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ABSTRACT

Recent studies on few-shot classification using transfer learning pose challenges
to the effectiveness and efficiency of episodic meta-learning algorithms. Transfer
learning approaches are a natural alternative, but they are restricted to few-shot
classification. Moreover, little attention has been on the development of proba-
bilistic models with well-calibrated uncertainty from few-shot samples, except for
some Bayesian episodic learning algorithms. To tackle the aforementioned issues,
we propose a new transfer learning method to obtain accurate and reliable models
for few-shot regression and classification. The resulting method does not require
episodic meta-learning and is called meta-free representation learning (MFRL).
MFRL first finds low-rank representation generalizing well on meta-test tasks.
Given the learned representation, probabilistic linear models are fine-tuned with
few-shot samples to obtain models with well-calibrated uncertainty. The proposed
method not only achieves the highest accuracy on a wide range of few-shot learn-
ing benchmark datasets but also correctly quantifies the prediction uncertainty. In
addition, weight averaging and temperature scaling are effective in improving the
accuracy and reliability of few-shot learning in existing meta-learning algorithms
with a wide range of learning paradigms and model architectures.

1 INTRODUCTION

Currently, the vast majority of few-shot learning methods are within the general paradigm of meta-
learning (a.k.a. learning to learn) (Bengio et al., 1991; Schmidhuber, 1987; Thrun & Pratt, 1998),
which learns multiple tasks in an episodic manner to distill transferrable knowledge (Vinyals et al.,
2016; Finn et al., 2017; Snell et al., 2017). Although many episodic meta-learning methods report
state-of-the-art (SOTA) performance, recent studies show that simple transfer learning methods with
fixed embeddings (Chen et al., 2019; Tian et al., 2020) can achieve similar or better performance in
few-shot learning. It is found that the effectiveness of optimization-based meta-learning algorithms
is due to reusing high-quality representation, instead of rapid learning of task-specific representation
(Raghu et al., 2020). The quality of the presentation is not quantitatively defined, except for some
empirical case studies (Goldblum et al., 2020). Recent machine learning theories (Saunshi et al.,
2021) indicate that low-rank representation leads to better sample efficiency in learning a new task.
However, those theoretical studies are within the paradigm of meta-learning and do not reveal how
to obtain low-rank representation for few-shot learning outside the realm of meta-learning. This
motivates us to investigate ways to improve the representation for adapting to new few-shot tasks in
a meta-free manner by taking the advantage of simplicity and robustness in transfer learning.

In parallel, existing transfer learning methods also have limitations. That is, the existing trans-
fer learning methods may not find representation generalizing well to unseen few-shot tasks (Chen
et al., 2019; Dhillon et al., 2020) , compared with state-of-the-art meta-learning methods (Ye et al.,
2020; Zhang et al., 2020). Although some transfer learning methods utilize knowledge distillation
and self-supervised training to achieve strong performance in few-shot classification, they are re-
stricted to few-shot classification problems (Mangla et al., 2020; Tian et al., 2020). To the best of
our knowledge, no transfer learning method is developed to achieve similar performance to meta-
learning in few-shot regression. As such, it is desirable to have a transfer learning method that finds
high-quality representation generalizing well to unseen classification and regression problems.

1



Under review as a conference paper at ICLR 2022

The last limitation of the existing transfer learning methods in few-shot learning is the lack of un-
certainty calibration. Uncertainty quantification is concerned with the quantification of how likely
certain outcomes are. Despite a plethora of few-shot learning methods (in fact, machine learning in
general) to improve the point estimation accuracy, few methods are developed to get probabilistic
models with improved uncertainty calibration by integrating Bayesian learning into episodic meta-
training (Grant et al., 2018; Finn et al., 2018; Yoon et al., 2018; Snell & Zemel, 2021). Few-shot
learning models can be used in risk-averse applications such as medical diagnosis (Prabhu et al.,
2019). The diagnosis decision is made on not only point estimation but also probabilities associated
with the prediction. The risk of making wrong decisions is significant when using uncalibrated mod-
els (Begoli et al., 2019). Thus, the development of proper fine-tuning steps to achieve well-calibrated
models is the key towards practical applications of transfer learning in few-shot learning.

In this paper, we develop a simple transfer learning method as our own baseline to allow easy regu-
larization towards more generalizable representation and calibration of prediction uncertainty. The
regularization in the proposed transfer learning method works for regression and classification prob-
lems so that we can handle both problems within a common architecture. The calibration procedure
is easily integrated into the developed transfer learning method to obtain few-shot learning models
with good uncertainty quantification. Therefore, the resulting method, called Meta-Free Repre-
sentation Learning (MFRL), overcomes the aforementioned limitations in existing transfer learning
methods for few-shot learning. Our empirical studies demonstrate that the relatively overlooked
transfer learning method can achieve high accuracy and well-calibrated uncertainty in few-shot
learning when it is combined with the proper regularization and calibration. Those two tools are
also portable to meta-learning methods to improve accuracy and calibration, but the improvement is
less significant compared with that of transfer learning.

We use stochastic weight averaging (SWA) (Izmailov et al., 2018), which is agnostic to loss function
types, as implicit regularization to improve the generalization capability of the representation. We
also shed light on that the effectiveness of SWA is due to its bias towards low-rank representation.
To address the issue of uncertainty quantification, we fine-tune appropriate linear layers during the
meta-test phase to get models with well-calibrated uncertainty. In MFRL, hierarchical Bayesian
linear models are used to properly capture the uncertainty from very limited training samples in
few-shot regression, whereas the softmax output is scaled with a temperature parameter to make the
few-shot classification model well-calibrated. Our method is the first one to achieve well-calibrated
few-shot models by only fine-tuning probabilistic linear models in the meta-test phase, without any
learning mechanisms related to the meta-training or representation learning phase.

Our contributions in this work are summarized as follows:

• We propose a transfer learning method that can handle both few-shot regression and clas-
sification problems with performance exceeding SOTA.

• For the first time, we empirically find the implicit regularization of SWA towards low-rank
representation, which is a useful property in transferring to few-shot tasks.

• The proposed method results in well-calibrated uncertainty in few-shot learning models
while preserving SOTA accuracy.

• The implicit regularization of SWA and temperature scaling factor can be applied to exist-
ing meta-learning methods to improve their accuracy and reliability in few-shot learning.

