

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 QURL: RUBRICS AS JUDGE FOR OPEN-ENDED QUESTION ANSWERING

Anonymous authors

Paper under double-blind review

ABSTRACT

Reinforcement Learning from Verifiable Rewards (RLVR) has significantly improved the performance of large language models (LLMs) on tasks with gold ground truth, such as code generation and mathematical reasoning. However, its application to open-ended question answering (QA) remains challenging, primarily due to the absence of reliable evaluation and verifiable reward signals. This difficulty is further compounded by the limitations of existing evaluation paradigms. Previous approaches typically rely on human feedback or LLM-as-Judge strategies, which are costly, prone to reward hacking, and often fail to provide sufficiently discriminative or interpretable evaluation signals. To address these limitations, we introduce a schema for generating case-wise rubrics that are question-specific, content-based and stylistically sensitive, thereby evaluating both factual soundness and writing quality. Building on this schema, we propose QuRL (Open-Ended QA with Rubric-guided Reinforcement Learning), a framework that automatically mines rubrics for each question from easily accessible online sources and leverages them as reward signals. With these rubrics, QuRL employs the GRPO (Group Relative Policy Optimization) algorithm to guide the model in exploring the correct generation path. Extensive experiments on three different benchmarks show that our framework achieves significant improvements of total +17.0 points over a supervised fine-tuning baseline, demonstrating the effectiveness of rubric-guided reinforcement learning for open-ended QA.

Figure 1: Incorporating web articles and QuRL-derived case-wise rubrics significantly enhances the alignment of LLM-as-a-Judge evaluations with human preferences.

1 INTRODUCTION

Over the past few years, Large Language Models (LLMs) have demonstrated impressive performance and achieved remarkable success in multiple NLP tasks. Building on these advancements, Reinforcement Learning from Verifiable Rewards (RLVR) has recently emerged as a powerful paradigm

054 for further enhancing LLMs, exemplified by the success of DeepSeek-R1 and OpenAI’s o-series.
 055 In RLVR, the model’s reward comes from deterministic, rule-verifiable reward signals, which also
 056 enables RLVR to achieve significant improvements in tasks such as code and mathematics, as these
 057 domains possess consensus-based “gold answers”. However, in practice, most real-world tasks do
 058 not provide clear, verifiable answers, leaving models without a straightforward source of reward
 059 feedback. A representative example is Open-Ended Question Answering (Open-Ended QA), where
 060 the absence of a single “gold answer” makes reliable evaluation particularly challenging.

061 Open-Ended QA is a task that is both challenging to answer and difficult to evaluate. Compared to
 062 closed-ended QA tasks such as mathematical or reasoning, Open-ended QA requires model responses
 063 not only to be factually accurate, but also to be fluently written and engaging enough to resonate
 064 with or capture readers’ interests, thereby making human preferences the de facto gold standard
 065 for evaluation and learning. A widely adopted paradigm in open QA is Reinforcement Learning
 066 from Human Feedback (RLHF) (Christiano et al., 2017), where annotators provide pairwise or scalar
 067 preference signals that are distilled into a reward model producing scalar scores. This reward model
 068 then serves as the supervision signal in reinforcement learning, guiding LLMs toward outputs that
 069 better align with human judgments. In our opinion, when annotators evaluate open-ended responses,
 070 they are essentially applying an implicit set of scoring rules (i.e., rubrics) to verify the quality of
 071 each answer. Here, we interpret the parameterized reward model trained in RLHF as a statistical
 072 approximation of evaluation rubrics, which encode the latent evaluation criteria with a scalar-valued
 073 function.

074 However, the parameterization of rubrics in RLHF often suffers from poor out-of-domain generaliza-
 075 tion and is vulnerable to reward hacking, since the underlying rubrics remain implicit and entangled
 076 within model parameters (Liu et al., 2024b; Wang et al., 2024). A natural remedy is to move from
 077 implicit to explicit supervision: if we can design case-specific rubrics as evaluation references for
 078 each question, the annotation task would no longer rely on hidden, parameterized standards. Instead,
 079 it would be grounded in clear, interpretable criteria, thereby mitigating the above issues and providing
 080 more stable guidance for reinforcement learning. In this way, evaluation shifts from depending on
 081 opaque reward models to verifiable rubrics, effectively extending RLVR beyond strictly verifiable
 082 domains to the open-ended QA setting. Then, a challenging question is how to obtain explicit
 083 guidance and create compact rubrics for learning. One straightforward approach is to employ human
 084 experts to author detailed rubrics, yet the prohibitive annotation costs involved make it impractical for
 085 large-scale training pipelines. Alternatively, we observe that the Internet already contains a wealth of
 086 human-authored materials related to open-ended questions including essays, articles, or forum discus-
 087 sions, which can serve as coarse-grained rubrics or inspirations for rubric construction. To validate
 088 the feasibility of the web sources, we randomly sampled 50 open-ended questions. For each question,
 089 we retrieved relevant web articles as evaluation prompt (w/ web articles) and guide the evaluation
 090 of the answers. We then generated 3 candidate responses for each question using GPT-4o (Hurst
 091 et al., 2024) and collected human evaluation scores based on the checklist described in Figure 7.
 092 Different LLM-as-a-Judge evaluation methods (i.e., DeepSeek-R1 and GPT-4o) w/o web articles
 093 are used to evaluate the responses and their correlation to human scores are compared. As shown in
 094 Figure 1, we can see that leveraging web articles as coarse-grained reference rubrics can improve
 095 the alignment between LLM evaluations and human annotator preferences, and explicit guidance
 096 leads to better performance than the reward-model-based approach (internlm2-7b-reward (Cai et al.,
 097 2024)) that captures human preferences. But directly incorporating raw web articles into evaluation
 098 introduces severe practical issues: the context length often exceeds 100k tokens, substantially inflating
 099 computational costs and limiting scalability. This further raises a new problem: **how we extract and**
distill from noisy web articles into information-dense and rubric-like signals that remain both
effective and efficient for supervision.

100 To address the above issue, we propose **QuRL** (Open-Ended Question Answering with Rubric-guided
 101 Reinforcement Learning), a framework that transforms human-authored web sources into case-wise
 102 rubrics and integrates them into RLVR as supplementary signals for answer verification. Specifically,
 103 QuRL first retrieves relevant human-authored text, distills them into concise meta-descriptions, and
 104 constructs rubric items with filtering to ensure discriminative quality. These case-wise rubrics are then
 105 used as structured reward signals in GRPO, enabling the model to internalize both content coverage
 106 and stylistic quality in a scalable and interpretable manner. By distilling noisy web articles into
 107 compact, discriminative rubrics, QuRL preserves interpretability while remaining computationally
 efficient. Importantly, these distilled rubrics yield stronger alignment with human judgments, as

108 shown in Figure 1. Compared with existing paradigms, QuRL inherits the alignment benefits of
 109 RLHF while avoiding the opacity and instability of reward models, and at the same time preserves
 110 the simplicity and scalability of RLVR by eliminating the need for large-scale manual annotation or
 111 specialized reward model training.

112 Our contributions can be summarized as follows:
 113

- 114 • We introduce QuRL, a framework that leverages internet text to construct case-wise rubrics as
 115 reward signals for open-ended question answering, thereby enabling RLVR in subjectively evaluated
 116 tasks. To the best of our knowledge, this is the first work to extend RLVR to the open-ended QA
 117 domain by utilizing fine-grained rubrics distilled from human-authored web sources.
- 118 • With the assistance of QuRL, we constructed a *QuRL-Train* dataset consisting of 800 Ques-
 119 tion–Rubric pairs, along with a *QuRL-Test* dataset of 400 entries that underwent human verification.
- 120 • Experimental results across three benchmarks (HelloBench, LongBench-Write, and QuRL-Test)
 121 demonstrate the effectiveness of our approach: when trained with GRPO under the QuRL frame-
 122 work, Qwen-2.5-7B achieves an average improvement of over +17.0 points compared to its
 123 supervised baseline.

126 2 RELATED WORK

127 **Open-Ended QA.** With the advancement of language model architectures (Chen et al., 2023; Zhu
 128 et al., 2023; Peng et al., 2024; Ding et al., 2024; An et al., 2024; Jin et al., 2024), their capabilities
 129 have gradually expanded from generating short responses to producing longer, open-ended answers.
 130 Open-Ended QA presents unique challenges compared to conventional closed-ended or extractive
 131 QA (Yang et al., 2018; Trivedi et al., 2022; Wang et al., 2023). One core difficulty lies in question
 132 ambiguity and the absence of a single correct answer. Previous attempts (Kantharaj et al., 2022)
 133 include extracting long descriptive passages from a full article to serve as a “gold answer” and then
 134 designing questions for evaluation in a manner similar to closed-ended QA. While this approach offers
 135 a referenceable standard answer, it also imposes relatively strict constraints on response evaluation
 136 (e.g., through ROUGE metrics). Given that the vast majority of open-ended QA tasks lack a gold
 137 answer, this method of dataset construction is inherently limited. With the improvement of large
 138 model capabilities, some studies (Que et al., 2024; Tan et al., 2024; Farzi & Dietz, 2024; Song
 139 et al., 2024; Hashemi et al., 2024; Xu et al., 2024; Biyani et al., 2024; Jain et al., 2023) have begun
 140 to deconstruct open-ended questions along multiple dimensions and employ LLM-as-a-Judge for
 141 evaluation. For example, HelloBench (Que et al., 2024) uses a fixed checklist for all questions,
 142 converting responses into scalar scores with some generalizability. However, our experiments show
 143 that this approach lacks discriminative power, suggesting that question-specific rubrics are needed to
 144 better distinguish response quality.

