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ABSTRACT

Custom voice, a specific text to speech (TTS) service in commercial speech plat-
forms, aims to adapt a source TTS model to synthesize personal voice for a
target speaker using few speech from her/him. Custom voice presents two unique
challenges for TTS adaptation: 1) to support diverse customers, the adaptation
model needs to handle diverse acoustic conditions which could be very differ-
ent from source speech data, and 2) to support a large number of customers, the
adaptation parameters need to be small enough for each target speaker to reduce
memory usage while maintaining high voice quality. In this work, we propose
AdaSpeech, an adaptive TTS system for high-quality and efficient customization
of new voices. We design several techniques in AdaSpeech to address the two
challenges in custom voice: 1) To handle different acoustic conditions, we model
the acoustic information in both utterance and phoneme level. Specifically, we
use one acoustic encoder to extract an utterance-level vector and another one
to extract a sequence of phoneme-level vectors from the target speech during
pre-training and fine-tuning; in inference, we extract the utterance-level vector
from a reference speech and use an acoustic predictor to predict the phoneme-
level vectors. 2) To better trade off the adaptation parameters and voice quality,
we introduce conditional layer normalization in the mel-spectrogram decoder of
AdaSpeech, and fine-tune this part in addition to speaker embedding for adapta-
tion. We pre-train the source TTS model on LibriTTS datasets and fine-tune it on
VCTK and LJSpeech datasets (with different acoustic conditions from LibriTTS)
with few adaptation data, e.g., 20 sentences, about 1 minute speech. Experiment
results show that AdaSpeech achieves much better adaptation quality than base-
line methods, with only about 5K specific parameters for each speaker, which
demonstrates its effectiveness for custom voice. The audio samples are available at
https://speechresearch.github.io/adaspeech/.

1 INTRODUCTION

Text to speech (TTS) aims to synthesize natural and intelligible voice from text, and attracts a lot of
interests in machine learning community (Arik et al., 2017; Wang et al., 2017; Gibiansky et al., 2017;
Ping et al., 2018; Shen et al., 2018; Ren et al., 2019). TTS models can synthesize natural human
voice when training with a large amount of high-quality and single-speaker recordings (Ito, 2017),
and has been extended to multi-speaker scenarios (Gibiansky et al., 2017; Ping et al., 2018; Zen et al.,
2019; Chen et al., 2020) using multi-speaker corpora (Panayotov et al., 2015; Veaux et al., 2016; Zen
et al., 2019). However, these corpora contain a fixed set of speakers where each speaker still has a
certain amount of speech data.

Nowadays, custom voice has attracted increasing interests in different application scenarios such as
personal assistant, news broadcast and audio navigation, and has been widely supported in commercial
speech platforms (some custom voice services include Microsoft Azure, Amazon AWS and Google
Cloud). In custom voice, a source TTS model is usually adapted on personalized voices with few
adaptation data, since the users of custom voice prefer to record as few adaptation data as possible
(several minutes or seconds) for convenient purpose. Few adaptation data presents great challenges
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on the naturalness and similarity of adapted voice. Furthermore, there are also several distinctive
challenges in custom voice: 1) The recordings of the custom users are usually of different acoustic
conditions from the source speech data (the data to train the source TTS model). For example, the
adaptation data is usually recorded with diverse speaking prosodies, styles, emotions, accents and
recording environments. The mismatch in these acoustic conditions makes the source model difficult
to generalize and leads to poor adaptation quality. 2) When adapting the source TTS model to a new
voice, there is a trade-off between the fine-tuning parameters and voice quality. Generally speaking,
more adaptation parameters will usually result in better voice quality, which, as a result, increases the
memory storage and serving cost1.

While previous works in TTS adaptation have well considered the few adaptation data setting
in custom voice, they have not fully addressed the above challenges. They fine-tune the whole
model (Chen et al., 2018; Kons et al., 2019) or decoder part (Moss et al., 2020; Zhang et al., 2020),
achieving good quality but causing too many adaptation parameters. Reducing the amount of
adaptation parameters is necessary for the deployment of commercialized custom voice. Otherwise,
the memory storage would explode as the increase of users. Some works only fine-tune the speaker
embedding (Arik et al., 2018; Chen et al., 2018), or train a speaker encoder module (Arik et al.,
2018; Jia et al., 2018; Cooper et al., 2020; Li et al., 2017; Wan et al., 2018) that does not need
fine-tuning during adaptation. While these approaches lead a light-weight and efficient adaptation,
they result in poor adaptation quality. Moreover, most previous works assume the source speech data
and adaptation data are in the same domain and do not consider the setting with different acoustic
conditions, which is not practical in custom voice scenarios.

