
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DLLM-CACHE: ACCELERATING DIFFUSION LARGE
LANGUAGE MODELS WITH ADAPTIVE CACHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive Models (ARMs) have long dominated the landscape of Large
Language Models. Recently, a new paradigm has emerged in the form of diffusion-
based Large Language Models (dLLMs), which generate text by iteratively de-
noising masked segments. This approach has shown significant advantages and
potential. However, dLLMs suffer from high inference latency. Traditional ARM
acceleration techniques, such as Key-Value caching, are incompatible with dLLMs
due to their bidirectional attention mechanism. To address this specific challenge,
our work begins with a key observation that dLLM inference involves a static
prompt and a partially dynamic response, where most tokens remain stable across
adjacent denoising steps. Based on this, we propose dLLM-Cache, a training-free
adaptive caching framework that combines long-interval prompt caching with par-
tial response updates guided by feature similarity. This design enables efficient
reuse of intermediate computations without compromising model performance.
Extensive experiments on representative dLLMs, including LLaDA 8B and Dream
7B, show that dLLM-Cache achieves up to 9.1× speedup over standard inference
without compromising output quality. Notably, our method brings dLLM inference
latency close to that of ARMs under many settings. Codes are provided in the
supplementary material and will be released publicly on GitHub.

1 INTRODUCTION

Large language models (LLMs) (Zhao et al., 2023) are foundational to modern AI, powering appli-
cations from conversational AI to scientific discovery. While autoregressive models (ARMs) have
been the dominant paradigm (Radford, 2018; Brown, 2020; OpenAI, 2022), diffusion-based large
language models (dLLMs), such as LLaDA (Nie et al., 2025) and Dream (Ye et al., 2025), have
emerged as promising alternatives. These models offer impressive scalability and outperform ARMs
in handling challenges like the ”reversal curse” (Berglund et al., 2023) due to their bidirectional
attention mechanism, demonstrating the potential of diffusion models for complex language tasks.

The practical adoption of dLLMs is hindered by a paradox: despite their potential for parallel
decoding, they exhibit a daunting computational complexity of O(N3). This inefficiency arises
because generating a sequence of length N always requires N denoising iterations in practice,
each recalculating bidirectional attention across all tokens without any caching mechanism. This
is fundamentally less efficient than standard ARMs, which exploit Key-Value caching (Pope et al.,
2023) to reduce the overall computational effort to O(N2).

Our work aims to bridge this gap by successfully applying a caching mechanism to dLLMs. To
achieve this, we first study two computational redundancies in the inference process of dLLMs as
illustrated in Figure 1, which uniform strategies fail to address. First, prompt redundancy arises
because the input prompt tokens remain constant, yet their internal representations, e.g., attention
output, are recomputed in each denoising step. Second, response dynamics and redundancy occur
as the generated response features evolve. While significant similarity often exists between adjacent
steps, suggesting caching potential, not all tokens evolve in the same way. This non-uniform evolution
explains why traditional uniform caching strategies are ineffective.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

L
a

y
e

r

Prompt Response

S
te

p
 6

4
 v

s
 6

5

Attention Output

Prompt Response Response Response

L
a

y
e

r

Prompt Response Prompt Response Response

FFN Output Value Key

S
te

p
 1

2
8
 v

s
 1

2
9

Response

Figure 1: Cosine similarity of Key, Value, Attention Output and FFN Output between two
adjacent denoising steps in a dLLM, highlighting computational redundancies. The heatmaps
show similarity across adjacent steps for prompt and response tokens, respectively, where a lighter
color indicates a higher similarity of a token compared with its value in the last step. These results
demonstrate: (I) The prompt region exhibits high similarity, while the response region shows
different similarity in different tokens. (II) Notably, only a small fraction of response tokens exhibit
significantly lower similarity, suggesting that selective recomputation is sufficient. (III) Response
tokens’ value similarity closely aligns with attention and FFN output similarity, supporting that value
changes can serve as an effective indicator to identify those most changed response tokens.

Motivated by these insights, we introduce dLLM-Cache, a training-free, adaptive caching mechanism
designed to accelerate dLLM inference by exploiting these distinct redundancies. dLLM-Cache
employs a differentiated caching strategy comprising two core components:

• Long-Interval Prompt Caching: We compute and cache features related to the prompt tokens
only at sparse, long intervals, e.g., every 100 steps. These cached features are then reused in
all subsequent intermediate steps until the next long interval, drastically reducing the overhead
associated with processing the static prompt.

• Adaptive Short-Interval Response Caching: Features associated with the response tokens are
cached and fully refreshed at more frequent, shorter intervals, e.g., every 10 steps. Between
these full refreshes, we adopt an adaptive partial update strategy to balance speed and accuracy.
Specifically, we identify and selectively update only the most dynamic tokens. As shown in
Figure 1, the cosine similarity of a token’s Value vector across adjacent steps strongly correlates
with changes in its subsequent Attention and FFN Output. This motivates our V-verify mechanism,
which uses Value similarity as an efficient proxy to select tokens for update.

This differentiated adaptive handling of prompt and response features allows significant inference
acceleration while preserving quality, all without retraining. Our main contributions are:

1. We identify and characterize the dual computational redundancies in dLLM inference: quasi-static
prompt and dynamic response redundancy.

2. We propose dLLM-Cache, a training-free adaptive caching framework that combines long-interval
prompt caching with short-interval, similarity-guided partial updates for response tokens.

3. We introduce V-verify, a lightweight yet effective mechanism that uses cosine similarity of Value
vectors across denoising steps to identify the most changed tokens for partial update, grounded in
strong empirical correlation with overall token evolution.

4. We experimentally validate dLLM-Cache across various benchmarks, showing significant infer-
ence acceleration, e.g., up to 9.1× on LLaDA with lossless impact on response quality, achieving
a superior speed-quality trade-off compared to the baseline and simpler caching methods.

2 RELATED WORK

2.1 THE LANDSCAPE OF LARGE LANGUAGE MODELS

Autoregressive Models. Autoregressive model (ARM) is the dominant paradigm for large language
models (LLMs), generating text sequentially via causal attention. These models underpin many
state-of-the-art systems (Radford, 2018; Radford et al., 2019; Brown, 2020; OpenAI, 2022).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Diffusion Models for Language. Diffusion Models (DMs) (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021) learn to reverse a data corruption process, excelling in continuous domains
like images (Rombach et al., 2022; Peebles & Xie, 2023). However, adapting DMs to discrete data
like text presents unique challenges, partly due to text’s discrete nature. A promising direction
involves Masked Diffusion Models (MDMs) (Austin et al., 2021; Lou et al., 2023; Shi et al., 2024;
Ou et al., 2024; Zheng et al., 2023; Gong et al., 2024; Nie et al., 2024; He et al., 2022; Reid et al.,
2022; Sahoo et al., 2024; Ye et al., 2023), a specific instance of discrete diffusion which operates on
discrete sequences by iteratively predicting masked tokens based on their context.

Recent work has scaled MDMs (Nie et al., 2025; Ye et al., 2025), showing performance comparable
to ARMs of similar size such as LLaMA3 8B (Dubey et al., 2024). Their bidirectional design helps
mitigate limitations specific to ARMs like the reversal curse (Berglund et al., 2023), while extensions
to multi-modal (Yang et al., 2025; You et al., 2025) and reasoning tasks (Zhao et al., 2025; Huang
et al., 2025; Zhu et al., 2025) further highlight their versatility as a foundation model paradigm.

2.2 ACCELERATION VIA CACHING MECHANISMS

Key–Value Caching in Autoregressive Models. The most established use of caching in language
models is the Key-Value (KV) caching (Pope et al., 2023), which is fundamental to the efficiency
of ARMs. In ARMs, causal attention allows for the direct caching of past tokens’ key and value
states, trading memory for computational speed. However, cache size grows with input length,
creating bottlenecks for long-context deployment. To address this, prior work sparsifies caches
retrospectively (Xiao et al., 2023; Zhang et al., 2024; Ge et al., 2024; Liu et al., 2023; Li et al., 2025).

Caching in Diffusion Language Models. While feature caching has also been explored in ARMs,
the bidirectional attention in dLLMs makes traditional KV caching incompatible (Nie et al., 2025),
creating a distinct challenge. Concurrent works are beginning to address this gap, but often require
cache-aware training (Arriola et al., 2025) or operate under restrictive conditions (Sahoo et al., 2024).
Our method, dLLM-Cache, introduces a training-free framework that leverages the structure of
dLLM inference. It adopts a differentiated caching policy, using infrequent caching for the static
prompt and adaptive updates guided by similarity for the dynamic response tokens.