145 **Reinforcement Learning from Verifiable Rewards.** Reinforcement Learning with Verifiable
 146 Rewards (RLVR) has been adopted by DeepSeek-R1 (Guo et al., 2025) and OpenAI’s o-series
 147 models (Jaech et al., 2024) due to its easily scalable training framework (Ma et al., 2025). However,
 148 in the field of open-ended QA where verifiable reference answers are unavailable, the common
 149 practice remains the use of RLHF to align with human preferences. Traditional RLHF relies on
 150 scalar reward models to obtain reward signals (Cai et al., 2024; Ouyang et al., 2022; Wu et al.,
 151 2023; Hu et al., 2025; Son et al., 2024), which suffer from weak interpretability and are vulnerable
 152 to reward hacking (Fu et al., 2025; Xu et al., 2025; Mahan et al., 2024; Chen et al., 2024). To
 153 mitigate these issues, some studies (Mahan et al., 2024; Liu et al., 2025; Gunjal et al., 2025; Huang
 154 et al., 2025) have introduced Generative Reward Model (GRM) as an extension of RLHF. Among
 155 them, Huang et al. (2025) is most related to our work. Their approach (has not been open-sourced
 156 yet) constructs rubrics through a complex LLM-agent pipeline, without leveraging Internet resources.
 157 Besides, Previous studies (Li et al., 2025; Do et al., 2025) have also explored generating rubrics
 158 from questions. However, due to framework design limitations, their methods cannot be used for
 159 reward signal generation in RL processes and lack reliable evaluation in open-ended QA (with no
 160 publicly available reproducible code). Compared to methods mentioned above, our QuRL framework
 161 automatically mines case-wise rubrics from web sources, offering a lightweight, reproducible, and
 162 human-aligned reward signal for open-ended QA.

162

3 METHODOLOGY

178 Figure 2: Overview of the QuRL framework. For each open-ended question, relevant human-authored
 179 materials are retrieved to guide rubric writing, producing case-wise rubrics with illustrative examples.
 180 A rubric filter ensures reliability by discarding inconsistent rubrics. The filtered rubrics are then used
 181 to score model responses, providing supervision signals for GRPO training.

184

3.1 RUBRICS GENERATION VIA INTERNET DATA

186 Results in Figure 1 show that incorporating relevant reference articles is beneficial when using
 187 LLMs as evaluators. However, directly leveraging raw, unfiltered web sources introduces substantial
 188 noise and computational overhead, limiting the practicality of this approach. We design the QuRL
 189 framework in Figure 2 to extract high-quality, case-wise rubrics from Internet sources and employ
 190 them as supervision signals in RL training.

211 Figure 3: Illustration of the rubric design principles and example rubrics collected from meta-
 212 descriptions.

- 214 • **Question-based Retrieval** As shown in Figure 2, we first construct retrieval queries that may
 215 contain reference articles for answering the specific question. For the given open-ended question

216 q , the search engine returns retrieved webpages $W = \{w_i \mid i = 1, 2, \dots, N_w\}$ ranked by click-
 217 through rate based on the keywords, where w_i denotes the text of the webpage with sequence
 218 number i , and N_w is the maximum number of retrieved webpages. It aligns with our objectives
 219 since high click-through rates often indicate that the content is widely recognized and therefore of
 220 relatively high quality.

- 221 **• Meta-Description** To handle the noisy and massive raw text from the retrieved webpages, we
 222 employ a lightweight and responsive model (Qwen2.5-7B) to generate concise *meta-descriptions*.
 223 Each meta-description is obtained by prompting the model to extract only the information that
 224 is relevant to answering the given open-ended question, while filtering out tangential details,
 225 advertisements noise (Appendix A.5). The guiding principle is to retain valuable and complete
 226 content segments, such as descriptions of key arguments, passages that provide informative context,
 227 transitional reasoning that bridges ideas, or well-crafted illustrative examples. Let $W = \{w_i \mid i =$
 228 $1, 2, \dots, N_w\}$ denote the set of retrieved webpages. We define a extraction function

$$f_D : W \rightarrow D, \quad D = \{d_i \mid i = 1, 2, \dots, N_d\},$$

230 where $d_i = f_D(w_i)$ represents the distilled description corresponding to w_i , N_d is the number
 231 of retained meta-descriptions. Each d_i is thus a compact, information-dense representation that
 232 preserves semantically valuable content while discarding irrelevant noise.

- 233 **• Rubrics Construction with Principles** After obtaining meta-descriptions for each question, we
 234 find that they can provide guidance for response evaluation from two complementary perspectives.
 235 First, meta-descriptions often contain elaborations on a particular viewpoint derived from the
 236 question, which mirrors how human writers typically form several core stances from memory
 237 when composing answers to similar questions. This suggests that meta-descriptions can serve
 238 as argumentative references, providing concrete guidance on the key points that rubrics should
 239 emphasize when evaluating responses. Second, we observe that a common failure mode of current
 240 LLMs on open-ended questions lies in their misalignment with human writing styles—for example,
 241 producing enumerative but shallow discussions, lacking coherent transitions, or using language
 242 that is unengaging. In contrast, meta-descriptions, being distilled from human-authored texts,
 243 naturally preserve stylistic and rhetorical features that can serve as exemplars for high-quality
 244 writing. Based on these observations, we incorporate meta-descriptions into rubric generation
 245 along two dimensions: **content quality** (capturing core arguments and viewpoints) and **writing**
 246 **quality** (capturing human-like fluency, coherence, and expressiveness). We derived four rubric
 247 design principles from the above assumptions and, based on them, collected rubric examples as
 248 shown in Figure 3. Formally, we define a rubric construction function

$$f_R : (q, D) \rightarrow R, \quad R = \{r_i \mid i = 1, 2, \dots, N_r\},$$

249 where R is the final set of case-wise rubrics r_i , N_r is the total number of rubrics.

- 250 **• Rubrics Filter** Since rubric generation is inherently stochastic, multiple sampling runs yield
 251 diverse candidate sets $\mathcal{R}(q) = R^{(1)}, \dots, R^{(K)}$. We design a filtering mechanism (details in
 252 Appendix A.2) that (i) removes rubric sets lacking discriminative power across model responses,
 253 and (ii) consolidates rubrics that are consistently reproduced across samples. The resulting high-
 254 quality rubric set is denoted as $R^*(q)$, which will be used in subsequent process.

- 255 **• Collected Dataset with Rubrics** Through the above construction process, we obtain a robust
 256 rubric set $R^*(q)$ for each question q . To build our dataset, we collected 1200 questions from
 257 the ten most popular topical domains. Among them, 400 questions together with their validated
 258 rubrics were manually double-checked, forming the test set $QuRL-Test = \{(q_i, R^*(q_i))\}_{i=1}^{400}$
 259 (detailed in Appendix A.3), while the remaining 800 questions were used as the training set
 260 $QuRL-Train = \{(q_i, R^*(q_i))\}_{i=1}^{800}$, for subsequent reinforcement learning. Human annotators
 261 involved in this verification and labeling process were compensated at rates consistent with market
 262 standards, and each item was independently annotated by at least two annotators, with additional
 263 passes used to resolve substantial disagreements.

264 3.2 REINFORCEMENT LEARNING WITH CASE-WISE RUBRICS

265 With the construction of *QuRL-Train*, we proceed to the post-training stage to further align the model
 266 with human-preferred evaluation standards. The core idea is to utilize the case-wise rubrics $R^*(q)$ as
 267 structured reward references, guiding the optimization of the policy model through Group Relative
 268 Policy Optimization (GRPO).

270 **Rubric-based Reward Modeling.** For each training tuple $(q_i, R^*(q_i)) \in \text{QuRL-Train}$, given a
 271 candidate answer o sampled from the policy π_θ , we query a judge model $\text{LLM}_{\text{reward}}$ to produce a
 272 detailed evaluation text y , which contains rubric-wise judgments:
 273

$$274 \quad y = \text{LLM}_{\text{reward}}(q_i, o, R^*(q_i)). \quad (1)$$

275 A deterministic parser f then extracts numerical rubric-level scores from y and normalizes their sum
 276 into the range $[0, 1]$, yielding the final reward
 277

$$278 \quad R(o \mid q_i, R^*(q_i)) = f(y). \quad (2)$$

280 **Group Relative Policy Optimization.** We adopt GRPO (Guo et al., 2025) as the reinforce-
 281 ment learning algorithm. For each $(q_i, R^*(q_i)) \in \text{QuRL-Train}$, we sample N candidate answers
 282 $\{o_1, o_2, \dots, o_N\}$ from the policy π_θ , and compute the corresponding rewards

$$283 \quad R_j = R(o_j \mid q_i, R^*(q_i)).$$

284 We then normalize these rewards to obtain the relative advantage of each sampled answer:
 285

$$286 \quad A_j = \frac{R_j - \text{mean}\{R_1, R_2, \dots, R_N\}}{\text{std}\{R_1, R_2, \dots, R_N\}}. \quad (3)$$

288 Finally, the policy is updated under the GRPO objective:
 289

$$290 \quad J_{\text{GRPO}}(\theta) = \mathbb{E}_{(q_i, R^*(q_i)) \sim \text{QuRL-Train}, \{o_j\}_{j=1}^N \sim \pi_{\theta_{\text{old}}}} \left[\begin{aligned} 291 \quad & \left[\frac{1}{N} \sum_{j=1}^N \min\left(\frac{\pi_\theta(o_j \mid q)}{\pi_{\theta_{\text{old}}}(o_j \mid q)} A_j, \right. \right. \\ 292 \quad & \left. \left. \text{clip}\left(\frac{\pi_\theta(o_j \mid q)}{\pi_{\theta_{\text{old}}}(o_j \mid q)}, 1 - \varepsilon, 1 + \varepsilon\right) A_j \right) \right. \\ 293 \quad & \left. - \beta D_{\text{KL}}(\pi_\theta \parallel \pi_{\text{ref}}) \right], \end{aligned} \right] \quad (4)$$

299 where ε is the clipping hyper-parameter and β controls the KL divergence penalty with respect to a
 300 reference policy π_{ref} . Through GRPO, the case-wise rubrics directly influence the reward signal and
 301 thereby control the policy parameter updates. Finally, the post-trained model learns to internalize the
 302 rubric-based evaluation criteria and align its outputs with the qualities of human-authored writing.
 303

304 4 EXPERIMENTS

306 4.1 EXPERIMENTAL SETUPS

308 **Benchmark Setup.** We evaluate model performance on three evaluation settings:

309 **(1) HelloBench (Que et al., 2024)** HelloBench is a large-scale, open-ended benchmark covering
 310 diverse topical domains. Its open-ended QA task adopts a five-dimension checklist aligned with
 311 human judgments, and derives a composite score via regression-fitted weights.