2 RELATED WORK

Episodic meta-learning approaches can be categorized into metric-based and optimization-based
methods. Metric-based methods project input data to feature vectors through nonlinear embeddings
and compare their similarity to make the prediction. Examples of similarity metrics include the
weighted L1 metric (Koch et al., 2015), cosine similarity (Qi et al., 2018; Vinyals et al., 2016), and
Euclidean distance to class-mean representation (Snell et al., 2017). Instead of relying on predefined
metrics, learnable similarity metrics are introduced to improve the few-shot classification perfor-
mance (Oreshkin et al., 2018; Sung et al., 2018). Recent metric-based approaches focus on devel-
oping task-adaptive embeddings to improve few-shot classification accuracy. Those task-adaptive
embeddings include attention mechanisms for feature transformation (Fei et al., 2021; Gidaris &
Komodakis, 2018; Ye et al., 2020; Zhang et al., 2021), graph neural networks (Garcia & Estrach,
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2018), implicit class representation (Ravichandran et al., 2019), and task-dependent conditioning
(Oreshkin et al., 2018; Yoon et al., 2020; 2019). Although metric-based approaches achieve strong
performance in few-shot classification, they cannot be directly applied to regression problems.

Optimization-based meta-learning approaches try to find transferrable knowledge and adapt to new
tasks quickly. An elegant and powerful meta-learning approach, termed model-agnostic meta-
learning (MAML), solves a bi-level optimization problem to find good initialization of model pa-
rameters (Finn et al., 2017). However, MAML has a variety of issues, such as sensitivity to neural
network architectures, instability during training, arduous hyperparameter tuning, and high com-
putational cost. On this basis, some follow-up methods have been developed to simplify, stabilize
and improve the training process of MAML (Antoniou et al., 2018; Flennerhag et al., 2020; Lee &
Choi, 2018; Nichol et al., 2018; Park & Oliva, 2019). In practice, it is very challenging to learn
high-dimensional model parameters in a low-data regime. Latent embedding optimization (LEO)
attempts to learn low-dimensional representation to generate high-dimensional model parameters
(Rusu et al., 2019). Meanwhile, R2-D2 (Bertinetto et al., 2019) and MetaOptNet (Lee et al., 2019)
reduce the dimensionality of trainable model parameters by freezing feature extraction layers during
inner loop optimization. Note that the proposed method is fundamentally different from R2-D2 and
MetaOptNet because our method requires neither episodic meta-learning nor bi-level optimization.

Transfer learning approaches first learn a feature extractor on all training data through standard
supervised learning, and then fine-tune a linear predictor on top of the learned feature extractor in a
new task (Chen et al., 2019). However, vanilla transfer learning methods for few-shot learning do not
take extra steps to make the learned representation generalizing well to unseen meta-test tasks. Some
approaches in this paradigm are developed to improve the quality of representation and boost the
accuracy of few-shot classification, including cooperative ensembles (Dvornik et al., 2019), knowl-
edge distillation (Tian et al., 2020), and auxiliary self-supervised learning (Mangla et al., 2020).
Nevertheless, those transfer learning methods are restricted to few-shot classification. MFRL aims
to find representation generalizing well from the perspective of low-rank representation learning,
which is supported by recent theoretical studies (Saunshi et al., 2021). Furthermore, MFLR is the
first transfer learning method that can handle both few-shot regression and classification problems
and make predictions with well-calibrated uncertainty.

3 BACKGROUND

3.1 EPISODIC META-LEARNING

In episodic meta-learning, the meta-training data contains T episodes or tasks, where the τ th episode
consists of dataDτ = {(xτ,j ,yτ,j)}Nτ

j=1 withNτ samples. Tasks and episodes are used interchange-
ably in the rest of the paper. Episodic meta-learning algorithms aim to find common model param-
eters θ which can be quickly adapted to task-specific parameters φτ (τ = 1, ..., T ). For example,
MAML-type algorithms assume φτ is one or a few gradient steps away from θ (Finn et al., 2017;
2018; Grant et al., 2018; Yoon et al., 2018), while other meta-learning approaches assume that φτ
and θ share the parameters in the feature extractor and only differ in the top layer (Bertinetto et al.,
2019; Lee et al., 2019; Snell et al., 2017).

3.2 STOCHASTIC WEIGHT AVERAGING

The idea of stochastic weight averaging (SWA) along the trajectory of SGD goes back to
Polyak–Ruppert averaging (Polyak & Juditsky, 1992). Theoretically, weight averaging results in
faster convergence for linear models in supervised learning and reinforcement learning(Bach &
Moulines, 2013; Lakshminarayanan & Szepesvari, 2018). In deep learning, we are more interested
in tail stochastic weight averaging (Jain et al., 2018), which averages the weights after T training
epochs. The averaged model parameters θSWA can be computed by running s additional training
epochs using SGD

θSWA =
1

s

T+s∑
i=T+1

θi, (1)
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where θi denotes the model parameters at the end of the i-th epoch. SWA has been applied to
supervised learning of deep neural neural networks to achieve higher test accuracy (Izmailov et al.,
2018).

4 METHODOLOGY

The proposed method is a two-step learning algorithm: meta-free representation learning followed
by fine-tuning. We employ SWA to make the learned representation low-rank and better generalize
to meta-test data. Given a meta-test task, a new top layer is fine-tuned with few-shot samples to
obtain probabilistic models with well-calibrated uncertainty. Note that MFRL can be used for both
regression and classification depending on the loss function. The pseudocode of MFRL is presented
in Appendix A.1.

4.1 REPRESENTATION LEARNING

Common representation can be learned via maximization of the likelihood of all training data
with respect to θ rather than following episodic meta-learning. To do so, we group the data
Dτ = {(xτ,j ,yτ,j)}Nτ

j=1 from all meta-training tasks into a single dataset Dtr. Given aggregated
training dataDtr = {X,Y}, representation can be learned by maximizing the likelihood p (Dtr | θ)
with respect to θ. Let θ = [θf ,W], where θf represents parameters in the feature extractor and W
denotes the parameters in the top linear layer. The feature extractor h(x) ∈ Rp is a neural network
parameterized by θf and outputs a feature vector of dimension p. The specific form of the loss
function depends on whether the task is regression or classification and can be given as follows:

LRP (θ) = − log p (Dtr | θ) =

{
LMSE(θ), regression
LCE(θ), classification

where

LMSE(θ) =
1

2N ′

T∑
τ=1

Nτ∑
j=1

(
yτ,j −w>τ h (xτ,j)

)2
, (2)

LCE(θ) = −
N ′∑
j=1

C∑
c=1

yj,c log
exp(w>c h(xj))∑C
c′=1 exp(w>c′h(xj))

(3)

For regression problems, the model learns T regression tasks (W = [w1, ...,wT ] ∈ R(p+1)×T )
simultaneously using the loss function LMSE given in Eq. 2, whereas the model learns a C-class
classification model 1 (W = [w1, ...,wC ] ∈ R(p+1)×C) for classification problems using the loss
function LCE in Eq. 3. The loss function - either Eq. 2 or 3 - can be minimized through standard
stochastic gradient descent, where N ′ =

∑T
τ=1Nτ is the total number of training samples.