3 METHODOLOGY

3.1 PRELIMINARY

Training Paradigm of dLLMs. Unlike the sequential and unidirectional nature of ARMs, dLLMs
are trained in a denoising framework that learns to reverse a forward corruption process, where clean
sequences are stochastically degraded over a continuous time variable.

Formally, let x0 = (x1, . . . , xL) be a clean text sequence sampled from the data distribution D. The
forward process defines a continuous time variable t ∈ [0, 1], with t = 0 denoting the clean sequence
and t = 1 the fully corrupted state. At each time t, a corrupted sequence xt is produced, where every
token xi,0 is independently transformed into xi,t according to the rule:

xi,t =

{
[MASK] with probability t

xi,0 with probability 1− t
(1)

This per-token independent masking process ensures that as t→ 1, the sequence xt converges to a
fully masked sequence.

The model, a bidirectional Transformer parameterized by θ and denoted pθ, is trained to reconstruct
the original sequence x0 from its corrupted counterpart xt. Training minimizes the negative log-
likelihood of the original tokens at masked positions. LetMt denote the indices of masked tokens in
xt. The loss is defined as:

L(θ) = −Ex0∼D,t∼U [0,1]

[ ∑
i∈Mt

log pθ(xi,0|xt)

]
(2)

This training regimen compels the model to learn a robust representation of language structure by
leveraging the full bidirectional context, rather than being constrained by a causal dependency chain.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Inference Process of dLLMs. dLLMs generate text via a non-autoregressive process that iteratively
denoises a fully masked sequence into the target output. Our work focuses on accelerating this
inference procedure. We use LLaDA as a representative example to illustrate it.

Let T be the token vocabulary and [MASK] ∈ T the special mask token. Given a prompt c =
(c1, . . . , cM ), the model generates a response y = (y1, . . . , yL) through K discrete denoising steps,
indexed by k = K down to 0. Let y(k) ∈ T L denote the intermediate state at step k, starting from a
fully masked sequence:

y(K) = ([MASK], . . . ,[MASK]︸ ︷︷ ︸
L times

) (3)

At each step k, a mask predictor pθ estimates the distribution over the clean sequence:

Pθ(y|c,y(k)) = pθ(c,y
(k); θ) (4)

The most likely sequence ŷ(0) is typically obtained via greedy decoding:

ŷ(0) = argmax
y∈T L

Pθ(y|c,y(k)) (5)

A transition function S then yields y(k−1) by selectively updating tokens in y(k) based on ŷ(0):

y(k−1) = S(ŷ(0),y(k), c, k) (6)

The specific strategy for S may involve confidence-based remasking or semi-autoregressive block
updates. While this process enables flexible generation, it incurs high latency due to repeated
recomputation across steps, particularly as K grows, as detailed in Appendix A.6.

3.2 DLLM-CACHE

To alleviate the inference inefficiency of dLLMs, we introduce dLLM-Cache, a training-free caching
framework. The input prompt remains static across denoising steps, and its internal features are
consistently stable, making it suitable for long-interval caching. In contrast, the response sequence
evolves dynamically. However, this evolution is highly sparse, as only a small fraction of response
tokens change significantly at each step. Such sparsity, evident in Figure 1, suggests that recomputing
all response features in every step is often unnecessary.

𝝆 = 𝟎. 𝟖𝟕𝟑

Cosine Similarity of K in two adjacent steps

(a) Correlation between 

Key and AttnOut

C
o

s
in

e
 S

im
ila

ri
ty

 o
f 
A

tt
n

O
u

t 
in

 t
w

o
 a

d
ja

c
e

n
t 
s
te

p
s

Cosine Similarity of V in two adjacent steps

C
o

s
in

e
 S

im
ila

ri
ty

 o
f 
F

F
N

O
u
t 

in
 t
w

o
 a

d
ja

c
e

n
t 
s
te

p
s

𝝆 = 𝟎. 𝟗𝟒𝟒

(d) Correlation between 

Value and FFNOut

C
o

s
in

e
 S

im
ila

ri
ty

 o
f 

F
F

N
O

u
t 

in
 t
w

o
 a

d
ja

c
e

n
t 
s
te

p
s

Cosine Similarity of K in two adjacent steps

(b) Correlation between 

Key and FFNOut

𝝆 = 𝟎. 𝟗𝟎𝟑

C
o

s
in

e
 S

im
ila

ri
ty

 o
f 
A

tt
n

O
u

t 
in

 t
w

o
 a

d
ja

c
e

n
t 
s
te

p
s

Cosine Similarity of V in two adjacent steps

𝝆 = 𝟎. 𝟗𝟎𝟏

(c) Correlation between 

Value and AttnOut

Figure 2: Correlation of response tokens’ K or V changes with other feature changes. We
calculate the cosine similarity between the response tokens’ K or V vectors and their cached
counterparts at adjacent steps, select the 25% most dissimilar tokens, and compute the correlation
between their similarity with (a) and (c) AttnOut, or (b) and (d) FFNOut across adjacent steps.

To take advantage of this sparsity, dLLM-Cache selectively updates only a small fraction of response
tokens that change most between adjacent steps. The challenge is to identify such tokens efficiently
and accurately. Figure 2 reveals that the change in a response token’s Value (V) or Key (K) vector,
which is quantified by cosine similarity between current and cached versions, strongly correlates
with changes in its subsequent Attention Output (AttnOut) and Feedforward Network Output
(FFNOut). This strong correlation indicates that by monitoring the dynamics of earlier-stage
features like V, we can effectively identify tokens whose more complex downstream features are
also likely to have significantly changed.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

𝐿𝑛+2

𝐿𝑛+1

Layer Norm

Multi-Head

Attention

Feed

Forward

Layer Norm

Q

Layer Norm

Layer Norm

Prompt Response Prompt Response

Step K

𝐿𝑛

Step K -1

𝐿𝑛+2

𝐿𝑛+1

𝐿n

Feature Computed

Feature Reused

Reuse Multi-Head

Attention

Reuse

Reuse

Q
K V K V

Feed

Forward

Compute

V V V V

𝑉𝐾

VK−1𝜃

V Verify

0.80.5 0.3 0.9

Reuse All

Cosine Similarity

V Vectors of 

Response Tokens

Reuse

𝑉𝐾 Value Vector in Step K

𝑉𝐾−1Value Vector in Step K-1

𝜌=25%

Adaptive Update

Select Tokens with Lower 

Similarity for Computation

Figure 3: The dLLM-Cache pipeline. Prompt features are updated with long intervals, while
response features are updated adaptively based on the similarity between newly computed and cached
V vectors. Response features of tokens with low similarity are updated, and the rest are reused.

Based on this finding, we introduce our V-verify mechanism. It uses the cosine similarity between
each response token’s current V vector and its cached counterpart to identify tokens with the largest
V changes. Only these selected tokens undergo a full feature recomputation and cache update.

Building on this core idea, the overall workflow of dLLM-Cache illustrated in Figure 3 is as follows:
For each Transformer layer l, we store its K(l), V(l), AttnOut(l), and FFNOut(l) in a Prompt
Cache Cp and a Response Cache Cr, respectively. Caching is controlled by three hyperparameters:
prompt refresh interval Kp, response refresh interval Kr, and adaptive update ratio ρ ∈ [0, 1]. The
inference process generally involves:

Initialization. At the very first step (k = K), we compute all features from (c,y(K)). Here,
prompt-related features are grouped into Cp, while response-related features go into Cr.

Iterative Steps. Next, as k decreases from K−1 to 1, each layer l performs the following operations:
(1) For the prompt, if k ≡ 0 (mod Kp), recompute and update Cp; otherwise, reuse.
(2) For the response, if k ≡ 0 (mod Kr), fully recompute and update Cr; otherwise, perform
adaptive update detailed in Sec. 3.2.2.
(3) Each layer l then continues the forward computation using the available feature version.

Termination. The process ends when k = 0, producing ŷ(0).

A more compact description of dLLM-Cache is given in Appendix A.10.

3.2.1 PROMPT CACHE MANAGEMENT

Since the input prompt c does not change, its features are largely stable over time. To take advan-
tage of this, dLLM-Cache maintains a Prompt Cache Cp. At k = K, all prompt-related features
K

(l)
p ,V

(l)
p ,AttnOut(l)p ,FFNOut(l)p are computed and stored. In subsequent steps, these features

are recomputed only every Kp steps; in other steps, they are reused directly from the cache. This
reduces the cost of processing the static prompt, particularly when Kp is large.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2.2 RESPONSE CACHE WITH ADAPTIVE UPDATES

Response features y(k) evolve over time, though most tokens change gradually, allowing selective
updates. The response cache Cr supports two modes.

