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Abstract

Recently, the Successor Features and Generalized Policy Improvement
(SF&GPI) framework has been proposed as a method for learning, compos-
ing, and transferring predictive knowledge and behavior. SF&GPI works by
having an agent learn predictive representations (SFs) that can be combined
for transfer to new tasks with GPI. However, to be effective this approach
requires state features that are useful to predict, and these state-features
are typically hand-designed. In this work, we present a novel neural net-
work architecture, “Modular Successor Feature Approximators” (MSFA),
where modules both discover what is useful to predict, and learn their
own predictive representations. We show that MSFA is able to better gen-
eralize compared to baseline architectures for learning SFs and modular
architectures for learning state representations.

1 Introduction

Consider a household robot that needs to learn tasks including picking up dirty dishes and
cleaning up spills. Now consider that the robot is deployed and encounters a table with both
a spill and a set of dirty dishes. Ideally this robot can combine its training behaviors to
both clean up the spill and pickup the dirty dishes. We study this aspect of generalization:
combining knowledge from multiple tasks.

Combining knowledge from multiple tasks is challenging because it is not clear how to
synthesize either the behavioral policies or the value functions learned during training. This
challenge is exacerbated when an agent also needs to generalize to novel appearances and
environment configurations. Returning to our example, our robot might need to additionally
generalize to both novel dirty dishes and to novel arrangements of chairs.

Successor features (SFs) and Generalized Policy Improvement (GPI) provide a mechanism
to combine knowledge from multiple training tasks (Barreto et al., 2017; 2020). SFs are
predictive representations that estimate how much state-features (known as “cumulants”)
will be experienced given a behavior. By assuming that reward has a linear relationship
between cumulants and a task vector, an agent can efficiently compute how much reward it
can expect to obtain from a given behavior. If the agent knows multiple behaviors, it can
leverage GPI to compute which behavior would provide the most reward (see Figure 2 for
an example). However, SF&GPI commonly assume hand-designed cumulants and don’t have
a mechanism for generalizing to novel environment configurations.

Modular architectures are a promising method for generalizing to distributions outside
of the training distribution (Goyal et al., 2019; Madan et al., 2021). Recently, Carvalho
et al. (2021a) presented “FARM” and showed that learning multiple state modules enabled
generalization to environments with unseen environment parameters (e.g. to larger maps
with more objects). In this work, we hypothesize that modules can further be leveraged to
discover state-features that are useful to predict.
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Figure 1: (1) FARM learns multiple state modules. This promotes generalization to novel
environments. However, it has no mechanism for combining task solutions. (2) USFA learns
a single monolithic architecture for predicing SFs and can combine task solutions. However,
it relies on hand-designed state features and has no mechanism for generalization to novel
environments. (3) We combine the benefits of both. We leverage modules for reward-driven
discovery of state features that are useful to predict. These form the basis of their own
predictive representations (SFs) and enables combining task solutions in novel environments.

We present “Modular Successor Feature Approximators” (MSFA), a novel neural network for
discovering, composing, and transferring predictive knowledge and behavior via SF&GPI.
MSFA is composed of a set of modules, which each learn their own state-features and
corresponding predictive representations (SFs). Our core contribution is showing that
an inductive bias for modularity can enable reward-driven discovery of state-features that
are useful for zero-shot transfer with SF&GPI. We exemplify this with a simple state-
feature discovery method presented in Barreto et al. (2018) where the dot-product between
state-features and a task vector is regressed to environment reward. This method enabled
transfer with SF&GPI in a continual learning setting but had limited success in the zero-
shot transfer settings we study. While there are other methods for state-feature discovery,
they add training complexity with mutual information objectives (Hansen et al., 2019) or
meta-gradients (Veeriah et al., 2019). With MSFA, by adding only an architectural bias for
modularity, we discover state-features that (1) support zero-shot transfer competitive with
hand-designed features, and (2) enable zero-shot transfer in visually diverse, procedurally
generated environments. We are hopeful that our architectural bias can be leveraged with
other discovery methods in future work.

2 Related Work on Generalization in RL

Hierarchical RL (HRL) is one dominant approach for combining task knowledge. The
basic idea is that one can sequentially combine policies in time by having a “meta-policy”
that sequentially activates “low-level” policies for protracted periods of time. By leveraging
hand-designed or pre-trained low-level policies, one can generalize to longer instructions (Oh
et al., 2017; Corona et al., 2020), to new instruction orders (Brooks et al., 2021), and to
novel subtask graphs (Sohn et al., 2020; 2022). We differ in that we focus on combining
policies concurrently in time as opposed to sequentially in time. To do so, we develop a
modular neural network for the SF&GPI framework.

