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Abstract

Real-world reinforcement learning tasks often involve some form of partial observ-
ability where the observations only give a partial or noisy view of the true state
of the world. Such tasks typically require some form of memory, where the agent
has access to multiple past observations, in order to perform well. One popular
way to incorporate memory is by using a recurrent neural network to access the
agent’s history. However, recurrent neural networks in reinforcement learning are
often fragile and difficult to train and sometimes fail completely as a result. In this
work, we propose Deep Transformer Q-Networks (DTQN), a novel architecture
utilizing transformers and self-attention to encode an agent’s history. DTQN is
designed modularly, and we compare results against several modifications to our
base model. Our experiments demonstrate that our approach can solve partially
observable tasks faster and more stably than previous recurrent approaches.

1 Introduction

In recent years, deep neural networks have become the computational backbone of reinforcement
learning, achieving strong performance across a wide array of difficult tasks including games (Mnih
et al., 2015; Silver et al., 2016) and robotics (Levine et al., 2018; Gao et al., 2020). In particular, Deep
Q-Networks (DQN) (Mnih et al., 2015) revolutionized the field of deep RL by achieving super-human
performance on Atari 2600 games in the Atari Learning Environment (Bellemare et al., 2013). Since
then, several advancements have been proposed to improve DQN (Hessel et al., 2018), and deep RL
has been shown to excel in continuous control tasks as well (Haarnoja et al., 2018; Fujimoto et al.,
2018).

However, most Deep RL methods assume the agent is operating within a fully observable environment;
that is, one in which the agent has access to the environment’s full state information. But this
assumption does not hold for many realistic domains due to components such as noisy sensors,
occluded images, or additional unknown agents. These domains are partially observable, and pose
a much bigger challenge for RL compared to the standard fully observable setting. Indeed, naïve
methods often fail to learn in partially observable environments without additional architectural or
training support (Pinto et al., 2017; Igl et al., 2018; Ma et al., 2020).

To solve partially observable domains, RL agents may need to remember (some or possibly all)
previous observations (Kaelbling et al., 1998). As a result, RL methods typically add some sort of
memory component, allowing them to store or refer back to recent observations in order to make
more informed decisions. The current state-of-the-art approaches integrate recurrent neural networks,
like LSTMs (Hochreiter & Schmidhuber, 1997) or GRUs (Cho et al., 2014), in conjunction with
fully observable Deep RL architectures to process an agent’s history (Ni et al., 2021). But recurrent
neural networks (RNNs) can be fragile and difficult to train, often requiring complicated “warm-up”
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strategies to initialize its hidden state at the start of each training batch (Lample & Chaplot, 2017).
Conversely, the Transformer has been shown to model sequences much better than RNNs and is
ubiquitous in natural language processing (NLP) (Devlin et al., 2018) and increasingly common in
computer vision (Dosovitskiy et al., 2020).

Therefore, we propose Deep Transformer Q-Network (DTQN), a novel architecture using self-
attention to solve partially observable RL domains. DTQN leverages a transformer decoder architec-
ture with learned positional encodings to represent an agent’s history and accurately predict Q-values
at each timestep. Rather than a standard approach that trains on a single next step for a given history,
we propose a training regime called intermediate Q-value prediction, which allows us to train DTQN
on the Q-values generated for each timestep in the agent’s observation history and provide more
robust learning. DTQN encodes an agent’s history more effectively than recurrent methods, which
we show empirically across several challenging partially observable environments. We evaluate and
analyze several architectural components, including: gated skip connections (Parisotto et al., 2020),
positional encodings, identity map reordering (Parisotto et al., 2020), and intermediate value predic-
tion (Al-Rfou et al., 2019). Our results provide strong evidence that our approach can successfully
represent agents’ histories in partially observable domains. We visualize attention weights showing
DTQN learns an understanding of the domains as it works to solve tasks.

2 Background

When an environment does not emit its full state to the agent, the problem can be modeled as a Partially
Observable Markov Decision Process (POMDP) Kaelbling et al. (1998). A POMDP is formally
described as the 6-tuple (S,A, T ,R,Ω,O). S, A, and Ω represent the environment’s set of states,
actions, and observations, respectively. T is the state transition function T (s, a, s′) = P (s′|s, a),
denoting the probability of transitioning from state s to state s′ given action a. R describes the reward
function R : S × A → R; that is, the resultant scalar reward emitted by the environment for an
agent that was in some state s ∈ S and took some action a ∈ A. And O is the observation function
O(s′, a, o) = P (o|s′, a), the probability of observing o when action a is taken resulting in state s′.
At each time step, t, the agent is in the environment’s state st ∈ S , takes action at ∈ A, manipulates
the environment’s state to some st+1 ∈ S based on the transition probability T (st, at, st+1) and
receives a reward, rt = R(st, at). The goal of the agent is to maximize E

[∑
t γ

trt
]
, its expected

discounted return for some discount factor γ ∈ [0, 1) (Sutton & Barto, 2018).

Because agents in POMDPs do not have access to the environment’s full state information, they
must rely on the observations ot ∈ Ω which relate to the state via the observation function,
O(st+1, at, ot) = P (ot|st+1, at). In general, agents acting in partially observable space can-
not simply use observations as a proxy for state, since several states may be aliased into the
same observation. Instead, they often consider some form of their full history of information,
ht = {(o0, a0), (o1, a1), ..., (ot−1, at−1)}. Because the history grows indefinitely as the agent pro-
ceeds in a trajectory, various ways of encoding the history exist. Previous work has truncated the
history to make it a fixed length (Zhu et al., 2017) or used an agent’s belief, which represents the
estimate of the current state (Kaelbling et al., 1998). Since the deep learning revolution, others have
used forms of recurrency, such as LSTMs and GRUs, to encode the history (Hausknecht & Stone,
2015; Yang & Nguyen, 2021).

