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ABSTRACT

Autoregressive Models (ARMs) have long dominated the landscape of Large
Language Models. Recently, a new paradigm has emerged in the form of diffusion-
based Large Language Models (dLLMs), which generate text by iteratively de-
noising masked segments. This approach has shown significant advantages and
potential. However, dLLMs suffer from high inference latency. Traditional ARM
acceleration techniques, such as Key-Value caching, are incompatible with dLLMs
due to their bidirectional attention mechanism. To address this specific challenge,
our work begins with a key observation that dLLM inference involves a static
prompt and a partially dynamic response, where most tokens remain stable across
adjacent denoising steps. Based on this, we propose dLLM-Cache, a training-free
adaptive caching framework that combines long-interval prompt caching with par-
tial response updates guided by feature similarity. This design enables efficient
reuse of intermediate computations without compromising model performance.
Extensive experiments on representative dLLMs, including LLaDA 8B and Dream
7B, show that dLLM-Cache achieves up to 9.1× speedup over standard inference
without compromising output quality. Notably, our method brings dLLM inference
latency close to that of ARMs under many settings. Codes are provided in the
supplementary material and will be released publicly on GitHub.

1 INTRODUCTION

Large language models (LLMs) (Zhao et al., 2023) are foundational to modern AI, powering appli-
cations from conversational AI to scientific discovery. While autoregressive models (ARMs) have
been the dominant paradigm (Radford, 2018; Brown, 2020; OpenAI, 2022), diffusion-based large
language models (dLLMs), such as LLaDA (Nie et al., 2025) and Dream (Ye et al., 2025), have
emerged as promising alternatives. These models offer impressive scalability and outperform ARMs
in handling challenges like the ”reversal curse” (Berglund et al., 2023) due to their bidirectional
attention mechanism, demonstrating the potential of diffusion models for complex language tasks.

The practical adoption of dLLMs is hindered by a paradox: despite their potential for parallel
decoding, they exhibit a daunting computational complexity of O(N3). This inefficiency arises
because generating a sequence of length N always requires N denoising iterations in practice,
each recalculating bidirectional attention across all tokens without any caching mechanism. This
is fundamentally less efficient than standard ARMs, which exploit Key-Value caching (Pope et al.,
2023) to reduce the overall computational effort to O(N2).

Our work aims to bridge this gap by successfully applying a caching mechanism to dLLMs. To
achieve this, we first study two computational redundancies in the inference process of dLLMs as
illustrated in Figure 1, which uniform strategies fail to address. First, prompt redundancy arises
because the input prompt tokens remain constant, yet their internal representations, e.g., attention
output, are recomputed in each denoising step. Second, response dynamics and redundancy occur
as the generated response features evolve. While significant similarity often exists between adjacent
steps, suggesting caching potential, not all tokens evolve in the same way. This non-uniform evolution
explains why traditional uniform caching strategies are ineffective.

1
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Figure 1: Cosine similarity of Key, Value, Attention Output and FFN Output between two
adjacent denoising steps in a dLLM, highlighting computational redundancies. The heatmaps
show similarity across adjacent steps for prompt and response tokens, respectively, where a lighter
color indicates a higher similarity of a token compared with its value in the last step. These results
demonstrate: (I) The prompt region exhibits high similarity, while the response region shows
different similarity in different tokens. (II) Notably, only a small fraction of response tokens exhibit
significantly lower similarity, suggesting that selective recomputation is sufficient. (III) Response
tokens’ value similarity closely aligns with attention and FFN output similarity, supporting that value
changes can serve as an effective indicator to identify those most changed response tokens.

Motivated by these insights, we introduce dLLM-Cache, a training-free, adaptive caching mechanism
designed to accelerate dLLM inference by exploiting these distinct redundancies. dLLM-Cache
employs a differentiated caching strategy comprising two core components:

• Long-Interval Prompt Caching: We compute and cache features related to the prompt tokens
only at sparse, long intervals, e.g., every 100 steps. These cached features are then reused in
all subsequent intermediate steps until the next long interval, drastically reducing the overhead
associated with processing the static prompt.

• Adaptive Short-Interval Response Caching: Features associated with the response tokens are
cached and fully refreshed at more frequent, shorter intervals, e.g., every 10 steps. Between
these full refreshes, we adopt an adaptive partial update strategy to balance speed and accuracy.
Specifically, we identify and selectively update only the most dynamic tokens. As shown in
Figure 1, the cosine similarity of a token’s Value vector across adjacent steps strongly correlates
with changes in its subsequent Attention and FFN Output. This motivates our V-verify mechanism,
which uses Value similarity as an efficient proxy to select tokens for update.

This differentiated adaptive handling of prompt and response features allows significant inference
acceleration while preserving quality, all without retraining. Our main contributions are:

1. We identify and characterize the dual computational redundancies in dLLM inference: quasi-static
prompt and dynamic response redundancy.

2. We propose dLLM-Cache, a training-free adaptive caching framework that combines long-interval
prompt caching with short-interval, similarity-guided partial updates for response tokens.

3. We introduce V-verify, a lightweight yet effective mechanism that uses cosine similarity of Value
vectors across denoising steps to identify the most changed tokens for partial update, grounded in
strong empirical correlation with overall token evolution.

4. We experimentally validate dLLM-Cache across various benchmarks, showing significant infer-
ence acceleration, e.g., up to 9.1× on LLaDA with lossless impact on response quality, achieving
a superior speed-quality trade-off compared to the baseline and simpler caching methods.

2 RELATED WORK

2.1 THE LANDSCAPE OF LARGE LANGUAGE MODELS

Autoregressive Models. Autoregressive model (ARM) is the dominant paradigm for large language
models (LLMs), generating text sequentially via causal attention. These models underpin many
state-of-the-art systems (Radford, 2018; Radford et al., 2019; Brown, 2020; OpenAI, 2022).
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Diffusion Models for Language. Diffusion Models (DMs) (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021) learn to reverse a data corruption process, excelling in continuous domains
like images (Rombach et al., 2022; Peebles & Xie, 2023). However, adapting DMs to discrete data
like text presents unique challenges, partly due to text’s discrete nature. A promising direction
involves Masked Diffusion Models (MDMs) (Austin et al., 2021; Lou et al., 2023; Shi et al., 2024;
Ou et al., 2024; Zheng et al., 2023; Gong et al., 2024; Nie et al., 2024; He et al., 2022; Reid et al.,
2022; Sahoo et al., 2024; Ye et al., 2023), a specific instance of discrete diffusion which operates on
discrete sequences by iteratively predicting masked tokens based on their context.

Recent work has scaled MDMs (Nie et al., 2025; Ye et al., 2025), showing performance comparable
to ARMs of similar size such as LLaMA3 8B (Dubey et al., 2024). Their bidirectional design helps
mitigate limitations specific to ARMs like the reversal curse (Berglund et al., 2023), while extensions
to multi-modal (Yang et al., 2025; You et al., 2025) and reasoning tasks (Zhao et al., 2025; Huang
et al., 2025; Zhu et al., 2025) further highlight their versatility as a foundation model paradigm.

2.2 ACCELERATION VIA CACHING MECHANISMS

Key–Value Caching in Autoregressive Models. The most established use of caching in language
models is the Key-Value (KV) caching (Pope et al., 2023), which is fundamental to the efficiency
of ARMs. In ARMs, causal attention allows for the direct caching of past tokens’ key and value
states, trading memory for computational speed. However, cache size grows with input length,
creating bottlenecks for long-context deployment. To address this, prior work sparsifies caches
retrospectively (Xiao et al., 2023; Zhang et al., 2024; Ge et al., 2024; Liu et al., 2023; Li et al., 2025).

