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ABSTRACT

Synthesizing realistic animations of humans, animals, and even imaginary creatures,
has long been a goal for artists and computer graphics professionals. Compared to
the imaging domain, which is rich with large available datasets, the number of data
instances for the motion domain is limited, particularly for the animation of animals
and exotic creatures (e.g., dragons), which have unique skeletons and motion patterns.
In this work, we introduce SinMDM, a Single Motion Diffusion Model. It is designed
to learn the internal motifs of a single motion sequence with arbitrary topology and
synthesize a variety of motions of arbitrary length that remain faithful to the learned
motifs. We harness the power of diffusion models and present a denoising network
explicitly designed for the task of learning from a single input motion. SinMDM
is crafted as a lightweight architecture, which avoids overfitting by using a shallow
network with local attention layers that narrow the receptive field and encourage mo-
tion diversity. Our work applies to multiple contexts, including spatial and temporal
in-betweening, motion expansion, style transfer, and crowd animation. Our results
show that SinMDM outperforms existing methods both qualitatively and quantita-
tively. Moreover, while prior network-based approaches require additional training
for different applications, SinMDM supports these applications during inference. Our
project page, which includes links to the code and trained models, is accessible at
https://sinmdm.github.io/SinMDM-pagel

1 INTRODUCTION

Animation of 3D characters is a long pursued task in computer graphics with many applications, from
the big screen to virtual reality headsets. It is notoriously known as a time-consuming task done by
expert artists. In recent years, neural models have offered faster and less expensive tools for modeling
motion (Holden et al., 2016j Petrovich et al., 2022; Raab et al., [2023)). In particular, the very recent
adaptation of diffusion models into the motion domain provides unprecedented results in both quality
and diversity (Tevet et al., [2023} |Kim et al.| 2022).

These data-driven methods typically require large amounts of data for training. However, motion data
is quite scarce. Moreover, for non-human skeletons, it barely exists. The few available datasets contain
humanoids only, with fixed topology and bone ratio. Animators often customize a skeleton per character
(human, animal, or magical creature), for which common data-driven techniques are irrelevant.

In this work, we present a Single Motion Diffusion Model, dubbed SinMDM, that trains on a single
motion input sequence. Our model enables modeling motions of arbitrary skeletal topology, which
often have no more than one animation sequence to learn from. An arbitrary topology refers to the
agnostic nature of the architecture towards skeletal structure. Each motion sequence (of any topology)
requires its own trained model. SinMDM can synthesize a variety of variable-length motion sequences
that retain the core motion elements of the input and can handle complex and non-trivial skeletons. For
example, our model can generate a diverse clan based on one flying dragon or one hopping ostrich.

In the motion domain, learning from a single instance has been explored by |Li et al.| (2022)) using GANs
(Goodfellow et al.l[2014) and by |Li et al.|(2023)) using Motion-graphs (Kovar et al., 2002). We advocate
diffusion models (Ho et al.,|2020) for single input learning, as gradual denoising enhances descriptive
capability and avoids mode-collapse using a rather lightweight scheme that, compared to the prior art,
generates high-quality motions. Furthermore, we demonstrate that diffusion models can be effectively
utilized with limited data, challenging the notion that they solely rely on large datasets.

To learn local motion sequences, the receptive field must be small enough, analogously to the use of
patch-based discriminators (Isola et al., [2017;|L1 & Wand, [2016) in GAN-based techniques. The use of
a narrow receptive field (Fig.[2) promotes diversity and reduces overfitting. We show the importance of
narrow receptive fields in our ablation studies.

Most motion diffusion models use transformers (Vaswani et al.l 2017). However, vanilla transformers
are not suitable for learning a single sequence, as their receptive field encompasses the entire motion.
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Figure 1: SinMDM learns the internal motion motifs from a single motion sequence with arbitrary
topology and synthesizes motions that are faithful to the learned core motifs of the input sequence.
Left: a girl exercising while walking. Right: a breakdancing dragon. Left to right: breakdance uprock,
breakdance freeze, and breakdance flair.

A similar challenge arises with UNets (Ronneberger et al., [2015), commonly used in image diffusion
models. Its depth, along with global attention layers, creates a receptive field covering the whole motion.

SinMDM leverages the concept of narrow receptive fields and introduces a motion architecture specif-
ically designed with this concept. It combines a shallow UNet model adapted for motion with a
QnA (Arar et al.; [2022) local attention mechanism, instead of global attention. As a result, SinMDM
outperforms prior art both quantitatively and qualitatively, and demonstrates high efficiency with shorter
training time and less memory consumption. Imputed to its lightweight architecture, SinMDM can be
trained on a single mid-range GPU.

We present many use cases of SinMDM. While neural-network-based prior arts require designated train-
ing per application, ours are applied at inference time, with no need to re-train. Moreover, applications
that require different dedicated algorithms in prior art, are here grouped together as special cases of
the same technique, significantly simplifying their use. One of the applications we present is Motion
Composition, where a given motion sequence is composed jointly with a synthesized one, either tem-
porally or spatially. Its special cases include in-betweening and motion expansion. Another application
that we present is Harmonization, along with its special case, style transfer. Here, a reference motion is
modified to match the learned motion motifs. It should be emphasized that implementing style transfer
using a denoising model is a non-trivial task, and enabling it through motion harmonization is unique.
We further present two more applications: long sequence generation and crowd animation.

In our work, we suggest two comprehensive benchmarks for single-motion evaluation. The first is built
upon the artistically crafted MIXAMO (2021} dataset, utilizing metrics that do not require an additional
feature-extracting model. The second is based on the HumanML3D (2022) dataset and enables metrics
that use latent features, such as SiFID (Shaham et al.| |2019). We show that our model outperforms
current works on both benchmarks.

Works with limited fidelity or diversity may excel in one metric, but struggle in others. Thus, rather than
favoring models that shine on a specific criterion, we use the Harmonic Mean metric, which balances
given scores and quantifies their weighted performance.