2.1 Deep recurrent Q-networks

Q-Learning (Watkins & Dayan, 1992) aims to learn a function Q : S × A → R which represents
the value of each state-action pair in an MDP. Given a state s, action a, reward r, next state s′, and
learning rate α, the Q-function is updated with the equation

Q(s, a) := Q(s, a) + α(r +max
a′∈A

Q(s′, a′)−Q(s, a)) (1)

In more challenging domains, however, the state-action space of the environment is often too large to
be able to learn an exact Q-value for each state-action pair. Instead of learning a tabular Q-function,
DQN (Mnih et al., 2015) learns an approximate Q-function featuring strong generalization capabilities
over similar states and actions. DQN is trained to minimize the Mean Squared Bellman Error

L(θ) = E(s,a,r,s′)∼D
[(
r +max

a′∈A
Q(s′, a′; θ′)−Q(s, a; θ)

)2]
(2)
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where transition tuples of states, actions, rewards, and future states (s, a, r, s′) are sampled uniformly
from a replay buffer, D, of past experiences while training. The target r + maxa′∈A Q(s′, a′; θ′)
invokes DQN’s target network (parameterized by θ′), which lags behind the main network (parame-
terized by θ) to produce more stable updates.

However, in partially observable domains, DQN may not learn a good policy by simply replacing the
network’s input from states to observations (i.e., an agent can often perform better by remembering
some history). To address this challenge, Deep Recurrent Q-Networks (DRQN) (Hausknecht &
Stone, 2015) incorporated histories into the Q-function by way of a long short-term memory (LSTM)
layer (Hochreiter & Schmidhuber, 1997). In DRQN’s training procedure, the sampled states are
replaced with histories ht:t+k = {ot, ot+1, ..., ot+k} from timestep t to step t+ k, sampled randomly
within each episode. The hidden state of the LSTM is zeroed at the start of each update.

2.2 Transformer decoders

The transformer architecture (Vaswani et al., 2017), originally introduced for natural language
processing, stacks blocks of attention layers (Bahdanau et al., 2014) and is typically used to model
sequential data. Intuitively, the transformer’s attention module receives as input a sequence of tokens
(e.g., a sequence of observations in an episode) and the model learns to place stronger weights or more
attention on the most important tokens. For more details about the attention module in transformers,
refer to Appendix A.3.

While the original transformer architecture formed an encoder-decoder structure, recent works often
use either the encoder (Devlin et al., 2018) or the decoder (Radford et al., 2018). The key difference
between the two is that the decoder applies a causal masking to the attention layer; that is, the ith
token cannot attend to tokens which come later in the sequence. In general, the transformer decoder
has been shown to perform better on generative tasks like next token prediction, while the transformer
encoder is able to learn richer representations and excels on tasks such as language understanding.

DTQN utilizes the transformer decoder structure. Given a tensor of shape (B,C,D), where B is
the batch size, C is the context length, and D is the model’s dimensionality size, the transformer
decoder layer returns a tensor of the same shape, enabling us to stack layers on top of each other. The
last transformer layer’s output can then be projected to the desired shape, or sent as input to another
network. To ensure the raw inputs are of the correct shape, we often prepend a feature extraction step,
such as a lookup embedding for text or integers, a multilayer perceptron for vectors, or convolutional
neural network for images.

3 Related work

Since its inception, several works have built upon DRQN. For example, DRQN was shown to beat
human test subjects on the challenging 3D VizDoom video game environment (Kempka et al., 2016)
when augmented with game feature information (Lample & Chaplot, 2017). Action-based DRQN
(ADRQN) (Zhu et al., 2017) conditioned the network on the agent’s full history rather than just its
observation history. Deep Distributed Recurrent Q-Networks (DDRQN) (Foerster et al., 2016) extends
DRQN into the multi-agent reinforcement learning setting. Like ADRQN, DDRQN conditioned on
actions, but also shared weights between each agent, all while forgoing each agent’s replay buffer to
sample from.

The concept of attention is also well-studied in the reinforcement learning setting. The most closely
related work to ours using attention in deep Q-learning is Deep Attention Recurrent Q-Network
(DARQN) (Sorokin et al., 2015), which used attention to aid an LSTM’s representation of the agent’s
history. Similarly, visual attention has been added to DRQN-like architectures in an effort towards
creating more interpretable reinforcement learning algorithms (Mott et al., 2019). Unlike our work,
which uses self-attention such that agent’s history forms the queries, keys, and values, these works
use the recurrent network’s last output state to form the queries, and the environment’s most recent
observation forms the keys and values. In the multi-agent setting, Multi-Actor-Attention-Critic (Iqbal
& Sha, 2019) created an attention module in which each agent’s query is their own observation,
and the keys and values are formed by the other agents’ observations. Finally, the Simple Neural
AttentIve Learner (SNAIL) (Mishra et al., 2017) used attention to develop a meta-learning agent
capable of transferring its skills to similar but different environments.
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Figure 1: Architectural diagram of DTQN. Each observation in the history is embedded independently,
and Q-values are generated for each observation sub-history. Only the last set of Q-values are used to
select the next action, but the other Q-values can be utilized for training.