Post-processing via SWA Minimizing the loss functions in Eq. 2 and 3 by SGD may not necessarily
result in representation that generalizes well to few-shot learning tasks in the meta-test set. The
last hidden layer of a modern deep neural network is high-dimensional and may contain spurious
features that over-fit the meta-training data. Recent meta-learning theories indicate that better sample
complexity in learning a new task can be achieved via low-rank representation, whose singular
values decay faster (Saunshi et al., 2021). We aim to find low-rank representation Φ = h(X)
without episodic meta-learning, which is equivalent to finding the conjugate kernel KC = ΦΦ>

with fast decaying eigenvalues. To link the representation with the parameter space, we can linearize
the neural network by the first-order Taylor expansion at θT and get the finite width neural tangent
kernel (NTK) KNTK(X,X) = J(X)J(X)>, where J(X) = ∇θfθ(X) ∈ RN ′×|θ| is the Jacobian
matrix, and KNTK is a composite kernel containing KC (Fan & Wang, 2020). The distributions
of eigenvalues for KNTK and KC are empirically similar. Analyzing KNTK could shed light on
the properties of KC. In parallel, KNTK shares the same eigenvalues of the Gauss-Newton matrix
G = 1

N ′ J(X)>J(X). For linearized networks with squared loss, the Gauss-Newton matrix G well

1C is the total number of classes in Dtr. Learning a C-class classification model solves all possible tasks in
the meta-training dataset because each task Dτ only contains a subset of C classes.
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approximates the Hessian matrix H when y is well-described by fθ(x) (Martens, 2020). This is
the case when SGD converges to θT within a local minimum basin. A Hessian matrix with a lot
of small eigenvalues corresponds to a flat minimum, where the loss function is less sensitive to the
perturbation of model parameters (Keskar et al., 2017). It is known that averaging the weights after
SGD convergence in a local minimum basin pushes θT towards the flat side of the loss valley (He
et al., 2019). As a result, SWA could result in a faster decay of eigenvalues in the kernel matrix, and
thus low-rank representation. Our conjecture about SWA as implicit regularization towards low-rank
representation is empirically verified in Section 5.

4.2 FINE-TUNING

After representation learning is complete, W is discarded and θf is frozen in a new few-shot task.
Given the learned representation, we train a new probabilistic top layer in a meta-test task using few-
shot samples. The new top layer will be configured differently depending on whether the few-shot
task is a regression or a classification problem.

In a few-shot regression task, we learn a new linear regression model y = w>h(x) + ε on a fixed
feature extractor h(x) ∈ Rp with few-shot training data D = {(xi, yi)}ni=1, where w denotes the
model parameters and ε is Gaussian noise with zero mean and variance σ2. To avoid interpolation
on few-shot training data (n � p), a Gaussian prior p(w | λ) =

∏p
i=0N (wi | 0, λ) is placed over

w, where λ is the precision in the Gaussian prior. However, it is difficult to obtain an appropriate
value for λ in a few-shot regression task because no validation data is available in D.

Hierarchical Bayesian linear models can be used to obtain optimal regularization strength and
grounded uncertainty estimation using few-shot training data only. To complete the specifica-
tion of the hierarchical Bayesian model, the hyperpriors on λ and σ2 are defined as p(λ) =
Gamma (λ | a, b) and p(σ−2) = Gamma(σ−2 | c, d), respectively. The hyper-priors become very
flat and non-informative when a, b, c and d are set to very small values. The posterior over all latent
variables given the data is p

(
w, λ, σ2 | X,y

)
, where X = {x}ni=1 and y = {yi}ni=1. However, the

posterior distribution p
(
w, λ, σ2 | X,y

)
is intractable. The iterative optimization based approxi-

mate inference (Tipping, 2001) is chosen because it is highly efficient. The point estimation for λ
and σ2 is obtained by maximizing the marginal likelihood function p

(
y | X, λ, σ2

)
. The posterior

of model parameters p
(
w | X,y, λ, σ2

)
is calculated using the estimated λ and σ2. Previous two

steps are repeated alternately until convergence.

The predictive distribution for a new sample x∗ is

p
(
y∗ | x∗,X,y, λ, σ2

)
=

∫
p
(
y∗ | x∗,w, σ2

)
p
(
w | X,y, λ, σ2

)
dw, (4)

which can be computed analytically because both distributions on the right hand side of Eq. 4
are Gaussian. Consequently, hierarchical Bayesian linear models avoids over-fitting on few-shot
training data and quantifies predictive uncertainty.

In a few-shot classification task, a new logistic regression model is learned with the post-processed
representation. A typical K-way n-shot classification task D = {(xi, yi)}nKi=1 consists of K
classes (different from meta-training classes) and n training samples per class. Minimizing an
un-regularized cross-entropy loss results in a significantly over-confident classification model be-
cause the norm of logistic regression model parameters W ∈ R(p+1)×K becomes very large when
few-shot training samples can be perfectly separated in the setting nK � p. A weighted L2 regu-
larization term is added to the cross-entropy loss to mitigate the issue

L(W) = −
nK∑
i=1

K∑
c=1

yi,c log
exp(w>c h(xi))∑K
c′=1 exp(w>c′h(xi))

+ λ

K∑
c=1

w>c wc, (5)

where λ is the regularization coefficient, which affects the prediction accuracy and uncertainty. It
is difficult to select an appropriate value of λ in each of the meta-test tasks due to the lack of
validation data in D. We instead treat λ as a global hyper-parameter so that the value of λ should
be determined based on the accuracy on meta-validation data. Note that the selected λ with high
validation accuracy does not necessarily lead to well calibrated classification models. As such, we
introduce the temperature scaling factor (Guo et al., 2017) as another global hyper-parameter to
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scale the softmax output. Given a test sample x∗, the predicted probability for class c becomes

pc =
exp(w>c h(x∗)/T )∑K
c′=1 exp(w>c′h(x∗)/T )

, (6)

where T is the temperature scaling factor. In practice, we select the L2 regularization coefficient λ
and the temperature scaling factor T as follows. At first, we set T to 1, and do grid search on the
meta-validation data to find the λ resulting in the highest meta-validation accuracy. However, fine-
tuning λ does not ensure good calibration. It is the temperature scaling factor that ensures the good
uncertainty calibration. Similarly, we do grid search of T on the meta-validation set, and choose
the temperature scaling factor resulting in the lowest expected calibration error (Guo et al., 2017).
Note that different values of T do not affect the classification accuracy because temperature scaling
is accuracy preserving.

5 EXPERIMENTS

We follow the standard setup in few-shot learning literature. The model is trained on a meta-training
dataset and hyper-parameters are selected based on the performance on a meta-validation dataset.
The final performance of the model is evaluated on a meta-test dataset. The proposed method is
applied to few-shot regression and classification problems and compared against a wide range of
alternative methods.