Full Refresh. All response features are recomputed when k ≡ 0 (mod Kr) or k = K.

Adaptive Partial Update. Otherwise, we first compute the cosine similarity sj between current
and cached Value vectors for each token j (Eq. 7). Then we select the ⌊ρL⌋ tokens with the lowest
similarity for updating, recompute their features, and reuse cached values for the rest. Finally, the
cache Cr is updated accordingly.

sj =
(v

(l)
r,j)

⊤ṽ
(l)
r,j

∥v(l)
r,j∥∥ṽ

(l)
r,j∥

(7)

This adaptive strategy leverages temporal stability to cut computation while preserving accuracy.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Implementation Details. We evaluated dLLM-Cache on two representative dLLMs: LLaDA
8B (Nie et al., 2025) and Dream 7B (Ye et al., 2025), each with Base and Instruct variants. Following
the original inference configurations detailed in Appendix A.9, we conducted our experiments across
eight benchmarks. For all models, we applied a fixed adaptive update ratio of ρ = 0.25. The prompt
refresh interval Kp and response refresh interval Kr are specified in Appendix A.9. All experiments
were conducted on the NVIDIA RTX 4090 GPUs.

Evaluation Metrics. We evaluate the acceleration and model quality preservation of dLLM-Cache
using several metrics. Throughput is measured as Tokens Per Second (TPS), reflecting inference
speed. Computational cost is calculated as the average Floating Point Operations (FLOPs) per token.
Task performance is assessed using benchmark scores, like accuracy on GSM8K (Cobbe et al., 2021),
ensuring dLLM-Cache achieves efficiency gains without compromising model performance. The
testing of TPS and FLOPs was performed on a single RTX 4090 GPU.

4.2 MAIN RESULTS

Performance and Efficiency Gains across Models. Tables 1 and 2 summarize the results for
LLaDA 8B and Dream 7B. Across tasks, dLLM-Cache consistently improves inference efficiency
without compromising accuracy. On GPQA, for example, applying dLLM-Cache to LLaDA Instruct
yields an 8.08× speedup, cutting FLOPs from 22.07T to 2.73T. On GSM8K, Dream Base achieves
a 6.90× speedup with no loss in accuracy. Additional exploration of the orthogonality of our
dLLM-Cache with recently proposed advanced sampling methods is provided in Appendix A.2.

Comparison with Contemporary Caching Methods. We compared dLLM-Cache with two recent
cache optimization approaches, dKV-Cache (Ma et al., 2025) and Fast-dLLM (Wu et al., 2025), as
shown in Table 3. dLLM-Cache achieves consistently higher throughput across benchmarks. Across
benchmarks, dLLM-Cache delivers the highest throughput, reaching 5.33× on GPQA with Dream
Base versus 1.74× and 3.83× for the others. Unlike these methods, dLLM-Cache preserves accuracy
and generally uses less memory, offering a more practical solution for dLLM inference.

Comparison with Other Representative LLM. Table 4 highlights the difference between accelera-
tion strategies. Reducing denoising steps, such as LLaDA 8B Base with 32 steps, raises throughput
by 3.63× but drops accuracy to 22.25%. In contrast, applying dLLM-Cache to LLaDA with 128
steps achieves throughput comparable to LLaMA3 8B while retaining 62.32% accuracy, surpassing it
by 13.27%. When further combined with SlowFast Sampling (Wei et al., 2025), accuracy improves
to 67.17%, showing the orthogonality of our method.

4.3 ABLATION STUDY

Effect of Cache Refresh Interval Kp and Kr. We analyzed how refresh intervals affect efficiency
and accuracy. As shown in Figure 4(a), increasing the prompt interval Kp substantially reduces

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of LLaDA 8B with and without dLLM-Cache on 8 benchmarks.

Task Method Inference Efficiency Performance
TPS↑ Speed(TPS)↑ FLOPs(T)↓ Speed(FLOPs)↑ Score↑

Mathematics & Science

GSM8K

LLaDA Base 7.32 1.00× 16.12 1.00× 69.06
+ dLLM-Cache 23.19+15.87 3.17×+2.17 3.21−12.91 5.02×+4.02 70.66+1.60

LLaDA Instruct 6.95 1.00× 16.97 1.00× 77.48
+ dLLM-Cache 29.75+22.80 4.28×+3.28 2.92−14.05 5.81×+4.81 78.54+1.06

GPQA

LLaDA Base 5.12 1.00× 22.97 1.00× 31.91
+ dLLM-Cache 25.23+20.11 4.93×+3.93 3.20−19.77 7.18×+6.18 32.81+0.90

LLaDA Instruct 5.33 1.00× 22.07 1.00× 29.01
+ dLLM-Cache 28.01+22.68 5.26×+4.26 2.73−19.34 8.08×+7.08 29.01+0.00

Math

LLaDA Base 8.31 1.00× 14.11 1.00× 30.84
+ dLLM-Cache 33.92+25.61 4.08×+3.08 2.61−11.50 5.41×+4.41 29.84−1.00

LLaDA Instruct 23.65 1.00× 5.16 1.00× 22.32
+ dLLM-Cache 31.02+7.37 1.31×+0.31 3.96−1.20 1.30×+0.30 22.52+0.20

General Tasks

MMLU-pro

LLaDA Base 14.08 1.00× 8.40 1.00× 24.26
+ dLLM-Cache 45.75+31.67 3.25×+2.25 2.15−6.25 3.91×+2.91 24.69+0.43

LLaDA Instruct 14.01 1.00× 8.46 1.00× 36.41
+ dLLM-Cache 39.63+25.62 2.83×+1.83 2.62−5.84 3.23×+2.23 36.08−0.33

MMLU

LLaDA Base 8.09 1.00× 14.56 1.00× 63.99
+ dLLM-Cache 33.52+25.43 4.14×+3.14 2.64−11.92 5.52×+4.52 64.26+0.27

LLaDA Instruct 10.12 1.00× 11.85 1.00× 61.24
+ dLLM-Cache 21.23+11.11 2.10×+1.10 4.50−7.35 2.63×+1.63 62.82+1.58

BBH

LLaDA Base 6.41 1.00× 18.29 1.00× 44.77
+ dLLM-Cache 27.90+21.49 4.35×+3.35 3.09−15.20 5.92×+4.92 45.04+0.27

LLaDA Instruct 6.18 1.00× 18.98 1.00× 51.49
+ dLLM-Cache 27.55+21.37 4.46×+3.46 3.08−15.90 6.16×+5.16 51.98+0.49

Code

MBPP

LLaDA Base 7.87 1.00× 14.91 1.00× 40.80
+ dLLM-Cache 24.61+16.74 3.13×+2.13 3.07−11.84 4.86×+3.86 40.60−0.20

LLaDA Instruct 7.55 1.00× 15.53 1.00× 39.20
+ dLLM-Cache 31.73+24.18 4.20×+3.20 2.80−12.73 5.55×+4.55 39.60+0.40

HumanEval

LLaDA Base 19.98 1.00× 6.03 1.00× 32.92
+ dLLM-Cache 51.96+31.98 2.60×+1.60 2.04−3.99 2.96×+1.96 32.31−0.61

LLaDA Instruct 10.57 1.00× 11.10 1.00× 38.71
+ dLLM-Cache 44.77+34.20 4.24×+3.24 2.05−9.05 5.41×+4.41 39.02+0.31

FLOPs without hurting accuracy, confirming that infrequent prompt updates suffice. Figure 4(b)
highlights the importance of response updates. Without prompt caching or adaptive updates (Kp = 1,
ρ = 0, gray line), accuracy drops sharply. In contrast, our setting (Kp = 50, ρ = 0.25, orange and
blue line) maintains high accuracy with much lower cost. This validates our strategy of combining
long prompt intervals with short response intervals and adaptive updates. Additional analyses of the
Dream model can be found in Appendix A.7.

