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Abstract. We present the first approach for 3D point-cloud to im-
age translation based on conditional Generative Adversarial Networks
(cGAN). The model handles multi-modal information sources from dif-
ferent domains, i.e. raw point-sets and images. The generator is capable
of processing three conditions, whereas the point-cloud is encoded as raw
point-set and camera projection. An image background patch is used as
constraint to bias environmental texturing. A global approximation func-
tion within the generator is directly applied on the point-cloud (Point-
Net). Hence, the representative learning model incorporates global 3D
characteristics directly at the latent feature space. Conditions are used
to bias the background and the viewpoint of the generated image. This
opens up new ways in augmenting or texturing 3D data to aim the gener-
ation of fully individual images. We successfully evaluated our method on
the KITTI and SunRGBD dataset with an outstanding object detection
inception score.

1 Introduction

Domain translation is a well known and widely applied problem. It is typi-
cally treated in computer graphics or computer vision. Most research focuses on
image-to-image translation [7,34,27]. Examples are Semantic-Labels to Image
(e.g. Labels to Street-Scene, Labels to Facades ) or Image conversions (e.g. Day
to Night, Black-and-White to Color). Those techniques deal with real domain
translation problems, since they convert semantic sensor-independent context
into realistic RGB image data or vice versa. However, domain translation is per-
formed on top of images. Both domains encode the information as RGB values in
pictures with a spatial dependency. We call that single mode domain translation:

Gx→y : x→ y x, y ∈ Rw×h×3

Gy→x : y → x
(1)

Whereas, Gx→y, Gy→x describe the translation functions between both image
domains x, y with fixed image sizes: h (height), w (width).
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We propose a novel multi-modal domain translation model using the example
of 3D point-cloud to image translation. The treated problem is formally known
as:

Gp→y : p→ y p ∈ Rn×3 y ∈ Rw×h×3 (2)

Here, n describes the number of points within the point-set. Our work is limited
to Gp→y (not Gy→p). Therefore an extensive new architecture is presented as
combination of a typical encoder-decoder for image segmentation (UNet: [21])
as proposed by [7]. More important is the models second input, where the archi-
tecture incorporates the real point-set to add 3D characteristics into the global
feature space for constraint based individual image generation. We put condi-
tions as viewpoint dependent projection and background image patches for fully
individual image generation in compliance with 3D specifications (conditions:
background, shape, distance, viewpoint).

2 Related Work

2.1 Image generation

Handcrafted Losses As image generation could be reduced to per-pixel clas-
sification/regression with a wide application area it turns out to have a long
tradition [23,30,31,6]. Those applications suppose a conditionally unstructured
loss applied on the output space, i.e. a pixel independence in terms of semantic
relationship is supposed. The performance of those approaches strongly depends
on the loss design, e.g. semantic segmentation [15].

Conditional GANs Conditional GANs (cGAN) instead learn structured losses
that affect the overall output in form of a joint improvement [7]. In common,
the cGAN is applied in a conditional setting. For image generation researchers
were setting variable conditions: e.g. discrete labels [14,4], text [20] and images
[7,34,27].

In general the cGAN performs a mapping function G, called generator, based
on a condition c and a random noise vector z to generate an image y:

G : {c, z} → y y ∈ Rw×h×3 c =

∈ R → label-to-image
∈ Rt → text-to-image
∈ Rw×h×3 → image-to-image

(3)

For image-to-image translation [7] proposes a U-Net like structure for G. To
create realistic images at higher resolutions (e.g. 1024 x 2048) [27] recommend
a pyramidal approach for G similar to a PSPNet [32].

In general, the cGAN is composed by G and a competing discriminator D,
which distinguishes between real images and created fake ones. A well-established
discriminator network is the Patchgan [10] proposed by [7]. Derived from that
the competing objective of the cGAN could be described by its loss LcGAN:

LcGAN (G,D) = Ec,y{log(D(c, y))}+ Ec,z{log(1−D(c,G(c, z))} (4)
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2.2 Point-cloud processing

High requirements for perception tasks of robotic applications enforced the us-
age of 3D sensors, e.g. RGBD-cameras [26], Lidar (Valeo SCALA). Research
progress in the field of 3D point-cloud processing received a boost in the recent
years. In principle, point-clouds have specific properties that clearly distinguish
them from images. Hence, specific processing models are needed. Points usually
are not ordered, there is no grid that encodes the 3D position as an image does.
The overall category of a point-set is influenced by the interaction of points
among others. Only the global sum of the points forms a shape with a mean-
ing. Last, point-sets are invariant to basic transformations like translation or
rotation. Therefore the combination of 3D points clouds and machine learning is
indispensable. The processing type could be categorized into the following three
classes.