The use of transformers in reinforcement learning has become more popular within the last few
years. In the offline reinforcement learning setting, Decision Transformer (Chen et al., 2021) and
Trajectory Transformer (Janner et al., 2021) concurrently proposed the idea of using transformer
decoders for sequence modeling, surpassing the current offline RL state of the art. Online Decision
Transformer (Zheng et al., 2022) extended Decision Transformer (Chen et al., 2021) by treating the
offline training as a pre-training step, and fine-tuned the transformer in the online setting for even
better performance. FlexiBiT (Carroll et al., 2022) trained a transformer encoder to learn a variety
of inference tasks, such as behavioural cloning, forward and backward modeling, and inferring an
agent’s history given its current state. Contrary to our work, which is trained completely online using
reinforcement learning, these works are specialized to take advantage of an offline RL dataset, and
train their agents in a supervised way (Schmidhuber, 2019). Other methods use transformers to learn
from scratch in the online RL setting, like GTrXL (Parisotto et al., 2020), which modifies the ordering
of components within the transformer block, and introduces a new gating mechanism to replace
the residual skip connections. We compare the effects of these modifications to our architecture.
Lightweight transformers have shown strong performance in text adventure games (Xu et al., 2020),
and the transformer encoder was applied to video games (Upadhyay et al., 2019). In contrast to
these works, we utilize a multi-layer transformer decoder architecture. Vision transformers have been
used in conjuction with DQN to stabilize Q-learning with data augmentation, replacing the standard
convolutional neural networks (Hansen et al., 2021). The self-attention block in their work attends to
features within a single observation whereas ours attends throughout the agent’s history.

4 Deep transformer Q-network architecture

Transformers seem like a natural fit to represent histories in POMDPs, but there are several open
questions regarding how to use them best in deep RL. In particular, it is unclear what form of
transformer to use, how to integrate it into deep RL methods and how they should be trained. We
chose to build DTQN using a transformer decoder structure incorporating learned position encodings,
and train on the Q-values generated for each timestep in the agent’s observation history. DTQN takes
as input the agent’s previous k observations, ht:t+k = {ot, ot+1, ..., ot+k−1}, linearly projects each
observation into the dimensionality of the model, and adds positional encodings to add information
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Algorithm 1 DTQN

function FORWARD PASS(ht:t+k = {ot, ot+1, ..., ot+k−1}))
E0 = Embedding(ht:t+k) + Pos
for Layer L = 1, ..., N do

QL−1 = EL−1WQ
L−1,K

L−1 = EL−1WK
L−1, V

L−1 = EL−1WV
L−1

EL = LayerNormL
1 (CombineL1 (MultiHeadAttentionL(QL−1,KL−1, V L−1), EL−1))

EL ← LayerNormL
2 (CombineL2 (FFNL(EL), EL))

end for
Output← FFNN (EN ) ▷ Project output to action space

end function
function TRAIN

Sample a minibatch of contexts (ht:t+k, at:t+k, rt:t+k, ht+1:t+k+1) from replay buffer D
for i = 1, ..., k do

Li(θ) = E(.)∼D

[(
rt+i−1 +maxa′∈A Q(ht+1:t+i+1, a

′; θ′)−Q(ht:t+i, at+i−1; θ)
)2]

end for
end function
function UPDATE

θ ← θ − α∇θ

∑k
i=1 Li(θ)

end function

about the absolute temporal location of each observation. The embedded history is then passed
through N transformer layers, and finally projected to the action space of the environment (see
Figure 1 and Algorithm 1). DTQN outputs a set of Q-values relating to each observation in the input.

While we only use the Q-values from the most recent observation during execution, we train the
network using all generated Q-values, even those relating to the observations at the beginning of the
subhistory using the loss function in Algorithm 1. This training regime challenges the network to
predict the Q-values in situations where it has little to no context, and produces a more robust agent.
The remainder of this section expands on each contribution of the DTQN architecture.

4.1 Observation embeddings and positional encodings

Before the observation history is passed to DTQN’s transformer layers, each observation in the agent’s
most recent k observations, ht:t+k, is linearly projected to the dimensionality of the transformer
via a learned observation embedding (see Figure 1). After embedding, we add a learned positional
encoding to each observation based on its position in the observation history. This result, which we
call E0 in Algorithm 1, is the input to the first transformer layer in DTQN.

Position encodings are common practice in transformers, especially for NLP tasks, where they
are well studied (Wang & Chen, 2020). However, the importance of position is less clear in the
reinforcement learning setting. In some control tasks, the temporal position of an observation may
not have any effect on its importance or meaning to solve the task. For instance, the importance of
the priest observation in the classic HeavenHell domain (Bonet, 1998) is not dependent on when the
observation occurs in the episode. On the other hand, domains with more dynamic state transitions
may benefit greatly from the positional information. For this reason, we choose to learn our positional
encodings as it gives the agent the most flexibility in terms of how it chooses to use them. We ablate
this choice by comparing our learned positional encodings to sinusoidal positional encodings (used
in the original transformer (Vaswani et al., 2017)) as well as not using any positional encodings in
section 5.4.