A
c
c
u

ra
c
y
(%

)

(a) Effect of 𝑲𝒑 on GSM8K

             

  

  

  

  

  

  

 

 

 

  

  

  T
F

L
O

P
s
 / T

o
k
e

n

𝐾𝑝

A
c
c
u

ra
c
y
(%

)

(b) Effect of 𝑲𝒓 on GSM8K

     

  

  

  

  

  

  

 

  

  

  

  T
F

L
O

P
s
 / T

o
k
e

n

𝐾𝑟

Accuracy TFLOPs Baseline Acc

𝐾𝑝 = 1, 𝜌 = 0

𝐾𝑝 = 50, 𝜌 = 0.25

𝐾𝑝 = 50, 𝜌 = 0.25

A
c
c
u

ra
c
y
(%

)

(c) Effect of 𝑲 on GSM8K

            

 

  

  

  

  

 

 

 

 

  

  

  

  T
F

L
O

P
s
 / T

o
k
e

n

𝐾 

dLLM-Cache

dLLM-Cache

5x Faster

2x Acc

Figure 4: (a) Varying Kp with Kr = 1, ρ = 0. (b) Varying Kr under two settings: baseline with
Kp = 1, ρ = 0 in gary and our setup Kp = 50, ρ = 0.25 in Table 1. (c) Varying denoising steps K,
where gary patterns are dLLM-Cache with K = 256. (a–b) LLaDA Instruct; (c) LLaDA Base.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison of Dream 7B with and without dLLM-Cache on 8 benchmarks.

Task Configuration Inference Efficiency Performance
TPS↑ Speed(TPS)↑ FLOPs(T)↓ Speed(FLOPs)↑ Score↑

Mathematics & Science

GSM8K

Dream Base 6.36 1.00× 19.59 1.00× 76.95
+ dLLM-Cache 32.44+26.08 5.10×+4.10 2.84−16.75 6.90×+5.90 76.95+0.00

Dream Instruct 6.39 1.00× 19.57 1.00× 77.55
+ dLLM-Cache 24.52+18.13 3.84×+2.84 4.24−15.33 4.62×+3.61 76.80−0.75

GPQA

Dream Base 5.80 1.00× 21.66 1.00× 33.92
+ dLLM-Cache 30.95+25.15 5.33×+4.33 3.03−18.63 7.15×+6.15 34.15+0.23

Dream Instruct 5.53 1.00× 22.63 1.00× 34.38
+ dLLM-Cache 21.98+16.45 3.97×+2.97 4.69−17.94 4.83×+3.82 33.93−0.45

Math

Dream Base 9.40 1.00× 13.31 1.00× 38.68
+ dLLM-Cache 36.89+27.49 3.92×+2.92 2.61−10.70 5.10×+4.10 37.94−0.74

Dream Instruct 8.85 1.00× 14.11 1.00× 38.28
+ dLLM-Cache 23.52+14.67 2.66×+1.66 4.66−9.45 3.03×+2.03 37.62−0.66

General Tasks

MMLU-pro

Dream Base 15.61 1.00× 7.92 1.00× 24.13
+ dLLM-Cache 35.86+20.25 2.30×+1.30 2.89−5.03 2.74×+1.74 23.86−0.27

Dream Instruct 15.40 1.00× 7.98 1.00× 43.79
+ dLLM-Cache 23.98+8.58 1.56×+0.56 4.77−3.21 1.67×+0.67 43.96+0.17

MMLU

Dream Base 9.10 1.00× 13.73 1.00× 73.49
+ dLLM-Cache 31.07+21.97 3.41×+2.41 3.27−10.46 4.20×+3.20 73.20−0.29

Dream Instruct 8.45 1.00× 14.75 1.00× 73.40
+ dLLM-Cache 38.01+29.56 4.50×+3.50 2.42−12.33 6.10×+5.10 73.42+0.02

BBH

Dream Base 7.24 1.00× 17.25 1.00× 52.25
+ dLLM-Cache 29.61+22.37 4.09×+3.09 3.35−13.90 5.15×+4.15 51.66−0.59

Dream Instruct 6.98 1.00× 17.90 1.00× 57.07
+ dLLM-Cache 22.31+15.33 3.20×+2.20 4.82−13.08 3.71×+2.71 57.07+0.00

Code

MBPP

Dream Base 8.91 1.00× 14.06 1.00× 54.20
+ dLLM-Cache 35.69+26.78 4.01×+3.01 2.66−11.40 5.29×+4.29 54.20+0.00

Dream Instruct 8.46 1.00× 14.65 1.00× 57.00
+ dLLM-Cache 29.77+21.31 3.52×+2.52 3.33−11.32 4.40×+3.40 56.80−0.20

HumanEval

Dream Base 21.43 1.00× 5.68 1.00× 58.53
+ dLLM-Cache 27.40+5.97 1.28×+0.28 4.17−1.51 1.36×+0.36 57.31−1.22

Dream Instruct 17.88 1.00× 6.84 1.00× 57.92
+ dLLM-Cache 28.03+10.15 1.57×+0.57 3.94−2.90 1.74×+0.74 56.09−1.83

Table 3: Comparison of LLaDA (left) and Dream (right) with different caching methods.

Task Method TPS↑ Speed↑ Memory↓ Score↑

GSM8K

LLaDA Instruct 6.95 1.00× 15.86 77.48
+ dKV-Cache 8.89 1.28× 21.08 79.30
+ Fast-dLLM 19.11 2.75× 19.48 75.89
+ dLLM-Cache 29.75 4.28× 17.85 78.54

MMLU

LLaDA Instruct 10.12 1.00× 15.54 61.24
+ dKV-Cache 14.34 1.42× 17.88 60.87
+ Fast-dLLM 20.51 2.03× 17.13 61.43
+ dLLM-Cache 21.23 2.10× 16.61 62.82

HumanEval

LLaDA Instruct 10.57 1.00× 15.39 38.71
+ dKV-Cache 14.40 1.36× 17.17 37.20
+ Fast-dLLM 21.50 2.03× 16.60 36.59
+ dLLM-Cache 44.77 4.24× 16.65 39.02

Task Method TPS↑ Speed↑ Memory↓ Score↑

GSM8K

Dream Base 6.36 1.00× 15.73 76.95
+ dKV-Cache 10.26 1.61× 16.14 76.57
+ Fast-dLLM 21.36 2.08× 19.95 74.30
+ dLLM-Cache 32.44 5.10× 16.76 76.95

GPQA

Dream Base 5.80 1.00× 15.77 33.92
+ dKV-Cache 10.11 1.74× 16.23 32.83
+ Fast-dLLM 22.23 3.83× 20.69 31.31
+ dLLM-Cache 30.95 5.33× 16.93 34.15

MMLU

Dream Base 9.10 1.00× 15.64 73.49
+ dKV-Cache 12.80 1.41× 15.92 72.77
+ Fast-dLLM 23.69 2.60× 18.32 72.69
+ dLLM-Cache 31.07 3.41× 16.37 73.20

Effect of Update Ratio ρ and Selection Strategy. We investigated how different token selection
strategies impact performance under varying adaptive update ratios ρ. Figure 5 reports accuracy
and computational cost on GSM8K when using three strategies: V-verify, K-verify, and random
selection. Both similarity-based strategies consistently outperform random selection across a wide
range of ρ values, confirming the importance of dynamic, feature-driven updates. In particular,
value-based selection achieves the highest accuracy around ρ = 0.25, while requiring significantly
fewer FLOPs than full recomputation. This suggests that moderate, targeted updates, e.g., ρ ≈ 0.25
strike a favorable trade-off between efficiency and output quality.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Comparison of LLaDA 8B Base with other representative LLM on GSM8K.

Method Steps Throughput(TPS)↑ Speed ↑ Accuracy(%)↑ Memory (GB)↓
LLaMA3 8B - 47.73 1.00× 49.05 16.06

LLaDA Base 128 14.77−32.96 1.00× 64.14+15.09 16.94
LLaDA Base 32 53.55+5.82 3.63×+2.63 22.25−26.80 16.94
+ Cache 128 49.15+1.42 3.33×+2.33 62.32+13.27 17.93
+ Cache + SlowFast - 49.86+2.13 3.38×+2.33 67.17+18.12 17.93

5 DISCUSSION

Effect of Denoising Steps. In dLLMs, the number of denoising steps determines a trade-off between
quality and latency. Increasing the steps improves output accuracy but also raises inference cost, as
shown in Figure 4(c). Simply reducing the steps accelerates inference but causes severe performance
degradation. On GSM8K, dLLM-Cache achieves a 5× lossless speedup at 256 steps, matching the
computational cost of a baseline with only 48 steps while more than doubling its accuracy. This
shows that our method achieves both efficiency and quality, unlike simple step reduction.

Storage Overhead of Caching. dLLM-Cache stores four types of intermediate features per layer: K,
V, AttnOut, and FFNOut. The total cache size scales with the number of tokens T , embedding
dimension d, and number of layers L, giving a cost of T × d× 4× L as detailed in Appendix A.8.
Since only one version per layer is cached, the overall footprint remains stable. As shown in Table 4,
on GSM8K with LLaDA 8B Base, peak GPU usage is 16.94GB without caching, 17.93GB with
dLLM-Cache, and 16.06GB for LLaMA3 8B. This small 5% memory increase yields up to 9×
acceleration, making it a favorable tradeoff.