312 **(2) LongBench-Write (Bai et al., 2024)** LongBench-Write contains 120 varied prompts for long-
 313 form writing evaluation. Following its original setup, we use the paper’s quality score to assess model
 314 outputs. This paper also introduces a post-training model **LongWriter-9B-DPO** that has been further
 315 enhanced to improve its text generation capabilities, which will serve as a comparison baseline in the
 316 subsequent experiments.

317 **(3) QuRL-Test (ours)** Unlike HelloBench’s fixed dimensions, QuRL-Test introduces fine-grained,
 318 case-wise rubrics tailored to each question, capturing distinct writing styles and content emphases.

319 **Comparison of LLMs.** To comprehensively evaluate performance across different model families,
 320 we include both proprietary and open-source large language models in our study. For *proprietary*
 321 models, we evaluate **GPT-4o**, **Doubaot-Seed-1.6**, **Gemini-2.5-Pro**, and **Gemini-2.5-Flash**. For *open-*
 322 *source* models, we include **LLaMA-3.1-8B,70B-Instruct** (Dubey et al., 2024), **Qwen2.5-7B,72B-**
 323 **Instruct** (Yang et al., 2024), **DeepSeek-R1** Guo et al. (2025), and **DeepSeek-V3** Liu et al. (2024a).

Models	Avg		HelloBench	QuRL-Test	LB-Write
	Score	Len			
<i>Proprietary LLMs</i>					
GPT-4o (GPT-4o, 2024)	64.7	1096	46.0	80.8	67.2
Gemini-2.5-Pro (Comanici et al., 2025)	70.4	1137	69.2	65.9	76.1
Gemini-2.5-Flash (Comanici et al., 2025)	62.3	1113	48.4	64.8	73.6
Doubao-Seed-1.6	40.2	996	24.1	31.2	65.2
<i>Open-source LLMs</i>					
DeepSeek-R1 (Guo et al., 2025)	62.4	735	32.8	80.4	74.0
DeepSeek-V3 (Liu et al., 2024a)	59.1	742	28.1	70.8	78.4
Qwen2.5-7B-Instruct (Yang et al., 2024)	28.3	923	20.8	26.2	37.8
Qwen2.5-72B-Instruct (Yang et al., 2024)	42.3	853	34.4	41.2	51.2
Llama-3.1-8B-Instruct (Dubey et al., 2024)	23.7	997	25.6	33.2	12.4
Llama-3.1-70B-Instruct (Dubey et al., 2024)	31.9	1028	28.0	46.4	21.2
<i>Post-enhanced LLMs</i>					
LongWriter-9B-DPO Bai et al. (2024)	27.5	2164	24.8	16.0	41.6
Qwen2.5-7B-Coldstart	34.1	807	26.4	35.6	40.4
Qwen2.5-7B-SFT	42.3	1214	38.0	41.6	47.2
Qwen2.5-7B-QuRL	59.3	916	56.4	62.4	59.2
-w/ rlhf reward model	47.7	879	44.8	50.4	48.0
-w/o rubrics filter	52.2	951	48.1	54.4	54.0
-w/o rubrics	44.0	841	40.8	45.9	45.2
-w/o web information	48.9	847	45.2	53.6	47.9

Table 1: Main Results of LLMs across multiple benchmarks. The “Avg” column represents the average score (“Score”) and the average response length (“Len”) for each model. To ensure fairness, the scores from different benchmarks are normalized like the score from HelloBench (Que et al., 2024). “LB-Write” is short for LongBench-Write. The ablation results listed under ‘Post-enhanced LLMs’ represent single ablations. We use ‘w/’ as an abbreviation for ‘with’ and ‘w/o’ for ‘without’ in these variants.

These models cover a broad spectrum of parameter scales, training paradigms, and accessibility levels, enabling us to compare QuRL-enhanced training with both state-of-the-art proprietary systems and widely used open-source baselines.

Implementation Details. We adopt *QuRL-Train* as our training corpus. Following common practice in reinforcement learning with LLMs, we first perform a cold-start supervised fine-tuning stage to facilitate model adherence to the <think>–</think> and <answer>–</answer> format. Specifically, we distill 64 instruction–response pairs from **DeepSeek-R1** and conduct cold-start with a learning rate of $1e-6$, batch size of 16, and 2 training epochs. After initialization, we adopt the GRPO algorithm for alignment. During RL training, we set the learning rate to $1e-6$ and run for 2 epochs. For each question, the policy samples 8 candidate responses, and rewards are computed according to the rubric-based evaluation described above. The global batch size is fixed at 32. For fair comparison, we report the best performance achieved across the two epochs. All training procedures are conducted on 8 A100 GPUs.

4.2 MAIN RESULTS

Table 1 presents the performance of LLMs across the evaluated datasets.

RLVR as the Most Effective Alignment Strategy We compare against several baselines: *Qwen2.5-7B-SFT*, trained on DeepSeek-R1 (Guo et al., 2025) responses from QuRL-Train; and *Qwen2.5-7B-QuRL w/ rlhf reward model*, which replaces rubric-based supervision with scalar rewards from a trained RLHF model (internlm2-7b-reward (Cai et al., 2024)) for GRPO training. As shown in Table 1, SFT achieves only 42.3 on average, falling short of RL-based methods. RLHF further improves performance to 47.7, but remains limited by fragile scalar rewards. In contrast, our rubric-based RLVR reaches 59.3, a clear margin of +17.0 over SFT and +11.6 over RLHF on average across the three benchmarks (HelloBench, LongBench-Write, and QuRL-Test). These results confirm

378 that RLVR provides more stable and discriminative reward signals, yielding consistently stronger
 379 performance across all benchmarks.
 380

381 **Rubrics and Human Writing Materials as Key Drivers of RLVR Success** Ablation results
 382 highlight the crucial role of both rubrics and human-authored writing materials in RLVR’s success on
 383 open-ended QA. Specifically, the *w/o rubrics* variant removes rubric-based supervision and instead
 384 relies on a five-dimension scoring prompt for LLM-as-a-Judge evaluation as shown in Figure 7,
 385 while the *w/o web information* variant excludes distilled human-authored texts, meaning the model
 386 generates case-wise rubrics without referencing any external materials. In addition, the *w/o rubrics*
 387 *filter* variant retains rubric-based supervision but discards the filtering mechanism that removes noisy
 388 rubric items, leading to less reliable supervision. Removing rubrics reduces the average score from
 389 59.3 to 44.0, removing the filter results in 52.2, while removing human-authored materials lowers it to
 390 48.9. These findings indicate that case-wise rubrics provide precise, verifiable evaluation signals, the
 391 filtering step further enhances their reliability, and human-authored meta-descriptions enrich content
 392 coverage. Together, they enable RLVR to capture both argumentative quality and writing style.

393 **Performance Trends in Different LLMs** We observe that among proprietary models, *Gemini-2.5-Pro*
 394 demonstrates consistently superior performance across all three benchmarks, achieving the
 395 highest average score of **70.4**. Meanwhile, in the open-source category, model size emerges as a
 396 critical factor: larger variants such as *Qwen2.5-72B* and *LLaMA-3.1-70B* clearly outperform their
 397 smaller counterparts. Notably, the *DeepSeek* series, with its near-700B parameter scale, establishes
 398 an absolute advantage among open-source models, reaching 62.4 and 59.1 on average and surpassing
 399 other open-source baselines by a considerable margin. These observations highlight both the strong
 400 competitiveness of proprietary SOTA models and the decisive role of parameter scaling in shaping
 401 open-source model performance. Within the post-enhanced category, the *LongWriter-9B-DPO*
 402 shows competitive performance only on the LongBench-Write benchmark. We attribute this to its
 403 specialized training objective of producing extended outputs: its responses average over 2000 words,
 404 substantially longer than other models. While such length optimization enables the generation of
 405 lengthy narratives, it does not guarantee alignment with human preferences regarding answer quality.
 406 As a result, *LongWriter-9B-DPO* fails to generalize beyond LongBench-Write, performing poorly
 407 on HelloBench and QuRL-Test. It is worth noting that *Qwen2.5-7B-QuRL*, supervised with only
 408 800 case-wise rubrics, achieves performance on par with *DeepSeek-V3*, indicating the efficiency of
 409 our training paradigm. Moreover, by examining the average output length, we find that QuRL lies
 410 in the middle range among all models, suggesting that its strong performance does not result from
 411 artificially inflating response length to game the evaluation metrics.