2 RELATED WORK

Single-Instance Learning The goal of single-instance generation is to learn an unconditional gener-
ative model from a single instance, capturing patch-level statistics for generating diverse content. The
instance type varies by input domain, with a majority in imaging. The first works on this topic are
SinGAN (Shaham et al.,[2019) and InGAN (Shocher et al.,[2019). SinGAN uses a patch-based discrim-
inator (Isola et al.,[2017;|Li & Wand,2016) and an image pyramid to hierarchically generate diverse re-
sults. InNGAN uses a conditional GAN to solve the same problem using geometry transformation. More
recent approaches include ExSinGAN (Zhang et al., 2021c)), which trains multiple modular GANs to
model the distribution of structure, semantics, and texture, and ConSinGAN (Hinz et al., 2021)), which
trains several stages sequentially and improves SinGAN. Many works in the imaging domain follow
and improve these works (Asano et al., 2020; |Granot et al., 2022; |Chen et al., 2021} |Lin et al., 2020;
Sun & Liu, 20205 Sushko et al., [2021;|Yoo & Chen, [2021}|Zhang et al., [2022b; Zheng et al., 2021).

Similar to us, |Wang et al.| (2022) and |Nikankin et al.| (2023) avoid the pyramid structure and use a
UNet with limited depth. This is not directly applicable to the motion domain. Unlike images with a
regularized 2D spatial structure, motions consist of non-regularized skeletal joints with a temporal axis
and fewer degrees of freedom. |Kulikov et al.| (2023) construct a multi-scale diffusion process from
down-sampled versions of the training image and their blurry versions.

Several works have been done in other domains, e.g., shapes (Wu & Zheng, 2022)) and 3D scenes (Son
et al.| 2023). In the motion domain, Ganimator (L1 et al., [2022) follows SinGAN and uses a GAN
architecture, with a patch-based discriminator and a temporal pyramid. GenMM (Li et al.| [2023)) follows
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GPNN (Granot et al.,2022), and employs non-parametric patch nearest-neighbor methods, implemented
with motion-graphs (Kovar et al.,|2002), and yielding higher-quality outputs with a significantly reduced
generation time. Yet, nearest-neighbor methods have limited generalization capabilities, and hence are
mainly suitable for tasks involving “copying” parts of the input. In this respect, learning-based methods,
like Ganimator, offer more applicability as shown in their style-transfer task.

Diffusion Models Diffusion models have been adapted from thermodynamics (Sohl-Dickstein et al.}
2015; |Song & Ermon, [2020) to the imaging domain(Ho et al., [2020; Song et al., 2020a). A generated
image can be further controlled by classifier (Dhariwal & Nichol, 2021) or classifier-free (Ho & Sali-
mans, [2022) guidance. Local editing of images may be viewed as an inpainting problem, in which a
portion of the image is held constant while the model denoises the remaining part (Song et al., [2020b;,
Saharia et al.,2022)). In our work, we adapt this technique for spatial and temporal motion composition.

In the motion domain, several works (Zhang et al.| 2022a} [Kim et al., 2022)) introduce diffusion-based
synthesis. The prominent one is MDM (Tevet et al., |2023)), which utilizes a lightweight network, uses a
transformer rather than the common UNet and predicts motion rather than noise. Like MDM, SinMDM
presents a lightweight architecture and predicts motion rather than noise. Unlike MDM, our work uses
a QnA-based UNet, as the receptive field of a transformer is the full motion, inducing over-fitting.

Motion Synthesis Models Most of motion synthesis models focus on specific tasks, conditioned on
some limiting factors, which can be high-level guidance such as action (Petrovich et al.| 2021; |Guo
et al.,|2020; |Cervantes et al.,2022)) or text (Tevet et al.|[2022}; Zhang et al.,|[2021aj Petrovich et al.,[2022;
Ahuja & Morencyl [2019; Guo et al.| [2022; Bhattacharya et al., 2021} [Tevet et al., [2023), can be parts of
a motion such as motion prefix (Aksan et al., 2019;|Barsoum et al.,|2018; Habibie et al.,[2017; [Yuan &
Kitanil [2020; Zhang et al.,|2021b; |Hernandez et al.,|2019) or in-betweening (Harvey et al., [2020; [Duan
et al.; [2021; Kaufmann et al.| 2020; Harvey & Pal, [2018), motion retargeting or style transfer (Holden
et al., 2017; Villegas et al., |2018]; |Aberman et al., [2019; 2020ab), and even music (Aristidou et al.
2022 Sun et al., [ 2020; |L1 et al., [2021}; [Lee et al., 2018). Fewer models are fully unconditioned (Holden
et al.L |2016; |Raab et al., [2023; [Starke et al.,[2022)).

The architecture of synthesis models can be roughly divided into recurrent (Habibie et al., 2017; Ghor-
bani et al., 2020), autoencoder based (Maheshwari et al., 2022} Jang & Lee, 2020), GAN based (De-
gardin et al.,|2022; Wang et al.,[2020; Yan et al.,2019; |Yu et al.}, 2020), normalizing flows based (Henter
et al., [2020), and more recently, neural field based (He et al., |2022) and diffusion based (Tevet et al.,
2023} |Zhang et al.|[2022a; [Kim et al., 2022 Shafir et al.l[2023). Our work belongs to the latter category.

3 PRELIMINARY

In this work, we present SinMDM, a novel framework that learns the internal motion motifs of a single
motion of arbitrary topology and generates a variety of synthesized motions that retain the core motion
elements of the input sequence. At the crux of our approach lays a denoising diffusion probabilistic
model - DDPM (Ho et al.| 2020). See Appendix [A]for a recap of DDPM. Our premise is that diffusion
models offer generalization without being susceptible to mode collapse.