Caching in Diffusion Language Models. While feature caching has also been explored in ARMs,
the bidirectional attention in dLLMs makes traditional KV caching incompatible (Nie et al., 2025),
creating a distinct challenge. Concurrent works are beginning to address this gap, but often require
cache-aware training (Arriola et al., 2025) or operate under restrictive conditions (Sahoo et al., 2024).
Our method, dLLM-Cache, introduces a training-free framework that leverages the structure of
dLLM inference. It adopts a differentiated caching policy, using infrequent caching for the static
prompt and adaptive updates guided by similarity for the dynamic response tokens.

3 METHODOLOGY

3.1 PRELIMINARY

Training Paradigm of dLLMs. Unlike the sequential and unidirectional nature of ARMs, dLLMs
are trained in a denoising framework that learns to reverse a forward corruption process, where clean
sequences are stochastically degraded over a continuous time variable.

Formally, let x0 = (x1, . . . , xL) be a clean text sequence sampled from the data distribution D. The
forward process defines a continuous time variable t ∈ [0, 1], with t = 0 denoting the clean sequence
and t = 1 the fully corrupted state. At each time t, a corrupted sequence xt is produced, where every
token xi,0 is independently transformed into xi,t according to the rule:

xi,t =

{
[MASK] with probability t

xi,0 with probability 1− t
(1)

This per-token independent masking process ensures that as t→ 1, the sequence xt converges to a
fully masked sequence.

The model, a bidirectional Transformer parameterized by θ and denoted pθ, is trained to reconstruct
the original sequence x0 from its corrupted counterpart xt. Training minimizes the negative log-
likelihood of the original tokens at masked positions. LetMt denote the indices of masked tokens in
xt. The loss is defined as:

L(θ) = −Ex0∼D,t∼U [0,1]

[ ∑
i∈Mt

log pθ(xi,0|xt)

]
(2)

This training regimen compels the model to learn a robust representation of language structure by
leveraging the full bidirectional context, rather than being constrained by a causal dependency chain.
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Inference Process of dLLMs. dLLMs generate text via a non-autoregressive process that iteratively
denoises a fully masked sequence into the target output. Our work focuses on accelerating this
inference procedure. We use LLaDA as a representative example to illustrate it.

Let T be the token vocabulary and [MASK] ∈ T the special mask token. Given a prompt c =
(c1, . . . , cM ), the model generates a response y = (y1, . . . , yL) through K discrete denoising steps,
indexed by k = K down to 0. Let y(k) ∈ T L denote the intermediate state at step k, starting from a
fully masked sequence:

y(K) = ([MASK], . . . ,[MASK]︸ ︷︷ ︸
L times

) (3)

At each step k, a mask predictor pθ estimates the distribution over the clean sequence:

Pθ(y|c,y(k)) = pθ(c,y
(k); θ) (4)

The most likely sequence ŷ(0) is typically obtained via greedy decoding:

ŷ(0) = argmax
y∈T L

Pθ(y|c,y(k)) (5)

A transition function S then yields y(k−1) by selectively updating tokens in y(k) based on ŷ(0):

y(k−1) = S(ŷ(0),y(k), c, k) (6)

The specific strategy for S may involve confidence-based remasking or semi-autoregressive block
updates. While this process enables flexible generation, it incurs high latency due to repeated
recomputation across steps, particularly as K grows, as detailed in Appendix A.6.

3.2 DLLM-CACHE

To alleviate the inference inefficiency of dLLMs, we introduce dLLM-Cache, a training-free caching
framework. The input prompt remains static across denoising steps, and its internal features are
consistently stable, making it suitable for long-interval caching. In contrast, the response sequence
evolves dynamically. However, this evolution is highly sparse, as only a small fraction of response
tokens change significantly at each step. Such sparsity, evident in Figure 1, suggests that recomputing
all response features in every step is often unnecessary.

𝝆 = 𝟎. 𝟖𝟕𝟑
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Figure 2: Correlation of response tokens’ K or V changes with other feature changes. We
calculate the cosine similarity between the response tokens’ K or V vectors and their cached
counterparts at adjacent steps, select the 25% most dissimilar tokens, and compute the correlation
between their similarity with (a) and (c) AttnOut, or (b) and (d) FFNOut across adjacent steps.

To take advantage of this sparsity, dLLM-Cache selectively updates only a small fraction of response
tokens that change most between adjacent steps. The challenge is to identify such tokens efficiently
and accurately. Figure 2 reveals that the change in a response token’s Value (V) or Key (K) vector,
which is quantified by cosine similarity between current and cached versions, strongly correlates
with changes in its subsequent Attention Output (AttnOut) and Feedforward Network Output
(FFNOut). This strong correlation indicates that by monitoring the dynamics of earlier-stage
features like V, we can effectively identify tokens whose more complex downstream features are
also likely to have significantly changed.
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Figure 3: The dLLM-Cache pipeline. Prompt features are updated with long intervals, while
response features are updated adaptively based on the similarity between newly computed and cached
V vectors. Response features of tokens with low similarity are updated, and the rest are reused.

Based on this finding, we introduce our V-verify mechanism. It uses the cosine similarity between
each response token’s current V vector and its cached counterpart to identify tokens with the largest
V changes. Only these selected tokens undergo a full feature recomputation and cache update.

Building on this core idea, the overall workflow of dLLM-Cache illustrated in Figure 3 is as follows:
For each Transformer layer l, we store its K(l), V(l), AttnOut(l), and FFNOut(l) in a Prompt
Cache Cp and a Response Cache Cr, respectively. Caching is controlled by three hyperparameters:
prompt refresh interval Kp, response refresh interval Kr, and adaptive update ratio ρ ∈ [0, 1]. The
inference process generally involves:

Initialization. At the very first step (k = K), we compute all features from (c,y(K)). Here,
prompt-related features are grouped into Cp, while response-related features go into Cr.

Iterative Steps. Next, as k decreases from K−1 to 1, each layer l performs the following operations:
(1) For the prompt, if k ≡ 0 (mod Kp), recompute and update Cp; otherwise, reuse.
(2) For the response, if k ≡ 0 (mod Kr), fully recompute and update Cr; otherwise, perform
adaptive update detailed in Sec. 3.2.2.
(3) Each layer l then continues the forward computation using the available feature version.

Termination. The process ends when k = 0, producing ŷ(0).

A more compact description of dLLM-Cache is given in Appendix A.10.

3.2.1 PROMPT CACHE MANAGEMENT

Since the input prompt c does not change, its features are largely stable over time. To take advan-
tage of this, dLLM-Cache maintains a Prompt Cache Cp. At k = K, all prompt-related features
K

(l)
p ,V

(l)
p ,AttnOut(l)p ,FFNOut(l)p are computed and stored. In subsequent steps, these features

are recomputed only every Kp steps; in other steps, they are reused directly from the cache. This
reduces the cost of processing the static prompt, particularly when Kp is large.
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3.2.2 RESPONSE CACHE WITH ADAPTIVE UPDATES

Response features y(k) evolve over time, though most tokens change gradually, allowing selective
updates. The response cache Cr supports two modes.

Full Refresh. All response features are recomputed when k ≡ 0 (mod Kr) or k = K.

