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Abstract

Most current domain adaptation methods address either covariate shift or label shift, but
are not applicable where they occur simultaneously and are confounded with each other.
Domain adaptation approaches which do account for such confounding are designed to
adapt covariates to optimally predict a particular label whose shift is confounded with
covariate shift. In this paper, we instead seek to achieve general-purpose data backwards
compatibility. This would allow the adapted covariates to be used for a variety of downstream
problems, including on pre-existing prediction models and on data analytics tasks. To do
this we consider a modification of generalized label shift (GLS), which we call confounded
shift. We present a novel framework for this problem, based on minimizing the expected
divergence between the source and target conditional distributions, conditioning on possible
confounders. Within this framework, we propose using the Gaussian reverse Kullback-Leibler
divergence, demonstrating the use of parametric and nonparametric Gaussian estimators of
the conditional distribution. We also propose using the Maximum Mean Discrepancy (MMD),
introducing a dynamic strategy for choosing the kernel bandwidth, which is applicable even
outside the confounded shift setting. Finally, we demonstrate our approach on synthetic and
real datasets.

1 Introduction

Suppose you have developed a seizure risk prediction model using electroencephalogram (EEG) data, but your
hospital lab recently acquired an updated V2 EEG machine. Based on the small amount of data collected
for validating the V2 machine, it appears that the V2 machine data distribution is shifted relative to that
from the V1 machine. At this point, the problem might appear to call for the use of covariate shift domain
adaptation approaches, to adapt the V2 (source) distribution to look like the V1 (target) distribution. Yet
additionally, while the V1 dataset comes from a large number of low-risk and high-risk individuals, the
V2 dataset thus far is mostly comprised of low-risk volunteers. Ignoring the aforementioned covariate shift
problem, this latter problem would seem to fall into the label shift domain adaptation problem setting. Our
hypothetical scenario thus combines these two problems: it has both covariate shift and label shift which are
confounded with each other.

In the above scenario, the prediction label variable (seizure risk) was coincidentally also the confounder that
was correlated with the V1-vs-V2 batch e�ect. But we might also want to perform statistical analyses for
scientific purposes on the EEG data, after combining data from both V1 and V2 machines, to increase our
statistical power. For example, we might want to correct for the risk-machine confounding, and then use the
adapted EEG data to predict age, in order to discover EEG features related to aging processes. Or, using a
corrected and combined dataset, we might want to predict EEG data given medication status, to see how
certain medications a�ect EEG features.

There are multiple obstacles to solving this problem. First, even for tasks that do not involve predicting
the confounder (e.g. seizure risk), we cannot simply perform standard covariate-shift domain adaptation,
because the source and target datasets should not look alike. Second, even for these other tasks that do not
involve predicting the confounder (e.g. seizure risk), we cannot assume that the confounder (seizure risk) is
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known for all samples on which we will apply our adaptation. Therefore, we need an adaptation function
(e.g. which corrects for the V1-versus-V2 shift) that does not take in the confounder as an input feature (e.g.
which does not depend on seizure risk). Third, we cannot discard information unrelated to predicting the
confounder. One common approach for domain adaptation is to learn an intermediate representation that is
invariant to source-vs-target e�ects, while still predictive of the label (which is the confounder). But because
we want to use adapted-and-combined dataset for a variety of downstream tasks, we need to preserve as
much information as possible, not merely the subspace relevant to seizure risk prediction. Fourth, we might
have pre-existing prediction models trained on V1 data, which we cannot retrain or finetune on V2 data
(either raw or adapted). Thus, in such cases we must make the V2 “backwards-compatible” with models
trained on V1 data, producing a V2-to-V1 adapter that is then composed with V1-trained prediction models.

In this paper we seek a domain adaptation method that creates a “general-purpose” fix for the source-vs-target
shift in our data, adapting the covariates from V2 to the V1 domain. Then we would be able to combine
the V2-to-V1 adapted data with the V1 data, and use them as one domain for a variety of downstream
prediction and inference tasks. To begin to address this challenge we assume a modification of generalized
label shift (GLS) (Tachet des Combes et al., 2020) which we call confounded shift. Confounded shift does
not assume that the confounding variable(s) are identically distributed in the source and target domains,
or that the covariates are identically distributed in the source and target domains. Rather, it assumes that
there exists an adaptation g : X æ X from source covariates to target covariates such that the target’s
conditional distribution of covariates given confounders is equal to that of the adapted-source’s conditional
distribution. However, we do not assume that the adapted-source’s covariates and target’s covariates have
the same distribution.

In the rest of the paper, we provide a framework for adapting the source to the target, based on minimizing
the expected divergence between target and adapted-source conditional distributions, i.e. conditioning on
the confounding variables. We show how to compute the expectation with respect to a prior distribution
over the confounders, and recommend using an estimator of the product of the source and target confounder
distributions. We propose using the Gaussian reverse-KL divergence and the maximum mean discrepancy
(MMD) as divergence functions.

Furthermore, using this framework we provide concrete implementations based on the assumption that
the source-vs-target batch e�ect is “simple”. In particular, we restrict the adaptation to be a�ne, or even
location-scale (i.e. with a rotation representable by a diagonal matrix). Meanwhile, we consider both simple
(e.g. multivariate linear Gaussian) and complex (e.g. Gaussian Process and kernel-based) estimators for the
conditional distribution of the covariates given the confounder(s). This assumption is especially intended to
adapt structured data, such as biometric sensor outputs, genomic sequencing data, and financial market data,
where domain shifts are typically simple, yet where the input-output mapping is often nonlinear. We are not,
in this paper, attempting to adapt an image classification model from photographic inputs to hand-drawn
inputs, though we hope our framework could be extended to nonlinear domain adaptation settings.

Software is available at https://github.com/uhhnonymous/anon-submission-tmlr.

2 Preliminaries

In this section, we introduce our notation, describe standard approaches to a�ne-transformation domain
adaptation, and provide background on generalized label shift.

2.1 Notation

Our notation is inspired by the setting where the confounding variable is the label variable, even though
our framework is not strictly intended for this scenario. X and Y respectively denote the covariate (input
feature) and confounder (output label) space. X and Y denote random variables which take values in X and
Y , respectively. A joint distribution over covariate space X and confounder space Y is called a domain D. In
our setting, there is a source domain DS and a target domain DT . D

X
S , D

X
T denote the marginal distributions

of covariates under the source and target domains, respectively; D
Y
S , D

Y
T denote the corresponding marginal

distributions of confounders. For arbitrary distributions P and Q, we assume we have been given a distance
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or divergence function denoted by d(P, Q). By N (µ, �) we denote the Gaussian distribution with mean µ
and covariance �. By | · | we denote the absolute value; by det(·) we denote the matrix determinant. By A€

we denote the matrix transpose.