We present a lightweight model, efficient in time and space and simple in architecture. This is achieved
through the gradual denoising process, which enhances the model’s descriptive capability. Our gener-
ative network is a UNet (Ronneberger et al., 2015) whose global attention layers are replaced by local
QnA layers (Arar et al., [2022)).

In the rest of this section we describe our motion representation. Next, we describe our method and de-
sign choices (Sec.[d)), explore various applications enabled by SinMDM (Sec. [5), detail the experiments
conducted to validate our approach (Sec. [6), and summarise with conclusions (Sec.[7). The readers are
encouraged to watch the supplementary video to get a full impression of our results.

Motion representation A motion sequence is represented by its dynamic and static features, D and
S, respectively. The former differ at each temporal frame (e.g., joint rotation angles), while the latter is
temporally fixed (e.g., bone lengths). D and S can be combined into global 3D pose sequences using
forward kinematics (FK). In our research, we focus on synthesizing the dynamic features, leaving the
static features intact. That is, we predict dynamics for a fixed skeleton topology with fixed bone lengths.
For simplicity, we use the term motion synthesis for the generation of dynamic features only.

Let N denote the number of frames in a motion sequence, and F' denote the length of the features
describing a single frame. In the HumanML3D dataset, a frame is redundantly represented with the
root position and joint positions, angles, velocities, and foot contact (Guo et al.,[2022). For the other
datasets used in this work, a frame is represented by joint angles, root positions, and foot contact labels.
We represent the dynamic features of a motion by a tensor D € RY*¥, Naturally, the convolution for
this representation is 1D, convolving on the temporal dimension (of size N) and holding F' features.
More motion representation details can be found in Appendix
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Figure 2: Left: To allow training on a single motion, our denoising network is designed such that its
overall receptive field covers only a portion of the input sequence. This effectively allows the network
to simultaneously learn from multiple local temporal motion segments. Our denoiser predicts the input
sequence from a noisy one. ¥ ...z is a motion of N frames at diffusion step . Right: Our network

is a shallow UNet, enhanced with a QnA local attention layer.
4 GENERATIVE NETWORK

Our goal is to construct a model that can generate a variety of synthesized motions that retain the
core motion motifs of a single learned input sequence. More formally, we would like to construct the
generative network pg (Eq.[2} Appendix[A) that synthesizes a motion &, from a noised motion z;.

1

S

Unlike traditional single-instance methods that utilize down-sampled instance pyramids for coarse-to-
fine learning, our model employs a straightforward architecture without requiring any pyramids.

Our key insight is that internal motifs are learned more effectively with a limited receptive field (Fig. 2]
Left). We design SinMDM, a novel generative architecture, accordingly. Our model is a QnA-based
degenerated UNet (Fig. 2| Right). UNets (Ronneberger et al.l [2015) are commonly used by imaging
diffusion models (Nichol et al., 2022). However, training a UNet on a single-input leads to overfitting
due to its large receptive field, yielding synthesized sequences that closely resemble the input.

Our first design choice in mitigating this issue is to decrease the depth of the UNet and thereby limit
the receptive field width. However, this step alone is not enough, since standard UNets employ global
attention layers, resulting in a receptive field that encompasses the entire sequence. A possible solution
would be using local attention in non-overlapping windows, like in ViT (Dosovitskiy et al.| [2021)).
Nonetheless, non-interleaving windows tend to limit the cross-window interaction, compromising the
model’s performance. Our solution is to use QnA (Arar et al.| [2022), a state-of-the-art shift-invariant
local attention layer, that aggregates the input locally in an overlapping manner, much like convolutions,
but with the expressive power of attention. The key idea of QnA is to introduce learned queries, shared
by all windows, allowing fast and efficient implementation. Specifically, QnA enables local attention
with a temporally narrow receptive field. Our QnA-based UNet is the first to be used in the motion
domain, where we plug QnA layers instead of the global attention layers of a vanilla UNet. In this
context, a vanilla UNet refers to the UNet utilized in early imaging diffusion works (Ho et al.,|[2020).

QnA is substantially more efficient than global attention in space and time, and our model benefits from
this advantage as a byproduct. A detailed description of the QnA layers is available in Appendix |D

In Sec. [6] we validate these design choices. We show the effectiveness of a narrow receptive field, and
justify the usage of QnA layers and the choice of a UNet rather than a transformer. In Appendix [C} we
provide a comprehensive list of the hyperparameters that can be used to reconstruct our results.

5 APPLICATIONS

Single-motion learning using diffusion models enables various applications. All our applications are
applied at inference time, with no need to re-train. Unlike SinMDM, Ganimator (2022) requires spe-
cialized training for most of its applications, and GenMM (2023)), is limited to replications hence cannot
handle complex applications like harmonization. In the following, we show Motion Composition (Sec.
[5.1), where a given motion sequence is composed jointly with a synthesized one, either temporally
or spatially. Its special cases include in-betweening, motion expansion, trajectory control, and joints
control. With our Motion Harmonization (Sec. [5.2)), a reference input motion is altered to align with
the learned motion motifs. We illustrate one important special case, style transfer. Lastly, we show
how straightforward use (Sec. [5.3) of SinMDM enables one shot long motion generation and crowd
animation. The applications presented here are also demonstrated in our supplementary video.

