention-head coefficients, enabling efficient
yet accurate token attribution across different contexts and significantly reducing computational
requirements (https://github.com/MadryLab/AT2).

ABO: For ABO, we optimized the bias parameters {αi} using the Adam optimizer with a typical
learning rate of 0.01, applying a decay schedule after a fixed number of iterations. The optimization
was capped at 50 to 200 steps, depending on the context length, with early stopping triggered by the
convergence of the target token probability. To promote sparsity and focus in the saliency distribution,
we applied a sigmoid-transformed ℓ1 regularizer with weight λ ranging between 10−1 and 1. All bias
parameters were initialized randomly to avoid introducing inductive bias at initialization.

A.1 Compute Environment

All experiments were conducted exclusively for evaluation purposes, with no model training or fine-
tuning involved. We utilized NVIDIA H100 GPUs for all runs, and the total compute consumption
was approximately 1000 GPU hours. This estimate includes forward passes, saliency score extraction,
attention bias optimization, and repeated runs for multi-seed robustness analysis across multiple
saliency methods and model backbones.

B Additional Experiment Results

In this section, we provide additional qualitative examples (Fig. A1∼Fig. A5) to illustrate how BPO
can be used to correct model reasoning errors by redirecting attention to overlooked yet critical
tokens. These examples are drawn from the GSM8K dataset and demonstrate instances where the
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[Question] Paul went to a shop to buy some groceries. He bought some bread for 2, butter for 3, and
juice for two times the price of the bread . He had 15 for his shopping. How much money did Paul
have left?

[Reasoning (Incorrect by Default)] <think>
Let’s determine how much money Paul has
left after his shopping step by step. The
bread costs 2. ... The juice costs two
times the price of the butter ... <\think>
Final Answer: \(\boxed4\)

[Reasoning (Correct with Attention
Bias)]<think> Let’s determine how much
money Paul has left after his shopping step
by step. The bread costs 2. ... The juice costs
two times the price of the bread ... <\think>
Final Answer: \(\boxed6\)

Figure A1: Example 1. Initially, the model misidentifies “juice costs twice the butter” instead of “twice the
bread”. With attention bias on the word “bread,” the model corrects its interpretation and computes the correct
remaining balance.

[Question] There are some jelly beans in a jar. Three fourths of the red jelly beans are red, and one
quarter of the jelly beans are coconut flavored. If 750 jelly beans are coconut flavored, how many jelly
beans are there in the jar?

[Reasoning (Incorrect by Default)] <think>
Let’s solve the problem step by step. Given:
... Since one quarter of the total jelly beans
equals 750, I can set up the equation: ...
<\think> Final Answer: \(\boxed3000\)

[Reasoning (Correct with Attention
Bias)]<think> ... That means if I have a total
number of jelly beans, say, T, then the num-
ber of red jelly beans would be (3/4) * T. ...
<\think> Final Answer: \(\boxed4000\)

Figure A2: Example 2. The model initially misattributes the fraction to total jelly beans. Highlighting “red”
refocuses attention on the subject of the fraction, enabling correct inference of the jar size.

model initially produced incorrect answers due to misinterpretation. By applying positive bias to the
appropriate input tokens, we successfully guide the model to revise its understanding and produce the
correct answers—without modifying the input text. Each example shows the original faulty reasoning
on the left and the corrected reasoning with attention bias on the right. These results showcase the
potential of attention-level interventions for LLM robustness and post hoc debugging.

C Broader Impact

This work advances the field of trustworthy AI by proposing Attention Bias Optimization (ABO), a
principled method for accurate token attribution in large language models (LLMs). By identifying
and correcting systemic flaws in six widely-used saliency methods, our work enables more faithful,
scalable, and robust interpretability, especially in long-context settings.