SFs are predictive representations that represent the current state as a summary of the
successive features to follow (see §3 for a formal definition). By combining them with
Generalized Policy Improvement, researchers have shown that they can transfer behaviors
across object navigation tasks (Borsa et al., 2019; Zhang et al., 2017; Zhu et al., 2017), across
continuous control tasks (Hunt et al., 2019), and within an HRL framework (Barreto et al.,
2019). However, these works tend to require hand-designed cumulants which are cumbersome
to design for every new environment. In our work, we integrate SFs with Modular RL to
facilitate reward-driven discovery of cumulants and improve successor feature learning.

Modular RL (MRL) (Russell & Zimdars, 2003) is a framework for generalization by
combining value functions. Early work dates back to (Singh, 1992), who had a mixture-
of-experts system select between separately trained value functions. Since then, MRL
has been applied to generalize across robotic morphologies (Huang et al., 2020), to novel
task-robot combinations (Devin et al., 2017; Haarnoja et al., 2018), and to novel language
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instructions (Logeswaran et al., 2021). MSFA, is the first to integrate MRL with SF&GPI.
This integration enables combining task solutions in novel environment configurations.

Generalizing to novel environment configurations with modules. Goyal et al.
(2019) showed that leveraging modules to learn a state function improved out-of-distribution
generalization. Carvalho et al. (2021a) showed that a modified attention mechanism led
to strong generalization improvements with RL. MSFA differs from both in that it employ
modules for learning value functions in the form of SFs. This enables a principled way to
compose task knowledge while additionally generalizing to novel environment configurations.

3 Problem Setting and Background

We study a reinforcement learning agent’s ability to transfer knowledge between tasks in
an environment. During training, the experiences ntrain tasks Mtrain = {Mi}ntrain

i=1 , sampled
from a training distribution ptrain(M). During testing, the agent is evaluated on ntest
tasks, {Mi}ntest

i=1 , sampled from a testing distribution ptest(M). Each taskMi is specified as
Partially Observable Markov Decision Process (POMDP),Mi = 〈Se,A,X , R, p, fx〉. Here,
Se, A and X are the environment state, action, and observation spaces. p(·|set , at) specifies
the next-state distribution based on taking action at in state set , and fx(s

e
t ) maps the

underlying environment state to an observation xt. We focus on tasks where rewards are
parameterized by a task vector w, i.e. rwt = R(set , at, s

e
t+1, w) is the reward obtained for

transition (set , at, s
e
t+1) given task vector w. Since this is a POMDP, we need to learn a

state function that maps histories to agent state representations. We do so with a recurrent
function: st = sθ(xt, st−1, at−1). Given this learned state, we want to obtain a behavioral
policy π(st) that best maximises the expected reward it will obtain when taking an action
at at a state st: Q

π,w
t = Qπ,w(st, at) = Eπ [

∑∞
t=0 γ

trwt ].

Figure 2: High-level diagram of how MSFA can be leveraged for transfer with
SF&GPI. During training, we can have the agent learn policies for tasks—e.g. “open
drawer” and “open fridge”. Each task leads the agent to experience different aspects of the
environment—e.g. a “fork” during “open drawer” or an “apple” during “open fridge”. We can
leverage MSFA to have different modules learn different “cumulants”, φ, and SFs, ψ. For
example, module 1 (θ1) can estimate SFs for apple cumulants. Module SFs are combined to
form the SF for a policy. When the agent wants to transfer its knowledge to a test task—e.g.,
“get milk”—it can compute Q-values for that task as a dot-product with the SFs of each
training task. The highest Q-value is then used to select actions.

Transfer with SF&GPI. In order to leverage SFs (Barreto et al., 2017), one assumes
an agent has access to state features known as “cumulants”, φt = φ(st, at, st+1). Given a
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behavioral policy π(a|s), SFs are a type of value function that use φt as pseudo-rewards:

ψπt = ψπ(st, at) = Eπ

[ ∞∑
i=0

γiφt+i

]
(1)

If reward is (approximately) rwt = φ>t w, then action-values can be decomposed as Qπ,wt =

ψπt
>w. This is interesting because it provides an easy way to reuse task-agnostic features

ψπt for new tasks.