5.1 MOoTION COMPOSITION

Given an arbitrary reference motion y unseen by our model, and a region of interest (ROI) mask m
(Avrahami et al., [2022), our goal is to synthesize a new motion g, such that the regions of interest
o © m are synthesized from random noise, while the complementary area remains as close as possible
to the given motion y, i.e., y ® (1 — m) = &y ® (1 — m), where ® is element-wise multiplication. The
model should output a coherent motion sequence, where the transition between given and synthesized
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time time
Figure 3: Temporal composition — motion expansion. Motion pairs show varied synthesis from a
single input. The input, distinguishable by its faded color, is temporally expanded. Note that the parts
given as input are identical in both sequences, while the synthesized parts differ. Left: synthesize a
suffix given a temporal prefix. Right: synthesize a prefix and a suffix, given the middle part.
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Figure 4: Motion composition. Parts from a refer- Figure 5: Harmonization. During inference,
ence motion y, are composed with the synthesized we inject guidance from input yo by adding its
motion %, according to a composition map. low frequencies yf] in each step ¢.

parts is seamless. Moreover, the reference motion can be an arbitrary one, on which our model has not
been trained. When the reference motion y is very different from the learned motion, blending between
the two becomes less smooth. To mitigate this issue, we change the ROI mask such that the borders
between the given and the synthesized motion segments are linearly interpolated, as depicted in Fig. ]
We fix the motion segments that need to remain unchanged and sample the parts that need to be filled
in. Each step of the iterative inference process (described in Appendix [A) is slightly changed, such that
parts of y are assigned into & according to the indices of the mask. Thatis, Zo®(1—m) = y©(1—m).

Temporal composition — use cases: in-betweening, motion expansion Temporal composition is the
action of filling in selected frame sequences. In-betweeining (Harvey et al.,2020), depicted in Fig.[f] is a
special case of temporal composition, where the filled-in part is at the temporal interior of the sequence,
and the reference y is not necessarily from the same distribution as the learned motion. Another special
case of temporal composition is motion expansion, the motion domain’s equivalent of image outpainting
(Yuet all 2019; [Cin et al 2021} [Teterwak et al, 2019), where the model generates content that resides
beyond the edges of a reference motion sequence. In the case of motion expansion, the ROI mask is
zeroed in the center frames, and assigned ones in the outer regions. See Fig. [3|

Spatial composition — use cases: trajectory control, joints control Motion composition can be
applied spatially, by assigning selected joint indices to the ROI mask. In Fig.[/| we illustrate control
over the upper body, where the motion of the upper body is determined by a reference motion and
assigned to the target motion. The model synthesizes the rest of the joints yielding a motion with the
given sequence in the upper body, and with the learned motifs in the lower body. A composition can be
both spatial and temporal, and all it takes is an ROI mask where several frame sequences are zeroed, i.e.,
taken from the reference motion, and in the complementary part, several joints are zeroed (see Fig. ).

5.2 MOTION HARMONIZATION

Given a synthesized motion sequence xzy, we would like to integrate a portion of an unseen motion, ¥y,
into it. The portion of y can be either temporal, i.e., several frames, or spatial, i.e., several joints, or
both. As visualized in Fig. [5] SinMDM overrides a window in x( with the desired portion of y and
denotes the outcome 3. Next, yo is harmonized such that it matches the core motion elements learned
by our model, using a linear low-pass filter ¢ as suggested by (2021)). Let ;_; and y; 1
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time

Figure 6: Temporal composition — In-betweening.
Both rows show results for the same reference input,
introducing diverse outputs. The beginning and the end
(in faded tones) are given, hence identical in both rows.
The center of each motion is synthesized, hence the dif-
ference between rows.

ol
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time

Figure 9: Style transfer. Top: one unseen content is ap-
plied to both styles. Left: a “happy” style learned by
the network, with the harmonized result below. Right: a
“crouched” style. Note the character in both results is us-
ing the exact step rhythm and size as in the content motion.

time

Figure 7: Spatial composition. Top: “warm-
up” — an unseen reference motion. Bottom:
composed motion.
“walk in circle”. In the composed result, the
top body part performs a warm-up activity,
and the bottom walks in a curved path.

The learned motion is

Figure 10: Crowd animation. Groups
of jaguars, horses, and ostriches. In each
group, no motion is like the other, and
yet they are all learned from a single mo-
tion sequence.

denote the noised version of motions py(x, t) and gy, respectively. The high-frequency details of x}_;
are added to the low-frequency of y;—1 via x¢—1 = ¢n(yi—1) + 24— — dn(Th_1)-

Note the difference between harmonization and motion composition: Both assign parts of an unseen
sequence y into a synthesized motion xy. However, harmonization changes the assigned part such that
it matches the learned distribution, while composition aims to keep it unchanged.

Style transfer We implement style transfer (Fig.[9) as a
special case of harmonization, where we use all of y in-
stead of a portion of it, hence fully overriding zo. We use
a model-learned style motion x and an unseen content mo-
tion y. After harmonization, the result combines y’s content
with 2’s style.

5.3 STRAIGHT-FORWARD APPLICATIONS

In this section, we present applications that may require
unique methods in prior research but pose no such challenge
when employing our model.

Long motion sequences

v
.
v ¥ e
o
Figure 8: Long motion. “a person

walking back, turning, and walking back
again”. Learned on a 10-second sequence
and synthesized to 60 seconds.

Our model can synthesize variable-length motions, even very long ones,

with no additional training. Imputed to its small receptive field, the model can hallucinate a sequence
as long as requested. An example of a one-minute animation is introduced in Fig.[§]
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Crowd animation Although trained on a single sequence, during inference SinMDM can generate a
diverse crowd, each sampled from a different Gaussian noise x7 ~ N (0,1), as shown in Fig.

6 EXPERIMENTS

Our experiments are held on data from the HumanML3D (2022), Mixamo (2021), and Truebones
Zoo (2022) datasets, and on an artist-created animation, using an NVIDIA GeForce RTX 2080 Ti GPU.

6.1 BENCHMARKS

We test our framework on two benchmarks, based on the HumanML3D and the Mixamo datasets.
These two datasets are different in many aspects. The data in HumanML3D fits the SMPL (Loper et al.},
2015) topology, and its users normally use SMPL’s mean body definition. In contrast, Mixamo provides
70 characters, each possessing their unique bone lengths and some possessing unique topologies. In
addition, the motions in the Mixamo dataset are more diverse and more dynamic.