4.2 Transformer decoder structure

Like the original GPT architecture (Radford et al., 2018), each transformer layer in DTQN features
two submodules: masked multi-headed self-attention and a position-wise feedforward network. As
described in Algorithm 1, first we project the output of the previous layer, EL−1 to the queries, Q,
keys, K, and values, V , through the weight matrices WQ, WK , and WV , respectively. After each
submodule, that submodule’s input and output are combined (see the “Combine” step in Figure 1)
followed by a LayerNorm (Ba et al., 2016). Finally, after the last transformer layer, we project the
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(a) Hallway (b) Heaven hell (c) Gridverse memory 5x5

(d) Gridverse memory 7x7 (e) Gridverse memory 9x9 (f) Gridverse four rooms 7x7

(g) Car flag (h) Memory cards

Figure 2: Results showing the success rate of DTQN against baselines. DTQN is shown in blue, a
simple attention network (ATTN) shown in brown, Deep Recurrent Q-Network (DRQN) (Hausknecht
& Stone, 2015) is shown in orange, and Deep Q-Network (DQN) (Mnih et al., 2015) is shown in
purple. Lines show the mean and shaded regions represent standard error across 5 random seeds.
DTQN excels both in terms of learning speed as well as final performance, clearly outperforming the
baselines on nearly all domains. Refer to section 5.2 for discussion of results.

final embedding (EN in Algorithm 1) to the action space of our environment to represent the Q-value
for each action.

DTQN uses a residual skip connection (He et al., 2016) to combine the two streams, matching the
original transformer, in favor of other choices of combination layers such as the GRU gating combi-
nation layer Parisotto et al. (2020). Another contested decision is the position of LayerNorm with
respect to each submodule; the original transformer (Vaswani et al., 2017) and original GPT (Rad-
ford et al., 2018) apply LayerNorm after the combine step whereas other works have moved the
LayerNorm to immediately before the submodule (Radford et al., 2019; Parisotto et al., 2020; Xu
et al., 2020). DTQN applies the LayerNorm after the combine step, a choice we found to be simple
while also demonstrating strong empirical performance. We ablate our choices of network with the
aforementioned variants in section 5.3.

4.3 Intermediate Q-value prediction

DTQN outputs a set of Q-values for each timestep in the agent’s observation history. During
evaluation, DTQN selects the action with the highest Q-value from the last timestep in its history.
It would therefore be straightforward to train DTQN using just the last timestep’s Q-values, since
those have the most context to work with and are the most informed to select the optimal action.
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This regime, however, is very wasteful, as only a fraction of the generated Q-values actually get
used for training. Instead, we train DTQN using all generated Q-values. Originally used in the NLP
setting where each position was tasked with predicting the next character and formed an auxiliary
loss (Al-Rfou et al., 2019), we adapt this training regime to the reinforcement learning setting, as
shown in Algorithm 1. Note that the for loop depicted in Algorithm 1 can be done in one forward
pass of the network because of the causally-masked self-attention mechanism.

We ablate training based on all Q-values with training only on the last timestep’s Q-values in
section 5.5, and show the performance gains in Figure 1.

5 Experiments

Our experimental evaluation is designed to compare DTQN not only to previous Q-network baselines,
but also to ablate our own method with other architectural choices. We evaluate these methods
on a range of challenging domains featuring partial observations and requiring memory to solve
them. We baseline DTQN against Deep Recurrent Q-Networks (DRQN) (Hausknecht & Stone,
2015) to show the transformer is a more effective history representation module than RNNs, Deep
Q-Networks (DQN) (Mnih et al., 2015) to demonstrate the need for memory to solve the task
consistently, and against an attention baseline (called “ATTN” in Figure 2) to show the benefits of our
architectural choices. ATTN, like the transformer, has observation and position embeddings, attention
and feedforward network modules, but does not have LayerNorm or skip connections, and does not
stack multiple blocks.

5.1 Domains

(a) Gridverse Memory
7x7

(b) Gridverse Memory
Four Rooms 7x7

Figure 3: Gym-Gridverse Memory domains. The
top row depicts the state while the bottom row
shows the agent’s current observation. The colored
beacon informs the agent which flag to reach.

We conduct our experiments on 4 different en-
vironment sets designed to challenge DTQN in
different ways: classic POMDPs, gym-gridverse
(GV) (Baisero & Katt, 2021), car flag (Nguyen,
2021), and memory cards. Hallway (Littman
et al., 1995) and HeavenHell (Bonet, 1998) are
classic navigation POMDPs requiring the agent
to take and remember several information gath-
ering steps before it can consistently achieve its
goal. Gym-Gridverse offers procedurally gen-
erated gridworlds containing difficult partially
observable tasks. The agent’s field of view is
restricted such that it can only see the cells in
a 2× 3 grid in front of it (see Figure 3), which
introduces state aliasing and forces the agent
to gather localizing information before it can
successfully solve the task. We evaluate our
agents in gridverse environments “Memory” and
“Memory Four Rooms”, which require the agent
to first find the colored information beacons, and
then go to the flag whose color matches the beacon. The colors of the flags and beacons are initialized
randomly and, in Memory-Four-Rooms, the locations of the flag and beacons are also initialized
randomly, increasing the environment’s difficulty. Example screenshots of the gridverse domains are
shown in Figure 3. Car Flag features a car on a 1D line, where the car must first drive to an oracle
flag to learn which direction the finish line is. Memory cards is a novel domain designed to test how
much information an agent can memorize. Based on the popular children’s memory card game, 5
pairs of cards are hidden to the agent, with one card revealed at each timestep and the agent must
guess the position of that card’s pair. We chose this set of domains to be representative of challenging
partially observable problems. For more information regarding the domains, please see Appendix B.