2.2 A�ne Domain Adaptation based on Gaussian Optimal Transport

Domain adaptation has a closed form a�ne solution in the special case of two multivariate Gaussian
distributions. The optimal transport (OT) map under the type-2 Wasserstein metric for x ≥ N (µS , �S) to a
di�erent Gaussian distribution N (µT , �T ) has been shown (Dowson & Landau, 1982; Knott & Smith, 1984)
to be the following:

x ‘æ µT + A(x ≠ µS) = Ax + (µT ≠ AµS), (1)

where

A = �≠1/2
S

1
�1/2

S �T �1/2
S

21/2
�≠1/2

S = A€
. (2)

This mapping has been applied to a variety of uses (Mallasto & Feragen, 2017; Muzellec & Cuturi, 2018;
Shafieezadeh Abadeh et al., 2018; Peyré et al., 2019) in OT and machine learning. For univariate Gaussians
N (µS , ‡

2
S) and N (µT , ‡

2
T ), the above transformation simplifies to

x ‘æ µT + ‡T

‡S
(x ≠ µS) = ‡T

‡S
x + (µT ≠

‡T

‡S
µS). (3)

2.3 A�ne Domain Adaptation Minimizing the Maximum Mean Discrepancy (MMD)

An alternative approach can be derived from representing the distance between target and adapted-source
distributions as the distance between mean embeddings. This leads to minimizing the (squared) maximum
mean discrepancy (MMD), where the MMD is defined by a feature map „ mapping features x œ X

to a reproducing kernel Hilbert space H. We denote the feature-space kernel corresponding to „ as
kX (x(n1)

, x(n2)) = È„(x(n1)), „(x(n2))Í. Because the feature-space vectors are assumed to be real, MMD-based
adaptation methods typically use the radial basis function (RBF) kernel, which leads to the MMD being zero
if and only if the distributions are identical.

If the transformation is a�ne from source to target, the loss can be written as follows:

MMD2(DT , DS) =Ex(n1),x(n1)Õ ≥DT
kX (x(n1)

, x(n1)Õ
)

≠ 2Ex(n1)≥DT ,x(n2)≥DS
kX (x(n1)

, Ax(n2) + b)

+ Ex(n2),x(n2)Õ ≥DS
kX (Ax(n2) + b, Ax(n2)Õ

+ b). (4)

Prior work has sometimes instead assumed a location-scale transformation (Zhang et al., 2013), or a nonlinear
transformation (Liu et al., 2019a). Notably, while previous MMD-based domain adaptation methods have
matched feature distributions (Zhang et al., 2013; Liu et al., 2019a; Singh et al., 2020; Yan et al., 2017),
joint distributions of features and label (Long et al., 2013), or the conditional distribution of label given
features (Long et al., 2013), they have generally not considered matching the conditional distribution of
features given labels. One exception to this is IWCDAN (Tachet des Combes et al., 2020), which however
aligns datasets via sample importance weighting rather than a feature-space transformation.

Despite their theoretical attractiveness, MMD-based domain adaptation methods tend to struggle in practice,
such as on single-cell genomics data (Singh et al., 2020), for a few reasons. First, because MMD is a non-convex
functional, it tends get stuck in local minima. This related to another practical weakness, which is that
it is very sensitive to the choice of length-scale / bandwidth hyperparameter. When the bandwidth is too
small, each datapoint are seen as dissimilar to all other points except itself. If the source and target data are
separated, the second term in Eq. (4) will be approximately zero with vanishing gradient far from a skinny
Gaussian, so no progress will be made. Yet when the bandwidth is too large, the gradient also vanishes with
di�erent datapoints together at the flat top of a wide Gaussian. Various measures have been proposed for
these problems, such as adding a discriminative term to the objective (Wang et al., 2020) and choosing the
(fixed) bandwidth in a data-driven way from the entire dataset (Singh et al., 2020).
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2.4 Background on Covariate Shift, Label Shift, and Generalized Label Shift

Domain adaptation methods typically assume either covariate shift or label shift. With covariate shift, the
marginal distribution over covariates di�ers between source and target domains. However, for any particular
covariate, the conditional distribution of the label given the covariate is identical between source and target.
With label shift, the marginal distribution over labels di�ers between source and target domains. However,
for any particular label, the conditional distribution of the covariates given the label is identical between
source and target domain.

More recently, generalized label shift was introduced to allow covariate distributions to di�er between source
and target domains (Tachet des Combes et al., 2020). Generalized label shift (GLS) instead assumes that,
given a transformation function Z = g(X) applied to inputs from both source and target domains, the
conditional distributions of Z given Y = y are identical for all y. This is a weak assumption, and it applies
to our problem setting as well. However, it is designed for the scenario where we simply need g to preserve
information only for predicting Y given X ≥ D

X
S .

3 Confounded Domain Adaptation

For the time being, we will consider our motivating scenario in which our ultimate goal is to reuse a minimum-
risk binary classification hypothesis h : X æ {0, 1} in a new deployment setting. We treat the deployment
setting as the source domain, instead of (as is typical in domain adaptation) the target domain. And instead
of learning an end-to-end predictor for the deployment domain, we learn an adaptation g from it to the
target domain for which we have a large number of labelled examples. Then, to perform predictions on the
deployment (source) domain, we first adapt them to the target domain, and then we apply the prediction
model trained on the target domain. In other words, we do not need to retrain h, and instead apply h ¶ g

to incoming unlabelled source samples. Similarly, other prediction tasks and statistical analyses can be
identically applied to target domain data and adapted-source domain data.

In many real-world structured data applications, new data sources are designed with “backwards-compatibility”
in mind, with the goal that updated sensor and assays provide at least as much information as the earlier
versions. We assume the existence of a “true” noise-free mapping g from the deployment domain to the large
labelled dataset domain. We further assume that this mapping is a�ne, i.e., g(x) = Ax + b for some A, b .

The algorithms developed under our framework could instead be applied when treating the deployment
setting as the target domain and the labelled dataset as the source domain. This would entail retraining h on
adapted data, and then applying h to new samples. However, such usage is not the focus of this paper.

We assume NS and NT samples from the source and target domain, respectively. We assume each sample
has feature vector x(n)

œ RM . Each sample has confounding variables represented as y(n), which could
be categorical, continuous, a concatentation of both, or even a more general object such as a string. The
confounders will (unless otherwise indicated) be accessed via a user-specified confounder-space kernel function
kY(y(n1)

, y(n2)).