Real 3D Point-cloud processing [16] proposed the first neural network archi-
tecture Point-Net that handles natural points sets for classification and segmen-
tation tasks with outperforming segmentation results on ShapeNet [2]: mIoU
83.7. The model does not use convolutional layers, but fully connected ones and
directly processes the coordinates of the point-set (size n): p = x1..., xn with
p ∈ Rn×3. A chain of local transformations h on the point-set followed by a
global max-pooling layer is used to create an overall feature space, i.e. a global
approximation function:

f(x1, ..., xn) ≈ g(h(x1), ..., h(xn)) f :2R
n×3

→ R
h :Rn×3 → RK

g :{RK1 × ...× RKn } → R

(5)

I.e. The overall meaning f (e.g. object class) of a point set p is approximated by
g. The advantage of the architecture is that it is robust against unordered point-
clouds and transformations. The independence form the viewpoint variance helps
to train with less training samples. Due to disadvantage for learning global fea-
tures of large point sets the authors developed a second version Point-Net++
[18].

Voxelization Voxelization approaches make use of the findings performing
CNNs on images. Therefore, 3D data is converted to voxels or grid cells. Af-
ter pre-processing standard machine learning architectures are applied. Un-
ordered point-sets are avoided. Famous applications are 3D object detectors
like [24,3,13,9]

Combined models Combined models have often shown most robust results
(e.g. 3D object detection) and mostly make use of different sensor types. [33]
investigated a method based on many local Point-Nets followed by a global 3D
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Fig. 1. Points2Pix Generator Architecture. The figure outlines the overall pipeline of
the Points2Pix generator. In general we split the design into three areas: Top: the
PointNet for a raw point-cloud processing; Bottom: Unet with skip connections for
image generation; Middle: Global feature space concatenation from point-set (top) and
image processing (bottom) pipeline. The model needs only a raw point-set as input,
which acts as condition c1. The point-sets coordinates will be directly processed by
PointNet. A projection into the image plane is used for UNet as input, whereas as
the camera projection matrix Cc works as condition c2. Additionally an arbitrary
background patch c3 is used for background generation.

CNN. [17] architectures works the other way around. With the aid of a camera
frustum points are filtered using a camera object detector. The filtered points
are processed for 3D object detection with only one Point-Net [16] up to the
last global max pooling layer ending in a 1× 1024 general feature space. A 8 bit
depth projection using the given camera projection matrix (c2)

Generative models Point Cloud GAN by [11] is a famous approach for point-
cloud generation. They do not perform any translation task, but they show that
the common discriminator is not suitable for raw point-clouds. [1] performs label
to point-cloud translation by using representative learning and introduce several
3D GAN derivatives. A similar study is published by [29] with focus on latent
space analysis. However, learning 3D representations to generate viewpoint based
images is missing within the research community. Therefore, we propose our
novel technique Points2Pix.
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3 Points2Pix

We propose a novel cGAN architecture for generating photo-realistic images
from pure point-clouds. Additionally, we describe conditions to bias the view-
point, distance, shape and the background within the latent space. Therefore,
we introduce the network architecture consisting of a generator G (converting
points to images), a discriminator D and the specific loss.

3.1 Generator

The objective of our generator G(c1, c2, c3) is to translate point-clouds into
realistic-looking images, while using three conditions c1, c2, c3. The whole ar-
chitecture is shown in Figure 1. The design is inspired by [7], which serves as
base.

Condition one First, c1 as raw point-cloud c1 = {x1, ..., xn} is processed by
PointNet [16]. The model samples n = 1024 points as input, applying an input
transformation and aggregates global point features using fully connected layers
and a generic max pooling (see equation 5):

f(c1) ≈ g(h(x1), ..., h(xn)) n = {1...1024} (6)

However, in contrast to the basic PointNet pipeline, the proposed model in-
corporates the the global 3D feature space (n×1024) using concatenation at the
innermost part within the Image encoder-decoder (UNet). Hence, h(x1), ..., h(xn)
are applied by the PointNet part, g is implicitly performed with the aid of UNets
decoder (see Fig. 1).