6.2 METRICS

For the Mixamo benchmark, we use the metrics introduced in Ganimator (L1 et al., 2022). However,
these metrics are based on the values of motion features (e.g., rotation angles) while the usage of deep
features is the current best practice (Zhang et al. 2018). Given HumanML3D’s capability for deep
feature calculation, we utilize it to present our results specifically on these features.

We define a good score as being either high or low depending on the specific metric’s preference for
higher or lower values. Note that a balance of good scores across all metrics is better than excelling
in just a few. In particular, good diversity scores coupled with poor fidelity indicate deviation from the
input, while good fidelity scores paired with bad diversity suggest overfitting.

An ideal outcome is a combination of good values for all metrics. For models with mixed scores, a
better-scoring model is the one whose scores are more balanced. To this end, we follow established
literature (Rijsbergen, |1979} |Chinchor, |1992) and suggest the Harmonic Mean metric, which is widely
used in Machine Learning for this purpose (Taha & Hanburyl |[2015). We compute it as follows: first, we
normalize the scores for each metric. Normalization is between zero to the metric’s maximum value. If
the maximum is not known, we select the 90% percentile of the computed scores. For metrics where
lower is better, we subtract the score from the maximum value. Note that a negative value is therefore

valid. We compute the Harmonic Mean via HM = E/ ( 91—1 4+ é) , where E is the number of

metrics in a table and s; is the normalized score of metric 7. Additionally, our radar plots (Fig.
provide a visual representation of SinMDM’s dominance for both benchmarks, considering all metrics.

Metrics on the Mixamo benchmark Our comparison with prior art (Li et al., 2022 [2023) is held on
the Mixamo dataset, which is also used by these works. We use metrics suggested by |Li et al.[(2022]).

This group of metrics is applied to the motion itself, and not to deep features. It consists of (a) coverage,
which is the rate of temporal windows in the input motion g that are reproduced by the synthesized one,
(b) global diversity, measuring the distance between tess (i) and g, where tess(-) is a tessellation that
minimizes the L2 distance to the input sequence, and (c) local diversity, which is the average distance
between windows in the synthesized motion 2 and their nearest neighbors in the input one.

However, these metrics lack important qualities which we address here: (d) inter diversity, the diversity
between synthesized motions. We define intra diversity to be the diversity between sub-windows inter-
nal to a motion and define (e) intra diversity diff, which is the difference between the intra diversity of
the synthesized motions and that of the input motion.

Additionally, we measure the following time-space efficiency values: (f) number of network parameters,
(g) number of iterations, (h) iteration time, and (i) total running time (the product of the last two). A
higher score is better for metrics (a)-(d), and a lower one is better for (e)-(i).

Metrics on the HumanML3D benchmark We use this benchmark to measure metrics that are ap-
plied on deep features, obtained with a motion encoder by |Guo et al.[(2022). The computed metrics are
(a) SiFID (Shaham et al., 2019), which measures the distance between the distribution of sub-windows
in the learned motion and a synthesized one, (b) inter diversity, which is the LPIPS distance (Zhang
et al.| 2018)) between various motions synthesized out of one input, and (c) intra diversity diff, which is
the difference between the intra diversity of the synthesized motions and that of the input motion, where
intra diversity is the LPIPS distance between sub-windows in one synthesized motion. For metrics (a)
and (c) lower is better, and for metric (b) higher is better.

6.3 QUANTITATIVE RESULTS

We use the following color scheme in our tables: regular metrics are in grey, the Harmonic Mean metric,
which weighs all scores, is in black, and the best scores are in bold.
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Figure 11: Benchmark results, depicted as radar plots. Our results present a balanced combination of
high scores. The displayed scores were first converted to a ‘higher is better’ and normalized (Sec. @

In Tab.[T]and Fig. we compare SinMDM with prior works and show that it outperforms them. All
the metrics are computed separately on each benchmark motion and then averaged. The metrics that
measure time were computed on benchmark motion number 9 only.

To evaluate our performance vs. another motion diffusion model, we compare it with two variations of
the MDM (Tevet et al., [2023) framework. The first is a vanilla MDM, trained on a single-motion. The
second is a variation of MDM in which we extract short crops out of the single-motion sequence and
train an MDM on them. Note that the second variation holds a narrow receptive field.

The comparison is conducted on the HumanML3D dataset with metrics based on deep features. The
results are shown in Tab.[2]and Fig.[TTb] MDM yields complete overfit, thus its SiFID and intra-diversity
scores are perfect (indicating similarity to the input motion), but its inter-diversity scores are low. The
overfit of MDM is caused by the global attention it uses. On the other hand, the quantitative results for
the second MDM variation indicate divergence from the input motion motifs. These quantitative results
are supported by the qualitative results in our supplementary video.

Finally, we reinforce our quantitative results in a user study iversity : %
in which users evaluate model superiority based on diver- ours vs. | i —
- ; ; ot 0%
sity, fidelity, and quality. In the study, we compare our R 76.2%
model vs. other works. Each pair of models is com- i
pared over 8 different motions, and each such comparison is ours vs, | DIversity 26.2%
. . e . MDM trained| Fidelity 100.0%
judged by 10 distinct users. The results (Fig. [I2)) show that on crops. | g —
. . . uali 2%
our model is significantly preferred by the users. Screen- .

shots from our user study are provided in Appendix [E] Figure 12: User study. The dashed line

marks 50%.
6.4 QUALITATIVE RESULTS
Our supp video reflects the quality of our results. It presents multiple synthesized motions, as well as
a comparison to other works. Additionally, Fig. [I3] depicts SinMDM vs. current work. Other works
exhibit mode collapse, overfitting, or jittery motion, while SinMDM demonstrates a coherent motion.