In this paper, we propose AdaSpeech, an adaptive TTS model for high-quality and efficient cus-
tomization of new voice. AdaSpeech employ a three-stage pipeline for custom voice: 1) pre-training;
2) fine-tuning; 3) inference. During the pre-training stage, the TTS model is trained on large-scale
multi-speaker datasets, which can ensure the TTS model to cover diverse text and speaking voices
that is helpful for adaptation. During the fine-tuning stage, the source TTS model is adapted on
a new voice by fine-tuning (a part of) the model parameters on the limited adaptation data with
diverse acoustic conditions. During the inference stage, both the unadapted part (parameters shared
by all custom voices) and the adapted part (each custom voice has specific adapted parameters)
of the TTS model are used for the inference request. We build AdaSpeech based on the popular
non-autoregressive TTS models (Ren et al., 2019; Peng et al., 2020; Kim et al., 2020; Ren et al.,
2021) and further design several techniques to address the challenges in custom voice:

• Acoustic condition modeling. In order to handle different acoustic conditions for adaptation, we
model the acoustic conditions in both utterance and phoneme level in pre-training and fine-tuning.
Specifically, we use two acoustic encoders to extract an utterance-level vector and a sequence of
phoneme-level vectors from the target speech, which are taken as the input of the mel-spectrogram
decoder to represent the global and local acoustic conditions respectively. In this way, the decoder
can predict speech in different acoustic conditions based on these acoustic information. Otherwise,
the model would memorize the acoustic conditions and cannot generalize well. In inference, we
extract the utterance-level vector from a reference speech and use another acoustic predictor that is
built upon the phoneme encoder to predict the phoneme-level vectors.

• Conditional layer normalization. To fine-tune as small amount of parameters as possible while
ensuring the adaptation quality, we modify the layer normalization (Ba et al., 2016) in the mel-
spectrogram decoder in pre-training, by using speaker embedding as the conditional information
to generate the scale and bias vector in layer normalization. In fine-tuning, we only adapt the
parameters related to the conditional layer normalization. In this way, we can greatly reduce
adaptation parameters and thus memory storage2 compared with fine-tuning the whole model, but
maintain high-quality adaptation voice thanks to the flexibility of conditional layer normalization.

To evaluate the effectiveness of our proposed AdaSpeech for custom voice, we conduct experiments to
train the TTS model on LibriTTS datasets and adapt the model on VCTK and LJSpeech datasets with
different adaptation settings. Experiment results show that AdaSpeech achieves better adaptation qual-
ity in terms of MOS (mean opinion score) and SMOS (similarity MOS) than baseline methods, with

1For example, to support one million users in a cloud speech service, if each custom voice consumes 100MB
model sizes, the total memory storage would be about 100PB, which is quite a big serving cost.

2We further reduce the memory usage in inference as described in Section 2.3.
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only about 5K specific parameters for each speaker, demonstrating its effectiveness for custom voice.
Audio samples are available at https://speechresearch.github.io/adaspeech/.

2 ADASPEECH
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Figure 1: AdaSpeech.

In this section, we first describe the overall design of our proposed
AdaSpeech, and then introduce the key techniques to address the
challenges in custom voice. At last, we list the pre-training, fine-
tuning and inference pipeline of AdaSpeech for custom voice.

The model structure of AdaSpeech is shown in Figure 1. We adopt
FastSpeech 2 (Ren et al., 2021) as the model backbone considering
the FastSpeech (Ren et al., 2019; 2021) series are one of the most
popular models in non-autoregressive TTS. The basic model back-
bone consists of a phoneme encoder, a mel-spectrogram decoder,
and a variance adaptor which provides variance information includ-
ing duration, pitch and energy into the phoneme hidden sequence
following Ren et al. (2021). As shown in Figure 1, we design two ad-
ditional components to address the distinctive challenges in custom
voice: 1) to support diverse customers, we use acoustic condition
modeling to capture the diverse acoustic conditions of adaptation
speech in different granularities; 2) to support a large number of
customers with affordable memory storage, we use conditional layer
normalization in decoder for efficient adaptation with few parameters while high voice quality. In the
next subsections, we introduce the details of these components respectively.