4.3 HUMAN EVALUATION CONSISTENCY

	QuRL	HelloBench	LongWriter	InternLM2	LLM-as-a-Judge
Spearman’s ρ	0.31	0.20	0.11	0.22	0.08
p-Value	8.29e-6	3.36e-3	2.44e-2	1.89e-4	5.31e-2

412 Table 2: Consistency between automatic evaluation methods (all use GPT-4o as judge model) and
 413 human judgments on 200 GPT-4o responses to HelloBench questions. We report Spearman’s ρ
 414 correlation coefficients and the corresponding significance levels (p -values).
 415

416 Evaluating open-ended responses is inherently challenging since no single gold-standard answer
 417 exists for reference. To assess the reliability of our evaluation based on the QuRL rubric, we follow
 418 previous work (Que et al., 2024) and conduct a human evaluation consistency analysis. Specifically,
 419 we generated responses to 200 HelloBench questions using GPT-4o and then scored them under five
 420 evaluation settings: (1) **QuRL**, using case-wise rubrics tailored to each question; (2) **HelloBench**,
 421 which aggregates five dimension scores with learned weights; (3) **LongWriter**, which uses its quality
 422 score definition; (4) **InternLM2**, using the internlm2-7b-reward (Cai et al., 2024) as the reward
 423 model; and (5) **LLM-as-a-Judge**, which uses the prompt as shown in Figure 7. For human reference,
 424 annotators were asked to rate the same set of responses using the identical scheme as in the LLM-as-a-
 425 Judge setting. Finally, we report the Spearman’s rank correlation between each automatic evaluation
 426 method and human ratings as shown in Table 2. A higher ρ indicates stronger agreement, while a
 427 lower p -value indicates greater significance. The results indicate that QuRL achieves the strongest
 428 correlation with human judgments ($\rho = 0.31, p < 10^{-5}$), substantially outperforming other methods.
 429
 430

432 This advantage demonstrates the reliability of case-wise rubrics and also explains why models trained
 433 with QuRL-Train exhibit significant performance gains across benchmarks.
 434

435 **4.4 RUBRIC SCORING SCHEMES**
 436

Scoring Scheme	Avg	HelloBench	QuRL-Test	LB-Write
Fixed-maximum	59.3	56.4	62.4	59.2
Free-form	50.4	47.2	53.2	50.8
Judge-based	52.4	49.2	56.8	51.2

443 Table 3: Comparison of different rubric scoring schemes across benchmarks.
 444

445 While the previous section highlights the effectiveness of case-wise rubrics, QuRL ultimately relies
 446 on these rubrics to generate reward signals during training. A key design question is therefore:
 447 *how should rubrics be translated into final scores?* Different scoring schemes may lead to different
 448 supervision strengths and inductive biases, and exploring these alternatives sheds light on how rubrics
 449 can best guide model learning. We consider three schemes as following:

450 **(1) Fixed-maximum scoring.** Given a pre-defined maximum score (e.g., $max_points = 10$), the
 451 model is required to autonomously assign partial scores to each rubric item, ensuring that the total
 452 sums up to the fixed maximum.

453 **(2) Free-form scoring with normalization.** The model is allowed to freely decide the total score
 454 and the score assignment across rubric items. The total score is normalized to the interval $[0, 10]$.
 455

456 **(3) Judge-based binary scoring.** Instead of assigning scores, the model only generates the rubrics.
 457 A separate judge model then determines whether each rubric is satisfied (binary decision). The final
 458 score is computed as the proportion of satisfied rubrics, normalized to $[0, 10]$.
 459

460 As shown in Table 3, the Fixed-maximum scheme achieves the strongest performance across all
 461 benchmarks, and thus we adopt it as the default setting in our main results. However, different types of
 462 questions may call for different scoring allocations. For instance, in a question like “What will human
 463 life in space look like in the future?”, concrete examples and vivid descriptions serve as key strengths,
 464 whereas for a question such as “How should we interpret Socrates’ philosophy?”, originality and
 465 creative insights become the most decisive factors. Designing more flexible scoring schemes that
 466 better approximate human annotators therefore remains an important direction for future.
 467

468 **4.5 CASE STUDY**
 469

470 To illustrate how rubrics function as supervision signals, Figure 4 presents a case study comparing
 471 model responses before and after QuRL training (showing partial excerpts for brevity). The initial
 472 answer, while coherent, remained abstract and generalized, offering limited personal depth. After
 473 training with rubric-guided reinforcement learning, the response became more vivid and persuasive:
 474 it incorporated concrete references (e.g., 1984), demonstrated perspective shifts on justice and
 475 freedom, and provided reflective insights on emotional resilience. This improvement directly aligns
 476 with the case-wise rubrics: criteria such as “Specific Examples” and “Emotional/Perspective Shifts”
 477 encouraged the model to enrich content with concrete illustrations and self-reflection, while “Clarity
 478 and Logical Flow” guided smoother organization of ideas. We observe that through the amplifying and
 479 suppressing effects of rubric-based rewards, the model was steered toward producing higher-quality
 480 answers. In Section A.4, we provide additional case studies for a more detailed analysis.
 481

482 **5 CONCLUSION AND FUTURE WORK**
 483

484 In this work, we introduced QuRL, a case-wise rubric-driven framework for aligning LLMs with
 485 human preferences on open-ended questions. By distilling case-wise rubrics from human-authored
 486 materials and integrating them into the RLVR paradigm, QuRL provides fine-grained and verifiable
 487 supervision signals that significantly improve evaluation reliability and model alignment. Experiments
 488 across multiple benchmarks demonstrate that QuRL achieves competitive performance with state-of-
 489 the-art systems, while human consistency analysis confirms the robustness of rubric-based evaluation.
 490

Before Train vs After Train		Case-Wise Rubrics
486	Question: What changes has years of reading brought to you?	
487	Answer Before Train: Years of reading have profoundly transformed my intellectual, emotional, and psychological landscape in ways that are both subtle and far-reaching... This immersion in diverse narratives has fostered a greater sensitivity to the struggles, joys, and motivations of others, making me more attuned to the emotional undercurrents in my relationships...	
488	Answer After Train: Reading over the years has completely reshaped how I see the world and connect with others... Books like 1984 didn't just entertain me—they challenged my views on justice and equality and made me reflect on the dangers of absolute control and the fragility of personal freedom. That story sharpened my awareness of the value of truth and independent thought, lessons that continue to influence how I interpret the world around me... On a deeper level, reading also nurtured my emotional resilience. When life got tough, picking up a book became my way of finding comfort and processing complex feelings. Whether it was a novel or a piece of non-fiction, books became a therapeutic tool, guiding me through stressful times...	
489		
490		
491		
492		
493		
494		
495		
496		
497		
498		
499		
500		
501		
502		
503		
504		
505		
506		
507	Figure 4: Case study showing how rubric-guided training improves answer quality by encouraging specific examples, reflective depth, and clearer structure.	
508		
509		
510	Our findings highlight the effectiveness of rubric-guided reinforcement learning and open promising directions for future research on controllable and preference-aligned LLM training.	
511		
512		
513	As an extension of RLVR, QuRL opens several promising directions. Beyond aligning responses with human preferences, future work may explore finer-grained control over output length, where simple prompting is insufficient and stronger supervision is needed without sacrificing quality (Que et al., 2024; Bai et al., 2024). Another important avenue is assessing the safety of web-derived rubrics, since malicious or biased content could be injected and provide harmful supervision.	
514		
515		
516		
517		
518	<h2>6 ETHICS STATEMENT</h2>	
519		
520		
521	This work relies on publicly available web documents and crowd-sourced annotations for evaluation and rubric verification. All data collection and usage followed the terms of service of the corresponding providers, and no personally identifiable or sensitive information was intentionally collected. Details of the annotation procedures and quality control are described in the dataset construction section and Appendix A.3.	
522		
523		
524		
525		
526	<h2>7 REPRODUCIBILITY STATEMENT</h2>	
527		
528	To ensure reproducibility, we have cleaned and released the core code used for rubrics collected at the following link: https://anonymous.4open.science/r/dev0204b . Please refer to the provided README.md for environment configuration and instructions to launch the program.	
529		
530		
531		
532		
533	<h2>REFERENCES</h2>	
534	Chenxin An, Jun Zhang, Ming Zhong, Lei Li, Shanshan Gong, Yao Luo, Jingjing Xu, and Lingpeng Kong. Why does the effective context length of LLMs fall short? <i>arXiv preprint arXiv:2410.18745</i> , 2024.	
535		
536		
537		
538	Yushi Bai, Jiajie Zhang, Xin Lv, Linzhi Zheng, Siqi Zhu, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongWriter: Unleashing 10,000+ word generation from long context LLMs. <i>arXiv preprint arXiv:2408.07055</i> , 2024.	
539		

- 540 Param Biyani, Yasharth Bajpai, Arjun Radhakrishna, Gustavo Soares, and Sumit Gulwani. RUBICON:
 541 Rubric-based evaluation of domain-specific human AI conversations. In *Proceedings of the 1st*
 542 *ACM International Conference on AI-Powered Software*, pp. 161–169, 2024.
- 543
- 544 Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui Chen,
 545 Zhi Chen, Pei Chu, et al. InternLM2 technical report. *arXiv preprint arXiv:2403.17297*, 2024.
- 546
- 547 Lichang Chen, Chen Zhu, Davit Soselia, Juhai Chen, Tianyi Zhou, Tom Goldstein, Heng Huang,
 548 Mohammad Shoeybi, and Bryan Catanzaro. Odin: Disentangled reward mitigates hacking in
 549 RLHF. *arXiv preprint arXiv:2402.07319*, 2024.
- 550
- 551 Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context win-
 552 dow of large language models via positional interpolation. *arXiv preprint arXiv:2306.15595*,
 553 abs/2306.15595, 2023.
- 554
- 555 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
 556 reinforcement learning from human preferences. *Advances in Neural Information Processing
 557 Systems*, 30, 2017.
- 558
- 559 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 560 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
 561 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
 562 *arXiv preprint arXiv:2507.06261*, 2025.
- 563
- 564 Yiran Ding, Li Lyra Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan
 565 Yang, and Mao Yang. LongRoPE: Extending LLM context window beyond 2 million tokens. In
 566 *Forty-first International Conference on Machine Learning*, 2024.
- 567
- 568 Xuan Long Do, Duong Ngoc Yen, Luu Anh Tuan, Kenji Kawaguchi, Shafiq Joty, Min-Yen Kan,
 569 Nancy Chen, et al. Beyond in-context learning: Aligning long-form generation of large language
 570 models via task-inherent attribute guidelines. In *Findings of the Association for Computational
 571 Linguistics: ACL 2025*, pp. 3377–3411, 2025.
- 572
- 573 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 574 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models.
 575 *arXiv preprint arXiv:2407.21783*, 2024.
- 576
- 577 Naghmeh Farzi and Laura Dietz. Pencils down! automatic rubric-based evaluation of retrieve/gen-
 578 erate systems. In *Proceedings of the 2024 ACM SIGIR International Conference on Theory of
 579 Information Retrieval*, pp. 175–184, 2024.
- 580
- 581 Jiayi Fu, Xuandong Zhao, Chengyuan Yao, Heng Wang, Qi Han, and Yanghua Xiao. Reward shaping
 582 to mitigate reward hacking in RLHF. *arXiv preprint arXiv:2502.18770*, 2025.
- 583
- 584 Team GPT-4o. Hello GPT-4o. <https://openai.com/index/hello-gpt-4o/>, 2024.
- 585
- 586 Anisha Gunjal, Anthony Wang, Elaine Lau, Vaskar Nath, Bing Liu, and Sean Hendryx. Rubrics as
 587 rewards: Reinforcement learning beyond verifiable domains. *arXiv preprint arXiv:2507.17746*,
 588 2025.
- 589
- 590 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 591 Shirong Ma, Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing reasoning capability in
 592 LLMs via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- 593
- 594 Helia Hashemi, Jason Eisner, Corby Rosset, Benjamin Van Durme, and Chris Kedzie. LLM-rubric:
 595 A multidimensional, calibrated approach to automated evaluation of natural language texts. *arXiv
 596 preprint arXiv:2501.00274*, 2024.
- 597
- 598 Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient RLHF algorithm
 599 with robustness to both prompt and reward models. *arXiv preprint arXiv:2501.03262*, 2025.
- 600
- 601 Zenan Huang, Yihong Zhuang, Guoshan Lu, Zeyu Qin, Haokai Xu, Tianyu Zhao, Ru Peng, Jiaqi Hu,
 602 Zhanming Shen, Xiaomeng Hu, et al. Reinforcement learning with rubric anchors. *arXiv preprint
 603 arXiv:2508.12790*, 2025.