5.1 FEW-SHOT REGRESSION RESULTS

Sine waves (Finn et al., 2017) and head pose estimation (Patacchiola et al., 2020) datasets are used to
evaluate the performance of MFRL in few-shot regression. We use the same backbones in literature
(Patacchiola et al., 2020) to make fair comparisons. Details of the few-shot regression experiments
can be found in Appendix A.2.

The results for few-shot regression are summarized in Table 1. In the sine wave few-shot regression,
MFRL outperforms all meta-learning methods, demonstrating that high-quality representation can
be learned in supervised learning, without episodic meta-learning. Although DKT with a spectral
mixture (SM) kernel achieves high accuracy, the good performance should be attributed to the strong
inductive bias to periodic functions in the SM kernel (Wilson & Adams, 2013). Additional results for
MFRL with different activation functions are reported in Appendix A.3. In the head pose estimation
experiment, MFRL also achieves the best accuracy. In both few-shot regression problems, SWA
results in improved accuracy, suggesting that SWA can improve the quality of features and facilitate
the learning of downstream tasks. In Fig. 1, uncertainty is correctly estimated by the hierarchical
Bayesian linear model with learned features using just 10 training samples.
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Figure 1: Sine wave regression and uncertainty
quantification (10 training samples). The true
and the estimated (by MFRL) standard deviation
of data generation noise are 0.1, and 0.093.

Sine wave (2-layer MLP) MSE
MAML (Finn et al., 2017) 0.67± 0.06
Bayesian MAML (Yoon et al., 2018) 0.54± 0.05
ALPaCA (Harrison et al., 2018) 0.14± 0.09
R2D2 (Bertinetto et al., 2019) 0.46± NA
DKT+RBF (Patacchiola et al., 2020) 1.38± 0.03
DKT+Spectral (Patacchiola et al., 2020) 0.08± 0.06
MFRL (w.o. SWA) 0.023± 0.016
MFRL 0.016± 0.008

Head pose (3-layer Conv Net) MSE
MAML (Finn et al., 2017) 0.21± 0.01
Bayesian MAML (Yoon et al., 2018) 0.18± 0.01
DKT+Spectral (Patacchiola et al., 2020) 0.10± 0.01
MFRL (w.o. SWA) 0.033± 0.006
MFRL 0.027± 0.005

Table 1: 10-shot regression on sine waves and
head pose estimation.
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5.2 FEW-SHOT CLASSIFICATION RESULTS

We conduct few-shot classification experiments on four widely used few-shot image recognition
benchmarks: miniImageNet (Ravi & Larochelle, 2017), tieredImageNet (Ren et al., 2018), CIFAR-
FS (Bertinetto et al., 2019), and FC100 (Oreshkin et al., 2018). In addition, we test our approach on
a cross-domain few-shot classification task from the miniImageNet to CUB. The experiment details
about the few-shot classification datasets can be found in Appendix A.2. The proposed method is
applied to three widely used network architectures: ResNet-12 (Lee et al., 2019; Ravichandran et al.,
2019), wide ResNet (WRN-28-10) (Dhillon et al., 2020; Rusu et al., 2019), and a 4-layer convolu-
tional neural network with 64 channels (Chen et al., 2019; Patacchiola et al., 2020) (in Appendix
A.3).

Table 2: Few-shot classification results on miniImageNet and tieredImageNet.

Method Backbone
miniImageNet 5-way tieredImageNet 5-way

1-shot 5-shot 1-shot 5-shot

Matching Net (Vinyals et al., 2016) ResNet-12 63.08 ± 0.80 75.99 ± 0.60 68.50 ± 0.92 80.60 ± 0.71

Proto Net (Snell et al., 2017) ResNet-12 60.37 ± 0.83 78.02 ± 0.57 65.65 ± 0.92 83.40 ± 0.65

Proto Net + SWA ResNet-12 63.51 ± 0.82 81.98 ± 0.58 67.95 ± 0.85 84.76 ± 0.66

MAML (Finn et al., 2017) ResNet-12 56.58 ± 1.84 70.85 ± 0.91 - -

MAML + SWA ResNet-12 58.21 ± 1.86 72.47 ± 0.87 - -

AdaResNet (Munkhdalai et al., 2018) ResNet-12 56.88 ± 0.62 71.94 ± 0.57 - -

TADAM (Oreshkin et al., 2018) ResNet-12 58.50 ± 0.30 76.70 ± 0.30 - -

Baseline++ (Chen et al., 2019) ResNet-12 60.83 ± 0.81 77.81 ± 0.76 68.64 ± 0.86 80.47 ± 0.67

Baseline++ + SWA ResNet-12 65.72 ± 0.80 81.26 ± 0.68 70.01 ± 0.82 84.39 ± 0.64

TapNet (Yoon et al., 2019) ResNet-12 61.65 ± 0.15 76.36 ± 0.10 63.08 ± 0.15 80.26 ± 0.12

MetaOptNet (Lee et al., 2019) ResNet-12 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53

Ensemble (Dvornik et al., 2019) ResNet-18 59.48 ± 0.65 75.62 ± 0.42 - -

DSN (Simon et al., 2020) ResNet-12 62.64 ± 0.66 78.83 ± 0.45 66.22 ± 0.75 82.79 ± 0.48

DKT (Patacchiola et al., 2020) ResNet-12 61.29 ± 0.57 76.25 ± 0.51 67.21 ± 0.52 79.69 ± 0.53

FEAT (Ye et al., 2020) ResNet-12 66.78 ± 0.20 82.05 ± 0.14 70.80 ± 0.23 84.79 ± 0.16

DeepEMD (Zhang et al., 2020) ResNet-12 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58

Distill (Tian et al., 2020) ResNet-12 64.82 ± 0.60 82.14 ± 0.43 71.52 ± 0.69 86.03 ± 0.49

MFRL (w.o. SWA) ResNet-12 62.27 ± 0.86 80.23 ± 0.57 70.03 ± 0.77 84.42 ± 0.64

MFRL ResNet-12 67.18 ± 0.79 83.81 ± 0.53 71.58 ± 0.79 86.87 ± 0.62

LEO (Rusu et al., 2019) WRN-28-10 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.03 81.44 ± 0.09

Fine-tune (Dhillon et al., 2020) WRN-28-10 57.73 ± 0.62 78.17 ± 0.49 66.58 ± 0.70 85.55 ± 0.48

Inductive SIB (Hu et al., 2020) WRN-28-10 60.12 ± 0.56 78.17 ± 0.35 69.20 ± 0.58 84.96 ± 0.36

MetaFun (Xu et al., 2020) WRN-28-10 64.13 ± 0.13 80.82 ± 0.17 67.27 ± 0.14 83.28 ± 0.12

MFRL (w.o. SWA) WRN-28-10 61.83 ± 0.82 80.12 ± 0.88 69.89 ± 0.79 84.42 ± 0.66

MFRL WRN-28-10 66.42 ± 0.80 82.26 ± 0.61 71.47 ± 0.84 86.34 ± 0.65

Table 3: Few-shot classification results on CIFAR-FS and FC100.