2.1 ACOUSTIC CONDITION MODELING

In custom voice, the adaptation data can be spoken with diverse prosodies, styles, accents, and can
be recorded under various environments, which can make the acoustic conditions far different from
that in source speech data. This presents great challenges to adapt the source TTS model, since the
source speech cannot cover all the acoustic conditions in custom voice. A practical way to alleviate
this issue is to improve the adaptability (generalizability) of source TTS model. In text to speech,
since the input text lacks enough acoustic conditions (such as speaker timbre, prosody and recording
environments) to predict the target speech, the model tends to memorize and overfit on the training
data (Ren et al., 2021), and has poor generalization during adaptation. A natural way to solve such
problem is to provide corresponding acoustic conditions as input to make the model learn reasonable
text-to-speech mapping towards better generalization instead of memorizing.

To better model the acoustic conditions with different granularities, we categorize the acoustic
conditions in different levels as shown in Figure 2a: 1) speaker level, the coarse-grained acoustic
conditions to capture the overall characteristics of a speaker; 2) utterance level, the fine-grained
acoustic conditions in each utterance of a speaker; 3) phoneme level, the more fine-grained acoustic
conditions in each phoneme of an utterance, such as accents on specific phonemes, pitches, prosodies
and temporal environment noises3. Since speaker ID (embedding) is widely used to capture speaker-
level acoustic conditions in multi-speaker scenario (Chen et al., 2020), speaker embedding is used by
default. We describe the utterance-level and phoneme-level acoustic condition modeling as follows.

• Utterance Level. We use an acoustic encoder to extract a vector from a reference speech, similar
to Arik et al. (2018); Jia et al. (2018); Cooper et al. (2020), and then expand and add it to
the phoneme hidden sequence to provide the utterance-level acoustic conditions. As shown in
Figure 2b, the acoustic encoder consists of several convolutional layers and a mean pooling layer
to get a single vector. The reference speech is the target speech during training, while a randomly
chosen speech of this speaker during inference.

• Phoneme Level. We use another acoustic encoder (shown in Figure 2c) to extract a sequence
of phoneme-level vectors from the target speech and add it to the phoneme hidden sequence to

3Generally, more fine-grained frame-level acoustic conditions (Zhang et al., 2021) exist, but have marginal
benefits considering their prediction difficulty. Similarly, more coarse-grained language level conditions also
exist, but we do not consider multilingual setting in this work and leave it for future work.
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(c) Phoneme level.
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(d) Phoneme level.

Figure 2: (a) The overall structure of acoustic condition modeling. (b) Utterance-level acoustic
encoder. (c) Phoneme-level acoustic encoder, where phoneme-level mel means the mel-frames
aligned to the same phoneme are averaged. (d) Phoneme-level acoustic predictor, where phoneme
hiddens is the hidden sequence from the phoneme encoder in Figure 1. ‘Conv1D (m, n)’ means the
kernel size and stride size in 1D convolution is m and n respectively. ‘LN’ means layer normalization.
As shown in Figure 2a, the phoneme-level vectors are directly added element-wisely into the hidden
sequence, and the utterance-level and speaker level vector/embedding are first expanded to the same
length and then added element-wisely into the hidden sequence.

provide the phoneme-level acoustic conditions4. In order to extract phoneme-level information
from speech, we first average the speech frames corresponding to the same phoneme according to
alignment between phoneme and mel-spectrogram sequence (shown in Figure 2a), to convert to
length of speech frame sequence into the length of phoneme sequence, similar to Sun et al. (2020);
Zeng et al. (2020). During inference, we use another phoneme-level acoustic predictor (shown in
Figure 2d) which is built upon the original phoneme encoder to predict the phoneme-level vectors.

Using speech encoders to extract a single vector or a sequence of vectors to represent the character-
istics of a speech sequence has been adopted in previous works (Arik et al., 2018; Jia et al., 2018;
Cooper et al., 2020; Sun et al., 2020; Zeng et al., 2020). They usually leverage them to improve the
speaker timbre or prosody of the TTS model, or improve the controllability of the model. The key
contribution in our acoustic condition modeling in this work is the novel perspective to model the
diverse acoustic conditions in different granularities to make the source model more adaptable to
different adaptation data. As analyzed in Section 4.2, utterance-level and phoneme-level acoustic
modeling can indeed help the learning of acoustic conditions and is critical to ensure the adaptation
quality.