We can re-use the SFs we’ve learned from training tasks Mtrain for transfer with GPI.
Assume we have learned (potentially optimal) policies {πi}ntrain

i=1 and their corresponding SFs
{ψπi(s, a)}ntrain

i=1 . Given a test task wtest, we can obtain a new policy with GPI in two steps:
(1) compute Q-values using the training task SFs (2) select actions using the highest Q-value.
This operation is summarized as follows:

π(st;wtest) ∈ argmax
a∈A

max
i∈{1,...,ntrain}

{Qπi,wtest

t } = argmax
a∈A

max
i∈{1,...,ntrain}

{ψπit
>wtest} (2)

This is useful because the GPI theorem states that π will perform as well as all of the training
policies, i.e. that Qπ,wtest(s, a) ≥ maxiQ

πi,wi(s, a)∀(s, a) ∈ (S ×A) (Barreto et al., 2017).

SF&GPI enable transfer by exploiting structure in the RL problem: a policy that maximizes
a value function is guaranteed to perform at least as well as the policy that defined that
value function. However, SF&GPI relies on combining a fixed set of SFs. Another form
of transfer comes from “Universal Value Function Approximators” (UVFAs) (Schaul et al.,
2015), which add the task-vector w as a parameter to a Q-approximator parameterized by
θ, Qθ(s, a, w). If Qθ is smooth with respect to w, then Qθ should generalize to test tasks
nearby to train tasks in task space. Borsa et al. (2019) showed that one could combine
the benefits of both with “Universal Successor Feature Approximators”. Since rewards rw,
and therefore task vectors w, reference deterministic task policies πw, one can parameterize
successor feature approximators with task-vectors ψ̃πw = ψ̃w ≈ ψθ(s, a, w). However, USFA
assumed hand-designed cumulants. We introduce an architecture for reward-driven discovery
of cumulants and improved function approximation of universal successor features.

4 Modular Successor Feature Approximators

We propose a new architecture Modular Successor Feature Approximators (MSFA) for
approximating SFs, shown in Figure 3. Our hypothesis is that learning cumulants and
SFs with modules improves zero-shot composition of task knowledge with SF&GPI. MSFA
accomplishes this by learning n state modules {sθk}nk=1 that evolve with independent
parameters θk and have sparse inter-module information flow. MSFA then produces modular
cumulants {φ̃(k)t }nk=1 and SFs {ψ̃π,kt }nk=1 by having their computations depend only on
individual module-states. For example, a cumulant may correspond to information about
apples, and would be a function only of the module representing state information related to
apples. This is in contrast to prior work, which learns a single monolithic prediction module
for computing cumulants and SFs (see Figure 3).

The rest of section is structured as follows. In section §4.1, we derive Modular Successor
Feature Learning within the Modular RL framework. We then describe our architecture,
MSFA, for learning modular successor features in §4.2. In §4.3, we describe how to generate
behavior with MSFA. Finally, we describe the learning algorithm for MSFA in section §4.4.

4.1 Modular Successor Feature Learning

Following the Modular RL framework (Russell & Zimdars, 2003), we assume that reward
has an additive structure R(st, at, st+1) =

∑
k R

k(st, at, st+1) =
∑
k R

(k)
t , where R(k)

t is
the reward of the k-th module. We enforce that every module decomposes reward into an
inner-product between its own task-description w(k) and task-agnostic cumulants φ(k) ∈ R:
R

(k)
t = φ

(k)
t · w(k). Here, we simply break up the task vector into n pieces so individual
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Figure 3: Left: Universal Successor Feature Approximator (USFA) learns a
single, monolithic successor feature estimator that uses hand-designed cumulants. Right:
Modular Successor Feature Approximator (MSFA) learns a set of successor feature
modules, each with their own functions for (a) updating module-state, (b) computing
cumulants, and (c) estimating successor features. Modules then share information with an
attention mechanism. We hypothesize that isolated module computations facilitate learning
cumulants that suppot generalization with GPI.

modules are responsible for subsets of the task vector. This allows us to decompose the
action-value function as

Qπ(st, at, w) =

n∑
k=1

Qπ,k(st, at, w
(k)) =

n∑
k=1

ψπ,k(st, at) · w(k) (3)

where we now have modular SFs {ψπ,k(s, a)}nk=1 (see the Appendix for a derivation). Rather
than hand-designing modules or cumulants, we aim to discover them from the environment
reward signal.