Method Backbone
CIFAR-FS 5-way FC100 5-way

1-shot 5-shot 1-shot 5-shot

Proto Net (Snell et al., 2017) ResNet-12 72.2 ± 0.7 83.5 ± 0.5 41.5 ± 0.7 57.0 ± 0.7

TADAM (Oreshkin et al., 2018) ResNet-12 - - 40.1 ± 0.4 56.1 ± 0.4

Baseline++ (Chen et al., 2019) ResNet-12 72.2 ± 0.9 84.2 ± 0.6 43.1 ± 0.7 55.7 ± 0.7

MetaOptNet (Lee et al., 2019) ResNet-12 72.8 ± 0.7 85.0 ± 0.5 41.1 ± 0.6 55.5 ± 0.6

MTL (Sun et al., 2019) ResNet-12 - - 45.1 ± 1.8 57.6 ± 0.9

Shot-free (Ravichandran et al., 2019) ResNet-12 69.1 ± NA 84.7 ± NA - -

TEAM (Qiao et al., 2019) ResNet-12 70.4 ± NA 81.3 ± NA - -

SIB (Hu et al., 2020) ResNet-12 70.0 ± 0.5 83.5 ± 0.4 - -

DSN (Simon et al., 2020) ResNet-12 72.3 ± 0.8 85.1 ± 0.6 - -

MABAS (Kim et al., 2020) ResNet-12 73.5 ± 0.9 85.6 ± 0.6 42.3 ± 0.7 58.1 ± 0.7

Distill (Tian et al., 2020) ResNet-12 73.9 ± 0.8 86.9 ± 0.5 44.6 ± 0.7 60.9 ± 0.6

MFRL (w.o. SWA) ResNet-12 71.4 ± 0.8 86.1 ± 0.5 42.5 ± 0.7 59.1 ± 0.7

MFRL ResNet-12 74.0 ± 0.8 87.4 ± 0.6 45.3 ± 0.8 61.1 ± 0.7

Fine-tune (Dhillon et al., 2020) WRN-28-10 68.7 ± 0.7 86.1 ± 0.6 38.2 ± 0.5 57.2 ± 0.6

MFRL (w.o. SWA) WRN-28-10 71.7 ± 0.9 86.2 ± 0.9 41.5 ± 0.7 57.3 ± 0.7

MFRL WRN-28-10 76.7 ± 0.9 88.6 ± 0.5 45.1 ± 0.8 61.0 ± 0.8

The results of the proposed method and previous SOTA methods using similar backbones are re-
ported in Table 2 and 3. The proposed method achieves the best performance in most of the exper-
iments when compared with previous SOTA methods. Our method is closely related to Baseline++
(Chen et al., 2019) and fine-tuning on logits (Dhillon et al., 2020). Baseline++ normalizes both
classification weights and features, while the proposed method only normalizes features. It allows
our method to find a more accurate model in a more flexible hypothesis space, given high-quality
representation. Compared with fine-tuning on logits, our method obtains better results by learning
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a new logistic regression model on features, which store richer information about the data. Some
approaches pretrain a C-class classification model on all training data and then apply highly sophis-
ticated meta-learning techniques to the pretrained model to achieve SOTA performance (Rusu et al.,
2019; Sun et al., 2019). Our approach with SWA outperforms those pretrained-then-meta-learned
models, which demonstrates that SWA obtains high-quality representation that generalizes well to
unseen tasks. Compared with improving representation quality for few-shot classification via self-
distillation (Tian et al., 2020), the computational cost of SWA is significantly smaller because it
does not require training models from scratch multiple times. Moreover, SWA can be applied to find
good representation for both few-shot regression and classification, while previous transfer learning
approaches can only handle few-shot classification problems (Mangla et al., 2020; Tian et al., 2020).

MFRL is also applied to the cross-domain few-shot classification task as summarized in Table 4.
MFRL outperforms other methods in this challenging task, indicating that the learned representation
has strong generalization capability. We use the same hyperparameters (training epochs, learning
rate, learning rate in SWA, SWA epoch, etc.) as in Table 2. The strong results indicate that MFRL
is robust to hyperparameter choice. Surprisingly, meta-learning methods with adaptive embeddings
do not outperform simple transfer learning methods like Baseline++ when the domain gap between
base classes and novel classes is large. We notice that Tian et al. (2020) also reports similar results
that transfer learning methods show superior performance on a large-scale cross-domain few-shot
classification dataset. We still believe that adaptive embeddings should be helpful when the domain
gap between base and novel classes is large. Nevertheless, how to properly train a model to obtain
useful adaptive embeddings in novel tasks is an open question.

Table 4: Cross-domain few-shot classification results on miniImageNet to CUB.

Method Backbone
miniImageNet to CUB 5-way

1-shot 5-shot

MAML (Finn et al., 2017) WRN-28-10 39.06 ± 0.47 55.04 ± 0.42

LEO (Rusu et al., 2019) WRN-28-10 41.45 ± 0.54 56.66 ± 0.48

MTL (Sun et al., 2019) WRN-28-10 43.15 ± 0.44 56.89 ± 0.41

Matching Net (Vinyals et al., 2016) WRN-28-10 42.04 ± 0.57 53.08 ± 0.45

SIB (Hu et al., 2020) WRN-28-10 43.27 ± 0.44 59.94 ± 0.42

Baseline (Chen et al., 2019) WRN-28-10 42.89 ± 0.41 62.12 ± 0.40

Baseline++ (Chen et al., 2019) WRN-28-10 42.12 ± 0.39 60.21 ± 0.39

MFRL (w.o. SWA) WRN-28-10 43.68 ± 0.47 63.86 ± 0.42

MFRL WRN-28-10 46.98 ± 0.51 66.92 ± 0.42

5.3 EFFECTIVE RANK OF THE REPRESENTATION

The rank of representation defines the number of independent bases. For deep learning, noise in
gradients and numerical imprecision can cause the resulting matrix to be full-rank. Therefore, simply
counting the number of non-zero singular values may not be an effective way to measure the rank
of the representation. To compare the effective ranks, we plot the normalized singular values of
the representation of meta-test data in Fig. 2, where the representation with SWA has a faster
decay in singular values, thus indicating the lower effective rank of the presentation with SWA.
The results empirically verify our conjecture that SWA is an implicit regularizer towards low-rank
representation.