2.2 CONDITIONAL LAYER NORMALIZATION

𝑠𝑐𝑎𝑙𝑒 ∗
𝑋 −𝑚𝑒𝑎𝑛

𝑣𝑎𝑟
+ 𝑏𝑖𝑎𝑠

Speaker Embedding

Linear Layer

Speaker ID

Linear Layer

Figure 3: Conditional LayerNorm.

Achieving high adaptation quality while using small adapta-
tion parameters is challenging. Previous works use zero-shot
adaptation with speaker encoder (Arik et al., 2018; Jia et al.,
2018; Cooper et al., 2020) or only fine-tune the speaker embed-
ding cannot achieve satisfied quality. Can we greatly increase
the voice quality at the cost of slightly more but negligible
parameters? To this end, we analyze the model parameters of
FastSpeech 2 (Ren et al., 2021), which is basically built upon
the structure of Transformer (Vaswani et al., 2017), with a self-attention network and a feed-forward
network in each Transformer block. Both the matrix multiplications in the query, key, value and
output of self-attention and two-layer feed-forward networks are parameter-intensive, which is not
efficient to adapt. We find that layer normalization (Ba et al., 2016) is adopted in each self-attention
and feed-forward network in decoder, which can greatly influence the hidden activation and final
prediction with a light-weight learnable scale vector γ and bias vector β: LN(x) = γ x−µσ +β, where
µ and σ are the mean and variance of hidden vector x.

4Note that although the extracted vectors can contain all phoneme-level acoustic conditions ideally, we still
use pitch and energy in the variance adaptor (shown in Figure 1) as additional input following Ren et al. (2021),
in order to ease the burden of acoustic condition learning and focus on learning other acoustic conditions. We
also tried to remove pitch and energy but found it causes worse adaptation quality.
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If we can determine the scale and bias vector in layer normalization with the corresponding speaker
characteristics using a small conditional network, then we can fine-tune this conditional network when
adapting to a new voice, and greatly reduce the adaptation parameters while ensuring the adaptation
quality. As shown in Figure 3, the conditional network consists of two simple linear layers W γ

c and
W β
c that take speaker embedding Es as input and output the scale and bias vector respectively:

γsc = Es ∗W γ
c , β

s
c = Es ∗W β

c , (1)

where s denotes the speaker ID, and c ∈ [C] denotes there are C conditional layer normalizations in
the decoder (the number of decoder layer is (C − 1)/2 since each layer has two conditional layer
normalizations corresponding to self-attention and feed-forward network in Transformer, and there is
an additional layer normalization at the final output) and each uses different conditional matrices.

2.3 PIPELINE OF ADASPEECH

We list the pre-training, fine-tuning and inference pipeline of AdaSpeech in Algorithm 1. During
fine-tuning, we only fine-tune the two matrices W γ

c and W β
c in each conditional layer normalization

in decoder and the speaker embeddingEs, fixing other model parameters including the utterance-level
and phoneme-level acoustic encoders and phoneme-level acoustic predictor as described in Section 2.1.
During inference, we do not directly use the two matrices W γ

c and W β
c in each conditional layer

normalization since they still have large parameters. Instead we use the two matrices to calculate each
scale and bias vector γsc and βsc from speaker embedding Es according to Equation 1 considering Es
is fixed in inference. In this way, we can save a lot of memory storage5.

Algorithm 1 Pre-training, fine-tuning and inference of AdaSpeech

1: Pre-training: Train the AdaSpeech model θ with source training data D.
2: Fine-tuning: Fine-tuneW γ

c andW β
c in each conditional layer normalization c ∈ [C] and speaker

embedding Es with the adaptation data Ds for each custom speaker/voice s.
3: Inference: Deployment: 1) Calculate γsc , β

s
c in each conditional layer normalization c ∈ [C],

and get the parameters θs = {{γsc , βsc}Cc=1, E
s} for speaker s. 2) Deploy the shared model

parameters θ̃ (not fine-tuned in θ during adaptation) and speaker specific parameters θs for s.
Inference: Use θ̃ and θs to synthesize custom voice for speaker s.