Adaptive Partial Update. Otherwise, we first compute the cosine similarity sj between current
and cached Value vectors for each token j (Eq. 7). Then we select the ⌊ρL⌋ tokens with the lowest
similarity for updating, recompute their features, and reuse cached values for the rest. Finally, the
cache Cr is updated accordingly.

sj =
(v

(l)
r,j)

⊤ṽ
(l)
r,j

∥v(l)
r,j∥∥ṽ

(l)
r,j∥

(7)

This adaptive strategy leverages temporal stability to cut computation while preserving accuracy.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Implementation Details. We evaluated dLLM-Cache on two representative dLLMs: LLaDA
8B (Nie et al., 2025) and Dream 7B (Ye et al., 2025), each with Base and Instruct variants. Following
the original inference configurations detailed in Appendix A.9, we conducted our experiments across
eight benchmarks. For all models, we applied a fixed adaptive update ratio of ρ = 0.25. The prompt
refresh interval Kp and response refresh interval Kr are specified in Appendix A.9. All experiments
were conducted on the NVIDIA RTX 4090 GPUs.

Evaluation Metrics. We evaluate the acceleration and model quality preservation of dLLM-Cache
using several metrics. Throughput is measured as Tokens Per Second (TPS), reflecting inference
speed. Computational cost is calculated as the average Floating Point Operations (FLOPs) per token.
Task performance is assessed using benchmark scores, like accuracy on GSM8K (Cobbe et al., 2021),
ensuring dLLM-Cache achieves efficiency gains without compromising model performance. The
testing of TPS and FLOPs was performed on a single RTX 4090 GPU.

4.2 MAIN RESULTS

Performance and Efficiency Gains across Models. Tables 1 and 2 summarize the results for
LLaDA 8B and Dream 7B. Across tasks, dLLM-Cache consistently improves inference efficiency
without compromising accuracy. On GPQA, for example, applying dLLM-Cache to LLaDA Instruct
yields an 8.08× speedup, cutting FLOPs from 22.07T to 2.73T. On GSM8K, Dream Base achieves
a 6.90× speedup with no loss in accuracy. Additional exploration of the orthogonality of our
dLLM-Cache with recently proposed advanced sampling methods is provided in Appendix A.2.

Comparison with Contemporary Caching Methods. We compared dLLM-Cache with two recent
cache optimization approaches, dKV-Cache (Ma et al., 2025) and Fast-dLLM (Wu et al., 2025), as
shown in Table 3. dLLM-Cache achieves consistently higher throughput across benchmarks. Across
benchmarks, dLLM-Cache delivers the highest throughput, reaching 5.33× on GPQA with Dream
Base versus 1.74× and 3.83× for the others. Unlike these methods, dLLM-Cache preserves accuracy
and generally uses less memory, offering a more practical solution for dLLM inference.

Comparison with Other Representative LLM. Table 4 highlights the difference between accelera-
tion strategies. Reducing denoising steps, such as LLaDA 8B Base with 32 steps, raises throughput
by 3.63× but drops accuracy to 22.25%. In contrast, applying dLLM-Cache to LLaDA with 128
steps achieves throughput comparable to LLaMA3 8B while retaining 62.32% accuracy, surpassing it
by 13.27%. When further combined with SlowFast Sampling (Wei et al., 2025), accuracy improves
to 67.17%, showing the orthogonality of our method.

4.3 ABLATION STUDY

Effect of Cache Refresh Interval Kp and Kr. We analyzed how refresh intervals affect efficiency
and accuracy. As shown in Figure 4(a), increasing the prompt interval Kp substantially reduces

6
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Table 1: Comparison of LLaDA 8B with and without dLLM-Cache on 8 benchmarks.

Task Method Inference Efficiency Performance
TPS↑ Speed(TPS)↑ FLOPs(T)↓ Speed(FLOPs)↑ Score↑

Mathematics & Science

GSM8K

LLaDA Base 7.32 1.00× 16.12 1.00× 69.06
+ dLLM-Cache 23.19+15.87 3.17×+2.17 3.21−12.91 5.02×+4.02 70.66+1.60

LLaDA Instruct 6.95 1.00× 16.97 1.00× 77.48
+ dLLM-Cache 29.75+22.80 4.28×+3.28 2.92−14.05 5.81×+4.81 78.54+1.06

GPQA

LLaDA Base 5.12 1.00× 22.97 1.00× 31.91
+ dLLM-Cache 25.23+20.11 4.93×+3.93 3.20−19.77 7.18×+6.18 32.81+0.90

LLaDA Instruct 5.33 1.00× 22.07 1.00× 29.01
+ dLLM-Cache 28.01+22.68 5.26×+4.26 2.73−19.34 8.08×+7.08 29.01+0.00

Math

LLaDA Base 8.31 1.00× 14.11 1.00× 30.84
+ dLLM-Cache 33.92+25.61 4.08×+3.08 2.61−11.50 5.41×+4.41 29.84−1.00

LLaDA Instruct 23.65 1.00× 5.16 1.00× 22.32
+ dLLM-Cache 31.02+7.37 1.31×+0.31 3.96−1.20 1.30×+0.30 22.52+0.20

General Tasks

MMLU-pro

LLaDA Base 14.08 1.00× 8.40 1.00× 24.26
+ dLLM-Cache 45.75+31.67 3.25×+2.25 2.15−6.25 3.91×+2.91 24.69+0.43

LLaDA Instruct 14.01 1.00× 8.46 1.00× 36.41
+ dLLM-Cache 39.63+25.62 2.83×+1.83 2.62−5.84 3.23×+2.23 36.08−0.33

MMLU

LLaDA Base 8.09 1.00× 14.56 1.00× 63.99
+ dLLM-Cache 33.52+25.43 4.14×+3.14 2.64−11.92 5.52×+4.52 64.26+0.27

LLaDA Instruct 10.12 1.00× 11.85 1.00× 61.24
+ dLLM-Cache 21.23+11.11 2.10×+1.10 4.50−7.35 2.63×+1.63 62.82+1.58

BBH

LLaDA Base 6.41 1.00× 18.29 1.00× 44.77
+ dLLM-Cache 27.90+21.49 4.35×+3.35 3.09−15.20 5.92×+4.92 45.04+0.27

LLaDA Instruct 6.18 1.00× 18.98 1.00× 51.49
+ dLLM-Cache 27.55+21.37 4.46×+3.46 3.08−15.90 6.16×+5.16 51.98+0.49

Code

MBPP

LLaDA Base 7.87 1.00× 14.91 1.00× 40.80
+ dLLM-Cache 24.61+16.74 3.13×+2.13 3.07−11.84 4.86×+3.86 40.60−0.20

LLaDA Instruct 7.55 1.00× 15.53 1.00× 39.20
+ dLLM-Cache 31.73+24.18 4.20×+3.20 2.80−12.73 5.55×+4.55 39.60+0.40

HumanEval

LLaDA Base 19.98 1.00× 6.03 1.00× 32.92
+ dLLM-Cache 51.96+31.98 2.60×+1.60 2.04−3.99 2.96×+1.96 32.31−0.61

LLaDA Instruct 10.57 1.00× 11.10 1.00× 38.71
+ dLLM-Cache 44.77+34.20 4.24×+3.24 2.05−9.05 5.41×+4.41 39.02+0.31

FLOPs without hurting accuracy, confirming that infrequent prompt updates suffice. Figure 4(b)
highlights the importance of response updates. Without prompt caching or adaptive updates (Kp = 1,
ρ = 0, gray line), accuracy drops sharply. In contrast, our setting (Kp = 50, ρ = 0.25, orange and
blue line) maintains high accuracy with much lower cost. This validates our strategy of combining
long prompt intervals with short response intervals and adaptive updates. Additional analyses of the
Dream model can be found in Appendix A.7.
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Figure 4: (a) Varying Kp with Kr = 1, ρ = 0. (b) Varying Kr under two settings: baseline with
Kp = 1, ρ = 0 in gary and our setup Kp = 50, ρ = 0.25 in Table 1. (c) Varying denoising steps K,
where gary patterns are dLLM-Cache with K = 256. (a–b) LLaDA Instruct; (c) LLaDA Base.
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Table 2: Comparison of Dream 7B with and without dLLM-Cache on 8 benchmarks.