0 100 200 300 400 500 600
Singular value index i

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
sin

gu
la

r v
al

ue
 

i/
m

ax

miniImageNet

w.o. SWA: ilog i = 68.49
SWA: ilog i = 58.49

0 100 200 300 400 500 600
Singular value index i

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
sin

gu
la

r v
al

ue
 

i/
m

ax

tieredImageNet

w.o. SWA: ilog i = 83.98
SWA: ilog i = 80.01

0 100 200 300 400 500 600
Singular value index i

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
sin

gu
la

r v
al

ue
 

i/
m

ax

CIFAR-FS

w.o. SWA: ilog i = 40.94
SWA: ilog i = 33.63

0 100 200 300 400 500 600
Singular value index i

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
sin

gu
la

r v
al

ue
 

i/
m

ax

FC100

w.o. SWA: ilog i = 40.22
SWA: ilog i = 34.34

Figure 2: Normalized singular values for representation with and without SWA. The metric
−
∑
σ̄i log σ̄i is used to measure the effective rank of the representation, where σ̄i = σi/σmax.

Faster decay in singular values indicates that fewer dimensions capture the most variation in all
dimensions, thus lower effective rank.
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Figure 3: Study on the temperature scaling factor for 5-way 5-shot classification using ResNet-12
for the proposed MFRL and existing episodic meta learning methods. Uncalibrated models are in
the first row, and calibrated models with the temperature scaling factor are in the second row.

5.4 FEW-SHOT CLASSIFICATION RELIABILITY

The proposed method not only achieves high accuracy in few-shot classification but also makes the
classification uncertainty well-calibrated. A reliability diagram can be used to check model calibra-
tion visually, which plots an identity function between prediction accuracy and confidence when the
model is perfectly calibrated (DeGroot & Fienberg, 1983). Fig. 3 shows the classification reliability
diagrams along with widely used metrics for uncertainty calibration, including expected calibration
error (ECE) (Guo et al., 2017), maximum calibration error (MCE) (Naeini et al., 2015), and Brier
score (BRI) (Brier, 1950). ECE measures the average binned difference between confidence and
accuracy, while MCE measures the maximum difference. BRI is the squared error between the
predicted probabilities and one-hot labels. MAML is over-confident because tuning a deep neural
network on few-shot data is prone to over-fitting. Meanwhile, Proto Net and Matching Net are better
calibrated than MAML because they do not fine-tune the entire network during testing. Neverthe-
less, they are still slightly over-confident. The results indicate that MFRL with a global temperature
scaling factor can learn well-calibrated models from very limited training samples.

5.5 APPLICATION IN META-LEARNING

Meanwhile, we also apply SWA to episodic meta-learning methods, such Proto Net, MAML and
Matching Net, to improve their classification accuracy. The results in Table 5 indicate that SWA can
improve the few-shot classification accuracy in both transfer learning and episodic meta-learning.
SWA is orthogonal to the learning paradigm and model architecture. Thus, SWA can be applied to
a wide range of few-shot learning methods to improve accuracy.

Table 5: Application of SWA on meta-learning methods for the miniImageNet dataset

Method
Proto Net MAML Matching Net

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
w.o. SWA 60.37 78.02 56.58 70.85 63.08 75.99

SWA 63.51 81.98 58.21 72.47 63.76 76.78

Furthermore, the temperature scaling factor can be applied to calibrate meta-learning methods, in-
cluding MAML, Proto Net, and Matching Net. The reliability diagrams in Fig. 3 indicate that
the temperature scaling factor not only calibrates classification uncertainty of transfer learning ap-
proaches, such as the proposed MFRL, but also makes the classification uncertainty well-calibrated
in episodic meta-learning methods. Therefore, the temperature scaling factor can be applied to a
wide range of few-shot classification methods to get well-calibrated uncertainty, while preserving
the classification accuracy.
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6 DISCUSSION

SWA has been applied to supervised learning of deep neural networks (Izmailov et al., 2018; Athi-
waratkun et al., 2019) and its effectiveness was attributed to convergence to a solution on the flat
side of an asymmetric loss valley (He et al., 2019). However, it does not explain the effectiveness
of SWA in few-shot learning because the meta-training and meta-testing losses are not comparable
after the top layer is retrained by the few-shot support data in a meta-test task. The effectiveness
of SWA in few-shot learning must be related to the property of the representation. Although our
results empirically demonstrate that SWA results in low-rank representation, further research about
their connection is needed.

Explicit regularizers can also be used to obtain simple input-output functions in deep neural net-
works and low-rank representation, including L1 regularization, nuclear norm, spectral norm, and
Frobenius norm (Bartlett et al., 2017; Neyshabur et al., 2018; Sanyal et al., 2020). However, some
of those explicit regularizers are not compatible with standard SGD training or are computationally
expensive. In addition, it is difficult to choose the appropriate strength of explicit regularization. Too
strong explicit regularization can bias towards simple solutions that do not fit the data. In compar-
ison, SWA is an implicit regularizer that is completely compatible with the standard SGD training
without much extra computational cost. Thus, it can be easily combined with transfer learning and
meta-learning to obtain more accurate few-shot learning models. In parallel, SWA is also robust
to the choice of the hyperparameters - the learning rate and training epochs in the SWA stage (see
details in Appendix A.4).

7 CONCLUSIONS

In this article, we propose MFRL to obtain accurate and reliable few-shot learning models. SWA is
an implicit regularizer towards low-rank representation, which generalizes well to unseen meta-test
tasks. The proposed method can be applied to both classification and regression tasks. Extensive
experiments show that our method not only outperforms other SOTA methods on various datasets
but also correctly quantifies the uncertainty in prediction.
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A APPENDIX

A.1 PSEUDO CODE FOR MFRL

Algorithm 1 Meta-free representation learning for few-shot learning

Merge all training tasks Dtr = {Dτ}Tτ=1
Initialize model parameters θ = [θf ,W]
Maximize the likelihood on all training data p (Dtr | θ) using SGD

Minimize the squared loss for regression problems
Minimize the cross-entropy loss for classification problems

Run SWA to obtain θSWA

Discard W and freeze θf
Learn a new top layer using support data D in a test task:

Learn a hierarchical Bayesian linear model for a regression task
Learn a logistic regression model with the temperature scaling factor for a classification task

A.2 EXPERIMENT DETAILS

Sine waves are generated by y = A sin(x−ϕ)+ε, where amplitudeA ∈ [0.1, 5.0], phase ϕ ∈ [0, π]
and ε is white noise with standard deviation of 0.1 (Finn et al., 2017). Each sine wave contains 200
samples by sampling x uniformly from [−5.0, 5.0]. We generate 500 waves for training, validation
and testing, respectively. All sine waves are different from each other. We use the same backbone
network described in MAML (Finn et al., 2017): a two-layer MLP with 40 hidden units in each
layer. We use the SGD optimizer with a learning rate of 10−3 over 8 × 104 training iterations and
run SWA over 2× 104 training iterations with a learning rate of 0.05.
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Head pose regression data is derived from the Queen Mary University of London multi-view face
dataset (Gong et al., 1996). It contains images from 37 people and 133 facial images per person.
Facial images cover a view sphere of 90◦ in yaw and 120◦ in tilt. The dataset is divided into 3192
training samples (24 people), 1064 validation samples (8 people), and 665 test samples (5 people).
We use the same feature extractor described in literature (Patacchiola et al., 2020): a three-layer
convolutional neural network, each with 36 output channels, stride 2, and dilation 2. We train the
model on the training people set for 300 epochs using the SGD optimizer with a learning rate of
0.01 and run 25 epochs of SWA with a learning rate of 0.01.