3 EXPERIMENTAL SETUP

Datasets We train the AdaSpeech source model on LibriTTS (Zen et al., 2019) dataset, which is a
multi-speaker corpus (2456 speakers) derived from LibriSpeech (Panayotov et al., 2015) and contains
586 hours speech data. In order to evaluate AdaSpeech in custom voice scenario, we adapt the source
model to the voices in other datasets including VCTK (Veaux et al., 2016) (a multi-speaker datasets
with 108 speakers and 44 hours speech data) and LJSpeech (Ito, 2017) (a single-speaker high-quality
dataset with 24 hours speech data), which have different acoustic conditions from LibriTTS. As a
comparison, we also adapt the source model to the voices in the same LibriTTS dataset.

We randomly choose several speakers (including both male and female) from the training set of
LibriTTS and VCTK and the only single speaker from the training set of LJSpeech for adaptation. For
each chosen speaker, we randomly choose K = 20 sentences for adaptation and also study the effects
of smaller K in experiment part. We use all the speakers in the training set of LibriTTS (exclude
those chosen for adaptation) to train the source AdaSpeech model, and use the original test sets in
these datasets corresponding to the adaptation speakers to evaluate the adaptation voice quality.

We conduct the following preprocessing on the speech and text data in these corpora: 1) convert the
sampling rate of all speech data to 16kHz; 2) extract the mel-spectrogram with 12.5ms hop size and
50ms window size following the common practice in Shen et al. (2018); Ren et al. (2019); 3) convert

5Assume the dimension of speaker embedding and hidden vector are both h, the number of conditional layer
normalization is C. Therefore, the number of adaptation parameters are 2h2C + h, where the first 2 represents
the two matrices for scale and bias vectors, and the second term h represents the speaker embedding. If h = 256
and C = 9, the total number of parameters are about 1.2M, which is much smaller compared the whole model
(31M). During deployment for each custom voice, the total additional model parameters for a new voice that
need to be stored in memory becomes 2hC + h, which is extremely small (4.9K in the above example).
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text sequence into phoneme sequence with grapheme-to-phoneme conversion (Sun et al., 2019) and
take phoneme as the encoder input.

Model Configurations The model of AdaSpeech follows the basic structure in FastSpeech 2 (Ren
et al., 2021), which consists of 4 feed-forward Transformer blocks for the phoneme encoder and mel-
spectrogram decoder. The hidden dimension (including the phoneme embedding, speaker embedding,
the hidden in self-attention, and the input and output hidden of feed-forward network) is set to 256.
The number of attention heads, the feed-forward filter size and kernel size are set to 2, 1024 and
9 respectively. The output linear layer converts the 256-dimensional hidden into 80-dimensional
mel-spectrogram. Other model configurations follow Ren et al. (2021) unless otherwise stated.

The phoneme-level acoustic encoder (Figure 2c) and predictor (Figure 2d) share the same structure,
which consists of 2 convolutional layers with filter size and kernel size of 256 and 3 respectively, and
a linear layer to compress the hidden to a dimension of 4 (we choose the dimension of 4 according
to our preliminary study and is also consistent with previous works (Sun et al., 2020; Zeng et al.,
2020)). We use MFA (McAuliffe et al., 2017) to extract the alignment between the phoneme and
mel-spectrogram sequence, which is used to prepare the input of the phoneme-level acoustic encoder.
We also tried to leverage VQ-VAE (Sun et al., 2020) into the phoneme-level acoustic encoder but
found no obvious gains. The utterance-level acoustic encoder consists of 2 convolutional layers with
filter size, kernel size and stride size of 256, 5 and 3, and a pooling layer to obtain a single vector.

Training, Adaptation and Inference In the source model training process, we first train
AdaSpeech for 60,000 steps, and all the model parameters are optimized except the parameters
of phoneme-level acoustic predictor. Then we train AdaSpeech and the phoneme-level acoustic pre-
dictor jointly for the remaining 40,000 steps, where the output hidden of the phoneme-level acoustic
encoder is used as the label (the gradient is stopped to prevent flowing back to the phoneme-level
acoustic encoder) to train the phoneme-level acoustic predictor with mean square error (MSE) loss.
We train AdaSpeech on 4 NVIDIA P40 GPUs and each GPU has a batch size of about 12,500 speech
frames. Adam optimizer is used with β1 = 0.9, β2 = 0.98, ε = 10−9.

In the adaptation process, we fine-tune AdaSpeech on 1 NVIDIA P40 GPU for 2000 steps, where
only the parameters of speaker embedding and conditional layer-normalization are optimized. In the
inference process, the utterance-level acoustic conditions are extracted from another reference speech
of the speaker, and the phoneme-level acoustic conditions are predicted from phoneme-level acoustic
predictor. We use MelGAN (Kumar et al., 2019) as the vocoder to synthesize waveform from the
generated mel-spectrogram.