                  
  

  

  

  

 

 

 

 
Lossless

Adaptive update ratio ρ

A
c
c
u

ra
c
y
 (

%
)

original acc: 77.48

w/o update acc: 31.46

T
F

L
O

P
s
 \

T
o

k
e

n

TFLOPs Random K Verify V Verify

Figure 5: Effect of token selection strategy on
GSM8K using LLaDA 8B Instruct model under
varying update ratios ρ.

0.0 0.2 0.4 0.6 0.8 1.0

20

30

40

50

60
𝐾𝑝 = 100, 𝐾𝑟 = 1 

𝐾𝑝 = 100, 𝐾𝑟 = 2 

𝐾𝑝 = 100, 𝐾𝑟 = 3 

𝐾𝑝 = 100, 𝐾𝑟 = 4 

𝐾𝑝 = 100, 𝐾𝑟 = 5 

𝐾𝑝 = 100, 𝐾𝑟 = 6 

𝐾𝑝 = 100, 𝐾𝑟 = 7 

T
P

S

𝜌

Figure 6: TPS versus ρ. A notable decrease
in TPS at minimal ρ reflects the fixed cost of
initiating selective updates.

Cost of V-verify and the Fixed Update Overheads. Our V-verify mechanism uses lightweight V
vector similarity for identifying dynamic tokens. While V-verify itself is computationally inexpensive,
as illustrated in Figure 6, practical speedup from adaptive partial updates is constrained by fixed
operational overheads. Figure 6 shows a notable decrease in TPS as the update ratio ρ approaches
zero. This base cost arises because initiating any selective recomputation (ρ > 0) triggers non-
negligible system-level latencies, e.g., for GPU kernel management and data movement that are not
strictly proportional to the number of updated tokens. Consequently, at very low ρ values, these fixed
overheads dominate, limiting further run time savings. An optimal ρ must balance these fixed costs
against saved dynamic computation, while preserving model quality. Figure 5 suggests ρ ≈ 0.25
offers an effective trade-off between the costs of activating selective updates and the benefits of
reduced computation, optimizing overall efficiency and fidelity.

6 CONCLUSION

We present dLLM-Cache, a training-free and model-agnostic caching method for accelerating infer-
ence in diffusion-based large language models. Extensive experiments on LLaDA and Dream show
that dLLM-Cache achieves up to 9.1× speedup without compromising generation quality.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we have included the source code in the supplementary materials.

REFERENCES

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregres-
sive and diffusion language models. arXiv preprint arXiv:2503.09573, 2025.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz Korbak,
and Owain Evans. The reversal curse: Llms trained on” a is b” fail to learn” b is a”. arXiv preprint
arXiv:2309.12288, 2023.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive KV cache compression for LLMs. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=uNrFpDPMyo.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
autoregressive models. arXiv preprint arXiv:2410.17891, 2024.

Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffusion-
bert: Improving generative masked language models with diffusion models. arXiv preprint
arXiv:2211.15029, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Zemin Huang, Zhiyang Chen, Zijun Wang, Tiancheng Li, and Guo-Jun Qi. Reinforcing the diffusion
chain of lateral thought with diffusion language models. arXiv preprint arXiv:2505.10446, 2025.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
Advances in Neural Information Processing Systems, 37:22947–22970, 2025.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36:52342–52364, 2023.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

10

https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models. arXiv preprint arXiv:2505.15781, 2025.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text. arXiv preprint arXiv:2410.18514, 2024.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025. URL https://
arxiv.org/abs/2502.09992.

OpenAI. ChatGPT: Optimizing Language Models for Dialogue. OpenAI blog, November 2022. URL
https://openai.com/blog/chatgpt/.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
Your absorbing discrete diffusion secretly models the conditional distributions of clean data. arXiv
preprint arXiv:2406.03736, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5:606–624, 2023.

Alec Radford. Improving language understanding by generative pre-training, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Machel Reid, Vincent J. Hellendoorn, and Graham Neubig. Diffuser: Discrete diffusion via edit-based
reconstruction, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. arXiv preprint arXiv:2406.07524, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and
generalized masked diffusion for discrete data. arXiv preprint arXiv:2406.04329, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021.

Qingyan Wei, Yaojie Zhang, Zhiyuan Liu, Dongrui Liu, and Linfeng Zhang. Accelerating diffusion
large language models with slowfast: The three golden principles. arXiv preprint arXiv:2506.10848,
2025.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
Multimodal large diffusion language models. arXiv preprint arXiv:2505.15809, 2025.

11

https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2502.09992
https://openai.com/blog/chatgpt/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b, 2025. URL https://hkunlp.github.io/blog/2025/dream.

Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and Quanquan Gu. Diffusion language models
can perform many tasks with scaling and instruction-finetuning. arXiv preprint arXiv:2308.12219,
2023.

Zebin You, Shen Nie, Xiaolu Zhang, Jun Hu, Jun Zhou, Zhiwu Lu, Ji-Rong Wen, and Chongxuan
Li. Llada-v: Large language diffusion models with visual instruction tuning. arXiv preprint
arXiv:2505.16933, 2025.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024.

Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
large language models via reinforcement learning. arXiv preprint arXiv:2504.12216, 2025.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model for
text generation. arXiv preprint arXiv:2302.05737, 2023.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, et al. Llada 1.5: Variance-reduced preference optimization for
large language diffusion models. arXiv preprint arXiv:2505.19223, 2025.

12

https://hkunlp.github.io/blog/2025/dream


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we utilized a large language model to aid and polish the
writing. The LLM served as a general-purpose assistant for improving grammar, clarity, and phrasing.
All content was reviewed and edited by the authors.

A.2 COMPATIBILITY WITH ADVANCED SAMPLING METHODS.

Our dLLM-Cache is orthogonal to recent sampling-based acceleration methods, such as SlowFast
Sampling (Wei et al., 2025). When combined, as shown in Table 5, the two methods achieve greater
inference speedups while preserving model performance.

Table 5: Performance of LLaDA Base with dLLM-Cache and SlowFast Sampling.

Task Method Inference Efficiency Performance

TPS↑ Speed(TPS)↑ Score↑

Mathematics & Science

GSM8K LLaDA Base 4.55 1.00× 69.83
Sampling + Cache 26.99+22.44 5.93×+4.93 69.60−0.23

GPQA LLaDA Base 3.31 1.00× 31.47
Sampling + Cache 29.06+25.75 8.78×+7.78 33.48+2.01

Math LLaDA Base 5.14 1.00× 30.16
Sampling + Cache 26.50+21.36 5.16×+4.16 29.42−0.74

General Tasks

MMLU-pro LLaDA Base 9.16 1.00× 23.30
Sampling + Cache 33.38+24.22 3.64×+2.64 25.53+2.23

MMLU LLaDA Base 5.02 1.00× 62.11
Sampling + Cache 38.42+33.40 7.65×+6.65 61.20−0.91

BBH LLaDA Base 4.04 1.00× 44.97
Sampling + Cache 36.04+32.00 8.92×+7.92 44.81−0.16

Code

MBPP LLaDA Base 4.98 1.00× 40.80
Sampling + Cache 27.26+22.28 5.47×+3.87 39.00−1.80

HumanEval LLaDA Base 11.24 1.00× 31.71
Sampling + Cache 41.14+29.90 3.66×+2.66 31.10−0.61

A.3 EFFECTIVENESS ON LONG-PROMPT SCENARIOS.

The benefits of dLLM-Cache are particularly pronounced in scenarios involving long input prompts,
common in tasks like document-based question answering. Our Long-Interval Prompt Caching
mechanism significantly curtails redundant computations for the extensive static prompt portion by
refreshing its cache only at long intervals. For instance, when applying dLLM-Cache to the LLaDA
8B Base model on the LongBench-HotpotQA (Bai et al., 2023) task, we not only achieved a 9.1×
speedup over the unaccelerated baseline but also observed a performance improvement, with the
F1 score increasing from 34.56 to 36.10. This highlights the particular suitability of dLLM-Cache
for dLLM applications requiring extensive contextual understanding, where our caching strategy for
long static prompts can be maximally leveraged.

A.4 PERFORMANCE ANALYSIS ON LONG AND SEMANTICALLY DIVERSE PROMPTS

To comprehensively evaluate the applicability of dLLM-Cache in more challenging, real-world
scenarios, we conducted a thorough set of experiments on the LongBench benchmark. LongBench
is designed to test model capabilities on long-context tasks and includes six major categories:

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 6: Comparison of LongBench performance on LLaDA Instruct and Dream Instruct with
and without dLLM-Cache.