5.2 Baseline comparison

Our evaluation against baselines is shown in Figure 2. Each learning curve shows the success rate
of the agent in the environment, where the line is the mean across 5 random seeds, and the shaded
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region represents standard error. We search across hyperparameters of interest, and select the best
performing hyperparameter set, prioritizing consistency across domains. For specific hyperparameters
and training details, refer to Appendix A.

The results in Figure 2 show DTQN outperforms the baselines in terms of learning speed and final
performance on nearly all domains. ATTN learns quickly, but rarely reaches optimal performance,
and often becomes unstable. DRQN, featuring an LSTM as its memory module, often performs
well in our set of domains, but learns slower than DTQN, and is in general less stable. Sometimes,
especially in the gridverse memory domains, DRQN’s performance plummets shortly after it begins
to learn. It then struggles to regain its initial performance gains, taking as many as one million
timesteps in the Gridverse memory 7x7 domain to improve its success rate. DQN, designed for MDPs
and without any form of memory in its architecture, fails to achieve higher than 50% success rate on
any of our domains, exemplifying the difficulty of the domains and the importance of using memory
to solve them. These results highlight the effectiveness of DTQN in solving a range of POMDPs.

5.3 GRU-gates and identity map reordering

In this section, we compare DTQN with different forms of the “Combine“ step (see Figure 1) as
well as different positions of LayerNorm. DTQN’s combine step is a residual skip connection,
and the LayerNorm occurs after both the attention and the feedforward submodules. In contrast,
GTrXL (Parisotto et al., 2020) introduced GRU-like gating in the combine step, and identity map
reordering, which moves the LayerNorms directly in front of the masked multi self attention and
feedforward sections. We compare our DTQN with residual skip connection to a version of DTQN
which uses GRU-like gating, a version of DTQN which uses identity map reordering, and a version
which uses both GRU-like gating and identity map reordering. When both GRU gates and the
identity map reordering is used, the architecture resembles GTrXL. However, we do not use the
TransformerXL (Dai et al., 2019) as in GTrXL, therefore we are not comparing to an exact replica.

The results for this ablation are shown in Table 1. DTQN performs competitively with the ablated
versions. The variant with only identity map reordering performs significantly worse than the other
versions, and the version with both identity map reordering and GRU-like gating performs worst on
hallway. Both DTQN and the GRU-like gating variant perform competitively on all three domains we
tested. Although we do not use the TransformerXL in our experiments, we would expect to see the
same relative performance across if we replaced our transformer decoder with the TransformerXL.
A comparison of different transformer backbones, such as Big Bird (Zaheer et al., 2020), sparse
transformers (Child et al., 2019), or the TransformerXL would be interesting future study.

5.4 Positional encodings

DTQN uses learned positional encodings to allow the network to adapt to different domains. Partially
observable domains will exhibit a broad range of temporal sensitivity, and we want to provide DTQN
the flexibility to learn encodings to match its domain. In this section, we compare the use of learned
positional encodings with the sinusoidal encodings in the original transformer (Vaswani et al., 2017)
as well as no positional encodings. The results for this comparison are shown in Table 1. In the
memory cards domain, the variant of DTQN without positional encodings performs significantly
worse than both our learned encodings as well as the sinusoidal encodings. However, in the gridverse
memory task and hallway, the three styles of positional encodings perform comparably. We analyze
the resulting learned positional encodings from our trained DTQN agents across various domains in
Appendix E.

5.5 Intermediate Q-value prediction

DTQN predicts and trains on the Q-values generated for each timestep in the agent’s observation
history. During evaluation, however, we only consider the last timestep’s Q-values when determining
which action to take. We could, therefore, train in the same way, only training with the last timesteps’
Q-values. We compare these two training regimes, and the results for this are shown in Table 1.
Our results show the variant trained without intermediate Q-values suffers a significant performance
decrease. In the memory cards case, DTQN excels and solves the task with nearly 90% success rate,
but the variant without intermediate Q-value prediction can barely solve the task 10% of the time. By
training on all generated Q-values, we produce a more robust and effective agent.
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Table 1: Ablations. We report the final success rate for each variant, averaged across 5 seeds, with
standard error.

GV memory 7x7 Memory cards Hallway Average

Transformer structure

DTQN (ours) 75.2± 7.2 89.8± 1.9 98.3± 1.0 87.77
Gate and identity 80.3± 6.4 90.8± 3.0 67.5± 10 79.53
Gate only 78.3± 4.4 88.9± 1.2 100± 0 89.07
Identity only 65.3± 6.7 88.5± 1.8 69.8± 10 74.5

Positional encodings
Learned (ours) 75.2± 7.2 89.8± 1.9 98.3± 1.0 87.77
Sinusoidal 83.1± 5.0 85.5± 1.9 92± 3.9 86.87
None 85.5± 3.7 70.8± 2.8 99± 0.4 85.1

Intermediate Q-value
prediction

DTQN (ours) 75.2± 7.2 89.8± 1.9 98.3± 1.0 87.77
None 56.27± 14 9.0± 2.2 92.8± 0.7 52.69

6 Discussion

Figure 4: Attention bars for gridverse memory 7x7.
Bars go from left to right, and observations go top
to bottom (i.e. the second observation attended
to the first and second observation). Attention
weights below 0.2 have been removed for visibility.