4 RESULTS

In this section, we first evaluate the quality of the adaptation voices of AdaSpeech, and conduct
ablation study to verify the effectiveness of each component in AdaSpeech, and finally we show some
analyses of our method.

4.1 THE QUALITY OF ADAPTATION VOICE

We evaluate the quality of adaption voices in terms of naturalness (how the synthesized voices
sound natural like human) and similarity (how the synthesized voices sound similar to this speaker).
Therefore, we conduct human evaluations with MOS (mean opinion score) for naturalness and SMOS
(similarity MOS) for similarity. Each sentence is listened by 20 judgers. For VCTK and LibriTTS,
we average the MOS and SMOS scores of multiple adapted speakers as the final scores. We compare
AdaSpeech with several settings: 1) GT, the ground-truth recordings; 2) GT mel + Vocoder, using
ground-truth mel-spectrogram to synthesize waveform with MelGAN vocoder; 3) Baseline (spk
emb), a baseline system based on FastSpeech2 which only fine-tunes the speaker embedding during
adaptation, and can be regarded as our lower bound; 4) Baseline (decoder), another baseline system
based on FastSpeech2 which fine-tunes the whole decoder during adaptation, and can be regarded
as a strong comparable system since it uses more parameters during adaptation; 5) AdaSpeech,
our proposed AdaSpeech system with utterance-/phoneme-level acoustic condition modeling and
conditional layer normalization during adaptation6.

6The audio samples are available at https://speechresearch.github.io/adaspeech/
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Metric Setting # Params/Speaker LJSpeech VCTK LibriTTS

MOS

GT / 3.98± 0.12 3.87± 0.11 3.72± 0.12
GT mel + Vocoder / 3.75± 0.10 3.74± 0.11 3.65± 0.12

Baseline (spk emb) 256 (256) 2.37± 0.14 2.36± 0.10 3.02± 0.13
Baseline (decoder) 14.1M (14.1M) 3.44± 0.13 3.35± 0.12 3.51± 0.11

AdaSpeech 1.2M (4.9K) 3.45± 0.11 3.39± 0.10 3.55± 0.12

SMOS

GT / 4.36± 0.11 4.44± 0.10 4.31± 0.07
GT mel + Vocoder / 4.29± 0.11 4.36± 0.11 4.31± 0.07

Baseline (spk emb) 256 (256) 2.79± 0.19 3.34± 0.19 4.00± 0.12
Baseline (decoder) 14.1M (14.1M) 3.57± 0.12 3.90± 0.12 4.10± 0.10

AdaSpeech 1.2M (4.9K) 3.59± 0.15 3.96± 0.15 4.13± 0.09

Table 1: The MOS and SMOS scores with 95% confidence intervals when adapting the source
AdaSpeech model (trained on LibriTTS) to LJSpeech, VCTK and LibriTTS datasets. The third
column shows the number of additional parameters for each custom voice during adaptation (the
number in bracket shows the number of parameters in inference following the practice in Section 2.3).

The MOS and SMOS results are shown in Table 1. We have several observations: 1) Adapting the
model (trained on LibriTTS) to the cross-domain datasets (LJSpeech and VCTK) is more difficult
than adapting to the in-domain datasets (LibriTTS), since the MOS and SMOS gap between the
adaptation models (two baselines and AdaSpeech) and the ground-truth mel + vocoder setting is
bigger on cross-domain datasets7. This also confirms the challenges of modeling different acoustic
conditions in custom voice scenarios. 2) Compared with only fine-tuning speaker embedding, i.e.,
Baseline (spk emb), AdaSpeech achieves significant improvements in terms of both MOS and SMOS
in the three adaptation datasets, by only leveraging slightly more parameters in conditional layer
normalization. We also analyze in next subsection (Table 3) that even if we increase the adaptation
parameters of baseline to match or surpass that in AdaSpeech, it still performs much worse than
AdaSpeech. 3) Compared with fine-tuning the whole decoder, i.e., Baseline (decoder), AdaSpeech
achieves slightly better quality in both MOS and SMOS and importantly with much smaller adaptation
parameters, which demonstrates the effectiveness and efficiency of our proposed acoustic condition
modeling and conditional layer normalization. Note that fine-tuning the whole decoder causes too
much adaptation parameters that cannot satisfy the custom voice scenario.