3.1 Our Assumption: Confounded Shift

In our case, given X ≥ D
X
S , we instead want to recover what it would have been had we observed the same

object from the data generating process corresponding to the target domain X ≥ D
X
T . In other words, the

mapping g(X) should not only preserve information in X useful for predicting Y , but ideally all information
in X ≥ D

X
S that is contained in X ≥ D

X
T .

We may formulate our setting as a latent variable inference problem, where the latent variables correspond to
features before the target-to-source (e.g. V1-to-V2) update. To do this, we assume that g (source-to-target) is
invertible with inverse g

≠1 (target-to-source). The latent feature variables Z are generated by the conditional
distribution given in the Confounded Shift assumption:

p(Z = z|Y = y) = pDT (X = z|Y = y) = pDS (X = g
≠1(z)|Y = y). (5)
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Table 1: Domain adaptation settings
Name Shift Assumed Invariant
Covariate Shift D

X
S ”= D

X
T ’x œ X , DS(Y |X = x) = DT (Y |X = x)

Label Shift D
Y
S ”= D

Y
T ’y œ Y, DS(X|Y = y) = DT (X|Y = y)

Generalized Label Shift D
Y
S ”= D

Y
T ’y œ Y, DS(g(X)|Y = y) = DT (g(X)|Y = y)

Confounded Shift D
Y
S ”= D

Y
T ’y œ Y, DS(g(X)|Y = y) = DT (X|Y = y)

Relation to Generalized Label Shift Suppose GLS intermediate representation g(X) were extended to
be a function of both X and an indicator variable D specifying whether a sample is taken from the target or
the source domain. Then, given this extended representation {X, D}, we restrict g̃({X, D}) as follows,

g̃({X, D}) =
I

g(X) D = S

X D = T
(6)

so that samples from the source distribution are adapted by g(·), while those from the target distribution
pass through unchanged. With this extended representation, as well as the restriction on g̃, confounded shift
and GLS coincide. Note that while confounded shift is stronger than GLS, both allow D

X
S ”= D

X
T ; and just as

GLS allows D
g(X)
S ”= D

g(X)
T , we analogously allow D

g(X)
S ”= D

X
T .

The indicator variable D allows us to depict our assumption as the following Markov graph:

D

ZX Y

which by inspection is a combination of prior probability shift and covariate observation shift as defined in
(Kull & Flach, 2014).

The previous assumptions as well as our confounded shift assumption are summarized in Table 1.

3.2 Main Idea

Our primary aim is to infer a transformation that is broadly applicable, so given observed source domain
features deterministically generated as

p(X = x|Z = z, D = S) = ”
!
x ≠ g

≠1(z)
"
, (7)

where ” is the Dirac delta, we will seek to reconstruct z with minimal error.

Our secondary aim is to minimize error on downstream prediction tasks, which for simplicity is assumed to
be binary classification. Formally, the hypothesis is a fixed binary classification function h : X æ {0, 1}. We
seek to choose ĝ which minimizes the accuracy loss induced (by unknown shift g

≠1) on hypothesis h under
distribution D

X
T :

pDX
T

1
h ¶ ĝ

!
g

≠1(X)
"

”= h(X)
2

. (8)

Contrary to typical domain adaptation settings, we expect that NS < NT , since we are adapting NS

datapoints from the new V2 sensor, from which we have few samples. We expect an abundance of prediction
labels on our target dataset (i.e. from the V1 sensor), though this is irrelevant since h is already trained and
fixed.

Our proposal, which we dub ConDo, is to minimize the expected distance (or divergence) d between the
conditional distributions of source and target given confounders, under some specified prior distribution over
the confounders. Our goal is to find the optimal linear transformation g(x) = Ax + b of the source to target,
leading to the following objective:
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min
A,b

Ey≥DY
prior

d

1
DT (x|Y = y), DS(Ax + b|Y = y)

2
. (9)

In certain scenarios, particularly scientific analyses, it is important for explainability that each ith adapted
feature [Ax(n) + b]i be derived only from the original feature [x(n)]i. So we will examine both full a�ne
transformations and also transformations where A is restricted to be diagonal A = diag(a); the latter is
sometimes referred to as a location-scale adaptation (Zhang et al., 2013).

Three ingredients remain to turn this framework into a concrete algorithm: the choice of prior confounder
distribution D

Y
prior (Section 3.3), the distance/divergence function d (Section 3.4), and the conditional

distribution estimators D·(·|Y = y) (Section 3.5).

3.3 Choice of Confounder Prior Distribution

The appropriate choice of confounder prior depends upon two considerations. Firstly, all things else being
equal, it would be best for this prior to match the distribution over the confounder(s) that we expect to see
in the future. Our approach minimizes risk under the chosen prior distribution, which suggests choosing this
prior to match the deployment distribution. For example, if the primary downstream task is to predict the
confounding variable on future incoming samples, and the confounder’s distribution on the target dataset
is representative of future samples, then this suggests choosing D

Y
prior := D̂

Y
S , the empirical distribution

of Y in our source dataset. However, there is a second consideration which may override the above logic:
our conditional distribution estimators may be poor extrapolators, and so we should minimize the distance
between the conditional distributions only where we can estimate both with high accuracy. This suggests
choosing to perform minimization over confounder values that are likely under both source D

Y
S and target

D
Y
T distributions, thus estimating the product of the two distributions. On the other hand, if the conditional

distribution admits easy extrapolation, then it may be appropriate to minimize over values that are likely in
either source D

Y
S or target D

Y
T , thus summing the two distributions.

Formalizing the above reasoning, we define four possible choices of the confounder prior. We will let each
prior have non-negative support over the union of confounder values in the source and target datasets, so
that each can be represented as probabilistic weights attached to each sample. The source, target, and sum
priors can be trivially represented as follows:

D̂
Y
S := 1

NS

NSÿ

n

”(y ≠ Y
(n)

S ), (10)

D̂
Y
T := 1

NT

NTÿ

n

”(y ≠ Y
(n)

T ), (11)

D̂
Y
+ := 1

2NS

NSÿ

n

”(y ≠ Y
(n)

S ) + 1
2NT

NTÿ

n

”(y ≠ Y
(n)

T ). (12)

where ” is the Dirac delta function. For the product prior, we note that the empirical distributions may have
non-intersecting support. Without smoothing the priors, this would be problematic because (for example)
the weight w(n)

S attached to a particular sample Y
(n)

S would be zero unless Y
(n)

S = Y
(i)

T for some 1 Æ i Æ NT .
This happens almost never if Y comes from a continuous distribution. Therefore, before computing their
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product, we smooth the priors using the confounder-space kernel kY as follows:

D̂
Y
ú :=

NSÿ

n

w(n)
S ”(y ≠ Y

(n)
S ) +

NTÿ

n

w(n)
T ”(y ≠ Y

(n)
T ), where (13)

w(n)
S Ã

A qNS

i=1 kY(Y (i)
S , Y

(n)
S )

qNS

j=1
qNS

i=1 kY(Y (i)
S , Y

(j)
S )

◊

qNT

i=1 kY(Y (i)
T , Y

(n)
S )

qNT

j=1
qNT

i=1 kY(Y (i)
T , Y

(j)
T )

B1/2

(14)

w(n)
T Ã

A qNS

i=1 kY(Y (i)
S , Y

(n)
T )

qNS

j=1
qNS

i=1 kY(Y (i)
S , Y

(j)
S )

◊

qNT

i=1 kY(Y (i)
T , Y

(n)
T )

qNT

j=1
qNT

i=1 kY(Y (i)
T , Y

(j)
T )

B1/2

. (15)

where wS and wT are normalized so
q

n w(n)
S +

q
n w(n)

T = 1. The product prior D̂
Y
ú is the most conservative

choice, so we recommend it as the default, and use it for all experiments in this paper.

3.4 Conditional Distribution Distance/Divergence Function

Below, we propose using the reverse-KL divergence and the MMD in our loss function. Both yield simple,
e�cient algorithms, including a closed-form solution for the reverse KL divergence with location-scale
adaptation. Note that, as we discuss in Future Work, other divergences are possible within our framework. In
particular, OT-based distances are likely to o�er higher accuracy at greater computational expense. However,
we limit ourselves to these two divergences for their low computational cost, and to focus on the overall
proposed framework rather than the computational challenges and opportunities that arise from combining
ConDo with OT.

3.4.1 Reverse KL Divergence under Gaussianity

It can be straightforwardly shown that the linear map Eq. (1) derived from optimal transport leads to
adapted data being distributed according to the target distribution. That is, µP + A(x ≠ µQ) ≥ N (µP , �P ).
Therefore, the KL-divergence from the target distribution to the adapted source data distribution is minimized
to 0, and similarly for the KL-divergence from the adapted source data distribution to the target distribution.
This motivates using the KL-divergence as a loss function, with either the forward KL-divergence d(P, Q) :=
dKL(P ||Q) or reverse KL-divergence d(P, Q) := dKL(Q||P ). While the forward KL-divergence from target to
adapted-source appears to be the natural choice, we instead propose to use the reverse KL-divergence. Due
to its computational tract and well-conditioned, the reverse KL has found wide use in variational inference
(Blei et al., 2017) and reinforcement learning (Kappen et al., 2012; Levine, 2018). We will show that it has
similar benefits in domain adaptation.

In either case, it can be shown that minimizing Eq. (9) requires estimating the conditional means and
conditional covariances, according to both the source and target domain estimators, evaluated at each
y ≥ D

Y
prior. (If the transformation is location-scale rather than full a�ne, KL divergence minimization requires

only the conditional variances for each feature.)

Given N samples in the prior distribution, each with weight given by wn, 1 Æ n Æ N , let the source and target
estimated conditional means be given by µ(n)

S , µ(n)
T , and the conditional covariances be given by �(n)

S , �(n)
T ,

respectively.

For the forward-KL divergence, this leads to the following objective:

min
A,b

2 log
1

| det(A)|
2

+
Nÿ

n=1
wn ú

C
tr

1#
A�(n)

S A€$≠1�(n)
T

2

+
1

Aµ(n)
S + b ≠ µ(n)

T

2€Ë
A�(n)

S A€
È≠11

Aµ(n)
S + b ≠ µ(n)

T

2D
. (16)
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Meanwhile, for the reverse-KL divergence, we instead have:

min
A,b

≠2 log
1

| det(A)|
2

+
Nÿ

n=1
wn ú

C
tr

1
�(n)

T

≠1
A�(n)

S A€
2

+
1

Aµ(n)
S + b ≠ µ(n)

T

2€
�(n)

T

≠11
Aµ(n)

S + b ≠ µ(n)
T

2D
. (17)

Besides being more e�cient to optimize (requiring matrix inversion once rather than at each iteration), the
reverse-KL objective minimizes the negative log-abs-determinant of A, which functions as a log-barrier away
from 0, maintaining the same sign of the determinant across optimization iterations. This is useful, because
the linear mapping between two Gaussians is not unique. The reverse-KL divergence, combined with an
initial iterate (e.g. the identity matrix) with a positive determinant, chooses the mapping which preserves
rather than reverses the orientation. In contrast, the forward-KL objective is liable to produce iterates with
oscillating signs of det(A).

That the (≠ log |A|) term arises naturally out of the reverse-KL divergence is of potential independent interest.
Preventing collapse into trivial solutions is a known problem with MMD-based domain adaptation (Singh
et al., 2020; Wu et al., 2021). The reverse-KL objective may inspire a new regularization penalty for this
problem.

Furthermore, in the case of a location-scale adaptation, the reverse-KL divergence can be obtained via a fast
exact closed-form solution. Further details are given in Appendix A.

3.4.2 The Conditional Maximum Mean Discrepancy

We extend MMD-based domain adaptation to match conditional distributions by sampling from the prior
confounder distribution. For a particular y œ Y sampled from the prior, suppose we have a way of sampling
from DT (·|Y = y) and DS(·|Y = y). Then, we have

d

1
DT (·|Y = y), DS(·|Y = y)

2
:=MMD2(DT (·|Y = y), DS(·|Y = y)) (18)

=Ex(n1),x(n1)Õ ≥DT (·|Y =y)kX (x(n1)
, x(n1)Õ

)

≠ 2Ex(n1)≥DT (·|Y =y),x(n2)≥DS(·|Y =y)kX (x(n1)
, Ax(n2) + b)

+ Ex(n2),x(n2)Õ ≥DS(·|Y =y)kX (Ax(n2) + b, Ax(n2)Õ
+ b). (19)

We e�ciently minimize this objective by sampling batches from the conditional distributions, combined with
(batch) gradient descent with momentum. To sample from the conditional distributions, we sample (with
replacement) from the empirical distributions, with sample weights derived from the confounder-space kernel
kY . This is described in more detail in Section 3.5.4.