Task Configuration Inference Efficiency Performance
TPS↑ Speed(TPS)↑ FLOPs(T)↓ Speed(FLOPs)↑ Score↑

Mathematics & Science

GSM8K

Dream Base 6.36 1.00× 19.59 1.00× 76.95
+ dLLM-Cache 32.44+26.08 5.10×+4.10 2.84−16.75 6.90×+5.90 76.95+0.00

Dream Instruct 6.39 1.00× 19.57 1.00× 77.55
+ dLLM-Cache 24.52+18.13 3.84×+2.84 4.24−15.33 4.62×+3.61 76.80−0.75

GPQA

Dream Base 5.80 1.00× 21.66 1.00× 33.92
+ dLLM-Cache 30.95+25.15 5.33×+4.33 3.03−18.63 7.15×+6.15 34.15+0.23

Dream Instruct 5.53 1.00× 22.63 1.00× 34.38
+ dLLM-Cache 21.98+16.45 3.97×+2.97 4.69−17.94 4.83×+3.82 33.93−0.45

Math

Dream Base 9.40 1.00× 13.31 1.00× 38.68
+ dLLM-Cache 36.89+27.49 3.92×+2.92 2.61−10.70 5.10×+4.10 37.94−0.74

Dream Instruct 8.85 1.00× 14.11 1.00× 38.28
+ dLLM-Cache 23.52+14.67 2.66×+1.66 4.66−9.45 3.03×+2.03 37.62−0.66

General Tasks

MMLU-pro

Dream Base 15.61 1.00× 7.92 1.00× 24.13
+ dLLM-Cache 35.86+20.25 2.30×+1.30 2.89−5.03 2.74×+1.74 23.86−0.27

Dream Instruct 15.40 1.00× 7.98 1.00× 43.79
+ dLLM-Cache 23.98+8.58 1.56×+0.56 4.77−3.21 1.67×+0.67 43.96+0.17

MMLU

Dream Base 9.10 1.00× 13.73 1.00× 73.49
+ dLLM-Cache 31.07+21.97 3.41×+2.41 3.27−10.46 4.20×+3.20 73.20−0.29

Dream Instruct 8.45 1.00× 14.75 1.00× 73.40
+ dLLM-Cache 38.01+29.56 4.50×+3.50 2.42−12.33 6.10×+5.10 73.42+0.02

BBH

Dream Base 7.24 1.00× 17.25 1.00× 52.25
+ dLLM-Cache 29.61+22.37 4.09×+3.09 3.35−13.90 5.15×+4.15 51.66−0.59

Dream Instruct 6.98 1.00× 17.90 1.00× 57.07
+ dLLM-Cache 22.31+15.33 3.20×+2.20 4.82−13.08 3.71×+2.71 57.07+0.00

Code

MBPP

Dream Base 8.91 1.00× 14.06 1.00× 54.20
+ dLLM-Cache 35.69+26.78 4.01×+3.01 2.66−11.40 5.29×+4.29 54.20+0.00

Dream Instruct 8.46 1.00× 14.65 1.00× 57.00
+ dLLM-Cache 29.77+21.31 3.52×+2.52 3.33−11.32 4.40×+3.40 56.80−0.20

HumanEval

Dream Base 21.43 1.00× 5.68 1.00× 58.53
+ dLLM-Cache 27.40+5.97 1.28×+0.28 4.17−1.51 1.36×+0.36 57.31−1.22

Dream Instruct 17.88 1.00× 6.84 1.00× 57.92
+ dLLM-Cache 28.03+10.15 1.57×+0.57 3.94−2.90 1.74×+0.74 56.09−1.83

Table 3: Comparison of LLaDA (left) and Dream (right) with different caching methods.

Task Method TPS↑ Speed↑ Memory↓ Score↑

GSM8K

LLaDA Instruct 6.95 1.00× 15.86 77.48
+ dKV-Cache 8.89 1.28× 21.08 79.30
+ Fast-dLLM 19.11 2.75× 19.48 75.89
+ dLLM-Cache 29.75 4.28× 17.85 78.54

MMLU

LLaDA Instruct 10.12 1.00× 15.54 61.24
+ dKV-Cache 14.34 1.42× 17.88 60.87
+ Fast-dLLM 20.51 2.03× 17.13 61.43
+ dLLM-Cache 21.23 2.10× 16.61 62.82

HumanEval

LLaDA Instruct 10.57 1.00× 15.39 38.71
+ dKV-Cache 14.40 1.36× 17.17 37.20
+ Fast-dLLM 21.50 2.03× 16.60 36.59
+ dLLM-Cache 44.77 4.24× 16.65 39.02

Task Method TPS↑ Speed↑ Memory↓ Score↑

GSM8K

Dream Base 6.36 1.00× 15.73 76.95
+ dKV-Cache 10.26 1.61× 16.14 76.57
+ Fast-dLLM 21.36 2.08× 19.95 74.30
+ dLLM-Cache 32.44 5.10× 16.76 76.95

GPQA

Dream Base 5.80 1.00× 15.77 33.92
+ dKV-Cache 10.11 1.74× 16.23 32.83
+ Fast-dLLM 22.23 3.83× 20.69 31.31
+ dLLM-Cache 30.95 5.33× 16.93 34.15

MMLU

Dream Base 9.10 1.00× 15.64 73.49
+ dKV-Cache 12.80 1.41× 15.92 72.77
+ Fast-dLLM 23.69 2.60× 18.32 72.69
+ dLLM-Cache 31.07 3.41× 16.37 73.20

Effect of Update Ratio ρ and Selection Strategy. We investigated how different token selection
strategies impact performance under varying adaptive update ratios ρ. Figure 5 reports accuracy
and computational cost on GSM8K when using three strategies: V-verify, K-verify, and random
selection. Both similarity-based strategies consistently outperform random selection across a wide
range of ρ values, confirming the importance of dynamic, feature-driven updates. In particular,
value-based selection achieves the highest accuracy around ρ = 0.25, while requiring significantly
fewer FLOPs than full recomputation. This suggests that moderate, targeted updates, e.g., ρ ≈ 0.25
strike a favorable trade-off between efficiency and output quality.
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Table 4: Comparison of LLaDA 8B Base with other representative LLM on GSM8K.

Method Steps Throughput(TPS)↑ Speed ↑ Accuracy(%)↑ Memory (GB)↓
LLaMA3 8B - 47.73 1.00× 49.05 16.06

LLaDA Base 128 14.77−32.96 1.00× 64.14+15.09 16.94
LLaDA Base 32 53.55+5.82 3.63×+2.63 22.25−26.80 16.94
+ Cache 128 49.15+1.42 3.33×+2.33 62.32+13.27 17.93
+ Cache + SlowFast - 49.86+2.13 3.38×+2.33 67.17+18.12 17.93

5 DISCUSSION

Effect of Denoising Steps. In dLLMs, the number of denoising steps determines a trade-off between
quality and latency. Increasing the steps improves output accuracy but also raises inference cost, as
shown in Figure 4(c). Simply reducing the steps accelerates inference but causes severe performance
degradation. On GSM8K, dLLM-Cache achieves a 5× lossless speedup at 256 steps, matching the
computational cost of a baseline with only 48 steps while more than doubling its accuracy. This
shows that our method achieves both efficiency and quality, unlike simple step reduction.