Method Single-Doc. QA Multi-Doc. QA Summarization Few-shot Learning Synthetic Code Ave.
Score

Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC

TriviaQA

SAM
Sum

PRe
Lcc

RB-P

LLaDA Instruct 16.96 31.31 14.68 17.60 11.48 29.24 21.93 27.58 65.20 47.98 40.51 98.17 65.69 59.57 39.14
+ dLLM-Cache 15.26 29.62 13.87 17.17 10.44 29.75 22.06 26.68 66.00 44.94 41.86 97.44 66.07 59.34 38.61

Dream Instruct 28.17 36.23 27.65 32.43 11.83 5.04 14.29 5.95 73.00 89.25 37.84 16.92 38.91 45.08 33.04
+ dLLM-Cache 26.55 39.86 27.66 32.09 11.12 4.40 13.89 5.51 73.50 89.59 36.07 12.05 39.88 45.57 32.70

single-document QA, multi-document QA, summarization, few-shot learning, synthetic tasks, and
code completion. The benchmark is notable for its exceptionally long texts and its high degree of
semantic and structural diversity, making it an effective measure of model performance on complex,
long-context inputs.

We evaluated both the LLaDA Instruct and Dream Instruct models, comparing their performance
with and without dLLM-Cache enabled. The detailed results are presented in Table 6. As the results
demonstrate, the average score for LLaDA Instruct with dLLM-Cache is 38.61, which is highly
comparable to the baseline score of 39.14. Similarly, for Dream Instruct, the average score with the
cache enabled is 32.70, showing strong performance retention against the baseline of 33.04. These
results, spanning a wide range of tasks that require deep semantic understanding and long-range
dependency reasoning, confirm the robust performance of our caching strategy.

A.5 IMPACT OF SIMILARITY METRIC.

We compared cosine similarity and L2 distance as similarity metrics for V-verify. On GSM8K with
LLaDA 8B Instruct, cosine similarity achieved 78.54% accuracy, significantly outperforming L2
distance at 55.95%. This shows that cosine similarity better captures semantic change, and we adopt
it as the default throughout our method.

A.6 COMPLEXITY AND LATENCY ANALYSIS

In this section, we provide a detailed computational complexity analysis for the original dLLM
inference process and our proposed dLLM-Cache framework.

Complexity of the Original dLLM Model. Standard dLLMs, such as LLaDA and Dream, utilize
a multi-layer Transformer architecture with bidirectional attention. Text generation is performed
over K iterative denoising steps, starting from a fully masked sequence. At each step, the model
executes a full forward pass over the entire input sequence of length n. The per-step computational
cost, measured in FLOPs, is dominated by the attention and feed-forward network (FFN) layers:

FLOPsstep = T · (8nd2 + 4n2d+ 4ndm) (8)

where T is the number of Transformer layers, n is the sequence length, d is the hidden dimension
size, and m is the intermediate size of the FFN.

Consequently, the total inference complexity for a standard dLLM is the per-step cost multiplied by
the number of steps K:

FLOPsdLLM = K · T · (8nd2 + 4n2d+ 4ndm) (9)

Complexity with dLLM-Cache. dLLM-Cache optimizes this process by caching intermediate
states and selectively updating only a fraction of tokens. This partitions the computation into three
main types: full refreshes, response-only refreshes, and adaptive partial updates. The total complexity

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

can be approximated as:

FLOPsdLLM-Cache ≈
K

Kp
· T · (8nd2 + 4n2d+ 4ndm)

+

(
K

Kr
− K

Kp

)
· T · (8rd2 + 4rnd+ 4rdm)

+K ·
(
1− 1

Kr

)
· T · (8r̂d2 + 4r̂nd+ 4r̂dm)

(10)

where Kp and Kr are the refresh intervals for the prompt and response, respectively; p and r are the
prompt and response lengths (n = p+ r); and r̂ = ρ · r is the number of updated response tokens
during adaptive steps, with ρ being the adaptive update ratio.

The first term represents the cost of full refreshes occurring every Kp steps. The second term
accounts for the periodic response-only refreshes. The final, and most frequent, term reflects the cost
of lightweight adaptive updates applied only to the r̂ most dynamic response tokens.

Computation Savings. The primary source of acceleration in dLLM-Cache comes from replacing
the expensive quadratic attention term, 4n2d, with a much smaller term, 4r̂nd, for the majority of the
denoising steps. The relative computational savings can be expressed as:

Savings = 1− FLOPsdLLM-Cache

FLOPsdLLM
(11)

As demonstrated in our experiments, this significant reduction in computational demand leads to
substantial improvements in inference speed, achieving up to a 9.1× speedup in practical scenarios.

A.7 DETAILED SENSITIVITY ANALYSIS ON DREAM 7B

As demonstrated in the main paper, dLLM-Cache is effective across different dLLM architectures,
including both LLaDA and Dream. This highlights the generalizability of our approach, which targets
computational redundancies fundamental to the diffusion process rather than model-specific artifacts.

To further substantiate the robustness of our method and provide deeper insight into its behavior, this
section presents a detailed sensitivity analysis of dLLM-Cache’s key hyperparameters when applied to
the Dream 7B model. The results, shown in Table 7, Table 8, and Table 9, reveal performance trends
that are highly consistent with those observed for LLaDA. This confirms the stable and predictable
behavior of our method across different models.

Table 7: Sensitivity analysis of the adaptive update ratio ρ on Dream 7B for the GPQA benchmark.
Hyperparameters are set to Kp = 25 and Kr = 4.

ρ 0 0.1 0.2 0.25 0.3 0.5 0.75 1

Accuracy (%) 35.04 36.16 35.93 35.04 35.04 34.59 35.49 35.26

Table 8: Sensitivity analysis of the prompt refresh interval Kp on Dream 7B for the GPQA benchmark.
Hyperparameters are set to Kr = 4 and ρ = 0.25.

Kp 10 25 50 100

Accuracy (%) 35.04 35.04 35.04 35.04

Table 9: Sensitivity analysis of the response refresh interval Kr on Dream 7B for the GPQA
benchmark. Hyperparameters are set to Kp = 25 and ρ = 0.25.

Kr 2 4 6

Accuracy (%) 36.16 35.04 33.92

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.8 PROOF OF STORAGE OVERHEAD OF CACHING

Theorem: The storage overhead of caching in our method is O(T × d × 4 × L), where T is the
number of tokens, d is the embedding dimension, and L is the number of layers.

Proof. We first define the memory required for each layer of the model. In our method, four types of
intermediate features are stored per layer: K, V, AttnOut, and FFNOut. Each feature has a size
of T × d, where T is the number of tokens and d is the embedding dimension.

Let Mlayer denote the memory required for each layer. Since four feature types are cached per layer,
the memory required for one layer is:

Mlayer = 4× T × d

This accounts for the four different feature types stored per token in the layer.

Now, consider the entire model, which consists of L layers. The total memory required for caching
all layers is simply the memory required for one layer multiplied by the number of layers:

Mtotal = L×Mlayer = L× 4× T × d

Next, we consider the precision used to store these features. In our method, we use bfloat16 precision,
where each element requires 2 bytes of memory. Therefore, the total memory required for storing all
features in terms of bytes is:

Mtotal = 2× L× 4× T × d bytes

Finally, in asymptotic analysis, we focus on the growth rate of the memory overhead and ignore
constant factors such as the factor of 2 bytes for precision. Therefore, the storage overhead grows as:

O(T × d× 4× L)

This completes the proof.

A.9 EXPERIMENTAL DETAILS

This section provides the detailed configuration settings used in our experiments across a variety of
tasks for both the Instruct and Base variants of the evaluated diffusion-based large language models.
For each task, we report the number of denoising steps, the block length, the total generation length,
the remasking strategy, the number of few-shot examples used (if any), the prompt refresh interval
Kp, and the response refresh interval Kr. All models use the low-confidence remasking strategy
unless otherwise specified.

The values of Kp and Kr can be flexibly adjusted according to task requirements rather than through
hyperparameter tuning. For example, in applications that are sensitive to accuracy, such as code
generation or mathematical reasoning, smaller values of Kp and Kr may be preferred to ensure
higher fidelity. In contrast, in applications that emphasize efficiency, such as casual dialogue, larger
values can be adopted to reduce computational overhead. It is worth noting that our method does not
rely on tuning Kp and Kr for performance gains; instead, these intervals simply reflect task-specific
trade-offs between efficiency and precision.