From an ethical standpoint, ABO enhances transparency in LLM behavior, reducing the risk of
misinterpretation in high-stakes applications such as legal analysis, education, and healthcare. How-
ever, accurate attribution also raises dual-use concerns: malicious actors could leverage improved
interpretability to reverse-engineer sensitive prompts or fine-tune manipulative behavior. Future
research should explore safeguards that balance interpretability with misuse prevention.

At the societal level, our method supports the development of safer AI systems by enabling ap-
plications such as zero-shot toxicity suppression, error correction, and sentiment steering. These
capabilities can improve the reliability and controllability of AI assistants and mitigate harms caused
by misaligned or biased outputs. Still, we caution that attribution is not equivalent to accountability;
robust evaluation and user education remain necessary.
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[Question] A company pays each of its employees 600 in a month . The company has a policy of
increasing the salaries of each of its employees by 10% of the initial salary every year for those who’ve
stayed in the company for five years. If Sylvie just clocked 5 years in the company last December,
what’s her annual salary after three more years of service?

[Reasoning (Incorrect by Default)] <think>
Alright, so I have this problem about Sylvie’s
salary ... First, it says that the company
pays each employee 600 per year. ...<\think>
Final Answer: \(\boxed780\)

[Reasoning (Correct with Attention
Bias)]<think> First, I need to deter-
mine Sylvie’s current monthly salary.
Since she has been with the ... Starting
salary: 600 per month. ... <\think>
Final Answer: \(\boxed10,541.52\)

Figure A3: Example 3. The model mistakes the salary to be yearly instead of monthly. Biasing the word
“month” shifts the model toward the correct interpretation and output.

[Question] Brian’s friend Bobby has 5 fewer than 3 times as many video games as Brian does. If Brian
has 20 video games but lost 5 right after the comparison was made, how many does Bobby have?

[Reasoning (Incorrect by Default)] <think>
Okay, let’s tackle this problem step by step.
... Determine the current number of video
games Brian has: Originally, Brian has 20
video games. He lost 5 video games. Current
number of Brian’s games= 20− 5 = 15 ...
<\think> Final Answer: \(\boxed40\)

[Reasoning (Correct with Attention
Bias)]<think> Alright, let’s try to solve
this problem step by step. ... The phrase
implies that the comparison occurred, and
then Brian lost 5. So, it seems like the
comparison was done when Brian had 20
games, and after that, he lost 5. ...<\think>
Final Answer: \(\boxed55\)

Figure A4: Example 4. The model mistakenly adjusts the number of video games after the comparison.
Emphasizing the word “after” leads to the correct timing of the event and the correct answer.

We encourage continued efforts to integrate interpretability into broader frameworks of AI alignment,
governance, and fairness auditing to ensure that attribution advances benefit diverse populations
responsibly.
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[Question] Jerome had 4 friends who came to visit him on a certain day. The first friend pressed on the
doorbell 20 times before Jerome opened, the second friend pressed on the doorbell 1/4 times more than
Jerome’s first friend. The third friend pressed on the doorbell 10 times more than the fourth friend. If
the fourth friend pressed on the doorbell 60 times, how many doorbell rings did the doorbell make?

[Reasoning (Incorrect by Default)] <think>
Alright, let’s tackle this problem step by step.
... First Friend: Pressed the doorbell 20 times.
Second Friend: Pressed the doorbell 1/4
times more than the first friend. Third Friend:
Pressed the doorbell 10 times more than
the second friend. Third Friend: 250 times
...<\think> Final Answer: \(\boxed605\)

[Reasoning (Correct with Attention Bias)]
<think> First, identify the number of times
each friend pressed the doorbell. ... Fourth
Friend: The fourth friend pressed the door-
bell 60 times. Third Friend: The third
friend pressed the doorbell 10 times more
than the fourth friend. Calculation: [
10 × 60 = 600 times ] ... <\think>
Final Answer: \(\boxed605\)

Figure A5: Example 5. The model incorrectly attributes the comparison for the third friend to the second
friend. Attention bias on the word “fourth” enables accurate attribution and total computation.
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