Storage Overhead of Caching. dLLM-Cache stores four types of intermediate features per layer: K,
V, AttnOut, and FFNOut. The total cache size scales with the number of tokens T , embedding
dimension d, and number of layers L, giving a cost of T × d× 4× L as detailed in Appendix A.8.
Since only one version per layer is cached, the overall footprint remains stable. As shown in Table 4,
on GSM8K with LLaDA 8B Base, peak GPU usage is 16.94GB without caching, 17.93GB with
dLLM-Cache, and 16.06GB for LLaMA3 8B. This small 5% memory increase yields up to 9×
acceleration, making it a favorable tradeoff.
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Figure 6: TPS versus ρ. A notable decrease
in TPS at minimal ρ reflects the fixed cost of
initiating selective updates.

Cost of V-verify and the Fixed Update Overheads. Our V-verify mechanism uses lightweight V
vector similarity for identifying dynamic tokens. While V-verify itself is computationally inexpensive,
as illustrated in Figure 6, practical speedup from adaptive partial updates is constrained by fixed
operational overheads. Figure 6 shows a notable decrease in TPS as the update ratio ρ approaches
zero. This base cost arises because initiating any selective recomputation (ρ > 0) triggers non-
negligible system-level latencies, e.g., for GPU kernel management and data movement that are not
strictly proportional to the number of updated tokens. Consequently, at very low ρ values, these fixed
overheads dominate, limiting further run time savings. An optimal ρ must balance these fixed costs
against saved dynamic computation, while preserving model quality. Figure 5 suggests ρ ≈ 0.25
offers an effective trade-off between the costs of activating selective updates and the benefits of
reduced computation, optimizing overall efficiency and fidelity.

6 CONCLUSION

We present dLLM-Cache, a training-free and model-agnostic caching method for accelerating infer-
ence in diffusion-based large language models. Extensive experiments on LLaDA and Dream show
that dLLM-Cache achieves up to 9.1× speedup without compromising generation quality.
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To ensure reproducibility, we have included the source code in the supplementary materials.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we utilized a large language model to aid and polish the
writing. The LLM served as a general-purpose assistant for improving grammar, clarity, and phrasing.
All content was reviewed and edited by the authors.

A.2 COMPATIBILITY WITH ADVANCED SAMPLING METHODS.

Our dLLM-Cache is orthogonal to recent sampling-based acceleration methods, such as SlowFast
Sampling (Wei et al., 2025). When combined, as shown in Table 5, the two methods achieve greater
inference speedups while preserving model performance.

Table 5: Performance of LLaDA Base with dLLM-Cache and SlowFast Sampling.

Task Method Inference Efficiency Performance

TPS↑ Speed(TPS)↑ Score↑

Mathematics & Science

GSM8K LLaDA Base 4.55 1.00× 69.83
Sampling + Cache 26.99+22.44 5.93×+4.93 69.60−0.23

GPQA LLaDA Base 3.31 1.00× 31.47
Sampling + Cache 29.06+25.75 8.78×+7.78 33.48+2.01

Math LLaDA Base 5.14 1.00× 30.16
Sampling + Cache 26.50+21.36 5.16×+4.16 29.42−0.74

General Tasks

MMLU-pro LLaDA Base 9.16 1.00× 23.30
Sampling + Cache 33.38+24.22 3.64×+2.64 25.53+2.23

MMLU LLaDA Base 5.02 1.00× 62.11
Sampling + Cache 38.42+33.40 7.65×+6.65 61.20−0.91

BBH LLaDA Base 4.04 1.00× 44.97
Sampling + Cache 36.04+32.00 8.92×+7.92 44.81−0.16

Code

MBPP LLaDA Base 4.98 1.00× 40.80
Sampling + Cache 27.26+22.28 5.47×+3.87 39.00−1.80

HumanEval LLaDA Base 11.24 1.00× 31.71
Sampling + Cache 41.14+29.90 3.66×+2.66 31.10−0.61

A.3 EFFECTIVENESS ON LONG-PROMPT SCENARIOS.

The benefits of dLLM-Cache are particularly pronounced in scenarios involving long input prompts,
common in tasks like document-based question answering. Our Long-Interval Prompt Caching
mechanism significantly curtails redundant computations for the extensive static prompt portion by
refreshing its cache only at long intervals. For instance, when applying dLLM-Cache to the LLaDA
8B Base model on the LongBench-HotpotQA (Bai et al., 2023) task, we not only achieved a 9.1×
speedup over the unaccelerated baseline but also observed a performance improvement, with the
F1 score increasing from 34.56 to 36.10. This highlights the particular suitability of dLLM-Cache
for dLLM applications requiring extensive contextual understanding, where our caching strategy for
long static prompts can be maximally leveraged.

A.4 PERFORMANCE ANALYSIS ON LONG AND SEMANTICALLY DIVERSE PROMPTS

To comprehensively evaluate the applicability of dLLM-Cache in more challenging, real-world
scenarios, we conducted a thorough set of experiments on the LongBench benchmark. LongBench
is designed to test model capabilities on long-context tasks and includes six major categories:
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Table 6: Comparison of LongBench performance on LLaDA Instruct and Dream Instruct with
and without dLLM-Cache.

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Ave.
Score

Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC

TriviaQA

SAM
Sum

PRe
Lcc

RB-P

LLaDA Instruct 16.96 31.31 14.68 17.60 11.48 29.24 21.93 27.58 65.20 47.98 40.51 98.17 65.69 59.57 39.14
+ dLLM-Cache 15.26 29.62 13.87 17.17 10.44 29.75 22.06 26.68 66.00 44.94 41.86 97.44 66.07 59.34 38.61

Dream Instruct 28.17 36.23 27.65 32.43 11.83 5.04 14.29 5.95 73.00 89.25 37.84 16.92 38.91 45.08 33.04
+ dLLM-Cache 26.55 39.86 27.66 32.09 11.12 4.40 13.89 5.51 73.50 89.59 36.07 12.05 39.88 45.57 32.70

single-document QA, multi-document QA, summarization, few-shot learning, synthetic tasks, and
code completion. The benchmark is notable for its exceptionally long texts and its high degree of
semantic and structural diversity, making it an effective measure of model performance on complex,
long-context inputs.

We evaluated both the LLaDA Instruct and Dream Instruct models, comparing their performance
with and without dLLM-Cache enabled. The detailed results are presented in Table 6. As the results
demonstrate, the average score for LLaDA Instruct with dLLM-Cache is 38.61, which is highly
comparable to the baseline score of 39.14. Similarly, for Dream Instruct, the average score with the
cache enabled is 32.70, showing strong performance retention against the baseline of 33.04. These
results, spanning a wide range of tasks that require deep semantic understanding and long-range
dependency reasoning, confirm the robust performance of our caching strategy.

A.5 IMPACT OF SIMILARITY METRIC.

We compared cosine similarity and L2 distance as similarity metrics for V-verify. On GSM8K with
LLaDA 8B Instruct, cosine similarity achieved 78.54% accuracy, significantly outperforming L2
distance at 55.95%. This shows that cosine similarity better captures semantic change, and we adopt
it as the default throughout our method.

A.6 COMPLEXITY AND LATENCY ANALYSIS

In this section, we provide a detailed computational complexity analysis for the original dLLM
inference process and our proposed dLLM-Cache framework.