Condition two The second condition denoted as c2 = Cc is an image projection
of the point-cloud using a perspective projection matrix P

P =


s 0 0 0
0 s 0 0

0 0 − fc
fc−nc

−1

0 0 − fc·nc

fc−nc
0

 s =
1

tan( fov2 ·
π

180 )
xpixel = P ·Tcam

pc︸ ︷︷ ︸
Cc

xi (7)

yg(xpixel) =
|xcam − xi|

dmax
yb(xpixel) = I(xi) (8)

with a scaling s according to the horizontal field of view denoted as fov in
degrees, near clipping plane denoted as nc and far clipping plane fc. We en-
code radial depth (yg(xpixel) → green channel) with a normalized depth dmax

and intensities I(xi) of the measured reflectance for each point falling into the
projection image (yb(xpixel)→ blue channel). Before applying P , all points are
transformed into the camera coordinate system using the extrinsic calibration
Tcam

pc . In this way we ensure the consistent viewpoint during training compared
to the raw ground truth rgb image.



6 Milz et al.

+

c1

c2

c3

UNet with Skip

PointNetglobal

G G(c1 ,c2 ,c3 )

y

D

D

Fake

Real

Fig. 2. Training Points2Pix: The figure outlines the competing training structure. The
generators (G) output is a fake image based on its three conditions c1, c2, c3. The
discriminator D has to distinguish between fake D [G(c1, c2, c3)] and real images D[y].

Condition three Finally, the third condition c3 is an arbitrary image back-
ground patch constraining environmental texturing. A surrounding image patch
of the object cropped from the data set centered at the object origin up to a size
of 256 × 256 is extracted. During training the image background patch is com-
pliant to the ground truth. In test-mode, background patches can be randomly
mixed with point-clouds.

Both, c2 and c3 are combined to an 256×256 input image, which is fed into a
UNet with skip connections. At the innermost part, down sampled input features
are concatenated with the global 3D feature space from c1. After up-sampling
the output is a generated image with 256 × 256 pixels. Since, we use a cGAN
for training, there is no need for an unstructured Loss. The assessment of the
output is performed by the discriminator. As a note, we do not use a random
noise vector z (3). Noise is only incorporated as dropout similar to [7].

3.2 Discriminator

We use the Markovian discriminator PatchGAN [7] that tries to distinguish be-
tween fake D [G(c1, c2, c3)] and real images D[y] at the scale of N×N patches as
well as possible. In contrast to [7] we do not take the condition c1, c2, c3 into ac-
count. The output depends only on the generated image. Therefore, it consists
of an L1 term to force low-frequency correctness [34] and is applied convolu-
tionally across the image, averaging all responses. We only use 5 convolutional
layers with batch and instance normalization. In this way, it effectively solves
the problem to be able to model high- and low frequency structures at once.
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3.3 Loss

The objective of a basic GAN can be explained by an additive combination of
the generative network LG loss and the discriminative network LD loss. In order
to iteratively improve results during training LG should be reduced while LD
grows ideally. Consequently the basic cGAN loss can be described as follows
assuming the three input conditions (c1, c2, c3):

LcGAN (G,D) = Ey[log(D(c2, c3, y))]+

Ec1,c2,c3 [log(1−D(c2, c3, G(c1, c2, c3))]
(9)

Random noise z (3) is only realized using dropout. Compared to the typical
cGAN loss LcGAN (4), the model does not involve all conditions into the dis-
criminator. However, we implicitly force conditions to be compliant within the
output by using a weighted L1 term [27] in the overall loss. This part describes
the L1 difference between the output and the ground truth. The final loss can
be written as:

LPoints2Pix = LcGAN (G,D)+

λL1 · Ec1,c2,c3,y [||y −G(c1, c2, c3)||1]
(10)

4 Experiments

We conduct experiments on KITTI [5] for outdoor and SunRGBD [25] for in-
door scenarios to explore the general validity of the method. Additionally, we
show that the approach works for both, Lidar generated point-clouds and point-
clouds coming from by RGB-D sensors. Following the recommendations of [7],
the quality of the synthesized images is evaluated using an object based inception
score. Furthermore, classification and diversity scores are added as additional as-
sessment. Finally, we present some insights into our architecture decisions with
additional ablation experiments.