DTQN outperforms or is competitive with our
baselines in terms of learning speed and final
performance on all our domains. One additional
advantage of transformers is the ability to visu-
alize self-attention weights as a form of inter-
preting the model. Intuitively, the self-attention
mechanism allows the agent to prioritize obser-
vations in its history which provide it with the
most information useful in solving its task. The
causal masking ensures the agent cannot attend
to observations in its future, resembling how
the agent will need to perform during execution.
While the use of attention weights as a tool for
explainability is still being studied (Jain & Wal-
lace, 2019; Wiegreffe & Pinter, 2019), it does
allow us to observe which observations the agent
finds most valuable in its history. In Figure 4,
we visualize a trained DTQN agent’s attention
weights from a trajectory in gridverse memory
7x7. Crucially, the observation including the
green beacon (circle with X, magnified on right)
is strongly attended to by all future observations,
indicating the DTQN agent has correctly learned which observations are important in solving the task.
When the agent sees the green flag (magnified on left), it attends to the observation with green beacon
to ensure it selects the correct flag. We provide additional attention visualizations in Appendix D

7 Conclusion

In this work we introduce Deep Transformer Q-Networks, a novel architecture for solving challenging
partially observable domains with reinforcement learning. DTQN incorporates the transformer
decoder, which excels in generating Q-values for each timestep of the agent’s observation history. We
train the model on all generated Q-values, enabling an efficient training regime and faster learning.
DTQN also utilizes learned positional encodings, empowering the model to learn domain-specific
encodings which match the temporal dependencies of the environment. We explore and ablate several
architectural structures, and find our choices either outperform or are at least competitive with all
tested variants. Finally, we provide a modular code 1 implementation of DTQN that is easy to extend
and modify, which we hope the research community will be able to use as we expect our approach
to serve as the basis and benchmark for future transformer-based methods in partially observable
reinforcement learning.

1https://github.com/kevslinger/DTQN
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A Implementation details and hyperparameters

A.1 Implementation

We train DTQN off-policy. Before the agent begins training, the replay buffer is seeded with 50,000
timesteps generated by a random policy. At each timestep of training, DTQN receives the agent’s
previous k observations, and outputs k sets of Q-values, one for each observation. During training,
the beahvior policy acts in an ϵ-greedy way; that is, with probability ϵ, the agent selects an action
randomly, and with probability (1 − ϵ), selects the action with the highest predicted Q value. We
anneal ϵ linearly from 1.0 to 0.1 throughout the first 10% of timesteps, and then hold it fixed at 0.1 for
the rest of training. The target values used for training are selected via the double DQN ((Van Hasselt
et al., 2016)) strategy. Every 10,000 training timesteps, the target network updates its parameters by
copying the policy network’s current parameters. The evaluation policy behaves greedily and always
selects the action with the highest predicted Q-value. We trained DTQN on a NVIDIA GeForce RTX
2070 GPU, where each run took about four hours per one million timesteps.

A.2 Hyperparameters

The full list of hyperparameters is listed in Table 2. We prioritized consistency across domains,
although in the Hallway, HeavenHell, and CarFlag domains, we set dmodel to 64 rather than 128.

Table 2: Hyperparameters used for our DTQN experiments.
Parameter Setting

Heads 8
Layers 2
Context length, k 50
Embed features per observation feature 8
Model dimensionality, dmodel 128
Target update frequency 10,000
Optimizer Adam
Learning rate 3−4

Batch size 32
Replay buffer size 500,000

A.3 Attention Background

DTQN uses a variant of attention called multi-headed scaled dot-product self-attention. Given a
sequence of observations in an episode, {oi}, we first project the observations into the model’s dimen-
sionality using an embedding layer. The attention mechanism then performs linear transformations
against learnable weight matrices WQ, WK , and WV to map the sequence of tokens to a sequence
of queries, Q, a set of keys, K, and a set of values, V . Once we have the keys, queries, and values,
we compute the attention as follows:

H = Embedding({oi})
Q = HWQ,K = HWK , V = HWV

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

where dk is the dimensionality of K. The result of the softmax above gives an attention score for
each query. By splitting the weight matrices WQ, WK , and WV into smaller components, we form
several independent heads, hence the name multi-headed attention. The intuition behind multi-headed
attention is to give each head the ability to attend to different parts of the input. The result of each
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head is concatenated before the final linear projection result

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO

where headi = Attention(QWQ
i ,KWK

i , V WV
i )

Where WQ
i , WK

i , and WV
i are learnable weight matrices to embed the queries, keys, and values.

B Domain details

B.1 Classic POMDPs

We use Hallway ((Littman et al., 1995)) and HeavenHell ((Bonet, 1998)) from the classic POMDP
literature. Hallway is a hallway gridworld with four rooms to the hallway’s south. The agent’s goal is
to navigate to the fourth southern room despite very stochastic transition and observation dynamics.
Due to the stochasticity, an agent must take several localizing actions before it can be certain of its
surroundings. Hallway’s observation space is an integer representing which walls the agent can see in
its current cell (e.g. if the agent is at the end of the hallway, it would see the wall to its left, its right,
and in front of it), and there are 5 actions: no-op, move forward, turn right, turn left, and turn around.
HeavenHell consists of a T-shaped grid with an oracle priest at the southern end, heaven at one end of
the northern fork, and hell at the other end. On each episode reset, the location of heaven and hell
may be swapped, and the agent can only learn heaven’s location by visiting the priest. The optimal
agent first navigates south, away from its goal, to the priest, then uses the priest’s observation to go to
heaven. HeavenHell’s observation space is an integer, representing the agent’s position in the world
unless the agent is visiting the priest, in which case it recieves an indicator of whether heaven is on
the left or the right side of the fork. A HeavenHell agent can take one of 4 actions: move north, south,
east, and west.