Furthermore, we propose to dynamically recompute the bandwidth for each batch during the optimization
procedure. As our algorithm adapts the source to the target, our bandwidth estimate will progressively
update to continue focusing on matching the source and target. Given source sample XS

œ RNbatch◊M and
target sample XT

œ RNbatch◊M and the current transformation parameters (A, b), the squared-bandwidth
for a single dimension i of the features is computed as follows:

‡
2
i = 1

Nbatch

Nbatchÿ

n

1
XT

i ≠ (AXS
i + bi)

22
. (20)

3.5 Estimators for the Conditional Distribution

In this section, we present four estimators for D·(x|Y = y). The first three are designed to accompany the
KL-divergence, estimating conditional means µ(n)

S , µ(n)
T and conditional covariances �(n)

S , �(n)
T given each

sample y from the confounder prior. The final estimator (to be used in conjunction with MMD) allows us to
sample a batch of xs for each given y from the confounder prior.

8
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3.5.1 Linear Gaussian Distribution for KL-divergence Minimization

Here we model x conditioned on real-valued vector y as linear Gaussian:

D·(x|Y = y) = N (By, �≠1). (21)

Because x is potentially high-dimensional, we estimate parameters (B, �) with regularized multivariate
linear regression and the Graphical Lasso (Friedman et al., 2008). This model is homoscedastic, because all
samples in the source dataset will have identical estimated covariances �(n)

S = �≠1
S , �(n)

T = �≠1
T , ’1 Æ n Æ N .

Meanwhile, we will obtain di�erent predicted means for each source and target sample µ(n)
S , µ(n)

T . This
estimator requires confounder y to be quantitative; we use one-hot encoding to convert categorical confounders.

3.5.2 Product of Gaussian Mixture Models for KL-divergence Minimization

Assume for the moment that confounder Y is univariate categorical. For each observed value Y = y, we
estimate the conditional means µS |Y = y, µT |Y = y from the empirical means and the conditional covariances
�S |Y = y, �T |Y = y from the empirical covariances using Graphical Lasso (Friedman et al., 2008). To handle
multivariate categorical Y over J categorical variables, we take the product of each conditional distribution,
which (after normalizing) is itself Gaussian. Formally, consider the feature-confounder pair (x(n)

, y(n)) for a
particular sample n, where x(n)

œ RM and y(n)
œ C = C1 ◊ . . . ◊ Cj ◊ . . . ◊ CJ , with Cj = {1, . . . , k, . . . , K},

where each categorical variable is K-ary. The conditional means/precisions are indexed as (µ(j)
k , �(j)

k ). Our
product-of-experts assumption yields

D·(x(n)
|y(n)) =

JŸ

j=1
p·(x(n)

|y(n)
j ) Ã

JŸ

j=1
N

A
µ(j)

y(n)
j

,

Ë
�(j)

y(n)
j

È≠1
B

(22)

=N

AË Jÿ

j=1
�(j)

y(n)
j

È≠11 Jÿ

j=1
�(j)

y(n)
j

µ(j)
y(n)

j

2
,

Ë Jÿ

j=1
�(j)

y(n)
j

È≠1
B

. (23)

This estimator requires confounder y to be categorical (though potentially multivariate); we use KMeans
clustering to quantize each continuous confounding variable into categories.

3.5.3 Univariate Gaussian Process for KL-divergence Minimization

We will only use this model for location-scale transformations, so we model each feature independently.
Without loss of generality, for feature i in source domain DS(·|Y = y), we have xi œ RNS modeled using a
Gaussian process (GP):

f(y) ≥ GP(m(y), kY(y, y
Õ)). (24)

Having fit the GP on the source dataset XS
i ‘æ Y

S , we evaluate it to compute and store the conditional
mean and variance for each y taken from the confounder prior. This process is repeated for all features, on
both the source and target datasets.

3.5.4 Conditional Distribution Sampling for MMD Minimization

We model each of the conditional distributions DT (x|Y = y) and DS(x|Y = y) using Nadaraya-Watson
kernel regression (Nadaraya, 1964; Watson, 1964). For each observed value of Y = y, we compute dataset
sample weight w(y(n)) Ã kY(y, y

(n)) for all samples in the target dataset and source dataset, respectively.
Then, we sample (with repeats) from this distribution. For example, to sample from the source conditional
DS(·|Y = y) for a given y, we assign each source sample X

(n)
S a weight proportional to kY(Y (n)

, y).

Additional Implementation Details The design of confounder-space kernels is discussed in Appendix B.
Computational speedups for categorical confounders are discussed in Appendix C.

9
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4 Experiments

We analyze our approach on synthetic data in Section 4.1 and on real data in Section 4.2. We also include
experiments validating our dynamic kernel bandwidth strategy for MMD in Appendix D.1.

4.1 Synthetic Data

4.1.1 1d Data with 1d Continuous Confounder

We first examine confounded domain adaptation in the context of a single-dimensional feature confounded by a
single-dimensional continuous confounder. Our results are illustrated in Figure 1. We analyze the performance
of vanilla and ConDo adaptations, when the e�ect of the continuous confounder is linear homoscedastic (left
column), linear heteroscedastic (middle column), and nonlinear heteroscedastic (right column). In all cases,
there is confounded shift because in the target domain the confounder is uniformly distributed in (0, 8), while
for the source domain in (4, 8).

We repeat the above experimental setup, but with modifications to verify whether our approach can be
accurate even when its assumptions no longer apply. We run experiments with and without noisy batch
e�ects, with-vs-without label shift (i.e. di�erent distributions over the confounder between source and target),
and with-vs-without feature shift (i.e. with and without batch e�ect), for a total of 8 shift-type settings.

Overall, we find that ConDo is robust to violations of the confounded shift assumption. We find that adding
noise to the batch e�ect does not a�ect the performance of ConDo. We also find that without label shift (when
confounding-awareness is unnecessary) ConDo is non-inferior to confounding-unaware methods And, without
feature-shift (when the true transformation is the identity, even if label shift makes the marginal feature
distributions di�er), we find that only ConDo reliably chooses approximately the identity transformation.
The noise-free and noisy results are summarized in Tables 2 and 3, respectively. The full results are provided
in Appendix D.2.

4.1.2 1d Data with Multiple Continuous Confounders

We extend the previous experiment to consider the scalability of ConDo to multidimensional confounders. For
the noise-free, label-shift, feature-shift setting, keeping all other experimental settings and hyperparameters
identical, we vary the number of confounders from 1 to 32. We first augment the number of confounders by
appending additional irrelevant “confounders”, sampled from N (0, 1), to our inputs to the ConDo method.
The results, shown in Figure 2, indicate that ConDo Linear Reverse-KL and GP Reverse-KL barely increase
in rMSE and maintain superiority for up to 32 confounders. ConDo PoGMM Reverse-KL gradually worsens,
but only becomes inferior to Gaussian OT in the nonlinear setting with at least 8 confounders. ConDo MMD
disastrously explodes in all settings with at least 8 confounders.