- 594 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 595 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. GPT-4o system card. *arXiv preprint*
 596 *arXiv:2410.21276*, 2024.
- 597
- 598 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 599 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 600 *arXiv:2412.16720*, 2024.
- 601
- 602 Sameer Jain, Vaishakh Keshava, Swarnashree Mysore Sathyendra, Patrick Fernandes, Pengfei Liu,
 603 Graham Neubig, and Chunting Zhou. Multi-dimensional evaluation of text summarization with
 604 in-context learning. *arXiv preprint arXiv:2306.01200*, 2023.
- 605
- 606 Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan
 607 Chen, and Xia Hu. LLM maybe longLM: Selfextend LLM context window without tuning. In
 608 *Forty-first International Conference on Machine Learning*, 2024.
- 609
- 610 Shankar Kantharaj, Xuan Long Do, Rixie Tiffany Ko Leong, Jia Qing Tan, Enamul Hoque, and Shafiq
 611 Joty. OpenCQA: Open-ended question answering with charts. *arXiv preprint arXiv:2210.06628*,
 612 2022.
- 613
- 614 Minzhi Li, Zhengyuan Liu, Shumin Deng, Shafiq Joty, Nancy Chen, and Min-Yen Kan. Dna-
 615 eval: Enhancing large language model evaluation through decomposition and aggregation. In
 616 *Proceedings of the 31st International Conference on Computational Linguistics*, pp. 2277–2290,
 617 2025.
- 618
- 619 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 620 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. DeepSeek-V3 technical report. *arXiv preprint*
 621 *arXiv:2412.19437*, 2024a.
- 622
- 623 Tianqi Liu, Wei Xiong, Jie Ren, Lichang Chen, Junru Wu, Rishabh Joshi, Yang Gao, Jiaming Shen,
 624 Zhen Qin, Tianhe Yu, et al. RRM: Robust reward model training mitigates reward hacking. *arXiv*
 625 *preprint arXiv:2409.13156*, 2024b.
- 626
- 627 Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu.
 628 Inference-time scaling for generalist reward modeling. *arXiv preprint arXiv:2504.02495*, 2025.
- 629
- 630 Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhui Chen. General-reasoner:
 631 Advancing LLM reasoning across all domains. *arXiv preprint arXiv:2505.14652*, 2025.
- 632
- 633 Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
 634 Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative reward models. *arXiv preprint*
 635 *arXiv:2410.12832*, 2024.
- 636
- 637 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 638 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 639 instructions with human feedback. *Advances in Neural Information Processing Systems*, 35:
 640 27730–27744, 2022.
- 641
- 642 Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context win-
 643 dow extension of large language models. In *The Twelfth International Conference on Learning
 644 Representations*, 2024.
- 645
- 646 Haoran Que, Feiyu Duan, Liqun He, Yutao Mou, Wangchunshu Zhou, Jiaheng Liu, Wenge Rong,
 647 Zekun Moore Wang, Jian Yang, Ge Zhang, et al. HelloBench: Evaluating long text generation
 648 capabilities of large language models. *arXiv preprint arXiv:2409.16191*, 2024.
- 649
- 650 Guijin Son, Hyunwoo Ko, Hoyoung Lee, Yewon Kim, and Seunghyeok Hong. LLM-as-a-judge &
 651 reward model: What they can and cannot do. *arXiv preprint arXiv:2409.11239*, 2024.
- 652
- 653 Hwanjun Song, Hang Su, Igor Shalyminov, Jason Cai, and Saab Mansour. FineSurE: Fine-grained
 654 summarization evaluation using LLMs. *arXiv preprint arXiv:2407.00908*, 2024.

- 648 Haochen Tan, Zhijiang Guo, Zhan Shi, Lu Xu, Zhili Liu, Yunlong Feng, Xiaoguang Li, Yasheng
 649 Wang, Lifeng Shang, Qun Liu, et al. ProxyQA: An alternative framework for evaluating long-form
 650 text generation with large language models. *arXiv preprint arXiv:2401.15042*, 2024.
- 651
- 652 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multihop
 653 questions via single-hop question composition. *Transactions of the Association for Computational
 654 Linguistics*, 10:539–554, 2022.
- 655 Cunxiang Wang, Sirui Cheng, Qipeng Guo, Yuanhao Yue, Bowen Ding, Zhikun Xu, Yidong Wang,
 656 Xiangkun Hu, Zheng Zhang, and Yue Zhang. Evaluating open-QA evaluation. *Advances in Neural
 657 Information Processing Systems*, 36:77013–77042, 2023.
- 658
- 659 Haoxiang Wang, Yong Lin, Wei Xiong, Rui Yang, Shizhe Diao, Shuang Qiu, Han Zhao, and Tong
 660 Zhang. Arithmetic control of LLMs for diverse user preferences: Directional preference alignment
 661 with multi-objective rewards. *arXiv preprint arXiv:2402.18571*, 2024.
- 662
- 663 Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A Smith,
 664 Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for
 665 language model training. *Advances in Neural Information Processing Systems*, 36:59008–59033,
 2023.
- 666
- 667 Shuying Xu, Junjie Hu, and Ming Jiang. Large language models are active critics in NLG evaluation.
 668 *arXiv preprint arXiv:2410.10724*, 2024.
- 669
- 670 Yinglun Xu, Hangoo Kang, Tarun Suresh, Yuxuan Wan, and Gagandeep Singh. Learning a pessimistic
 671 reward model in RLHF. *arXiv preprint arXiv:2505.20556*, 2025.
- 672
- 673 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 674 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint
 675 arXiv:2412.15115*, 2024.
- 676
- 677 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
 678 and Christopher D Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
 679 answering. *arXiv preprint arXiv:1809.09600*, 2018.
- 680
- 681 Dawei Zhu, Nan Yang, Liang Wang, Yifan Song, Wenhao Wu, Furu Wei, and Sujian Li. PoSE:
 682 Efficient context window extension of LLMs via positional skip-wise training. In *The Twelfth
 683 International Conference on Learning Representations*, 2023.
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701

702 **A APPENDIX**
703704 **A.1 THE USE OF LARGE LANGUAGE MODELS**
705706 Beyond evaluating the capabilities of different LLMs in our experiments, we only employed LLMs
707 for post-processing, specifically to check for typos and grammatical errors in the written text.
708709 **A.2 DETAILS FOR RUBRICS FILTER**
710711 Rubric construction process based on f_R inherently depends on the sampling behavior of the gen-
712 eration model. Since the model may produce different phrasings and emphasize different aspects
713 across sampling runs, applying f_R multiple times to the same question q with the same set of
714 meta-descriptions D can yield distinct rubric sets. Formally, we write
715

716
$$R^{(k)} = f_R^{(k)}(q, D), \quad k = 1, 2, \dots, K,$$

717 where $R^{(k)} = \{r_i^{(k)} \mid i = 1, 2, \dots, N_r^{(k)}\}$ denotes the k -th sampled rubric set, and the total number
718 K is set to 10 in practice. Thus, for a fixed question q , we obtain a family of rubric sets
719

720
$$\mathcal{R}(q) = \{R^{(1)}, R^{(2)}, \dots, R^{(K)}\}.$$

721 This naturally raises the next question: given the family of rubrics sets $\mathcal{R}(q)$ generated for a single
722 question q , how can we determine the final, reliable rubric set to be used for evaluation? To address
723 this, we introduce a filtering mechanism that consolidates diverse rubric candidates into a consistent
724 and high-quality set. The objective of our filtering mechanism is twofold: (1) to ensure that rubrics
725 possess sufficient discriminative power across responses of different quality, and (2) to retain only
726 those rubrics that show consensus, i.e., rubrics that consistently appear with identical or semantically
727 similar formulations across multiple sampling runs.
728729 For the first objective, we construct a response set for each question q by sampling answers from
730 multiple strong LLMs. Specifically, we use four different models (GPT-4o, Gemini-2.5-Pro, Qwen2.5-
731 72B, DeepSeek-R1), and from each model we extract 5 responses. This yields a total of
732