In Hallway, the agent receives a living reward of 0, and a reward of 1 only after it reaches the goal
state. In HeavenHell, the agent receives a reward of 1 for reaching heaven, and -1 for reaching hell.

B.2 Gym-gridverse

Gym-Gridverse ((Baisero & Katt, 2021)) contains a set of gridworlds featuring challenging and
partially observable tasks. We evaluate DTQN and our baselines on Gridverse’s memory and memory-
four-rooms environments. The agent’s observations consist of a limited forward view based on the
agent’s position and orientation. In our experiments, the observation space is a vector of length 6
integers (representing the 2 × 3 grid as seen in Figure 3), and there are 6 actions: move forward,
move backward, move left, move right, turn left, and turn right. Memory consists of a central hallway
with the southern end containing identical colored beacon tiles while the northern end holds two
differently colored flags – one representing heaven and one representing hell. Memory four rooms is
a procedurally generated gridworld with a similar goal to Memory in that the agent must first find
the colored beacon to know which colored flag to reach. However, memory four rooms is much
harder than memory because the layout of the grid as well as the beacon and flag locations generated
randomly on each episode reset. The agent must gather information and explore its surroundings
until it knows where the color of the beacon and the location of the flags.

B.3 Memory cards

Memory cards is a new domain based on the children’s card game Memory. 5 pairs of cards are
randomly shuffled and their locations are hidden. At each time step, the agent sees the position of
one random card (i.e. it is flipped face-up) and must guess the position of that card’s pair. If guessed
correctly, the pair of cards are removed from play; otherwise, the card is turned back face-down, and
a new random card is revealed. This process continues until all N pairs have been removed from
play. Each correct guess rewards the agent with a reward of 0, each incorrect guess a reward of -1.
The observation space is a vector of 10 integers, where each integer denotes the card at that position
is hidden, face-up (in which case it shows that card’s value), or removed from play. The agent’s
action is the index for which card it thinks matches the currently revealed card. Given enough time, a
random policy can solve this task. However, policies that can effectively remember their history and
reason about unknown positions will perform best.
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B.4 Car flag

Car flag tasks a car with driving across on a 1D line to the correct flag. The car must first drive
to the oracle flag and then to the correct endpoint. The agent observation is a vector of 3 floats,
including its position on the line, its velocity at each timestep, and, when it is at the oracle flag, it is
also informed of the goal flag’s location. The agent’s action alters its velocity; it may accelerate left,
perform a no-op (i.e. maintain current velocity), or accelerate right. The agent receives a reward of 1
for reaching the goal flag, a reward of -1 for reaching the incorrect falg, and 0 otherwise.

C Additional learning curves

C.1 Additional baselines

In addition to DRQN and DQN, we also compare our method to Action-based DRQN (ADRQN) (Zhu
et al., 2017) and Deep Attention Recurrent Q-Network (DARQN) (Sorokin et al., 2015). ADRQN
uses the same structure as DRQN, but conditions the Q-function on previous actions as well as
observations. DARQN similarly uses the structure of DRQN, but applies attention at each step
between the LSTM’s last hidden state and the current observation. The results for these comparisons
are shown in Figure 5. In all cases, DTQN outperforms the baselines. ADRQN performed better as a
baseline than DRQN in gridverse memory 7x7 and hallway, but still performed worse than DTQN in
terms of final success rate. In the Hallway domain, ADRQN and DARQN achieve high performance
early, but DTQN achieves the best final success rate. Unfortunately, we were unable to run these
baselines on all our domains due to compute limitations, as DARQN took 12 hours per one million
timesteps (compared to DTQN’s four hours per one million timesteps).

(a) Gridverse memory 7x7 (b) Memory cards (c) Hallway

Figure 5: Baseline comparison of DTQN (blue) with DRQN (orange), DARQN (yellow), ADRQN
(maroon), and DQN (purple), measured by evaluation success rate during training. Lines show mean
success rate and shaded regions represent standard error across five random seeds. In all three cases,
DTQN achieves the highest final success rate among all five algorithms.

C.2 Ablations

In this section, we plot the learning curves for the ablations in Table 1. Figure 6 refers to the
“Transformer structure” section of Table 1. DTQN outperforms or performs competitively with
all ablated versions. The learning curves show both the ablated version of DTQN with GRU-like
combine step and identity map reordering as well as the version containing only identity map
reordering perform much worse in the Hallway domain compared to the original DTQN and the
version of DTQN with only GRU-like gating. In gridverse memory 7x7, the identity map reordering
version of DTQN learns slower than the other versions. Figure 7 refers to the “Positional encodings”
section of Table 1. Again, DTQN performs better than or is similar to the other forms of positional
encodings. Particularly, the memory cards domain shows the benefit of learned positional encodings,
as our version clearly performs the best compared to the sinusoidal encodings and the variant of DTQN
with no positional encodings. For more discussion of positional encodings, refer to Appendix E.
Figure 8 refers to the “Intermediate Q-value prediction” section of Table 1. In all cases, DTQN
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outperforms or is competitive with our ablated versions, showing the important of the intermediate
Q-value prediction training regime. For more discussion of these results, refer to Section 5.5.