4.2 Architecture

We learn a set of modules with states St = {s(k)t }nk=1. They update at each time-step t with
the observation xt, the previous module-state s(k)t−1, and information from other modules
Aθ(s

(k)
t−1,St−1). Following prior work (Santoro et al., 2018; Goyal et al., 2019; Carvalho et al.,

2021a), we have Aθ combine transformer-style attention (Vaswani et al., 2017) with a gating
mechanism (Parisotto et al., 2020) to enforce that inter-module interactions are sparse. Since
Aθ is not the main contribution of this paper, we describe these computations in more detail
with our notation in the Appendix. We summarize the high-level update below.

s
(k)
t = sθk(xt, s

(k)
t−1, Aθ(s

(k)
t−1,St−1)) (4)

We learn modular cumulants and SFs by having sets of cumulants and SFs depend on
individual module-states. Module cumulants depend on the module-state from the current
and next time-step. Module SFs depend on the current module-state and on their subset of
the task description. We summarize this below:

φ̃
(k)
t = φθ(s

(k)
t , at, s

(k)
t+1) ψ̃w,kt = ψθ(s

(k)
t , at, w

(k)) (5)

We highlight that cumulants share parameters but differ in their input. This suggests that
the key is not having cumulants and SFs with separate parameters but that they are functions
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of sparse subsets of state (rather than all state information). We show evidence for this
hypothesis in Figure 6.

We concatenate module-specific cumulants and SFs to form the final outputs: φ̃t =[
φ̃
(1)
t , . . . , φ̃

(n)
t

]
and ψ̃wt = ψθ(st, at, w) =

[
ψ̃w,1t , . . . , ψ̃w,nt

]
. Note that cumulants, are only

used during learning, update with the module-state from the next time-step.

4.3 Behavior

During training, actions are selected in proportion to Q-values computed using task SFs
as π(st, w) ∝ Q̃(st, a, w) = ψθ(st, a, w)

>
w. In practice we use an epsilon-greedy policy,

though one can use other choices. During testing, we compute policies with GPI as
π(st, wtest) ∈ argmaxamaxz∈Mtrain

{ψθ(st, a, z)>wtest}, where Mtrain are train task vectors.

4.4 Learning Algorithm

MSFA relies on three losses. The first loss, LQ, is a standard Q-learning loss, which MSFA
uses to learn optimal policies for the training tasks. The main difference here is that MSFA
uses a particular parameterization of the Q-function Qπw,w(s, a) = ψπw(s, a)>w. The second
loss, Lψ, is an SF learning loss, which we use as a regularizer to enforce that the Q-values
follow the structure in the reward function rwt = φ>t w. For this, we again apply standard
Q-learning but using SFs as value functions and cumulants as pseudo-rewards. The final
loss, Lφ is a loss for learning cumulants that grounds them in the environment reward signal.
The losses are summarised as follows

LQ = ||rt + γψθ(st+1, a
′, w)>w − ψθ(st, at, w)>w||2 (6)

Lψ = ||φ̃t + γψθ(st+1, a
′, w)− ψθ(st, at, w)||2 (7)

Lφ = ||rwt − φ̃t
>
w||2 (8)

where a′ = argmaxa ψθ(st+1, a, w)
>w. Selecting the next action via the combination of all

modules ensures they individually convergence to optimal values (Russell & Zimdars, 2003).
The final loss is L = αQLQ + αψLψ + αφLφ.

5 Experiments

Figure 4: We study an agent’s ability to combine task knowledge in three envi-
ronments. (a) In BabyAI, an agent learns to pick up one object type at a time during
training. During testing, the agent must pickup combinations of object types while avoiding
other object types. This is the setting used by USFA which assumed hand-designed
cumulants. (b) In Procgen, we study extending this form of generalization to a visually
diverse, procedurally generated environment. (c) In Minihack, we go beyond combining
object navigation skills. Here, an agents needs to combine (1) avoiding teleportation traps,
(2) avoiding monsters, and (3) partial visibility around the agent.

We study generalization when training behaviors must be combined concurrently in time in
the presence of novel object appearances and layouts. The need to combine training behaviors
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tests how well MSFA can leverage SF&GPI. Generalization to novel object appearances
and layouts tests how well MSFA’s modular construction supports generalization to novel
environment configurations.