733
$$\mathcal{A}(q) = \{a_1, a_2, \dots, a_{20}\}$$

734 distinct responses for question q . We then employ GPT-4o as the judge model to evaluate these
735 responses under each rubrics set $R^{(k)} \in \mathcal{R}(q)$. Formally, for rubrics set $R^{(k)}$, we obtain a score
736 vector

737
$$\mathbf{s}(R^{(k)}) = (s_1(R^{(k)}), s_2(R^{(k)}), \dots, s_{20}(R^{(k)})),$$

738 where $s_j(R^{(k)})$ denotes the evaluation score assigned to response a_j according to rubrics set $R^{(k)}$.
739 After obtaining the score distribution for each rubrics set, we remove rubrics that lack discriminative
740 power. Concretely, if the score variance is too small relative to the full scoring range, the rubrics set
fails to differentiate between high- and low-quality responses. We compute the variance
741

742
$$\sigma(R^{(k)}) = \frac{1}{20} \sum_{j=1}^{20} (s_j(R^{(k)}) - \bar{s}(R^{(k)}))^2,$$

743 where $\bar{s}(R^{(k)})$ is the mean score of $R^{(k)}$. Let Δ denote the total score range (i.e., the maximum
744 possible score minus the minimum possible score). We filter out $R^{(k)}$ if
745

746
$$\sigma(R^{(k)}) < \alpha \cdot \Delta,$$

747 where $\alpha \in (0, 1)$ is a threshold hyperparameter. Based on the empirical analysis of human annotators'
748 scoring distributions, we calibrated the threshold α such that rubrics with insufficient discriminative
749 power are reliably excluded while preserving those aligned with human judgment. Concretely, we
750 set $\alpha = 0.15$ which corresponds to the lower bound of variance observed among rubrics that human
751 annotators consistently regarded as discriminative.
752753 For the second objective, we then employ a summarization model (in practice, GPT-4o) to consolidate
754 the rubric sets that pass the discriminative power test, prioritizing rubrics with higher occurrence
755 frequency across samples and merging semantically similar ones with the instruction shown in
Figure 6. The final rubric set is obtained as $R^*(q)$.

Category	Count
Science	40
Technology	40
Write	40
Food	40
Movie	40
Book	40
Sport	40
Health	40
Travel	40
Music	40
Total	400

Table 4: Category distribution of our dataset. Each of the ten categories contains 40 samples, totaling 400 instances.

A.3 DATASET SUPPLEMENTARY MATERIALS

We followed the ten most frequent topical categories in HelloBench (Que et al., 2024) to guide our question collection, drawing sources from both Zhihu and Reddit. Unlike HelloBench, we enforced a strictly balanced distribution of 40 questions per category and carefully curated question quality. Specifically, we manually reviewed all questions to avoid over-concentration on narrow subtopics and to ensure diversity within each category. For instance, in HelloBench, the “Sport” category contains multiple consecutive questions focused only on golf, which may limit coverage. To further guarantee openness, we filtered out questions that could be trivially answered in one or two sentences. In total, we obtained 400 test questions. For each question, we collected rubrics using our proposed method and conducted human verification to ensure correctness, appropriate scoring, and fine-grained evaluation dimensions. Erroneous rubrics were regenerated until satisfactory. The resulting benchmark is referred to as the **QuRL-Test** dataset.

A.4 CASE STUDY

We include several case studies that demonstrate the significant enhancements brought by QuRL training. Improvements—such as greater specificity, clearer organization, and deeper insight are highlighted in the text for clarity. **Red** highlights indicate shortcomings before training, while **green** highlights mark the improved or enriched parts after training.

Case 1

Question: What items do people typically bring with them when traveling by plane? How can one securely store personal belongings such as a phone or wallet during a flight?

Answer Before Train: When traveling by plane, it’s essential to pack the right items to ensure a comfortable and stress-free journey. Here’s a list of common items that people typically bring with them:

1. **Travel Documents**: Passport, ID, boarding pass, and any other necessary travel documents.
2. **Clothing**: Appropriate clothing for the destination, including layers for different weather conditions.
3. **Toiletries**: Travel-sized toiletries, such as toothbrush, toothpaste, shampoo, and conditioner.
4. **Electronics**: Phone, charger, headphones, and any other electronic devices.
5. **Snacks and Water**: Healthy snacks and plenty of water to stay hydrated during the flight.
6. **Reading Material**: Books, magazines, or e-readers to pass the time.
7. **Comfort Items**: Blankets, pillows, or eye masks to make the flight more comfortable.

810

- 811 8. **Medications**: Any necessary medications and a first-aid kit.
 812 9. **Travel Insurance**: Proof of travel insurance in case of any unforeseen circumstances.
 813 10. **Cash and Credit Cards**: Some cash and a credit card for emergencies or in case of
 814 lost luggage.

815 To securely store personal belongings such as a phone or wallet during a flight, consider the
 816 following tips:

- 817 1. **Use a Secure Bag**: Choose a bag with multiple compartments and zippers to keep
 818 your belongings organized and secure.
 819 2. **Keep Valuables Close**: Keep your phone, wallet, and other valuables in a pocket or a
 820 small bag that you can easily access and keep close to you.
 821 3. **Use a Travel Wallet**: A travel wallet with multiple compartments can help keep your
 822 cash, cards, and other documents organized and secure.
 823 4. **Zip Up Your Bag**: Always zip up your bag when not in use to prevent anyone from
 824 accessing your belongings.
 825 5. **Avoid Leaving Your Bag Unattended**: Never leave your bag unattended, even for a
 826 moment, as it can be easily stolen or tampered with.
 827 6. **Consider a Travel Lock**: A travel lock can help secure your bag and prevent it from
 828 being opened without your permission.
 829 7. **Keep Important Documents Safe**: Keep important documents, such as your passport
 830 and boarding pass, in a secure pocket or bag that you can easily access.

831 By following these tips, you can ensure that your personal belongings are safe and secure
 832 during your flight.

833 **Answer After Train:** When traveling by plane, passengers typically pack a variety of items
 834 to ensure a comfortable and organized journey. Essential documents such as identification
 835 (IDs), boarding passes, and travel insurance policies are usually the top priorities, as they are
 836 required for security checks and boarding. Many travelers also bring personal electronics
 837 like smartphones, tablets, and laptops, along with chargers and adapters, especially for
 838 international flights where voltage and plug types vary. Clothing is a significant portion of the
 839 luggage, including layers for different climates, comfortable shoes, and attire suitable for the
 840 destination's culture or weather. Snacks and water are common, as in-flight meals may not
 841 meet personal dietary preferences, and the aircraft's environment can be dehydrating. Some
 842 travelers also carry medications, travel-sized toiletries, and entertainment options like books
 843 or movies to pass the time.

844 Securing personal belongings during a flight is a critical aspect of travel safety. Airlines
 845 generally recommend that passengers keep essential valuables—such as phones, wallets,
 846 passports, and travel documents—on their person or in a small bag placed under the seat in
 847 front of them for easy access and security. Larger carry-on items can be stored in the overhead
 848 bin, but it is not advisable to leave valuables there, since access is less controlled and items
 849 may be misplaced. The seat pocket can be used for temporary storage of small items during
 850 the flight, but travelers should check it carefully before leaving the aircraft to avoid forgetting
 851 anything. It's crucial to avoid leaving belongings unattended at any point, as airports and
 852 planes are high-risk areas for theft. For example, during layovers or when using the restroom,
 853 travelers should keep their bags within sight or consider using the aircraft's storage options.
 854 Additionally, digital items like passports and tickets should be backed up on cloud services or
 855 printed copies, in case of technical issues or loss.

856 To enhance the travel experience, some tips include packing a small first-aid kit, earplugs,
 857 and an eye mask for a better sleep, especially on long flights. Staying hydrated and avoiding
 858 alcohol during takeoff and landing can also reduce ear discomfort. For international flights,
 859 it's wise to research cultural norms and dress codes at the destination to avoid cultural
 860 misunderstandings. Travelers with special needs, such as dietary restrictions or mobility
 861 issues, should notify the airline in advance and bring necessary medications or equipment.
 862 By following these guidelines, passengers can enjoy a smoother, more secure, and stress-free
 863 flight, focusing on the journey rather than the logistics.

864 **Rubrics:**

865 Part 1: Writing Quality (3 points total)

864

1.1 Clarity and Logical Flow (2 points)

865

Excellent (2 pts): Answer transitions smoothly between packing essentials and security tips. Example: "While travelers typically pack electronics and documents in carry-ons, securing these items requires strategic storage—like using a crossbody bag for quick access or a hidden pouch to deter theft."

866

Needs Improvement (0 pts): Disjointed statements lack cause/effect. Example: "People bring phones. Wallets are important. Use a lock."

867

1.2 Engagement and Stylistic Flair (1 point)

868

Excellent (1 pt): Vivid language or analogies enhance readability. Example: "A money belt is the unsung hero of air travel—nestled under clothing, it guards cash and passports like a silent sentinel."

869

Needs Improvement (0 pts): Dry, textbook-like recitation. Example: "Phones and wallets are commonly carried. Store them securely."

870

Part 2: Content Coverage (7 points total)

871

2.1 Typical Travel Items (1 point)

872

Excellent (1 pt): Lists 5+ common items (e.g., phone, wallet, passport, headphones, toiletries) and explains their importance.

873

Sufficient (0.5 pt): Mentions 3–4 items without context.

874

Missing (0 pts): Omits key items.

875

2.2 Secure Storage Methods (2 points)

876

Excellent (2 pts): Details 3+ methods (e.g., money belts, locked pouches, seat-pocket avoidance) with pros/cons.

877

Sufficient (1 pt): Lists 1–2 methods superficially.

878

Missing (0 pts): No storage solutions discussed.

879

2.3 Compliance with Rules (1 point)

880

Excellent (1 pt): Mentions following airline or airport security rules in general.