miniImageNet is a 100-class subset of the original ImageNet dataset (Deng et al., 2009) for few-
shot learning (Vinyals et al., 2016). Each class contains 600 images in RGB format of the size 84
× 84. miniImageNet is split into 64 training classes, 16 validation classes, and 20 testing classes,
following the widely used data splitting protocol (Ravi & Larochelle, 2017).

tieredImageNet is another subset of the ImageNet dataset for few-shot learning (Ren et al., 2018).
It contains 608 classes grouped into 34 categories, which are split into 20 training categories (351
classes), 6 validation categories (97 classes), and 8 testing categories (160 classes). Compared with
miniImageNet, training classes in tieredImageNet are sufficiently distinct from test classes, making
few-shot classification more difficult.

CIFAR-FS is a derivative of the original CIFAR-100 dataset by randomly splitting 100 classes into
64, 16, and 20 classes for training, validation, and testing, respectively (Bertinetto et al., 2019).

FC100 is another derivative of CIFAR-100 with minimized overlapped information between train
classes and test classes by grouping the 100 classes into 20 superclasses (Oreshkin et al., 2018). They
are further split into 60 training classes (12 superclasses), 20 validation classes (4 superclasses), and
20 test classes (4 superclasses).

miniImageNet to CUB is a cross-domain few-shot classification task, where the models are trained
on miniImageNet and tested on CUB (Welinder et al., 2010). Cross-domain few-shot classification
is more challenging due to the big domain gap between two datasets. We can better evaluate the
generalization capability in different algorithms. We follow the experiment setup in Yue et al. (2020)
and use the WRN2-28-10 as the backbone.

The backbone model is trained on all training classes using C-class cross-entropy loss by the SGD
optimizer (momentum of 0.9 and weight decay of 1e-4) with a mini-batch size of 64. The learning
rate is initialized as 0.05 and is decayed by 0.1 after 60, 80, and 90 epochs (100 epochs in total).
After the SGD training converges, we run 100 epochs of SWA with a learning rate of 0.02. Note
that MFRL is not sensitive to training epochs and learning rates in SWA (see Appendix A.4). The
training images are augmented with random crop, random horizontal flip, and color jitter.

During testing, we conduct 5 independent runs of 600 randomly sampled few-shot classification
tasks from test classes and calculate the average accuracy. Each task contains 5 classes, 1 × 5 or
5× 5 support samples, and 75 query samples. A logistic regression model is learned using only the
support samples. The classification accuracy is evaluated on the query samples.

A.3 ADDITIONAL RESULTS ON FEW-SHOT REGRESSION AND CLASSIFICATION

The additional results on few-shot regression using different activation functions are reported in
Table 6. MFRL achieves high accuracy with different activation functions.

Table 6: 10-shot regression on sine waves with different activation functions.

Sine wave MSE
MFRL (ReLU activation) 0.16± 0.51

MFRL (tanh activation) 0.018± 0.011

MFRL (erf activation) 0.016± 0.008

The few-shot classification results using a 4-layer convolutional neural network (or similar archi-
tectures) are reported in Table 7 and 8. Similar to the results using ResNet-12 and WRN-28-10,
the proposed method outperforms a wide range of meta-learning approaches. Our method is only
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Figure 4: Reliability diagrams for 5-way 5-shot classification on miniImageNet

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 0.0118
MCE: 0.0233
BRI: 0.4890

miniImageNet 1-shot

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 0.0086
MCE: 0.0180
BRI: 0.4017

tieredImageNet 1-shot

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 0.0111
MCE: 0.0201
BRI: 0.3688

CIFAR-FS 1-shot

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 0.0056
MCE: 0.0456
BRI: 0.6806

FC100 1-shot

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 0.0040
MCE: 0.0135
BRI: 0.2791

miniImageNet 5-shot

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 0.0036
MCE: 0.0581
BRI: 0.2063

tieredImageNet 5-shot

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 0.0065
MCE: 0.0343
BRI: 0.1848

CIFAR-FS 5-shot

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ECE: 0.0066
MCE: 0.0268
BRI: 0.5173

FC100 5-shot

Figure 5: Reliability diagrams for 5-way few-shot classification using ResNet-12 backbone
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Table 7: Few-shot classification results on miniImageNet and tieredImageNet.

Method Backbone
miniImageNet 5-way tieredImageNet 5-way

1-shot 5-shot 1-shot 5-shot
Matching Net (Vinyals et al., 2016) Conv-4 43.56± 0.84 55.31± 0.73 54.48± 0.93 71.32± 0.78

Proto Net (Snell et al., 2017) Conv-4 49.42± 0.78 68.20± 0.66 53.31± 0.89 72.69± 0.74

MAML (Finn et al., 2017) Conv-4 48.70± 1.75 63.11± 0.92 - -
SNAIL (Mishra et al., 2018) Conv-4 45.10± NA 55.20± NA - -
VERSA (Gordon et al., 2019) Conv-5 53.40± 1.82 67.37± 0.86 - -
Meta Mixture (Jerfel et al., 2019) Conv-4 49.60± 1.50 64.60± 0.92 - -
RelationNet (Sung et al., 2018) Conv-4 50.44± 0.82 65.32± 0.70 54.48± 0.93 71.32± 0.78

FPA (Qiao et al., 2018) Conv-4 54.53± 0.40 67.87± 0.20 - -
Shot-free (Ravichandran et al., 2019) Conv-4 49.07± 0.43 65.73± 0.36 48.19± 0.43 65.50± 0.39

Baseline++ (Chen et al., 2019) Conv-4 47.15± 0.49 66.18± 0.18 54.67± 0.61 72.37± 0.67

FEAT (Ye et al., 2020) Conv-4 55.15± 0.20 71.61± 0.16 - -
DKT (Patacchiola et al., 2020) Conv-4 49.73± 0.07 64.00± 0.09 - -
MFRL Conv-4 53.62± 0.71 71.52± 0.60 56.24± 0.84 72.88± 0.76

Table 8: Few-shot classification results on CIFAR-FS and FC100.