6.5 ABLATION

We examine architectural variations on the HumanML3D benchmark and present the results in Tab. [3]
First, as many motion diffusion models favor a transformer over a UNet (Tevet et al.,|2023; Kim et al.,
2022), we measure the scores for a QnA-based transformer (row 1). To refrain from overfitting, we apply
QnA layers within the transformer as we do with the UNet. In addition, to promote diversity and permit
the rearrangement of motion components, we employ relative temporal positional embeddings (Shaw
et al |2018; Press et al., 2022} |Su et al.| 2021])) instead of the existing global ones. However, the QnA-
based transformer attains a bad SiFID score, indicating poor fidelity to the input motion.

Table 1: Mixamo benchmark. SinMDM demonstrates a significant advantage in the harmonic mean
metric. Compared to Ganimator, it leads in all metrics but one. Recall that GenMM requires no training
time/space, reflected in zero values at the right-hand side of the table. However, its inability to generalize
results in inferior scores for most diversity metrics, leading to a lower harmonic mean.

Global Local Inter, Intra Div.  |#Param. #ter. Iter. Tot. Harmon.

Coverage T "pyy T 'piv. T piv.|  pifr. i‘ ot K Y Time®t Time (h)i‘ Mean |

Ganimator 943 124 117 009 013 207 60(15x4) 036 60 2051
GenMM 98.7 04 035 013 005 0 0 0 0 0.56
SinMDM (Ours)| 943 142 100 013 003 | 526 60 0.09 15 0.84
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Table 2: HumanML3D benchmark. Compar-  Table 3: Ablation on the HumanML3D bench-
ison with two variants of the diffusion model = marks. Row 1: QnA-based transformer. Rows
MDM. The first exhibits overfitting and the sec-  2,3: comparing receptive field widths. Row 1
ond lacks fidelity to input. Our model attains good  exhibits divergence and Row 2 indicates overfit.

and balanced scores in all metrics. Abbr.: rf. — receptive field, d — depth.
Inter Intra Harmon. Inter , Intra Div. | |Harmon.
SiFID{ Div. T Div. Diff. + Mean T SIFIDLDW T Diff. + Mean T
MDM (2023) 0.01 0.03 0.14 0.05 Transformer w/ QnA 599 1.74 0.57 0.47
MDM on crops | 13.94 1.64 1.83 -0.46 UNet w/ QnA
Ganimator 11.01 0.87 0.86 0.15 wide r.f. (d=3) 0.69 0.20 0.34 0.28
SinMDM (Ours)| 1.87 0.73 0.40 0.60 narrow r.f. (d=1) (Ours)| 1.87 0.73 0.40 0.59
IS DV EERENREER
R N "N |
fy‘/ %&&Lﬁ/ nY 5 a1l (|
GT
;w‘z‘zy%};i AATSER LN RER AN
Ganimator MDM
o 23}“‘”’ EXUIINILIRARAT
GenMM MDM trained on crops -
) " § §' ARNARE 0300
& s AYRANNS 204 a04%
time SinMDM time SinMDM

(a) Mixamo dataset. Motion punch to elbow. Sin- (b) HumanML3D dataset. MDM exhibits overfit, and
MDM outperforms Ganimator, which experiences =~ MDM trained on crops exhibits jittery motion, e.g., when
mode collapse, and is comparable in quality to the transferring from standing to jumping without bending the
patch nearest-neighbor method GenMM. knees before and after.

Figure 13: Qualitative comparison.

We continue by confirming that a narrow receptive field produces good results while a wider one induces
overfit (rows 2,3). In order to do so, we examine a fixed architecture (QnA-based UNet) with two
receptive field widths. We control the width by tweaking the depth of the UNet. Indeed we observe that
the model with the wide receptive field overfits (replicates) the input motion, as its inter-diversity is bad
while its SiFID and intra-diversity are good.

Note that due to the mixed scores (that indicate either overfit or divergence), the usage of the Harmonic
Mean metric is essential as it allows for the assessment of the combined strength of all scores. In
addition, in Appendix [F]we show an ablation study of the smoothness fidelity score.

7 CONCLUSIONS

We have explored the use of diffusion models on single motion sequence synthesis and designed a
motion denoising transformer with a narrow receptive field. Training on single motions is particularly
useful in motion domains, where the number of data instances is scarce. Particularly, for animals and
imaginary creatures, which have unique skeletons and distinctive motion motifs. The motion of such
creatures cannot be captured easily nor learned from the human motion data available.

Our experiments across datasets show that our lightweight diffusion-based method significantly outper-
forms current work both quantitatively and qualitatively. Moreover, our approach allows the synthesis
of particularly long motions and enables a variety of motion manipulation tasks, including spatial and
temporal in-betweening, motion expansion, harmonization, style transfer, and crowd animation.

The innate limitation of our method, common to single-instance models in all domains, is the limited
ability to synthesize out-of-distribution. Another limitation, also common to all single-instance models,
is the inability to set generated sub-motions in a specific order, when such order matters (e.g., certain
dance moves). This can be addressed by enlarging the receptive field (at the cost of lower diversity).
The main limitation of our approach, due to the iterative nature of diffusion models, is the relatively
long inference time.

Finally, our work shows that diffusion models can learn from limited data, contrary to their reputation
for requiring large amounts of data. Nevertheless, in the future, we aim to address the single input limi-
tations, by possibly learning from available motion data of creatures with rather compatible skeletons.
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APPENDIX

This Appendix adds details on top of the ones given in the main paper. While the main paper stands on
its own, the details given here may shed more light.

In Appendix [A] we provide a concise recap of Denoising Diffusion Probabilistic Models (DDPM). Ap-
pendix [B] describes the dynamic features predicted by our network, and [C] details the hyperparameters
used by it. In Appendix [D|we describe the QNA framework, and in Appendix [E| we depict screenshots
from our user study. Lastly, Appendix [F] presents a study about motion smoothness, its correlation to
receptive field width, a metric to measure it, and ways to ameliorate it.