Baselines. (1) Universal Value Function Approximator (UVFA) (Schaul et al., 2015),
which takes the task as input: Qθ(s, w). This comparison shows shows the transfer benefits of
SF&GPI. (2) UVFA with Feature-Attending Recurrent Modules (UVFA+FARM)
instead takes state-factors as input Qθ(s(1), . . . , s(n), w). Each state-factor s(k) is the output
of a FARM module. (3) Modular Value Function Approximator(MVFA) is an
adaptation of (Haarnoja et al., 2018) where modules learn individual Q-values Q(i)

θ (s(i), w(i)).
Comparing to UVFA+FARM and MVFA enables us to study the benefits of leveraging
modules for learning value functions in the form of SFs. (4) Universal Successor Function
Approximator (USFA) (Borsa et al., 2019) leverages a single monolithic function for
successor features with hand-designed cumulants. USFA is an upper-bound baseline that
allows us to test the quality of cumulants and successor features that MSFA learns. We also
test a variant of USFA with learned cumulants, USFA-Learned-φ, which shows how the
architecture degrades without oracle cumulants.

Implementation. We implement the state modules of MSFA with FARMmodules (Carvalho
et al., 2021b). For UVFA and USFA, we learn a state representation with an LSTM (Hochre-
iter & Schmidhuber, 1997). We implement all φ, ψ, and Q functions with Mutli-layer
Perceptrons. We train UVFA and UVFA+FARM with n-step Q-learning (Watkins & Dayan,
1992). When learning cumulants, USFA and MSFA have the exact same losses and learning
alogirthm. They both learn Q-values and SFs with n-step Q-learning. We use n = 5. When
not learning cumulants, following (Borsa et al., 2019), USFA only learns SFs with n-step
Q-learning. All agents are built with JAX (Bradbury et al., 2018) using the open-source
ACME codebase (Hoffman et al., 2020) for reinforcement learning.

5.1 Combining object navigation task knowledge

Figure 5: MSFA matches USFA, which has hand-designed cumulants. We show
mean and standard error generalization episode return across 10 runs. We put a task’s L2
distance to the closest train task in parenthesis. USFA best generalizes to novel combinations
of picking up and avoiding objects. Once USFA learns cumulants, its performance degrades
significantly. UVFA-based methods struggle as more objects should be avoided or tasks are
further in distance to train tasks.

MSFA learns modular functions for computing φ and estimating ψ. We hypothesize that this
facilitates learning cumulants that respond to different aspects of the environment (e.g. to
different object categories). This leads to the following research questions. R1: Can we
recover prior generalization results that relied on hand-designed cumulants for different
object categories? R2: How important is it to learn modular functions for φ and ψ? R3:
Without GPI, do learning modular functions for φ and ψ still aid in generalization?
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Setup. We implement a simplified version of the object navigation task of (Borsa et al.,
2019) in the (Chevalier-Boisvert et al., 2019) BabyAI environment. The environment consists
of 3 instances of 4 object categories. Observations are partial and egocentric. Actions:
the agent can rotate left or right, move forward, or pickup an object. When it picks up
an object, following (Borsa et al., 2019), the object is respawned somewhere on the grid.
Task vectors lie in w ∈ R4 with training tasks being the standard unit vectors. For example,
[0, 1, 0, 0] specifies the agent must obtain objects of category 2. Generalization tasks are
linear combinations of training tasks. For example, [−1, 1,−1, 1] specifies the agent must
obtain categories 2 and 4 while avoiding categories 1 and 3. Borsa et al. (2019) showed that
USFA could generalize with hand-designed cumulants that described whether an object was
picked up. We describe challenges for this task in detail in the Appendix.

R1: MSFA is competitive with USFA, which uses oracle φ. Figure 5 shows USFA
with a similar generalization trend to (Borsa et al., 2019). Tasks get more challenging as
they are further from train tasks or involve avoiding more objects. For simply going to
combinations of objects, USFA-Learned-φ does slightly worse than MSFA. However, with
more objects to avoid, all methods except MSFA (including USFA-Learned-φ) degrades
significantly. For comparison, we show performance by an oracle bread-first-search policy with
access to ground-truth state (BFS State Oracle). All methods have room for improvement
when objects must be avoided. In the appendix, we present heat-maps for how often object
categories were picked up during different tasks. We find that MSFA most matches USFA,
while USFA-Learned-φ commonly picks up all objects regardless of task.