We next augment the number of confounders by generating a noisy additive decomposition of our original
confounder. We first uniformly sampling the “true” confounder as before, and generating the feature from
it as before. We then generate a random multidimensional confounder summing to the “true” confounder
of the desired dimensionality (Dickinson, 2010), and provide this to the ConDo methods. The results are
shown in Figure 3. The results are very similar to those from the irrelevant confounder experiment. However,
in the nonlinear setting, the ConDo methods now start performing worse than Gaussian OT with only 4
confounders.

4.1.3 1d Data with 1d Categorical Confounder

Here, we generate 1d features based on the value of a 1d categorical confounder. We also use this setting to
analyze the performance of ConDo for a variety of sample sizes. For each sample size under consideration,
we run 10 random simulations, and report the rMSE compared to the latent source domain values (before
applying the target-to-source batch e�ect).

Results are shown in Figure 4. In Figure 4(A) we see that with a 200 source (and 200 target) samples, the
ConDo methods have converged on the correct transformation, while their confounding-unaware analogues do

10
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Figure 1: ConDo methods are superior to Gaussian OT when confounded label shift and feature shift
are present (with no noise added after shifting). The columns, in order, correspond to a confounder with
a linear homoscedastic e�ect, a confounder with a linear heteroscedastic e�ect, and a confounder with a
nonlinear heteroscedastic e�ect. The first row depicts the problem setup, while the remaining rows depict
the performance of Gaussian OT and our ConDo methods. Red points overlapping with green points is
indicative of high accuracy. In each subplot, we provide the rMSE on training source data (depicted), and
in parentheses, the rMSE on heldout source data (not depicted) generated with confounder sampled from
target prior D

Y
T . The printed rMSEs are averaged over 5 independent random simulation runs, while the

plots depict the results from the final simulation run.
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(A)

(B)

Figure 2: Results for transforming 1d data with multiple continuous confounders, with extra irrelevant
N (0, 1) confounders. Average rMSEs across 10 random simulations are shown for both training data (A) and
heldout test data (B). The columns, in order, correspond to a confounder with a linear homoscedastic e�ect,
a confounder with a linear heteroscedastic e�ect, and a confounder with a nonlinear heteroscedastic e�ect.

(A)

(B)

Figure 3: Results for transforming 1d data with multiple continuous confounders, with noisy additive
decomposition. Average rMSEs across 10 random simulations are shown for both training data (A) and
heldout test data (B). The columns, in order, correspond to a confounder with a linear homoscedastic e�ect,
a confounder with a linear heteroscedastic e�ect, and a confounder with a nonlinear heteroscedastic e�ect.

12
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Table 2: Summary of results for 1d data with 1d continuous confounder without noise
No Noise, Label-Shifted and Feature-Shifted

Homoscedastic Linear Heteroscedastic Linear Nonlinear
Before Correction 30.534 (23.611) 31.818 (24.638) 18.097 (13.463)
Oracle 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
Gaussian OT 9.423 (17.794) 8.792 (10.733) 4.582 (3.795)
MMD 8.281 (6.065) 7.655 (5.586) 116.770 (79.574)
ConDo Linear-ReverseKL 0.501 (1.121) 1.376 (1.443) 3.234 (2.738)
ConDo GP-ReverseKL 0.551 (1.112) 1.422 (1.660) 2.299 (2.190)
ConDo PoGMM-ReverseKL 0.922 (1.116) 1.632 (1.533) 2.241 (2.172)
ConDo MMD 2.927 (2.067) 4.617 (3.366) 4.486 (3.174)

No Noise, Label-Shifted Only
Homoscedastic Linear Heteroscedastic Linear Nonlinear

Before Correction 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
Oracle 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
Gaussian OT 9.638 (16.972) 7.496 (9.569) 4.058 (3.470)
MMD 8.804 (6.823) 7.483 (5.803) 5.960 (4.817)
ConDo Linear-ReverseKL 0.206 (0.158) 0.718 (0.552) 3.437 (2.841)
ConDo GP-ReverseKL 0.194 (0.148) 0.719 (0.550) 1.236 (1.053)
ConDo PoGMM-ReverseKL 0.628 (0.475) 0.855 (0.638) 0.861 (0.721)
ConDo MMD 2.794 (2.254) 2.949 (2.280) 0.000 (0.000)

No Noise, Feature-Shifted Only
Homoscedastic Linear Heteroscedastic Linear Nonlinear

Before Correction 24.325 (24.455) 22.504 (24.451) 14.020 (13.445)
Oracle 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
Gaussian OT 1.273 (1.258) 2.045 (2.139) 2.017 (1.931)
MMD 3.307 (3.223) 2.410 (2.500) 3.677 (3.691)
ConDo Linear-ReverseKL 1.130 (1.104) 1.597 (1.520) 2.596 (2.508)
ConDo GP-ReverseKL 1.138 (1.114) 1.726 (1.651) 2.135 (2.091)
ConDo PoGMM-ReverseKL 1.158 (1.134) 1.466 (1.417) 2.361 (2.234)
ConDo MMD 1.218 (1.162) 1.327 (1.264) 2.671 (2.476)

No Noise, No Shift
Homoscedastic Linear Heteroscedastic Linear Nonlinear

Before Correction 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
Oracle 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
Gaussian OT 1.044 (1.095) 1.328 (1.307) 1.358 (1.231)
MMD 0.971 (1.001) 1.348 (1.343) 1.505 (1.218)
ConDo Linear-ReverseKL 0.192 (0.193) 0.737 (0.709) 1.147 (1.053)
ConDo GP-ReverseKL 0.182 (0.183) 0.688 (0.669) 0.792 (0.732)
ConDo PoGMM-ReverseKL 0.124 (0.128) 0.747 (0.726) 1.386 (1.364)
ConDo MMD 0.222 (0.216) 0.799 (0.790) 0.478 (0.380)

not. We see in Figure 4(B) that with even 10 samples, our ConDo Linear Reverse-KL method correctly aligns
the datasets. Meanwhile, with at least 100 samples, all our ConDo methods have smaller rMSE. Overall, we
see that the non-MMD ConDo methods are robust to small sample sizes.