Complexity of the Original dLLM Model. Standard dLLMs, such as LLaDA and Dream, utilize
a multi-layer Transformer architecture with bidirectional attention. Text generation is performed
over K iterative denoising steps, starting from a fully masked sequence. At each step, the model
executes a full forward pass over the entire input sequence of length n. The per-step computational
cost, measured in FLOPs, is dominated by the attention and feed-forward network (FFN) layers:

FLOPsstep = T · (8nd2 + 4n2d+ 4ndm) (8)

where T is the number of Transformer layers, n is the sequence length, d is the hidden dimension
size, and m is the intermediate size of the FFN.

Consequently, the total inference complexity for a standard dLLM is the per-step cost multiplied by
the number of steps K:

FLOPsdLLM = K · T · (8nd2 + 4n2d+ 4ndm) (9)

Complexity with dLLM-Cache. dLLM-Cache optimizes this process by caching intermediate
states and selectively updating only a fraction of tokens. This partitions the computation into three
main types: full refreshes, response-only refreshes, and adaptive partial updates. The total complexity
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can be approximated as:

FLOPsdLLM-Cache ≈
K

Kp
· T · (8nd2 + 4n2d+ 4ndm)

+

(
K

Kr
− K

Kp

)
· T · (8rd2 + 4rnd+ 4rdm)

+K ·
(
1− 1

Kr

)
· T · (8r̂d2 + 4r̂nd+ 4r̂dm)

(10)

where Kp and Kr are the refresh intervals for the prompt and response, respectively; p and r are the
prompt and response lengths (n = p+ r); and r̂ = ρ · r is the number of updated response tokens
during adaptive steps, with ρ being the adaptive update ratio.

The first term represents the cost of full refreshes occurring every Kp steps. The second term
accounts for the periodic response-only refreshes. The final, and most frequent, term reflects the cost
of lightweight adaptive updates applied only to the r̂ most dynamic response tokens.

Computation Savings. The primary source of acceleration in dLLM-Cache comes from replacing
the expensive quadratic attention term, 4n2d, with a much smaller term, 4r̂nd, for the majority of the
denoising steps. The relative computational savings can be expressed as:

Savings = 1− FLOPsdLLM-Cache

FLOPsdLLM
(11)

As demonstrated in our experiments, this significant reduction in computational demand leads to
substantial improvements in inference speed, achieving up to a 9.1× speedup in practical scenarios.

A.7 DETAILED SENSITIVITY ANALYSIS ON DREAM 7B

As demonstrated in the main paper, dLLM-Cache is effective across different dLLM architectures,
including both LLaDA and Dream. This highlights the generalizability of our approach, which targets
computational redundancies fundamental to the diffusion process rather than model-specific artifacts.

To further substantiate the robustness of our method and provide deeper insight into its behavior, this
section presents a detailed sensitivity analysis of dLLM-Cache’s key hyperparameters when applied to
the Dream 7B model. The results, shown in Table 7, Table 8, and Table 9, reveal performance trends
that are highly consistent with those observed for LLaDA. This confirms the stable and predictable
behavior of our method across different models.

Table 7: Sensitivity analysis of the adaptive update ratio ρ on Dream 7B for the GPQA benchmark.
Hyperparameters are set to Kp = 25 and Kr = 4.

ρ 0 0.1 0.2 0.25 0.3 0.5 0.75 1

Accuracy (%) 35.04 36.16 35.93 35.04 35.04 34.59 35.49 35.26

Table 8: Sensitivity analysis of the prompt refresh interval Kp on Dream 7B for the GPQA benchmark.
Hyperparameters are set to Kr = 4 and ρ = 0.25.

Kp 10 25 50 100

Accuracy (%) 35.04 35.04 35.04 35.04

Table 9: Sensitivity analysis of the response refresh interval Kr on Dream 7B for the GPQA
benchmark. Hyperparameters are set to Kp = 25 and ρ = 0.25.

Kr 2 4 6

Accuracy (%) 36.16 35.04 33.92
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A.8 PROOF OF STORAGE OVERHEAD OF CACHING

Theorem: The storage overhead of caching in our method is O(T × d × 4 × L), where T is the
number of tokens, d is the embedding dimension, and L is the number of layers.

Proof. We first define the memory required for each layer of the model. In our method, four types of
intermediate features are stored per layer: K, V, AttnOut, and FFNOut. Each feature has a size
of T × d, where T is the number of tokens and d is the embedding dimension.

Let Mlayer denote the memory required for each layer. Since four feature types are cached per layer,
the memory required for one layer is:

Mlayer = 4× T × d

This accounts for the four different feature types stored per token in the layer.

Now, consider the entire model, which consists of L layers. The total memory required for caching
all layers is simply the memory required for one layer multiplied by the number of layers:

Mtotal = L×Mlayer = L× 4× T × d

Next, we consider the precision used to store these features. In our method, we use bfloat16 precision,
where each element requires 2 bytes of memory. Therefore, the total memory required for storing all
features in terms of bytes is:

Mtotal = 2× L× 4× T × d bytes

Finally, in asymptotic analysis, we focus on the growth rate of the memory overhead and ignore
constant factors such as the factor of 2 bytes for precision. Therefore, the storage overhead grows as:

O(T × d× 4× L)

This completes the proof.

A.9 EXPERIMENTAL DETAILS

This section provides the detailed configuration settings used in our experiments across a variety of
tasks for both the Instruct and Base variants of the evaluated diffusion-based large language models.
For each task, we report the number of denoising steps, the block length, the total generation length,
the remasking strategy, the number of few-shot examples used (if any), the prompt refresh interval
Kp, and the response refresh interval Kr. All models use the low-confidence remasking strategy
unless otherwise specified.

The values of Kp and Kr can be flexibly adjusted according to task requirements rather than through
hyperparameter tuning. For example, in applications that are sensitive to accuracy, such as code
generation or mathematical reasoning, smaller values of Kp and Kr may be preferred to ensure
higher fidelity. In contrast, in applications that emphasize efficiency, such as casual dialogue, larger
values can be adopted to reduce computational overhead. It is worth noting that our method does not
rely on tuning Kp and Kr for performance gains; instead, these intervals simply reflect task-specific
trade-offs between efficiency and precision.

The magnitude of gains sometimes varies across Base and Instruct models due to benchmark con-
figurations from prior work (Nie et al., 2025). For example, MMLU uses a 256-token generation
length and decoding steps for Base but only 3 for Instruct, leading to different speedup ratios since
our acceleration scales with the number of tokens and denoising steps, as detailed in Appendix A.6.
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Table 10: Experimental settings for Instruct model across selected benchmarks.

Task Steps Block Len Gen Len Few-shot
GSM8K 256 8 256 4
GPQA 128 64 128 5
Math 256 256 256 0
MMLU-pro 256 256 256 0
MMLU 3 3 3 5
MBPP 512 32 512 3
BBH 256 256 256 3
HumanEval 512 32 512 0

Table 11: Interval steps for LLaDA Base across selected benchmarks.

GSM8K GPQA Math MMUL-pro MMLU BBH MBPP HumanEval Avg.

Kp 25 100 50 100 100 50 25 100 69
Kr 5 8 8 6 6 6 4 5 6

Table 12: Interval steps for LLaDA Instruct across selected benchmarks.

GSM8K GPQA Math MMUL-pro MMLU BBH MBPP HumanEval Avg.

Kp 50 50 50 51 100 100 100 25 66
Kr 7 6 1 3 7 5 5 5 5

Table 13: Interval steps for Dream Base across selected benchmarks.