A DENOISING DIFFUSION PROBABILISTIC MODELS (DDPM) — RECAP

DDPMs (Ho et al., [2020) have become the de-facto leading generative networks technique. While they
have primarily dominated the imaging domain (Dhariwal & Nichol| 2021])), recent works have success-
fully applied this approach in the motion domain (Tevet et al.| 2023 |[Zhang et al., 2022a)). Denoising
networks learn to convert unstructured noise to samples from a given distribution, through an iterative
process of progressively removing small amounts of Gaussian noise.

Given an input motion sequence ¢, we apply a Markov noising process of T steps, {; }_, such that

q(we|we—1) :N(\/atxtfla(]- —ay)I), (1)
where a; € (0,1) are constant hyper-parameters. When «; is small enough, we can approximate
T ~ N(O, I)

We apply unconditional motion synthesis that models x as the reversed diffusion process of gradually
cleaning z7, using a generative network py. Following Tevet et al.[(2023) we choose to predict the input
motion, denoted %y (Ramesh et al.,[2022)) rather than predicting ¢;, hence

Zo = po(wy,t). 2

We apply the widespread diffusion loss, via

Esimple = ]EtN[LT] HxO —Po (xfm t)”% &)

Synthesis at inference time is applied through a series of iterations, starting with pure noise . In each
iteration, a clean version of the current sample z; is predicted using a generator py. This predicted clean
sample Z is then “re-noised” to create the next sample x;_1, with the process being repeated until ¢ = 0
is reached.

B MOTION REPRESENTATION — ADDITIONAL DETAILS

This section completes the Motion Representation section in the main paper.
In this section, we describe the dynamic features predicted by our network.

Recall that N denotes the number of frames in the sequence, and F' denotes the length of the features
of all joints together in a single motion frame.
Let J denote the number of skeletal joints, and let ) denote the number of rotational features, where
rotational features may be Euler angles, quaternions, 6D rotations, etc. Let C' denote the number of
joints that are prone to contact the ground. Clearly, a human, a spider, and a snake possess different
values of C.
When using the HumanML3D (Guo et al.| [2022) dataset, we adhere to its representation, in which a
single pose is defined by

p= ("7 7% Y, 5,50, 5T, ¢l) e RE,

where 7* € R is the root angular velocity along the Y-axis. 7*,7* € R are root linear velocities on
the XZ-plane, and ¥ € R is the root height. j» € R3/, j* € R3/ and j” € RS/ are the local joint
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Table 4: Our choice of hyperparameters, given with the same names as used in the code.

Name \ Value
UNet related
num_channels 256
channel_mult 1
num_res_blocks 1
kernel_size 3
use_scalse_shift_norm True
use_checkpoint True
use_attention True
use_gna True
QnA related
head_dim 32
num_heads 4
Diffusion related
diffusion_steps 1000
noise_schedule cosine
Training related
batch_size 64
dropout 0.5
Ir_method Exponential LR
Ir_gamma 0.99998
num_steps 60000
padding_mode Zeros
warmup_steps 0
weight_decay 0

positions, velocities, and rotations with respect to the root, and ¢/ € R* are binary features denoting the
foot contact labels for four foot joints (two for each leg).

When using data from other datasets, we adhere to the representation used by |Li et al.| (2022), so we
can conduct a fair comparison with their results. Their representation consists of a 3D root location,
a rotation angle for each joint, and foot contact labels. Altogether, for a general representation D €

RN*F we have got F = 3+ JQ + C.

The rotations in both representations are defined in the coordinate frame of their parent in the kinematic
chain, and are represented by the 6D rotation features (¢ = 6)|Zhou et al.|(2019)), which yields the best
result in many works (Qin et al., 2022} Petrovich et al.,|2021)).

A growing number of works use foot contact labels (Gordon et al., 2022; [Raab et al.} 2023) to mitigate
common foot sliding artifacts. Let C denote the set of joints that contact the ground in the subject whose
motion is being learned such that C' = |C|. The foot contact labels are represented by L € {0, 1}V*¢.

When a dataset provides foot contact label information (Guo et al.l 2022), we use it as is. When a
dataset does not provide them, we calculate it as done by Li et al.|(2022), via

Vj e C,n€[l,N]: L™ = 1[||A.FK([D, S])™ |2 < €], 4)

where A, FK([D,S])™ denotes the velocity of joint j in frame n retrieved by a forward kinematics
operator, and 1[-] is an indicator function.

C HYPERPARAMETERS AND TRAINING DETAILS

In Tab. |4 we detail the values of the hyperparameters that have been used to produce the results shown
in this work. Our models have been trained on an NVIDIA GeForce RTX 2080 Ti GPU.

D QNA RECAP

QnA layers (Arar et al} |2022) are a fundamental component in our suggested architecture. In this sec-
tion, we provide an overview of its underlying implementation and illustrate it in Fig.[I4] In particular,
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Figure 14: QnA overview (extracted from the QnA paper). Left: Local layers may utilize various
approaches to overlapping windows. (a) Convolutions apply aggregation by learning shared weighted
filters. (b) SASA combines window tokens through self-attention. (c) QnA use shared learned
queries across windows, maintaining the expressive power of attention while achieving linear space
complexity.
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Figure 15: QnA demonstrates better accuracy-efficiency trade-off compared to state-of-the-art baselines
(extracted from the QnA paper).