881

Sufficient (0.5 pt): Alludes to compliance vaguely.

882

Needs Improvement (0 pts): Ignores compliance.

883

2.4 Theft Prevention (1 point)

884

Excellent (1 pt): Gives clear anti-theft tips (e.g., avoid leaving items unattended, avoid storing valuables in overhead bins, keep bag within sight).

885

Sufficient (0.5 pt): Generic tip like "keep valuables close."

886

Missing (0 pts): No anti-theft measures.

887

2.5 Accessibility During Flight (1 point)

888

Excellent (1 pt): Explains how to balance security with in-flight access (e.g., under-seat personal items vs. locked compartments).

889

Sufficient (0.5 pt): Mentions accessibility without strategy.

890

Missing (0 pts): Omits accessibility.

891

2.6 Emergency Preparedness (1 point)

892

Excellent (1 pt): Suggests backups (e.g., photocopies of IDs, split cash storage) for lost items.

893

Sufficient (0.5 pt): Mentions emergencies vaguely.

894

Missing (0 pts): No contingency plans.

895

Case 2

896

Question: At what point does a person get "old"? Is it simply health-related factors, certain attitudes, beliefs, and regrets, or can it happen at any age?

897

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Answer Before Train: The question of when a person becomes "old" is inherently subjective, as it intertwines biological, psychological, social, and cultural dimensions, making it impossible to pinpoint a single, universal answer. Age is not merely a chronological marker but a dynamic construct shaped by health, attitude, societal expectations, and personal identity. Biologically, aging is a process influenced by genetics, lifestyle, and environmental factors, with some individuals retaining vitality well into their 70s or 80s, while others may experience physical decline earlier. However, the transition into "old age" is often marked by the onset of age-related health issues such as arthritis, vision or hearing loss, cognitive decline, or chronic conditions like diabetes or heart disease. These milestones can trigger a sense of vulnerability or dependence, contributing to a psychological shift toward viewing oneself as no longer youthful or vigorous.

Psychologically, the perception of aging is deeply tied to self-perception and life stage. Many people associate "old age" with retirement, a milestone that liberates time but may also signal the end of a professional identity or routine. This transition can evoke feelings of loss or redundancy, particularly if one has not cultivated new interests or social roles. Additionally, societal norms and media portrayals of aging—often emphasizing decline or frailty—can influence how individuals internalize their age. For instance, in cultures that value youthfulness, older adults may feel pressure to maintain a youthful appearance or lifestyle, whereas in others, respect for elders is a cultural norm, delaying the psychological acceptance of aging. Personal regrets, such as unfulfilled career aspirations or strained relationships, can also contribute to a sense of existential aging, where one feels they have missed opportunities or failed to live up to their potential.

Ultimately, the point at which someone feels "old" is a complex interplay of internal and external factors. It is not a fixed age but a fluid state that evolves over time. While health crises or significant life events like the death of a spouse or loss of independence can accelerate this process, others may age gracefully, maintaining mental clarity, social engagement, and a positive outlook. The key takeaway is that aging is a multifaceted journey influenced by individual resilience, adaptability, and the cultural narratives we internalize. Recognizing aging as a spectrum rather than a binary state allows for a more compassionate and nuanced understanding of this natural process.

Answer After Train: The question of when a person "gets old" is inherently complex, as the term "old" is both a biological and a social construct, deeply intertwined with individual perception, cultural context, and life experiences. Age, in its most basic form, is a chronological measurement, but the experience of aging is far more nuanced. While biological age relates to the physical and physiological changes that occur over time, such as the shortening of telomeres, decline in organ function, and accumulation of cellular damage, these markers are not uniform across individuals. For example, a 60-year-old with a healthy lifestyle and robust immune system may feel and function more like someone in their 40s, while another person of the same age with chronic health conditions might experience aging more rapidly. This highlights that the point at which one "gets old" is not a fixed biological threshold but a dynamic interplay of genetic, environmental, and behavioral factors.

Psychologically, the concept of aging is heavily influenced by attitudes, beliefs, and self-perception. The phrase "I feel old" is a common expression that reflects a subjective experience rather than a fact. For instance, someone who has retired and feels a sense of loss or regret about missed opportunities might perceive themselves as older due to emotional and psychological factors, even if their physical health is age-appropriate. Conversely, individuals who maintain a sense of purpose, engage in lifelong learning, and have strong social connections often report feeling younger, as their mindset and quality of life mitigate the effects of chronological age. This psychological aspect is crucial, as it shows that aging is not a one-size-fits-all process but a highly personalized journey shaped by one's inner state.

Sociocultural factors also play a significant role in defining when someone is considered "old." In many societies, there are cultural stereotypes and ageist attitudes that associate old age with decline, dependency, or loss of value. For example, the retirement age in different countries varies, with some cultures valuing work into later life, while others see retirement as a natural part of aging. These cultural norms can influence how individuals perceive their own age and the age of others. For instance, in some Indigenous cultures, older individuals

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

are highly respected for their wisdom and experience, whereas in Western cultures, there is often a stigma around aging, which can lead to feelings of inadequacy or marginalization. The role of health and lifestyle is another critical factor. Chronic diseases like diabetes, heart disease, or Alzheimer's can accelerate the aging process, both physically and mentally, by limiting mobility, cognitive function, and emotional well-being. However, lifestyle choices such as a healthy diet, regular exercise, and stress management can delay these processes, keeping individuals vibrant and active well into their later years. For example, a 70-year-old who exercises daily and has a balanced diet might have the physical and mental agility of someone in their 50s, challenging the notion that age is determined by health alone.

In essence, the point at which a person gets "old" is a multifaceted interplay of biology, psychology, sociology, and culture. It is not a single, definitive moment but a continuous process that varies from person to person. Age is a social construct that is shaped by how society, culture, and the individual perceive and experience time. To answer this question comprehensively, one must consider the biological underpinnings of aging, the psychological and emotional factors that influence self-perception, the cultural norms that define age, and the lifestyle choices that either accelerate or mitigate the aging process. By understanding these dimensions, we can move beyond stereotypes and embrace aging as a natural, diverse, and personally meaningful journey, rather than a uniform state defined by a single age point.

Rubrics:

Part 1: Writing Quality (3 points total)

1.1 Clarity and Logical Flow (2 points)

Excellent (2 pts): The response is well-structured with smooth transitions between ideas. Example: "While biological aging is inevitable, the psychological experience of 'feeling old' often stems from a loss of purpose—such as retirement or social disengagement—rather than chronological age alone. This aligns with activity theory, which posits that maintaining meaningful roles delays the subjective sense of aging."

Needs Improvement (0–1 pt): The response lacks cohesion or jumps abruptly between points. Example: "Old age is about health. Some people regret things. Also, society treats you differently."

1.2 Engagement and Stylistic Flair (1 point)

Excellent (1 pt): Uses vivid language, analogies, or a compelling voice. Example: "Aging is less about the number of candles on a cake and more about the weight of unlivéd dreams—a 30-year-old with chronic illness may feel 'older' than a vibrant 70-year-old scaling mountains."

Needs Improvement (0 pts): Dry or overly generic. Example: "Old age is defined by physical decline and societal expectations."

Part 2: Content Coverage (7 points total)

2.1 Biological Factors (1.5 points)

Excellent (1.5 pts): Discusses specific health markers (e.g., telomere shortening, chronic illness) and their variability.

Sufficient (1 pt): Mentions health generally but lacks detail.

Missing (0 pts): Omits biological factors entirely.

2.2 Psychological and Emotional Dimensions (1.5 points)

Excellent (1.5 pts): Explores attitudes (e.g., Erikson's "integrity vs. despair"), regrets, or resilience.

Sufficient (1 pt): Briefly notes mindset but lacks analysis.

Missing (0 pts): No discussion of psychological aspects.

2.3 Sociocultural Influences (1 point)

Excellent (1 pt): Analyzes how culture and media shape aging perceptions (e.g., ageism, "young-old" distinctions).

Sufficient (0.5 pt): Mentions society superficially.

1026
 1027 Missing (0 pts): Ignores sociocultural context.
 1028
 1029 2.4 Subjective vs. Chronological Age (1 point)
 1030 Excellent (1 pt): Contrasts lived experience with numerical age. Example: “A 50-year-old
 1031 veteran with PTSD may feel older than a 75-year-old artist.”
 1032 Sufficient (0.5 pt): Briefly acknowledges subjectivity.
 1033 Missing (0 pts): Treats aging as purely objective.
 1034
 1035 2.5 Theories of Aging (1 point)
 1036 Excellent (1 pt): References theories (e.g., activity theory, disengagement theory) with
 1037 application.
 1038 Sufficient (0.5 pt): Names theories without elaboration.
 1039 Missing (0 pts): No theoretical framework.
 1040
 1041 2.6 Variability and Exceptions (1 point)
 1042 Excellent (1 pt): Highlights outliers (e.g., centenarians, early-onset “old” feelings due to
 1043 trauma).
 1044 Sufficient (0.5 pt): Notes variability but lacks examples.
 1045 Missing (0 pts): Presents aging as uniform.

Case 3

1046 **Question:** In a story I am writing, I want a criminal organization to be the antagonist. What
 1047 I’m planning is start it with the reader thinking the organization is good, but as they keep
 1048 reading, they start to think that the organization is bad. Any advice?
 1049

1050 **Answer Before Train:**

1051 ...
 1052 **Establish the organization’s good reputation**:** Begin by introducing the organization in a
 1053 way that makes it seem like a positive force. Show how they help people, provide services, or
 1054 work towards a noble cause. This will create a positive image in the reader’s mind.

1055 ...
 1056 **Gradually reveal the dark side**:** As the story progresses, start to reveal information that
 1057 contradicts the organization’s good reputation. This could be through a character’s actions,
 1058 dialogue, or internal thoughts. For example, you could show that the organization is involved
 1059 in illegal activities, has a hidden agenda, or is corrupt.