GSM8K GPQA Math MMUL-pro MMLU BBH MBPP HumanEval Avg.

Kp 100 100 100 25 100 25 25 5 60
Kr 8 8 4 2 2 4 8 1 5

Table 14: Interval steps for Dream Instruct across selected benchmarks.

GSM8K GPQA Math MMUL-pro MMLU BBH MBPP HumanEval Avg.

Kp 25 10 50 5 100 10 10 50 33
Kr 2 8 1 1 8 2 8 1 4

A.10 CORE ALGORITHMIC WORKFLOW OF DLLM-CACHE

Algorithm 1 outlines the full forward computation process of dLLM-Cache, our training-free adaptive
caching framework for diffusion-based large language models. At each denoising step, the algorithm
dynamically determines whether to refresh prompt and/or response features based on predefined cache
intervals (Kp for prompt, Kr for response). When neither full refresh condition is met, dLLM-Cache
employs an adaptive update mechanism that selectively recomputes features for response tokens
exhibiting the most significant semantic drift, as measured by value vector similarity. This selective
caching strategy enables substantial computational savings without compromising generation quality,
and is compatible with arbitrary Transformer-based denoising networks.
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Algorithm 1 dLLM-Cache: Main Inference Algorithm

Require: Prompt c, initial masked sequence y(K), denoising steps K, prompt refresh interval Kp,
response refresh interval Kr, adaptive update ratio ρ

Ensure: Final prediction ŷ(0)

1: /* Initialize caches at step k = K */
2: Cp, Cr ← InitializeCache(c,y(K)) ▷ Algorithm 2
3: Generate prediction ŷ(0) using model fϕ ▷ Needs initial pass or separate handling
4: y(K−1) ← S(ŷ(0),y(K), c,K)
5: for k = K − 1 down to 1 do
6: xlayer in ← [c;y(k)] ▷ Initial input for layer 1 at step k
7: for each layer l in the Transformer network do
8: /* Determine refresh conditions based on intervals */
9: refresh prompt← (k mod Kp = 0) ▷ Refresh prompt every Kp steps

10: refresh response← (k mod Kr = 0) ▷ Refresh response every Kr steps
11: /* Cache usage strategy based on refresh conditions */
12: if refresh prompt and refresh response then
13: xlayer out, Cp, Cr ← FullRefresh(xlayer in, l, Cp, Cr) ▷ Algorithm 3
14: else if refresh prompt and not refresh response then
15: xlayer out, Cp, Cr ← RefreshPromptOnly(xlayer in, l, Cp, Cr) ▷ Algorithm 4
16: else if not refresh prompt and refresh response then
17: xlayer out, Cp, Cr ← RefreshResponseOnly(xlayer in, l, Cp, Cr) ▷ Algorithm 5
18: else
19: /* When neither needs full refresh */
20: xlayer out, Cp, Cr ← AdaptiveUpdate(xlayer in, l, Cp, Cr, ρ) ▷ Algorithm 6
21: end if
22: xlayer in ← xlayer out ▷ Update input for the next layer
23: end for ▷ End layer loop
24: Generate prediction ŷ(0) using model fϕ with final layer output xlayer out

25: y(k−1) ← S(ŷ(0),y(k), c, k) ▷ Apply transition function
26: end for ▷ End step loop
27: return final prediction ŷ(0)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 2 dLLM-Cache: Cache Structure and Initialization

Require: Prompt c, initial masked sequence y(K), Transformer network with L layers
1: /* Cache Structure Definition */
2: for layer l ∈ {1, 2, . . . , L} do
3: Cp[l][kv cache]← {} ▷ Prompt key-value cache
4: Cp[l][attn]← {} ▷ Prompt attention output cache
5: Cp[l][mlp]← {} ▷ Prompt FFN output cache
6: Cr[l][kv cache]← {} ▷ Response key-value cache
7: Cr[l][attn]← {} ▷ Response attention output cache
8: Cr[l][mlp]← {} ▷ Response FFN output cache
9: end for

10: /* Initial Caching (Step k = K) */
11: xin ← [c;y(K)] ▷ Concatenated input for the first layer
12: for layer l ∈ {1, 2, . . . , L} do
13: /* --- Attention Block --- */
14: xnorm ← LayerNorm(xin)
15: Q,K,V← Q proj(xnorm),K proj(xnorm),V proj(xnorm)
16: /* Split K, V for caching */
17: Kp,Kr ← K1:|c|,K|c|+1:

18: Vp,Vr ← V1:|c|,V|c|+1:

19: Cp[l][kv cache]← {Kp,Vp} ▷ Store prompt KV
20: Cr[l][kv cache]← {Kr,Vr} ▷ Store response KV
21: AttnOut← Attention(Q,K,V) ▷ Compute combined attention
22: /* Split AttnOut for caching */
23: AttnOutp,AttnOutr ← AttnOut1:|c|,AttnOut|c|+1:

24: Cp[l][attn]← AttnOutp ▷ Store prompt attention output
25: Cr[l][attn]← AttnOutr ▷ Store response attention output
26: h← xin +AttnOut ▷ Post-attention residual
27: /* --- FFN Block --- */
28: hnorm ← LayerNorm(h)
29: FFNOut← FFN(hnorm) ▷ Compute combined FFN output
30: /* Split FFNOut for caching */
31: FFNOutp,FFNOutr ← FFNOut1:|c|,FFNOut|c|+1:

32: Cp[l][mlp]← FFNOutp ▷ Store prompt FFN output
33: Cr[l][mlp]← FFNOutr ▷ Store response FFN output
34: xout ← h+ FFNOut ▷ Final residual. Note: Code uses dropout here.
35: xin ← xout ▷ Update input for the next layer
36: end for
37: return Cp, Cr ▷ Initialized caches
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Algorithm 3 dLLM-Cache: Case 1 - Full Refresh

Require: Layer input xin, layer index l, caches Cp and Cr
▷ xin is the output of layer l − 1, or [c;y(k)] for l = 1

1: /* Case 1: Refresh both prompt and response */
2: /* --- Attention Block --- */
3: xnorm ← LayerNorm(xin)
4: Q,K,V← Q proj(xnorm),K proj(xnorm),V proj(xnorm)
5: /* Split K, V for caching */
6: Kp,Kr ← K1:|c|,K|c|+1:

7: Vp,Vr ← V1:|c|,V|c|+1:

8: Cp[l][kv cache]← {Kp,Vp} ▷ Update prompt KV cache
9: Cr[l][kv cache]← {Kr,Vr} ▷ Update response KV cache

10: AttnOut← Attention(Q,K,V) ▷ Compute combined attention
11: /* Split AttnOut for caching */
12: AttnOutp,AttnOutr ← AttnOut1:|c|,AttnOut|c|+1:

13: Cp[l][attn]← AttnOutp ▷ Update prompt attention cache
14: Cr[l][attn]← AttnOutr ▷ Update response attention cache
15: h← xin +AttnOut ▷ Post-attention residual
16: /* --- FFN Block --- */
17: hnorm ← LayerNorm(h)
18: FFNOut← FFN(hnorm) ▷ Compute combined FFN output
19: /* Split FFNOut for caching */
20: FFNOutp,FFNOutr ← FFNOut1:|c|,FFNOut|c|+1:

21: Cp[l][mlp]← FFNOutp ▷ Update prompt FFN cache
22: Cr[l][mlp]← FFNOutr ▷ Update response FFN cache
23: xout ← h+ FFNOut ▷ Final residual.
24: return xout, Cp, Cr ▷ Return layer output and updated caches