4.1.4 A�ne Transform for 2d Data with 1d Categorical Confounder

Next, we analyze the performance of our approach on 2d features requiring an a�ne (rather than location-
scale) transformation. We also use this setting to assess the downstream performance of classifiers which are
fed the adapted source-to-target features. The synthetic 2d features, before the batch e�ect, form a slanted

13
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Table 3: Summary of results for 1d data with 1d continuous confounder with noise
Noisy, Label-Shifted and Feature-Shifted

Homoscedastic Linear Heteroscedastic Linear Nonlinear
Before Correction 30.659 (23.746) 31.474 (24.963) 18.814 (13.150)
Oracle 0.481 (0.441) 0.487 (0.499) 0.513 (0.483)
Gaussian OT 9.459 (17.819) 9.478 (11.663) 5.694 (4.186)
MMD 7.524 (5.539) 9.063 (6.953) 14.001 (9.732)
ConDo Linear-ReverseKL 0.649 (1.224) 1.608 (1.518) 3.787 (2.517)
ConDo GP-ReverseKL 0.697 (1.230) 1.005 (1.365) 2.262 (2.017)
ConDo PoGMM-ReverseKL 1.036 (1.237) 1.424 (1.391) 2.381 (2.066)
ConDo MMD 2.932 (2.136) 4.925 (3.716) 5.565 (3.609)

Noisy, Label-Shifted Only
Homoscedastic Linear Heteroscedastic Linear Nonlinear

Before Correction 1.025 (1.036) 1.006 (0.993) 1.007 (1.025)
Oracle 1.025 (1.036) 1.006 (0.993) 1.007 (1.025)
Gaussian OT 9.546 (17.371) 8.269 (11.043) 4.621 (3.903)
MMD 7.263 (5.682) 8.512 (6.642) 4.660 (3.715)
ConDo Linear-ReverseKL 1.032 (1.056) 1.340 (1.241) 3.962 (3.100)
ConDo GP-ReverseKL 1.032 (1.057) 1.549 (1.352) 1.737 (1.442)
ConDo PoGMM-ReverseKL 1.282 (1.178) 1.488 (1.341) 1.294 (1.149)
ConDo MMD 3.010 (2.509) 3.265 (2.708) 1.007 (1.025)

Noisy, Feature-Shifted Only
Homoscedastic Linear Heteroscedastic Linear Nonlinear

Before Correction 23.855 (24.127) 24.825 (24.400) 15.086 (13.863)
Oracle 0.509 (0.524) 0.518 (0.477) 0.473 (0.503)
Gaussian OT 1.368 (1.407) 1.787 (1.890) 2.572 (2.323)
MMD 2.671 (2.643) 2.481 (2.339) 8.949 (8.748)
ConDo Linear-ReverseKL 1.252 (1.277) 1.518 (1.558) 2.880 (2.560)
ConDo GP-ReverseKL 1.255 (1.275) 1.468 (1.563) 2.241 (2.096)
ConDo PoGMM-ReverseKL 1.271 (1.292) 1.507 (1.535) 3.058 (2.726)
ConDo MMD 1.357 (1.358) 1.794 (1.756) 4.100 (3.681)

Noisy, No Shift
Homoscedastic Linear Heteroscedastic Linear Nonlinear

Before Correction 1.018 (0.954) 0.970 (0.970) 1.069 (0.978)
Oracle 1.018 (0.954) 0.970 (0.970) 1.069 (0.978)
Gaussian OT 1.403 (1.364) 1.671 (1.705) 2.215 (2.706)
MMD 1.549 (1.538) 1.249 (1.265) 2.522 (2.783)
ConDo Linear-ReverseKL 1.069 (1.016) 1.192 (1.195) 2.032 (2.435)
ConDo GP-ReverseKL 1.081 (1.026) 1.060 (1.081) 1.370 (1.426)
ConDo PoGMM-ReverseKL 1.110 (1.072) 1.136 (1.125) 1.320 (1.371)
ConDo MMD 1.075 (1.046) 1.023 (1.046) 1.064 (0.978)

“8” shape, shown in blue/green in Figure 5. Two linear classifiers, up-vs-down (in magenta) and left-vs-right
(in cyan) are applied to this target domain.

Our results are shown in Figure 5. On the left column, we compare methods in the case where there is no
confounded shift. (This setting is from Python Optimal Transport (Flamary et al., 2021).) In the middle
column, we have induced a confounded shift: One-fourth of the source domain samples come from the
upper loop of the “8”, while half of the target domain samples come from the upper loop. This allows
us to assess the a�ects of confounded shift on downstream prediction of the confounder (up-vs-down), as
well as a non-confounder (left-vs-right). In the right column, we have induced a confounded shift as before,
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(A) (B)

Figure 4: Results for transforming 1d data with a 1d categorical confounder. (A) Depiction of original,
batch-e�ected, and domain-adapted data, for each value of the categorical confounder. (B) Plot of rMSE vs
sample size for each of the domain adaptation methods. Each rMSE was averaged over 10 simulations, with
the vertical lines indicating 1 standard deviation over the simulations.

while making the true source-target transform more challenging, by having a non-negative element in the
transformation matrix.

We see that ConDo Linear-ReverseKL is the only method that has small rMSE and high accuracy in all
settings. All methods perform similarly where there is no confounded shift, but the vanilla domain adaptation
approaches fail in the presence of confounding.

4.2 Real Data

We compare ConDo to baseline methods on image color adaptation and on gene expression batch correction.

4.2.1 Image Color Adaptation

We here apply domain adaptation to the problem of image color adaptation, depicted in Figure 6. We start
by adapting back and forth between two ocean pictures taken during the daytime and sunset (from the
Python Optimal Transport library (Flamary et al., 2021) Gaussian OT example). In this scenario, there is
no confounding, since the images contains water and sky in equal proportions. Thus, conditioning on each
pixel label (categorical, either “water” or “sky”), makes no di�erence, as expected. Next, we attempted color
adaptation between the ocean daytime photo and another sunset photo including beach, water, and sky.
Here, there is confounded shift, so ConDo successfully utilizes pixels labeled as “sky”, “water”, or “sand”.
More results, including a depiction of pixel labelling, are in Appendix D.5.

4.2.2 Gene Expression Batch E�ect Correction

We analyze performance on the bladderbatch gene expression dataset commonly used to benchmark batch
correction methods (Leek, 2016). In our experiment, we attempt a location-scale transform, as is typical with
gene expression batch e�ect correction. We choose the second largest batch (batch 2, with 4 cancer samples
out of 18 total) as the source, and the largest batch (batch 5, with 5 cancer samples out of 18 total) as the
target. We use all 22,283 gene expressions in the dataset.