4.2 METHOD ANALYSIS

Setting CMOS
AdaSpeech 0

AdaSpeech w/o UL-ACM −0.12
AdaSpeech w/o PL-ACM −0.21
AdaSpeech w/o CLN −0.14

Table 2: The CMOS of the ablation study on
VCTK. UL-ACM and PL-ACM represents
utterance-level and phoneme-level acoustic
condition modeling, and CLN represents con-
ditional layer normalization.

In this section, we first conduct ablation studies
to verify the effectiveness of each component in
AdaSpeech, including utterance-level and phoneme-
level acoustic condition modeling, and conditional
layer normalization, and then conduct more detailed
analyses on our proposed AdaSpeech.

Ablation Study We compare the CMOS (compar-
ison MOS) of the adaptation voice quality when re-
moving each component in AdaSpeech on VCTK test-
set (each sentence is listened by 20 judgers). Specifi-
cally, when removing conditional layer normalization,
we only fine-tune the speaker embedding. From Table 2, we can see that removing utterance-level
and phoneme-level acoustic modeling, and conditional layer normalization all result in performance
drop in voice quality, demonstrating the effectiveness of each component in AdaSpeech.

Analyses on Acoustic Condition Modeling We analyze the vectors extracted from the utterance-
level acoustic encoder for several speakers on LibriTTS datasets. We use t-SNE (Maaten & Hinton,

7For example, the MOS gaps of the three settings (two baselines and AdaSpeech) on LJSpeech are 1.38, 0.31,
0.30, and on VCTK are 1.38, 0.39, 0.35, respectively, which are bigger than that on LibriTTS (0.63, 0.14, 0.10).
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Figure 4: (a) The visualization of utterance-level acoustic vectors for several speakers (each number
in the legend represents a speaker ID in LibriTTS datasets). (b) The MOS of different adaptation data
on LJSpeech and VCTK.

2008) to illustrate them in Figure 4a, where each point represents an utterance-level vector and each
color belongs to the same speaker. It can be seen that different utterances of the same speaker are
clustered together but have difference in acoustic conditions. There are some exceptions, such as
the two pink points one blue point in the brown solid circle. According to our investigation on the
corresponding speech data, these points correspond to the utterances with short and emotional voice,
and thus are close to each other although belonging to different speakers.

Setting CMOS
CLN 0
LN + fine-tune scale/bias −0.18
LN + fine-tune others −0.24

Table 3: The CMOS on VCTK for the
comparison of conditional layer normal-
ization.

Analyses on Conditional Layer Normalization We
further compare conditional layer normalization (CLN)
with other two settings: 1) LN + fine-tune scale/bias: re-
moving the condition on speaker embedding, and only
fine-tuning scale/bias in layer normalization and speaker
embedding; 2) LN + fine-tuning others: removing the
condition on speaker embedding, and instead fine-tuning
other (similar or even larger amount of) parameters in the
decoder8. The CMOS evaluations are shown in Table 3.
It can be seen that both settings result in worse quality
compared with conditional layer normalization, which verifies its effectiveness.

Varying Adaptation Data We study the voice quality with different amount of adaptation data
(fewer than the default setting) on VCTK and LJSpeech, and conduct MOS evaluation as shown in
Figure 4b. It can be seen that the voice quality continue drops when adaptation data decreases, and
drops quickly when the adaptation data is fewer than 10 sentences.

5 CONCLUSIONS

In this paper, we have developed AdaSpeech, an adaptive TTS system to support the distinctive
requirements in custom voice. We propose acoustic condition modeling to make the source TTS model
more adaptable for custom voice with various acoustic conditions. We further design conditional layer
normalization to improve the adaptation efficiency: fine-tuning few model parameters to achieve high
voice quality. We finally present the pipeline of pre-training, fine-tuning and inference in AdaSpeech
for custom voice. Experiment results demonstrate that AdaSpeech can support custom voice with
different acoustic conditions with few memory storage and at the same time with high voice quality.
For future work, we will further improve the modeling of acoustic conditions in the source TTS
model and study more diverse acoustic conditions such as noisy speech in custom voice. We will also
investigate the adaptation setting with untranscribed data (Yan et al., 2021) and further compress the
model size (Luo et al., 2021) to support more custom voices.

8According to the preliminary study, we found fine-tuning the last linear layer and the last feed-forward
network in decoder can result in better performance than fine-tuning other part in decoder.
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