Algorithm 4 dLLM-Cache: Case 2 - Refresh Prompt Only

Require: Layer input xin, layer index l, caches Cp and Cr
▷ xin is the output of layer l − 1

1: /* Case 2: Refresh prompt only, reuse response features */
2: xp in ← xin,1:|c| ▷ Layer’s prompt input part
3: /* Compute fresh prompt features */
4: xp norm ← LayerNorm(xp in)
5: Qp ← Q proj(xp norm); Kp ← K proj(xp norm); Vp ← V proj(xp norm)
6: Cp[l][kv cache]← {Kp,Vp} ▷ Update prompt KV cache
7: /* Retrieve response features from cache */
8: {Kr,Vr} ← Cr[l][kv cache] ▷ Reuse cached response KV
9: /* Compute attention with mixed features */

10: K← [Kp;Kr]; V← [Vp;Vr]
11: AttnOutp ← Attention(Qp,K,V) ▷ Only compute prompt attention
12: Cp[l][attn]← AttnOutp ▷ Update prompt attention cache
13: AttnOutr ← Cr[l][attn] ▷ Reuse cached response attention
14: AttnOut← [AttnOutp;AttnOutr] ▷ Combine prompt and response attention
15: h← xin +AttnOut ▷ Post-attention residual (using layer input xin)
16: /* --- FFN Block --- */
17: hp,hr ← h1:|c|,h|c|+1: ▷ Split post-attention state
18: hp norm ← LayerNorm(hp)
19: FFNOutp ← FFN(hp norm) ▷ Compute FFN for prompt
20: Cp[l][mlp]← FFNOutp ▷ Update prompt FFN cache
21: FFNOutr ← Cr[l][mlp] ▷ Reuse cached response FFN
22: FFNOut← [FFNOutp;FFNOutr] ▷ Combine FFN outputs
23: xout ← h+ FFNOut ▷ Final output for this layer
24: return xout, Cp, Cr ▷ Return layer output and updated caches
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Algorithm 5 dLLM-Cache: Case 3 - Refresh Response Only

Require: Layer input xin, layer index l, caches Cp and Cr
▷ xin is the output of layer l − 1

1: /* Case 3: Refresh response only, reuse prompt features */
2: xr in ← xin,|c|+1: ▷ Layer’s response input part
3: /* Retrieve prompt features from cache */
4: {Kp,Vp} ← Cp[l][kv cache] ▷ Reuse cached prompt KV
5: AttnOutp ← Cp[l][attn] ▷ Reuse cached prompt attention
6: FFNOutp ← Cp[l][mlp] ▷ Reuse cached prompt FFN
7: /* Compute fresh response features */
8: xr norm ← LayerNorm(xr in)
9: Qr ← Q proj(xr norm); Kr ← K proj(xr norm); Vr ← V proj(xr norm)

10: Cr[l][kv cache]← {Kr,Vr} ▷ Update response KV cache
11: /* Compute attention with mixed features */
12: K← [Kp;Kr]; V← [Vp;Vr]
13: AttnOutr ← Attention(Qr,K,V) ▷ Only compute response attention
14: Cr[l][attn]← AttnOutr ▷ Update response attention cache
15: AttnOut← [AttnOutp;AttnOutr] ▷ Combine prompt and response attention
16: h← xin +AttnOut ▷ Post-attention residual (using layer input xin)
17: /* --- FFN Block --- */
18: hp,hr ← h1:|c|,h|c|+1: ▷ Split post-attention state
19: /* Retrieve prompt FFN, Compute response FFN */
20: hr norm ← LayerNorm(hr)
21: FFNOutr ← FFN(hr norm) ▷ Compute FFN for response
22: Cr[l][mlp]← FFNOutr ▷ Update response FFN cache
23: FFNOut← [FFNOutp;FFNOutr] ▷ Combine FFN outputs
24: xout ← h+ FFNOut ▷ Final output for this layer
25: return xout, Cp, Cr ▷ Return layer output and updated caches
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Algorithm 6 dLLM-Cache: Case 4 - Adaptive Update

Require: Layer input xin, layer index l, caches Cp and Cr, adaptive update ratio ρ
1: /* Case 4: Adaptive partial update when no refresh required */
2: /* Retrieve cached prompt features */
3: {Kp,Vp} ← Cp[l][kv cache]
4: AttnOutp ← Cp[l][attn]
5: FFNOutp ← Cp[l][mlp]
6: if ρ > 0 then ▷ Only proceed if adaptive update is enabled
7: /* Compute current response Value projections */
8: xr in ← xin,|c|+1: ▷ Layer’s response input part
9: xr norm ← LayerNorm(xr in)

10: Vnew
r ← V proj(xr norm)

11: /* Retrieve cached response features */
12: {Kr,Vr} ← Cr[l][kv cache]
13: /* Compute similarity to identify tokens needing update */
14: for each token index j in response sequence do
15: sj ← (Vnew

r [j])⊤Vr[j]
∥Vnew

r [j]∥∥Vr[j]∥ ▷ Cosine similarity
16: end for
17: Iupdate ← indices of ⌊ρ|y(k)|⌋ tokens with lowest sj
18: /* Selective computation for selected tokens */
19: xr norm selected ← gather tokens from xr norm at indices Iupdate

20: Qselected
r ← Q proj(xr norm selected)

21: Kselected
r ← K proj(xr norm selected)

22: /* Update KV cache with new values */
23: Kupdated

r ← ScatterUpdate(Kr, Iupdate,K
selected
r ) ▷ Uses scatter

24: Cr[l][kv cache]← {Kupdated
r ,Vnew

r } ▷ Always use new V
25: /* Compute attention only for selected tokens */
26: K← [Kp;K

updated
r ]; V← [Vp;V

new
r ]

27: AttnOutselected
r ← Attention(Qselected

r ,K,V)
28: /* Update response attention cache at selected positions */
29: AttnOutr ← Cr[l][attn]
30: AttnOutupdated

r ← ScatterUpdate(AttnOutr, Iupdate,AttnOutselected
r )

31: Cr[l][attn]← AttnOutupdated
r

32: AttnOut← [AttnOutp;AttnOutupdated
r ] ▷ Combine attn outputs

33: h← xin +AttnOut ▷ Post-attention residual (using layer input xin)
34: /* --- FFN Block (Adaptive) --- */
35: hp,hr ← h1:|c|,h|c|+1: ▷ Split post-attention state
36: /* Gather tokens from response post-attention state */
37: hselected

r ← gather tokens from hr at indices Iupdate
38: /* Compute FFN only for selected tokens */
39: hr selected norm ← LayerNorm(hselected

r )

40: FFNOutselected
r ← FFN(hr selected norm)

41: /* Update response FFN cache at selected positions */
42: FFNOutr ← Cr[l][mlp]
43: FFNOutupdated

r ← ScatterUpdate(FFNOutr, Iupdate,FFNOutselected
r )

44: Cr[l][mlp]← FFNOutupdated
r

45: FFNOut← [FFNOutp;FFNOutupdated
r ] ▷ Combine FFN outputs

46: else ▷ Case: ρ = 0
47: /* Pure cache retrieval - no updates */
48: AttnOutr ← Cr[l][attn]
49: AttnOut← [AttnOutp;AttnOutr]
50: h← xin +AttnOut ▷ Post-attention residual
51: FFNOutr ← Cr[l][mlp]
52: FFNOut← [FFNOutp;FFNOutr] ▷ Combine FFN outputs
53: end if
54: xout ← h+ FFNOut ▷ Final output for this layer
55: return xout, Cp, Cr ▷ Return layer output and updated caches
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