4.1 Metrics

To assess the realism of the produced images, YOLOv3 [19] is used for vali-
dation. It is an off-the-shelf state of the art 2D object detector pre-trained on
ImageNet and fine-tuned on the MS-Coco [12] data-set. This model includes
overlapping classes in comparison to our experiments, e.g. cars (for KITTI) and
chair (for SunRGBD). For the quantitative metrics we follow the instructions
recommended by [28].

Classification Score With the aid of YOLOv3 the number of correct detected
classes is measured. This could be achieved due to object centered image patches
in our experiments. The classification score Sc ratio is then given by the detection
ratio of fake images and ground truth (TP → true positives). The score could
be directly affected by adjusting the confidence rate of the 2D object detector:
Sc = TPfake/TPreal.
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Object based Inception Score 1 For positive results in terms of classification
we measure the intersection over union IoUPoints2Pix of the predicted bounding
box BB coming out of YOLOv3 for the ground truth and the accompanied fake
image.

IoUPoints2Pix =
BBfake ∩BBreal

BBfake ∪BBreal
| Sc = 1 (11)

Diversity Score We measure the diversity ability of our cGAN to produce a
wide spread of different output features using a diversity score. Our objective
is to bias the shape, distance and 3D characteristics of the object. We collect
randomly ten different background image patches, while keeping the point-cloud
constant (c1 = const and c2 = const, c3→{1...10}). This leads to different output
images that all should have the same 3D object inside. Therefore we compare the
ground truth YOLOv3 results and all the fake images with the aid of calculating
the mean Sc and the mean IoU .

4.2 Training Details

We train the network on both data sets separately for 100 epochs from scratch
each, using the ADAM optimizer [8], with a learning rate of 0.0002 and momen-
tum parameters β1 = 0.5, β2 = 0.999 such as λL1 = 100. For our background
condition c3, we use image patches with a border width of 15 pixels. We found us-
ing objects containing at least 700 points in their point-cloud as a good trade-off
for minimum point density as well as object size.

Kitti: In a pre-processing step, we split the 7481 training examples of the
3D object detection benchmark and use 3712 samples for training and 3769 for
evaluation. Therefore, we generate more than 20k training images for the class
car only using dmax = 60m. Thus, each camera image is cropped centered at
one labeled object with 256 × 256 pixels. At the same time, strongly occluded
or truncated objects are skipped.

SunRGBD: We extract 3267 images from the SunRGBD data-set containing
the following classes: chair, table, desk, pillow, sofa and garbage bin. The split
for training and validation is a 90/10 ratio. Image patches are extracted at the
object center from the cameras point of view with a size of 256×256 pixels with
dmax = 4m. The depth information comes from either MS kinect v1 or v2 and
the Intel real-sense. Since, those sensors do not measure a reflectance, we only
encode the radial depth inside the projection of c2. Hence, the projection image
contains one channel only.

4.3 Results

In Fig. 3 we show qualitative results for both data-sets and four different classes.
Widely distributed output images are produced by alternating the background

1 We call it inception score, because its similar to the proposal of [22]. We do not use
an inception model.
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Ground Truth   Input PC (c1,c2)                                                                         Fake images  (alternating background patches c3 → 1...10)      

KITTI (cars only) 

SunRGBD (table, chair, pillow) 

Fig. 3. Qualitative results of Points2Pix: The figure shows four different classes (cars
(top) → 3 samples of KITTI; table, chair, pillow (bottom) → in each case one sample
of SunRGBD). The results are taken from the test-set and never seen during training.
The left column shows the ground truth image and the corresponding point-cloud
in the second column. Fake images are generated based on a constant point-cloud
c1, c2 = const and ten alternating background patches c3 (column 3-10). The model
retains 3D characteristics of the objects.

while keeping the point-cloud constant. An interesting point is, that our model
learns 3D characteristics. This could be proven with different outputs (back-
grounds) where the objects geometry stays constant. Note, even the objects color
stays the same apart from slight differences in reflections and illuminations. This
means, the model associates a color with a specific 3D shape represented within
the 3D latent feature space. Hence, alternating backgrounds do not affect the
objects representation (geometry, color).

Tables 4.3 and 4.3, as well as Fig. 4 show quantitative results based on our
metrics described in 4.1. We achieve extreme positive results for KITTI (Sc,
IoU) and sufficient values for SunRGBD. SunRGBD includes a higher number
of occlusions which drastically affects the scores. Additionally, there are far less
samples on each class compared to cars in KITTI. Qualitative results of the
inception score are shown in Fig. 5.