Method Backbone
CIFAR-FS 5-way FC100 5-way

1-shot 5-shot 1-shot 5-shot
Proto Net (Snell et al., 2017) Conv-4 55.5± 0.7 72.0± 0.6 35.3± 0.6 48.6± 0.6

MAML (Finn et al., 2017) Conv-4 58.9± 1.9 71.5± 1.0 38.1± 1.7 50.4± 1.0

RelationNet (Sung et al., 2018) Conv-4 55.0± 1.0 69.3± 0.8 - -
Shot-free (Ravichandran et al., 2019) Conv-4 55.1± 0.5 71.7± 0.4 - -
Baseline++ (Chen et al., 2019) Conv-4 55.1± 0.9 72.3± 0.8 35.2± 0.7 49.8± 0.7

MFRL Conv-4 64.3± 0.9 79.4± 0.5 40.1± 0.8 54.4± 0.7

second to few-shot embedding adaptation with transformer (FEAT) (Ye et al., 2020) on miniIma-
geNet dataset. Recently, meta-learned attention modules are built on top of the convolutional neural
network to get improved few-shot classification accuracy. Direct comparison to those methods with
attention modules (Ye et al., 2020; Fei et al., 2021; Zhang et al., 2021) may not be fair because recent
studies show that transformer itself can achieve better results than convolutional neural networks in
image classification (Dosovitskiy et al., 2021). It is difficult to determine whether the performance
improvement is due to the meta-learning algorithm or the attention modules. To make a fair compar-
ison, we add convolutional block attention modules (Woo et al., 2018) on top of ResNet12 features
(before global average pooling). As shown in Fig. 9, MFRL with attention modules achieves com-
parable results with MELR and IEPT.

The uncertainty calibration results of MFRL with the temperature scaling factor are presented in Fig.
5. The prediction confidence aligns well with the prediction accuracy. It demonstrates that MFRL
with the temperature scaling factor results in well calibrated models.

A.4 SENSITIVITY OF MFRL

The performance of MFRL is not sensitive to learning rates in SWA. As shown in Fig. 6, the
representation learned by SWA generalizes better than the one from standard SGD, as long as the
learning rate in SWA is in a reasonable range. In addition, the prediction accuracy on meta-test tasks
keeps stable even after running SWA for many epochs on the training data. Therefore, MFRL is not
sensitive to training epochs. This desirable property makes the proposed method easy to use when
solving few-shot learning problems in practice.
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Table 9: Results of MFRL with attention modules

Method Backbone
miniImageNet 5-way tieredImageNet 5-way

1-shot 5-shot 1-shot 5-shot
FEAT (Ye et al., 2020) ResNet-12 66.78± 0.20 82.05± 0.14 70.80± 0.23 84.79± 0.16

MELR (Fei et al., 2021) ResNet-12 67.40± 0.43 83.40± 0.28 72.14± 0.51 87.01± 0.35

IEPT (Zhang et al., 2021) ResNet-12 67.05± 0.44 82.90± 0.30 72.24± 0.50 86.73± 0.34

MFRL ResNet-12 67.18± 0.79 83.81± 0.53 71.58± 0.79 86.87± 0.62

MFRL + Attention ResNet-12 67.51± 0.78 83.97± 0.51 71.97± 0.80 86.99± 0.60
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Figure 6: Evaluation on different learning rates and training epochs in SWA. (a) 5-way 5-shot ac-
curacy on miniImageNet with ResNet12 backbone; (b) 5-way 5-shot accuracy on CIFAR-FS with
WRN-28-10 backbone.

A.5 COMPARISON WITH EXPONENTIAL MOVING AVERAGING

Exponential moving average (EMA) decays the importance of model weights from early training
epochs exponentially. Let θavg ← aθavg + (1− a) θnew. We try EMA with different values of a.
In Table 10, EMA improves the performance when a is within a reasonable range. Note that EMA
introduces one extra hyperparameter, the forgetting factor. It makes EMA less desirable in practice.

Table 10: Comparison between SWA and EMA

Method Backbone
miniImageNet 5-way

1-shot 5-shot
No averaging ResNet-12 62.27± 0.86 80.23± 0.57

EMA a = 0.9 ResNet-12 66.03± 0.83 82.90± 0.58

EMA a = 0.99 ResNet-12 66.05± 0.84 82.98± 0.57

EMA a = 0.999 ResNet-12 62.49± 0.81 80.73± 0.62

SWA ResNet-12 67.18± 0.79 83.81± 0.53

A.6 HIERARCHICAL BAYESIAN LINEAR CLASSIFICATION MODEL

Similar to the hierarchical Bayesian linear regression model, the prior distribution over w is p(w |
λ) =

∏p
i=0N (wi | 0, λ), where λ is the precision in the Gaussian prior. The hyperprior on λ is

defined as p(λ) = Gamma (λ | a, b). The posterior over all latent variables given the data is

p (w, λ | X,y) =
p (y | X,w, λ) p (w | λ) p(λ)

p(y | X)
(7)
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Figure 7: Reliability diagrams of hierarchical Bayesian linear classification models with flat and
non-informative hyperpriors. The backbone is ResNet-12.

MCMC sampling (Hoffman & Gelman, 2014) is used to avoid potential deterioration in predictive
performance due to approximated inference. A flat and non-informative hyperprior (a = b = 10−6)
is used because no prior knowledge is available. In Table 11, the hierarchical Bayesian linear clas-
sification model achieves slightly worse performance than the logistic regression model. However,
the classification model is not well calibrated, as shown in Fig. 7.

Table 11: Comparison between logistic regression and hierarchical Bayesian linear models on 5-way
5-shot classification benchmarks using ResNet-12 backbone.

Top layer miniImageNet tieredImageNet CIFAR-FS FC-100
Logistic regression 83.81 86.87 87.4 61.1
Hierarchical Bayesian linear classification 81.94 85.32 85.9 59.2

After fine-tuning a and b using the meta-validation data, it is possible to get better calibrated classi-
fication models on test tasks. Besides, the classification accuracy is still slightly worse than logistic
regression after hyperparameter tuning. Our observations align with a recent study, which shows that
the Bayesian classification model cannot achieve similar performance to the non-Bayesian counter-
part without tempering the posterior (Wenzel et al., 2020). We do not further experiment tempered
posterior in the hierarchical Bayesian linear classification model because it introduces an extra tem-
perature hyperparameter that requires tuning. The original purpose of introducing the hierarchical
Bayesian model is to get an accurate and well calibrated classification model without hyperparam-
eter tuning. Consequently, the hierarchical Bayesian model is not used in few-shot classification
in that hierarchical Bayesian linear classification models cannot achieve high accuracy and good
uncertainty calibration from a non-informative hyperprior. If hyperparameter tuning is inevitable, it
is much easier to tune a logistic regression model with a temperature scaling factor, compared with
tuning a hierarchical Bayesian model. Furthermore, the computational cost of learning a hierarchi-
cal Bayesian linear classification model via MCMC sampling is much larger than that of learning a
logistic regression model.
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