The magnitude of gains sometimes varies across Base and Instruct models due to benchmark con-
figurations from prior work (Nie et al., 2025). For example, MMLU uses a 256-token generation
length and decoding steps for Base but only 3 for Instruct, leading to different speedup ratios since
our acceleration scales with the number of tokens and denoising steps, as detailed in Appendix A.6.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 10: Experimental settings for Instruct model across selected benchmarks.

Task Steps Block Len Gen Len Few-shot
GSM8K 256 8 256 4
GPQA 128 64 128 5
Math 256 256 256 0
MMLU-pro 256 256 256 0
MMLU 3 3 3 5
MBPP 512 32 512 3
BBH 256 256 256 3
HumanEval 512 32 512 0

Table 11: Interval steps for LLaDA Base across selected benchmarks.

GSM8K GPQA Math MMUL-pro MMLU BBH MBPP HumanEval Avg.

Kp 25 100 50 100 100 50 25 100 69
Kr 5 8 8 6 6 6 4 5 6

Table 12: Interval steps for LLaDA Instruct across selected benchmarks.

GSM8K GPQA Math MMUL-pro MMLU BBH MBPP HumanEval Avg.

Kp 50 50 50 51 100 100 100 25 66
Kr 7 6 1 3 7 5 5 5 5

Table 13: Interval steps for Dream Base across selected benchmarks.

GSM8K GPQA Math MMUL-pro MMLU BBH MBPP HumanEval Avg.

Kp 100 100 100 25 100 25 25 5 60
Kr 8 8 4 2 2 4 8 1 5

Table 14: Interval steps for Dream Instruct across selected benchmarks.

GSM8K GPQA Math MMUL-pro MMLU BBH MBPP HumanEval Avg.

Kp 25 10 50 5 100 10 10 50 33
Kr 2 8 1 1 8 2 8 1 4

A.10 CORE ALGORITHMIC WORKFLOW OF DLLM-CACHE

Algorithm 1 outlines the full forward computation process of dLLM-Cache, our training-free adaptive
caching framework for diffusion-based large language models. At each denoising step, the algorithm
dynamically determines whether to refresh prompt and/or response features based on predefined cache
intervals (Kp for prompt, Kr for response). When neither full refresh condition is met, dLLM-Cache
employs an adaptive update mechanism that selectively recomputes features for response tokens
exhibiting the most significant semantic drift, as measured by value vector similarity. This selective
caching strategy enables substantial computational savings without compromising generation quality,
and is compatible with arbitrary Transformer-based denoising networks.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 1 dLLM-Cache: Main Inference Algorithm

Require: Prompt c, initial masked sequence y(K), denoising steps K, prompt refresh interval Kp,
response refresh interval Kr, adaptive update ratio ρ

Ensure: Final prediction ŷ(0)

1: /* Initialize caches at step k = K */
2: Cp, Cr ← InitializeCache(c,y(K)) ▷ Algorithm 2
3: Generate prediction ŷ(0) using model fϕ ▷ Needs initial pass or separate handling
4: y(K−1) ← S(ŷ(0),y(K), c,K)
5: for k = K − 1 down to 1 do
6: xlayer in ← [c;y(k)] ▷ Initial input for layer 1 at step k
7: for each layer l in the Transformer network do
8: /* Determine refresh conditions based on intervals */
9: refresh prompt← (k mod Kp = 0) ▷ Refresh prompt every Kp steps

10: refresh response← (k mod Kr = 0) ▷ Refresh response every Kr steps
11: /* Cache usage strategy based on refresh conditions */
12: if refresh prompt and refresh response then
13: xlayer out, Cp, Cr ← FullRefresh(xlayer in, l, Cp, Cr) ▷ Algorithm 3
14: else if refresh prompt and not refresh response then
15: xlayer out, Cp, Cr ← RefreshPromptOnly(xlayer in, l, Cp, Cr) ▷ Algorithm 4
16: else if not refresh prompt and refresh response then
17: xlayer out, Cp, Cr ← RefreshResponseOnly(xlayer in, l, Cp, Cr) ▷ Algorithm 5
18: else
19: /* When neither needs full refresh */
20: xlayer out, Cp, Cr ← AdaptiveUpdate(xlayer in, l, Cp, Cr, ρ) ▷ Algorithm 6
21: end if
22: xlayer in ← xlayer out ▷ Update input for the next layer
23: end for ▷ End layer loop
24: Generate prediction ŷ(0) using model fϕ with final layer output xlayer out

25: y(k−1) ← S(ŷ(0),y(k), c, k) ▷ Apply transition function
26: end for ▷ End step loop
27: return final prediction ŷ(0)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 2 dLLM-Cache: Cache Structure and Initialization

Require: Prompt c, initial masked sequence y(K), Transformer network with L layers
1: /* Cache Structure Definition */
2: for layer l ∈ {1, 2, . . . , L} do
3: Cp[l][kv cache]← {} ▷ Prompt key-value cache
4: Cp[l][attn]← {} ▷ Prompt attention output cache
5: Cp[l][mlp]← {} ▷ Prompt FFN output cache
6: Cr[l][kv cache]← {} ▷ Response key-value cache
7: Cr[l][attn]← {} ▷ Response attention output cache
8: Cr[l][mlp]← {} ▷ Response FFN output cache
9: end for

10: /* Initial Caching (Step k = K) */
11: xin ← [c;y(K)] ▷ Concatenated input for the first layer
12: for layer l ∈ {1, 2, . . . , L} do
13: /* --- Attention Block --- */
14: xnorm ← LayerNorm(xin)
15: Q,K,V← Q proj(xnorm),K proj(xnorm),V proj(xnorm)
16: /* Split K, V for caching */
17: Kp,Kr ← K1:|c|,K|c|+1:

18: Vp,Vr ← V1:|c|,V|c|+1:

19: Cp[l][kv cache]← {Kp,Vp} ▷ Store prompt KV
20: Cr[l][kv cache]← {Kr,Vr} ▷ Store response KV
21: AttnOut← Attention(Q,K,V) ▷ Compute combined attention
22: /* Split AttnOut for caching */
23: AttnOutp,AttnOutr ← AttnOut1:|c|,AttnOut|c|+1:

24: Cp[l][attn]← AttnOutp ▷ Store prompt attention output
25: Cr[l][attn]← AttnOutr ▷ Store response attention output
26: h← xin +AttnOut ▷ Post-attention residual
27: /* --- FFN Block --- */
28: hnorm ← LayerNorm(h)
29: FFNOut← FFN(hnorm) ▷ Compute combined FFN output
30: /* Split FFNOut for caching */
31: FFNOutp,FFNOutr ← FFNOut1:|c|,FFNOut|c|+1:

32: Cp[l][mlp]← FFNOutp ▷ Store prompt FFN output
33: Cr[l][mlp]← FFNOutr ▷ Store response FFN output
34: xout ← h+ FFNOut ▷ Final residual. Note: Code uses dropout here.
35: xin ← xout ▷ Update input for the next layer
36: end for
37: return Cp, Cr ▷ Initialized caches

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 3 dLLM-Cache: Case 1 - Full Refresh

Require: Layer input xin, layer index l, caches Cp and Cr
▷ xin is the output of layer l − 1, or [c;y(k)] for l = 1

1: /* Case 1: Refresh both prompt and response */
2: /* --- Attention Block --- */
3: xnorm ← LayerNorm(xin)
4: Q,K,V← Q proj(xnorm),K proj(xnorm),V proj(xnorm)
5: /* Split K, V for caching */
6: Kp,Kr ← K1:|c|,K|c|+1:

7: Vp,Vr ← V1:|c|,V|c|+1:

8: Cp[l][kv cache]← {Kp,Vp} ▷ Update prompt KV cache
9: Cr[l][kv cache]← {Kr,Vr} ▷ Update response KV cache

10: AttnOut← Attention(Q,K,V) ▷ Compute combined attention
11: /* Split AttnOut for caching */
12: AttnOutp,AttnOutr ← AttnOut1:|c|,AttnOut|c|+1:

13: Cp[l][attn]← AttnOutp ▷ Update prompt attention cache
14: Cr[l][attn]← AttnOutr ▷ Update response attention cache
15: h← xin +AttnOut ▷ Post-attention residual
16: /* --- FFN Block --- */
17: hnorm ← LayerNorm(h)
18: FFNOut← FFN(hnorm) ▷ Compute combined FFN output
19: /* Split FFNOut for caching */
20: FFNOutp,FFNOutr ← FFNOut1:|c|,FFNOut|c|+1:

21: Cp[l][mlp]← FFNOutp ▷ Update prompt FFN cache
22: Cr[l][mlp]← FFNOutr ▷ Update response FFN cache
23: xout ← h+ FFNOut ▷ Final residual.
24: return xout, Cp, Cr ▷ Return layer output and updated caches

Algorithm 4 dLLM-Cache: Case 2 - Refresh Prompt Only

Require: Layer input xin, layer index l, caches Cp and Cr
▷ xin is the output of layer l − 1

1: /* Case 2: Refresh prompt only, reuse response features */
2: xp in ← xin,1:|c| ▷ Layer’s prompt input part
3: /* Compute fresh prompt features */
4: xp norm ← LayerNorm(xp in)
5: Qp ← Q proj(xp norm); Kp ← K proj(xp norm); Vp ← V proj(xp norm)
6: Cp[l][kv cache]← {Kp,Vp} ▷ Update prompt KV cache
7: /* Retrieve response features from cache */
8: {Kr,Vr} ← Cr[l][kv cache] ▷ Reuse cached response KV
9: /* Compute attention with mixed features */

10: K← [Kp;Kr]; V← [Vp;Vr]
11: AttnOutp ← Attention(Qp,K,V) ▷ Only compute prompt attention
12: Cp[l][attn]← AttnOutp ▷ Update prompt attention cache
13: AttnOutr ← Cr[l][attn] ▷ Reuse cached response attention
14: AttnOut← [AttnOutp;AttnOutr] ▷ Combine prompt and response attention
15: h← xin +AttnOut ▷ Post-attention residual (using layer input xin)
16: /* --- FFN Block --- */
17: hp,hr ← h1:|c|,h|c|+1: ▷ Split post-attention state
18: hp norm ← LayerNorm(hp)
19: FFNOutp ← FFN(hp norm) ▷ Compute FFN for prompt
20: Cp[l][mlp]← FFNOutp ▷ Update prompt FFN cache
21: FFNOutr ← Cr[l][mlp] ▷ Reuse cached response FFN
22: FFNOut← [FFNOutp;FFNOutr] ▷ Combine FFN outputs
23: xout ← h+ FFNOut ▷ Final output for this layer
24: return xout, Cp, Cr ▷ Return layer output and updated caches

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 5 dLLM-Cache: Case 3 - Refresh Response Only

Require: Layer input xin, layer index l, caches Cp and Cr
▷ xin is the output of layer l − 1

1: /* Case 3: Refresh response only, reuse prompt features */
2: xr in ← xin,|c|+1: ▷ Layer’s response input part
3: /* Retrieve prompt features from cache */
4: {Kp,Vp} ← Cp[l][kv cache] ▷ Reuse cached prompt KV
5: AttnOutp ← Cp[l][attn] ▷ Reuse cached prompt attention
6: FFNOutp ← Cp[l][mlp] ▷ Reuse cached prompt FFN
7: /* Compute fresh response features */
8: xr norm ← LayerNorm(xr in)
9: Qr ← Q proj(xr norm); Kr ← K proj(xr norm); Vr ← V proj(xr norm)

10: Cr[l][kv cache]← {Kr,Vr} ▷ Update response KV cache
11: /* Compute attention with mixed features */
12: K← [Kp;Kr]; V← [Vp;Vr]
13: AttnOutr ← Attention(Qr,K,V) ▷ Only compute response attention
14: Cr[l][attn]← AttnOutr ▷ Update response attention cache
15: AttnOut← [AttnOutp;AttnOutr] ▷ Combine prompt and response attention
16: h← xin +AttnOut ▷ Post-attention residual (using layer input xin)
17: /* --- FFN Block --- */
18: hp,hr ← h1:|c|,h|c|+1: ▷ Split post-attention state
19: /* Retrieve prompt FFN, Compute response FFN */
20: hr norm ← LayerNorm(hr)
21: FFNOutr ← FFN(hr norm) ▷ Compute FFN for response
22: Cr[l][mlp]← FFNOutr ▷ Update response FFN cache
23: FFNOut← [FFNOutp;FFNOutr] ▷ Combine FFN outputs
24: xout ← h+ FFNOut ▷ Final output for this layer
25: return xout, Cp, Cr ▷ Return layer output and updated caches

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 6 dLLM-Cache: Case 4 - Adaptive Update

Require: Layer input xin, layer index l, caches Cp and Cr, adaptive update ratio ρ
1: /* Case 4: Adaptive partial update when no refresh required */
2: /* Retrieve cached prompt features */
3: {Kp,Vp} ← Cp[l][kv cache]
4: AttnOutp ← Cp[l][attn]
5: FFNOutp ← Cp[l][mlp]
6: if ρ > 0 then ▷ Only proceed if adaptive update is enabled
7: /* Compute current response Value projections */
8: xr in ← xin,|c|+1: ▷ Layer’s response input part
9: xr norm ← LayerNorm(xr in)

10: Vnew
r ← V proj(xr norm)

11: /* Retrieve cached response features */
12: {Kr,Vr} ← Cr[l][kv cache]
13: /* Compute similarity to identify tokens needing update */
14: for each token index j in response sequence do
15: sj ← (Vnew

r [j])⊤Vr[j]
∥Vnew

r [j]∥∥Vr[j]∥ ▷ Cosine similarity
16: end for
17: Iupdate ← indices of ⌊ρ|y(k)|⌋ tokens with lowest sj
18: /* Selective computation for selected tokens */
19: xr norm selected ← gather tokens from xr norm at indices Iupdate

20: Qselected
r ← Q proj(xr norm selected)

21: Kselected
r ← K proj(xr norm selected)

22: /* Update KV cache with new values */
23: Kupdated

r ← ScatterUpdate(Kr, Iupdate,K
selected
r ) ▷ Uses scatter

24: Cr[l][kv cache]← {Kupdated
r ,Vnew

r } ▷ Always use new V
25: /* Compute attention only for selected tokens */
26: K← [Kp;K

updated
r ]; V← [Vp;V

new
r ]

27: AttnOutselected
r ← Attention(Qselected

r ,K,V)
28: /* Update response attention cache at selected positions */
29: AttnOutr ← Cr[l][attn]
30: AttnOutupdated

r ← ScatterUpdate(AttnOutr, Iupdate,AttnOutselected
r )

31: Cr[l][attn]← AttnOutupdated
r

32: AttnOut← [AttnOutp;AttnOutupdated
r ] ▷ Combine attn outputs

33: h← xin +AttnOut ▷ Post-attention residual (using layer input xin)
34: /* --- FFN Block (Adaptive) --- */
35: hp,hr ← h1:|c|,h|c|+1: ▷ Split post-attention state
36: /* Gather tokens from response post-attention state */
37: hselected

r ← gather tokens from hr at indices Iupdate
38: /* Compute FFN only for selected tokens */
39: hr selected norm ← LayerNorm(hselected

r )

40: FFNOutselected
r ← FFN(hr selected norm)

41: /* Update response FFN cache at selected positions */
42: FFNOutr ← Cr[l][mlp]
43: FFNOutupdated

r ← ScatterUpdate(FFNOutr, Iupdate,FFNOutselected
r )

44: Cr[l][mlp]← FFNOutupdated
r

45: FFNOut← [FFNOutp;FFNOutupdated
r ] ▷ Combine FFN outputs

46: else ▷ Case: ρ = 0
47: /* Pure cache retrieval - no updates */
48: AttnOutr ← Cr[l][attn]
49: AttnOut← [AttnOutp;AttnOutr]
50: h← xin +AttnOut ▷ Post-attention residual
51: FFNOutr ← Cr[l][mlp]
52: FFNOut← [FFNOutp;FFNOutr] ▷ Combine FFN outputs
53: end if
54: xout ← h+ FFNOut ▷ Final output for this layer
55: return xout, Cp, Cr ▷ Return layer output and updated caches

22


	Introduction
	Related Work
	The Landscape of Large Language Models
	Acceleration via Caching Mechanisms

	Methodology
	Preliminary
	dLLM-Cache
	Prompt Cache Management
	Response Cache with Adaptive Updates


	Experiments
	Experiment Settings
	Main Results
	Ablation Study

	Discussion
	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Compatibility with Advanced Sampling Methods.
	Effectiveness on Long-Prompt Scenarios. 
	Performance Analysis on Long and Semantically Diverse Prompts
	Impact of Similarity Metric. 
	Complexity and Latency Analysis
	Detailed Sensitivity Analysis on Dream 7B
	Proof of Storage Overhead of Caching
	Experimental Details
	Core Algorithmic Workflow of dLLM-Cache