Ablation study

Architectural Review For completeness, we test two derivative architectures of
our full pipeline (Fig. 6). In this way, we successfully show a point-cloud to image
translation only based on the point cloud itself (PointNet only). Doing this, the
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Fig. 4. Points2Pix classification score. The plot shows classification scores Sc for KITTI
and SUN-RGBD of our full Points2Pix architecture as well as two derivative architec-
tures (see Fig. 6) over confidence thresholds used for object detection with YOLOv3.
The full architecture outperforms for KITTI as well as for SunRGBD.

dataset class
IoUPoints2Pix

0.3 0.5 0.7

KITTI car 0.76 0.77 0.77

IoUPoints2Pix

0.1 0.2 0.3

SunRGBD
sofa 0.52 0.77 0.77
table 0.70 - -
chair 0.60 0.58 0.58

Table 1. The object based inception
score IoUPoints2Pix is calculated on the
test set for both data-sets. We show re-
sults for varying confidence thresholds,
i.e. 0.3, 0.5, 0.7 for KITTI and 0.1, 0.2,
0.3 for SunRGBD.

dataset class
IoUPoints2Pix

0.3 0.5 0.7

KITTI car 0.71 0.70 0.68

IoUPoints2Pix

0.1 0.2 0.3

SunRGBD
sofa 0.16 - -
table 0.24 0.22 -
chair 0.45 0.37 0.33

Table 2. Diversity score is calculated on
the test-set for both data-sets. Each sam-
ple is recomputed ten times with a ran-
dom image background patches. A minus
indicates no detections for the associated
class.

whole training procedure runs much faster due to far less parameters to optimize.
Nevertheless, sometimes a repeating noise with a high contrast similar to Moire
effects appears, which indicates instabilities and uncertainties. Generated objects
are in compliance with their 3D specifications, but in order to enlarge variance
of the outputs and to control background conditions c2 and c3 are required. We
found that the first part of the UNet and the view-point dependent projection
c2 especially help to reduce the mentioned noise effects. They provide additional
information in 2D space and stabilize the network. As a fallback we addition-
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Fig. 5. Qualitative object based inception results. The figure shows several generated
cars and chairs (left) together with their accompanied real images (right). Green bound-
ing boxes indicate detections on the real rgb image patches and red boxes visualize the
corresponding ones on the fake images. The blue value obtains the IoU of both.

PointNetglobal

GPoints2Pix_full

UNet with Skip

PointNetglobal

GPoints2Pix_half_UNet

UNet 

GPoints2Pix_no_PointNet

UNet with Skip

Fig. 6. Architectural review: Two derivatives from the basic Points2Pix G(c1, c2, c3)
(left) generator are tested regarding their classification score (see Fig.4). One on hand
a Unet only version G(c2, c3) (middle), on the other hand a PointNet only G(c1) (right)
version is tested. The full model outperforms the others.



12 Milz et al.

+20° (y)

+20° (y)

+180° (x)

+180° (x)

+180° (x)

Fig. 7. Learning 3D representations: The full Points2Pix architecture learns 3D repre-
sentations. The model offers a high flexibility in generation of different view points by
adjusting condition c2. The left part shows two examples of KITTI when rotating the
point-cloud slightly by 20 degrees around the y-axis. The right (SunRGBD) shows the
results when flipping the projection by 180 degrees around the x-axis.

ally test a Unet only version (Fig. 6). However, our full pipeline significantly
outperforms the derivative architectures in terms of classification (Fig. 4).

Rotations To further emphasize the influence of c2 and to show our models ability
to constrain object view-points, we rotate all input points xi for c2. We test that
for KITTI with a rotation of 20 degrees around the y-axis and for SunRGBD
with a rotation of 180 degrees around the x-axis (see Fig. 7). Note, that our
point-cloud condition c1 stays unmodified, because PointNet approximates a
symmetric function to be invariant of rotations. The test shows that rotations
can be implicitly learned. This offers many opportunities in generating 3D data.

5 Conclusion

In this work, we propose a novel approach for 3D point-cloud to image translation
based on conditional GANs. Our network handles multi-modal sources from
different domains and is capable of the translating unordered point-clouds to
regular image grids. We use three conditions to generate a high diversity, while
being flexible and keeping 3D characteristics. We prove that the model learns
3D characteristics, what even makes it possible to sample images from different
viewpoints. Those networks are applicable in a wide variety of applications,
especially 3D texturing.
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