Figure 6: Learning modular φ and ψ is key to generalization and improves
generalization even without GPI. We show mean and standard error generalization
episode return across 10 runs. (a) We ablate having modular functions for φθ and ψθ.
Generalization results degrade significantly. (b) We ablate leveraging GPI for generalization
from all SF-based methods. MSFA without GPI can outperform both USFA-Learned-φ with
GPI and USFA without GPI. This shows the utility of modularity for generalization.
R2: Learning modular φ and ψ functions is critical for generalization. Learning
an entangled function corresponds to learning a monolithic function for ψ or φ where we
concatenate module-states, e.g. ψ̃wt = ψθ(s

(1)
t , . . . , s

(n)
t , a, w). Modular functions correspond

to equation 5. Figure 6 (a) shows that without modular functions for φ and ψ, performance
severely degrades. This also highlights that a naive combination of USFA+FARM—with
entangled functions for φ and ψ—does not recover our generalization performance.

R3: Modularity alone improves generalization. For all SF-based methods, we remove
GPI and select actions with a greedy policy: π(s) = argmaxa ψθ(st, a, w)

>
w. Figure 6

(b) shows that GPI is critical for generalization with USFA as expected. USFA-Learned-φ
benefits less from GPI (presumably because of challenges in learning φ). Interestingly, MSFA
can generalize relatively well without GPI, sometimes doing better than USFA without GPI.

5.2 Combining object navigation task knowledge with novel appearances
and environment configurations

Beyond generalizing to combinations of tasks, agents will need to generalize to different
layouts and appearances of objects. R4: Can MSFA enable combining task knowledge in a
visually diverse, procedurally generated environment?

Setup. We leverage the “Fruitbot” environment within ProcGen (Cobbe et al., 2020). Here,
an agent controls a paddle that tries to obtain certain categories of objects while avoiding
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others. When the agent hits a wall or fence, it dies and the episode terminates. If the agent
collects a non-task object, nothing happens. Observations are partial. Actions: At each
time-step the agent moves one step forward and can move left or right or shoot pellets to
open fences. Training and generalization tasks follow the same setup as §5.1.

Figure 7: MSFA is able to combine task knowledge in a visually diverse, procedu-
rally generated ProcGen environment. We find that no method is able to do well when
there are objects to avoid (w = [1, 0, 0,−1]) in this setting (see text for more). However, as
more objects need to be collected MSFA best generalizes (10 runs).

R4: MSFA enables combining task knowledge of object navigation tasks in a
visually diverse, procedurally generated environment. Figure 7 shows that when
an agent has to generalize to collecting more objects, modular architectures generalize best,
with MSFA doing best. When objects have to be avoided, we see that no architecture does
well, though MSFA tends to do better. We observe that avoiding objects leads agents to
hit walls. Since the agent always moves forward at each time-step in Fruibot, this makes
avoiding objects a particularly challenging type of generalization.

6 Discussion and Conclusion

We have presented “Modular Successor Feature Approximators”, a modular neural network
for learning cumulants and SFs produced by their own modules. We first showed that MSFA
is competitive with prior object navigation generalization results that relied on hand-designed
cumulants (§5.1). Afterwards, we showed that MSFA improves an agent’s ability to combine
task knowledge in a visually diverse, procedurally generated environment (§5.2). We also
show that MSFA can combine solutions of heterogeneous tasks (§B). Our ablations show
that learning modular cumulants and SFs is critical for generalization with GPI.

We compared MSFA to (1) USFA, a monolithic architecture for learning cumulants and
SFs; (2) FARM, an architecture which learns multiple state-modules but combines them
with a monolithic Q-value function. Our results show that when learning cumulants, MSFA
improves generalization with SF&GPI compared to USFA. Additionally, without GPI, MSFA
as an architecture improves generalization as compared to both FARM and USFA.

Limitations. While we demonstrated reward-driven discovery of cumulants for transfer with
SF&GPI, we focused on relatively simple task encodings. Future work can extend this to more
expressive encodings such as language embeddings. Another limitation is that we did not
explore more sophisticated state-feature discovery methods such as meta-gradients (Veeriah
et al., 2019). Nonetheless, we think that MSFA provides an important insight for future
work: that modularity is a simple but powerful inductive bias for discovering state-features
that enable zero-shot transfer with SF&GPI.

Future directions. SFs are useful for exploration (Janz et al., 2019; Machado et al.,
2020); for discovering and combining options (Barreto et al., 2019; Hansen et al., 2019); for
transferring policies across environments (Zhang et al., 2017); for improving importance
sampling (Fujimoto et al., 2021); and for learning policies from other agents (Filos et al.,
2021). We hope that future work can leverage MSFA for improved state-feature discovery
and SF-learning in all of these settings.
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