QnA is an efficient attention-based layer, which operates in a shift-invariant manner. For every k-size
window, the output is calculated using the self-attention mechanism which is commonly used in the
transformer architecture (Vaswani et all, [2017). The self-attention is calculated by first projecting the
input features into keys K = XWk, values V. = XWy, and queries Q = X Wy via three linear
projection matrices Wy, Wy, Wq € RPXD Then, the output of the self-attention operation is defined
by:

SA(X) = Attention (Q, K) -V

= Softmax (QKT/\/B) V. ®)

Instead of performing the pricey query-key operation, QnA detours from extracting the queries from
the window itself and directly learns them for the whole-training data (see Fig. [I4c). Learning the
queries preserves the expressive capability of the self-attention mechanism and enables an efficient
implementation that relies on simple and fast operations. In particular, a single query ¢ is learned, and
the attention is applied locally for every k-size window. Therefore, the output at entry z; becomes:

z; = Attention (¢, Ky,) - Viv,, (6)
where N is the set k-neighbourhood of frame .
QnA exhibits state-of-the-art accuracy-efficiency trade-off, as depicted in Fig.[T3]
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Table 5: Smoothness error across varying receptive field widths, on the Mixamo benchmark. Each
row shows an architecture with an increasing receptive field width, with the right column displaying the
smoothness error. The top row refers to our best-performing architecture (same ones as in Tab. E[)

Global Local Inter, Intra Div. Smoothness
Coverage T "piy T piv. T Div.|  Diff. ¥ Diff. (x 1e-5) ¥
no. layers=1
no. res blocks = 1 94.3 1.42 1.00 0.13 0.03 9.8
(baseline)
no. layers=1 _ 97.9 1.22 0.83 0.13 0.03 29
no. res blocks = 2
no. layers=2 _ 99 .4 0.99 0.68 0.12 0.04 1.9
no. res blocks = 1

Table 6: Smoothness error across varying \g,,..:; values, on the Mixamo benchmark. The left
column shows increasing values of Ag,00th, and the right column displays the smoothness error, which
decreases as Agmo0th increases. The top row, where Ag00tn = 0, corresponds to our best-performing
architecture to date. Introducing the smoothness loss paves the way for a new best-performing architec-
ture, as using Agmo0tn, = 1 attains better smoothness with no degradation at the other metrics.

Global Local Inter Intra Div. Smoothness
Asmootn | Coverage T " B P b T pife b Diff, (x 1e-5) +
0 (baseline) 94.3 1.42 1.00 0.13 0.03 9.8
0.1 94.1 1.43 1.02 0.13 0.04 7.7
1 94.0 1.43 1.02 0.13 0.05 4.8
10 92.8 1.48 1.10 0.13 0.07 2.6
100 89.4 1.50 1.17 0.12 0.12 1.5

E USER STUDY — SCREENSHOTS

Our user study displays several video clips on each screen, requesting the user to select the one that is
more suitable to the examined attribute, which is either quality, fidelity, or diversity. Screenshots from
a representative video for each attribute are shown in Fig.[16]

F SMOOTHNESS STUDY

We target our generated motions to closely match the input motion’s smoothness. Smoothness varies
from motion to motion, for example, a slow walk is characterized by very smooth and flowing motions,
while a fast dance often exhibits abrupt transitions. Next, we present a metric to measure the smoothness
fidelity. Then, we show that the smoothness error is strongly related to the receptive field width, and
lastly, we present a way to improve the smoothness score while keeping our receptive field narrow.

Metric To assess the fidelity of our generated motions to the smoothness of the input motion, we
introduce a metric that quantifies the difference between the ground truth smoothness and that of the
generated motions. The metric we employ is the acceleration error of each joint, first proposed by
Kanazawa et al.| (2019) and subsequently adopted by many others (Kocabas et al., 2020} |Gordon et al.,
2022). The acceleration at joint j is measured using

Acej = Ener...v—1)[|[FK(2) V"™ — 2FK(2)™ + FK(z) "™ |3, @)

where FK(-)"/ denotes the location of joint j in frame n retrieved using a forward kinematics operator,
and z is a motion (given or synthesized).

The acceleration error is measured using
Lsmooth = Ejes|Earmn(o.1) [Acc;i(G(zr))] — Acc;(2)|3, (8)

where G(-) is the inference process and « is the input motion on which our model has been trained.
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Varying receptive field study In Tab. [5] we compare smoothness scores for varying receptive field
widths. Recall, that a UNet layer is composed of a varying number of residual blocks and an attention
layer. First we present our baseline, which is the architecture presented in the main paper. Recall that
our best-performing model uses a UNet of depth 1, with one residual block within it. Adding one more
residual block to a UNet of depth 1 (row #2) widens the receptive field, and results in better smoothness
error. Using a UNet of depth 2 results in an even wider receptive field, and a better smoothness error.
We conclude that widening the receptive field decreases the smoothness error. Regrettably, expanding
the receptive field leads to a significant decline in the quality of the generated motion, as indicated by
the diversity metrics, hence it is not a practical way to get better smoothness fidelity.

Next, we suggest a method to enhance smoothness while maintaining our favorable metric scores.

Loss study To get better smoothness without increasing the receptive field, we have used the smooth-
ness term as a loss, denoted L,,00tn. Accordingly, our loss is changed to

L= Esz'mple + Asmoothﬁsmooth- (9)

Table @ displays our metric scores on the Mixamo benchmark, for varying values of Agp00th. The
table shows that increasing Ag;,00tn decreases the smoothness error. Up to a value of Agpootn = 1,
the other metric scores remain comparable to the original ones, and for larger values of g 00t We
see a degradation in the coverage and the intra diversity diff. We conclude that training with a value of
Asmooth = 1 would provide the best results.
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[
[MQ-4606] Which motion is of better quality? High quality motions look more natural and smooth

SELEGT ONE.

generated generated

-

» 008/0:10

(a) Quality.
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[MF-3055] Which motion has higher fidelity to the ground truth motion? Motions with higher fidelity better reproduce
the motion motifs of the ground truth, where the order of the motion motifs does not matter.

generated generated

N "

(b) Fidelity.

az

[MD-8582] Which set of generated motions is more diverse? Diverse generations differ from one another in the
timing and order of the actions performed in the motion.

NNNE
T

(c) Diversity.
Figure 16: Screenshots from our user study. Note that each human figure in the screenshot is played as
a video.
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