Because the cancer fractions are roughly the same for batches 2 and 5, we do not expect to need to account for
confounding. Results are shown in Figure 7(A). For each method, we visualize the e�ects of correction with
t-SNE (Van der Maaten & Hinton, 2008) and PCA. We see that all methods are roughly equally successful
at mixing together the samples from di�erent batches (i.e., by color), while keeping cancer vs not-cancer
samples clustered apart (i.e., X versus O). For each method, we also compute the silhouette scores of the
adapted datasets, with respect to the batch variable (and, in parentheses, the test result variable). We desire
the silhouette score to be small for the batch variable, and big for the test result variable.

We repeat the experiment after removing half (7) of the non-cancer samples in batch 2, so that batch 2 is
4/11 non-cancerous, while batch 5 remains 5/18 non-cancerous. Results are shown in Figure 7(B). We see
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Figure 5: Results of a�ne transform of 2d data with a categorical confounder. We print the rMSE as well as
the up-vs-down and left-vs-right accuracies on both the training data, and on heldout test data in parentheses.
These values are the result of averaging over 5 random simulations, while the plot is generated from the final
simulation.
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(A) (B)

Figure 6: Image color adaptation results without (A) and with (B) confounded shift. The inverse mapping
shown on the right columns are derived by inverting the already-learned mapping, not from learning a new
mapping. We see that ConDo is non-inferior in (A). In (B), we see that non-ConDo methods produce gray-ish
sky and white clouds in (Day æ Beach) images and yellow clouds in (Day Ω Beach) images. Meanwhile,
reverse-KL ConDo methods produces light blue sky and peach/gray clouds in (Day æ Beach) images and
white clouds in (Day Ω Beach) images.
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that ConDo linear Gaussian method performs better than vanilla Gaussian OT, and ConDo MMD performs
better than vanilla MMD.

5 Related Work

As far as we are aware, previous work on domain adaptation does not address our exact problem. There is a
large body of research in domain adaptation which maps both source and target distributions to a new latent
representation where they match (Baktashmotlagh et al., 2013; Yan et al., 2017; Ganin et al., 2016; Gong
et al., 2016). These however cannot achieve data backwards-compatibility, because they create a new latent
domain. Other domain adaptation methods are also inapplicable to our setting since they match distributions
via reweighting samples (Cortes & Mohri, 2011; Tachet des Combes et al., 2020) or dropping features (Kouw
et al., 2016).

Prior research exists for performing domain adaptation when both features and label are shifted, including
the generalized label shift (GLS) / generalized target shift (GeTarS) (Zhang et al., 2013; Rakotomamonjy
et al., 2020; Tachet des Combes et al., 2020). However, these methods assume the specific prediction setting
where the label is the confounder, and optimize composite objectives that combine distribution matching and
prediction accuracy. In our case, the confounder may not be the label of our prediction model of interest,
and indeed we may not even be mapping covariates for the purpose of any downstream prediction task.
Furthermore, by conditioning on confounders, our framework can handle multivariate confounders or even
complex objects which are accessed only via kernels. Landeiro et al. introduced the term confounding
shift to describe a form of GLS/GeTarS, but it does not match our confounded shift assumption, since the
confounding variables are unobserved. Their method, which comprises confounder detection and adversarial
confounder-robust classification, is substantially di�erent from our approach.

The most appropriate domain adaptation methods for our context perform asymmetric feature transformation,
in which source features are adapted to target features, and are thus compatible with general-purpose
backwards compatibility. EasyAdapt (Daumé III, 2007) and EasyAdapt++ (Daumé III et al., 2010) are
notably successful approaches for such adaptations, but they employ concatenation, which presents di�culty
in our setting. We expect to not have confounders available at inference time, which means that we cannot
include them in the concatenated features.

Previous work which explicitly matches conditional distributions (Long et al., 2013) instead uses the conditional
distribution of the label given the features, rather than our approach of matching the features conditioned on
the labels. It also constructs a new latent space, rather than mapping from source to target for backwards
compatibility.

Our work is aligned in spirit with optimal transport with subset correspondence (OT-SI), which implicitly
conditions on a categorical confounder (the sample’s subset) to learn an optimal transport map (Liu
et al., 2019b). Our approach explicitly conditions on confounders and is more general, allowing continuous,
multivariate, and (using kernels with our GP and MMD based methods) even general objects as confounding
variables.

6 Conclusion and Future Work

6.1 Conclusion

We have shown that minimizing expected divergences / distances after conditioning on confounders is a
promising avenue for domain adaptation in the presence of confounded shift. Our proposed use of the
reverse KL-divergence and our dynamic choice of RBF kernel bandwidth are (to our knowledge) new in
the field of domain adaptation, and may be more broadly useful. Focusing on settings where the e�ect
of the confounder is possibly complex, yet where the source-target domains can be linearly adapted, we
demonstrated the usefulness of both parametric and nonparametric algorithms based on our framework. Our
ConDo framework seems to learn adaptations that are good for a variety of downstream tasks, including
prediction and clustering.
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(A) (B)

Figure 7: Results on bladderbatch dataset, without confounded shift (A), and with confounded shift (B). We
would like reds and blues to be well-mixed, while cancer and non-cancer samples to cluster apart. In both
(A) and (B), we show t-SNE on the left, and PCA on the right.
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6.2 Future Work

Our approach is more appropriate for adaptation settings where source and target correspond to di�erent
versions of sensor devices, di�erent laboratory protocols, and similar settings where the required adaptation
is linear (or even location-scale). It would be useful to examine whether this approach extends gracefully to
nonlinear adaptations, such as those parameterized by neural networks.

Our KL-divergence based approach is currently relies on either a (potentially multivariate) linear Gaussian dis-
tribution or a univariate (nonlinear) Gaussian Process (GP). Extending the latter to full a�ne transformations
of multivariate features could take advantage of recent advances in using Gaussian Process conditional density
estimation (Dutordoir et al., 2018) for better modeling of uncertainty, and recent advances in improving
scalability for multivariate outputs (Zhe et al., 2019).

Optimization of MMD is challenging, because it is a nonconvex functional. Our sampling from the confounder
prior injects noise which may help overcome the nonconvexity, but adding Gaussian noise to the samples has
been proven to be beneficial (Arbel et al., 2019), so it is worth examining.

Furthermore, while we minimized the KL-divergence and MMD, there are other potential distances worth
minimizing. For example, Wasserstein Procrustes analysis was recently developed and applied to align text
embeddings across languages (Grave et al., 2019; Ramírez et al., 2020). By combining this with conditioning
on confounding variables, one could potentially align embeddings between languages with di�erent topic
compositions.

Finally, thus far our analysis of ConDo has been purely empirical. Theoretical analysis would surely be
appropriate, particularly before applying it to data analyses and statistical inference tasks.
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