1060 ...
 1061 **Reveal the twist**:** At a crucial moment in the story, reveal the full extent of the orga-
 1062 nization’s true nature. This could be a dramatic scene where the protagonist discovers the
 1063 organization’s dark secrets, or a character’s confession that reveals the truth. This twist should
 1064 be significant enough to change the reader’s perception of the organization.

1065 ...
 1066 **Answer After Train:**

1067 ...
 1068 The story begins by introducing the organization as a seemingly benevolent entity, often
 1069 positioned as a savior in a community plagued by poverty or social inequality. For instance,
 1070 the group might start as a local charity, providing essential services like food, employment, or
 1071 educational support. This initial phase is crucial for building the organization’s credibility and
 1072 emotional investment from the reader. The members are depicted as dedicated, compassionate
 1073 individuals, perhaps including a protagonist who is deeply involved, rationalizing their actions
 1074 as necessary for the greater good. This setup creates a moral ambiguity, as the organization’s
 1075 good deeds blur the lines between right and wrong, making the reader initially sympathize
 1076 with their cause.

1077 ...
 1078 A turning point occurs when the group begins protecting illegal activities, such as drug
 1079 trafficking or money laundering, under the guise of their charitable mission. This shift is not
 1080 abrupt but a gradual erosion of their initial ideals. The members, including the protagonist,
 1081 justify their actions with arguments about survival, economic necessity, or a perceived duty

1080
1081
1082
1083
1084

to their community. These justifications are presented with a mix of rationality and emotional appeal, making the reader question their initial assumptions. The organization's leaders might even use propaganda or manipulative tactics to maintain control, further entrenching the members' loyalty and the reader's confusion.

1085
1086
1087
1088
1089
1090
1091
1092

...
The climax of the twist comes in a confrontation that reveals the full extent of the organization's crimes. This could be a scene where the protagonist is forced to choose between their loyalty to the group and their moral conscience, leading to a dramatic conflict. The revelation of the organization's true nature—its role in a larger criminal network, the harm it causes to the community, and the personal sacrifices of the members—should be both unexpected and logically connected to the preceding events. This moment not only shocks the reader but also provides a deeper understanding of the characters' motivations, highlighting the complexities of morality in a world of gray areas.

1093
1094
1095
1096

Rubrics:

Part 1: Writing Quality (3 points total)

1097
1098
1099
1100
1101

1.1 Clarity and Logical Flow (2 points)

Excellent (2 pts): The answer transitions smoothly from setup (initial positive portrayal) to payoff (revealing the organization's true nature). Example: "Begin by showing the organization funding schools and hospitals, then subtly introduce rumors of missing dissenters—letting the reader connect the dots."

Needs Improvement (0 pts): Ideas are disjointed or lack cause-and-effect progression. Example: "The group seems nice. Later, they're bad. Use foreshadowing."

1102
1103
1104
1105
1106
1107
1108
1109
1110

1.2 Engagement and Stylistic Flair (1 point)

Excellent (1 pt): Uses vivid language, analogies, or narrative techniques to hook the reader. Example: "Like a slow poison, let their charity mask their coercion—each act of kindness a thread in a tightening noose."

Needs Improvement (0 pts): Dry or overly generic advice. Example: "Make them do good things first, then bad things."

1111
1112

Part 2: Content Coverage (7 points total)

1113
1114
1115
1116
1117
1118

2.1 Initial Positive Facade (1 point)

Excellent (1 pt): Describes concrete ways to establish the organization's benevolent image (e.g., philanthropy, charismatic leaders). Example: "Show them rebuilding a town after a disaster, with media praising their 'selflessness.'"

Sufficient (0.5 pt): Mentions positive traits but lacks detail.

Missing (0 pts): Omits this aspect.

1119

2.2 Gradual Reveal of Corruption (2 points)

Excellent (2 pts): Explains how to drip-feed clues (e.g., unreliable narrators, conflicting evidence). Example: "Have a protagonist uncover discrepancies in their finances, or a trusted member vanish after asking questions."

Sufficient (1 pt): Suggests a reveal but lacks nuance.

Missing (0 pts): No discussion of pacing or techniques.

1120
1121
1122
1123
1124
1125

2.3 Moral Complexity (1 point)

Excellent (1 pt): Addresses how to make the organization's shift believable (e.g., internal factions, justified extremism). Example: "Their leader might rationalize violence as 'for the greater good,' making their fall tragic."

Sufficient (0.5 pt): Briefly mentions motives without depth.

Missing (0 pts): Ignores moral layers.

1132
1133

2.4 Character Arcs (1 point)

1134
 1135 Excellent (1 pt): Ties the reveal to protagonist growth (e.g., disillusionment, betrayal).
 1136 Example: “The protagonist’s mentor is exposed as an enforcer, forcing them to question
 1137 loyalty.”
 1138 Sufficient (0.5 pt): Notes character impact vaguely.
 1139 Missing (0 pts): No connection to characters.

1140 2.5 Foreshadowing and Subtlety (1 point)
 1141 Excellent (1 pt): Recommends specific techniques (e.g., symbolic imagery, offhand re-
 1142 marks). Example: “Early on, a minor character jokes about ‘owing favors’—later revealed as
 1143 blackmail.”
 1144 Sufficient (0.5 pt): Mentions foreshadowing without examples.
 1145 Missing (0 pts): Absent.

1146 2.6 Contrast with True Antagonists (1 point)
 1147 Excellent (1 pt): Compares the organization to overt villains to highlight their hypocrisy.
 1148 Example: “While gangsters terrorize the streets, the organization ‘negotiates peace’—but
 1149 their terms include silent obedience.”
 1150 Sufficient (0.5 pt): Briefly contrasts without elaboration.
 1151 Missing (0 pts): No comparison.

A.5 PROMPT TEMPLATE

Extract Meta Description

1154 Please identify and extract up to 3-5 well-written, engaging, or insightful passages from the
 1155 text below that are directly relevant to the topic: ”{topic/}”.

1156 These passages should be examples of high-quality writing that could enhance a reader’s
 1157 understanding, capture their interest, or exemplify a good writing style (e.g., vivid language,
 1158 clear explanations, compelling narrative).

1159 Each passage should reflect how a human writer would approach the topic, including
 1160 the various angles, aspects, and depth of thought they might consider. The passage
 1161 should showcase a natural flow of ideas, the use of persuasive or descriptive tech-
 1162 niques, and a perspective that adds value to the reader’s understanding. Focus on
 1163 extracting contiguous blocks of text that stand alone as good examples of writing and
 1164 effectively convey a complete thought or argument in a way that mirrors human writing styles.

1165 Avoid extracting very short, fragmented phrases or simple factual lists unless they are
 1166 exceptionally well-phrased and illustrative of good writing while also capturing a human
 1167 writer’s perspective on the topic.

1168 Return the output as a JSON array of strings, where each string is an extracted passage that is
 1169 a complete narrative segment containing both description and view, written in a manner akin
 1170 to how a human writer would present it.

1171 For example: [”complete narrative segment 1 text...”, ”complete narrative segment 2 text...”]
 1172 Text: {chunkcontent/}

Example Meta Descriptions:

1173 Open-Ended QA isn’t just about delivering factual correctness — it’s about weaving context,
 1174 tone, and reader engagement into answers. A well-crafted answer acknowledges nuance,
 1175 anticipates follow-up questions, and balances clarity with depth. The reader should feel as
 1176 though they’re conversing with someone who understands not just the ‘what’ but also the
 1177 ‘why’, making the dialogue both informative and resonant.

1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431

1188
1189

Rubric Consolidation Instruction

1190
1191
1192

You are given multiple rubric sets $R^{(1)}, R^{(2)}, \dots, R^{(K)}$ generated for the same open-ended question q . Your task is to consolidate them into a single high-quality rubric set $R^*(q)$. Please follow these steps:

1193
1194
1195

1. **Identify Consensus:** Prioritize rubrics that appear frequently across different sets or are semantically equivalent.
2. **Merge Similar Rubrics:** Combine rubrics with overlapping meaning into a single, clear formulation.
3. **Preserve Discriminative Power:** Retain rubrics that can differentiate between high- and low-quality responses.
4. **Ensure Completeness and Clarity:** The final rubric set should comprehensively cover both content quality and writing quality dimensions, while avoiding redundancy.

1200
1201

Output Format: Provide the final rubric set $R^*(q)$ as a structured list of rubrics, each written as an explicit and self-contained evaluation criterion.

1202
1203
12041205
1206
1207

Reference for LLM as Judge without Rubrics

1208
1209
1210
1211

You are an expert in evaluating text quality. Please evaluate the quality of an AI assistant's response to a user's question. Be as strict as possible.

You need to evaluate across the following six dimensions, with scores ranging from 0 to 2. The scoring criteria from 0 to 2 for each dimension are as follows:

1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

1. Relevance: From content highly relevant and fully applicable to the user's request to completely irrelevant or inapplicable.
2. Accuracy: From content completely accurate with no factual errors or misleading information to content with numerous errors and highly misleading.
3. Coherence: From clear structure with smooth logical connections to disorganized structure with no coherence.
4. Clarity: From clear language, rich in detail, and easy to understand to confusing expression with minimal details.
5. Breadth and Depth: From both broad and deep content with a lot of information to seriously lacking breadth and depth with minimal information.
6. Reading Experience: From excellent reading experience, engaging and easy to understand content to very poor reading experience, boring and hard to understand content.

1224
1225

Please evaluate the quality of the following response to a question according to the above requirements.

1226
1227
1228

Please evaluate the quality of the response. The output must strictly follow the JSON format: `{ "Analysis": ..., "Relevance": ..., "Accuracy": ..., "Coherence": ..., "Clarity": ..., "Breadth and Depth": ..., "Reading Experience": ... }`.

1229
1230
1231
1232

Ensure that only one integer between 0 and 2 is output for each dimension score.

Question: {question}

Response to be Graded: {answer}

1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 7: Prompt used for rubric consolidation.