(a) Gridverse memory 7x7 (b) Memory Cards

(c) Hallway (d) HeavenHell

Figure 6: Ablations for the “Transformer structure” section of Table 1. DTQN (blue) compared to an
ablated version of DTQN consisting of both gated combine step as well as the identity map reordering
(green), just gated combine step (olive), and just identity map reordering (pink). The y-axis shows
the evaluation success rate, with the shaded region depicting the standard error across five random
seeds. In all three cases, our version is competitive with the ablated versions of DTQN.

C.3 Wall-Clock Time Comparison

We also compare DTQN, DRQN, and DQN in terms of model size and speed in the Gridverse
Memory 5x5 domain. Table 3 shows the model size in terms of number of parameters as well as the
amount of time required to reach 1M timesteps in the environment. DTQN contains significantly
more parameters than DRQN and yet reaches 1M timesteps about 5 minutes slower than DRQN.
We believe this is because DTQN and the transformer are able to utilize the GPU hardware more
effectively than the LSTM in DRQN. Figure 9 shows the success rate of the models in the Gridverse
Memory 5x5 environment with respect to environment steps and wall-clock time. DTQN is the most
sample efficient in terms of both environment steps and wall-clock time. In Figure 9b, DTQN is the
only agent capable of solving the task within the 50 minutes of wall-clock time. To collect these
results, we used a PC with Intel Core i7-8700K CPU @ 3.70GHz x 12 and NVIDIA GeForce RTX
2070 Rev. A GPU. Results may vary on other hardware.

D Attention visualizations

Figure 10 shows attention weights for a trajectory rolled out by DTQN in the gridverse memory
5x5 domain. The agent first looks for the colored beacons, then turns to navigate toward the flags.
Crucially, in its second to last observation (magnified, left, in Figure 10), the agent can only see the
green flag but needs to navigate to the blue flag. It therefore attends to both the observation containing
the blue beacon as well as the initial observation containing the spatial relationship of the two flags
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(a) Gridverse memory 7x7 (b) Memory Cards

(c) Hallway (d) HeavenHell

Figure 7: Ablations for the “Positional encodings” section of Table 1. Learned positional encodings,
used by DTQN, is shown in dark blue, while sinusoidal positional encodings from the original
transformer (Vaswani et al., 2017) is shown in light blue, and a variant of DTQN without positional
encodings is colored brown. In all cases, our learned position encodings outperform or are competitive
with the ablated versions.

Table 3: Model comparison on Gridverse Memory 5x5.
Model # Parameters Time to 1M steps (minutes)

DTQN (ours) 435,142 158.70
DRQN 155,838 153.12
DQN 23,743 48.972

(see magnified observations on right in Figure 10) and knows to move backwards towards the blue
flag to achieve its goal.

Similarly, Figure 11 displays attention weights for a trajectory rolled out by a trained DTQN agent in
gridverse memory 7x7. The agent takes several actions at the beginning of the episode to localize
itself. Notably, the agent encounters the yellow flag before seeing a beacon (magnified, top left in
Figure 11). At this point, it does not know which flag is its goal, so it continues until it locates the red
beacon (magnified, right). This observation is attended to by all future observations, indicating the
model understands this beacon dictates its goal for the episode. Finally, the agent finds the red flag
(magnified, bottom left), and correctly navigates to it to successfully complete the episode.
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(a) Gridverse memory 7x7 (b) Memory Cards

(c) Hallway (d) Hallway

Figure 8: Ablations for the “Intermediate Q-value prediction” section of Table 1. DTQN is shown in
blue and the ablated version without using intermediate q-value prediction is shown in red. Using the
intermediate Q-value prediction enables the network to learn more efficiently and robustly, which is
highlighted in the memory cards domain.

(a) Environment Steps (b) Wall-Clock Time

Figure 9: Comparison of model efficiency in Gridverse Memory 5x5 with respect to both environment
steps and wall-clock time. DTQN, shown in blue, is more sample efficient than both DRQN (orange)
and DQN (purple) with respect to both interactions with the environment and wall-clock time. To
collect these results, we used a PC with Intel Core i7-8700K CPU @ 3.70GHz x 12 and NVIDIA
GeForce RTX 2070 Rev. A GPU. Results may vary on other hardware.
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Figure 10: Attention bars for gridverse memory 5x5. The agent uses attention to remember the
location of and navigate to the blue flag even when it cannot see the both flags in its second to last
observation (magnified, left).
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Figure 11: Attention bars for gridverse memory 7x7. Bars go from left to right, and observations go
top to bottom (i.e. the second observation attended to the first and second observation). The observa-
tion containing the red beacon (magnified, right) is attended to strongly by all future observations,
indicating the agent understands the beacon’s importance in achieving its goal. Attention weights
below 0.2 have been removed for visibility.

E Positional encodings

DTQN learns positional encodings, which gives the network information regarding the temporal
position of each observation in its history. In Figure 12, we examine the positional encodings
DTQN learns in various domains and compare them to the sinusoidal positional encodings from the
original transformer (Vaswani et al., 2017). DTQN learns unique positional encoding structures to
match its domain. The positional encodings for the gridverse memory domain show high similarity
scores, especially for positions 20 through 50, indicating the encodings may not be very valuable
for this domain. Indeed, this notion is supported in Table 1 and Figure 7, where we see very similar
performance between the DTQN agent with learned positional encodings and the variant without
positional encodings. In contrast, DTQN’s learned encodings in the memory card domain are very
distinct, which we can see in the low similarities everywhere except the symmetric diagonal in
Figure 12. This indicates that these unique positional encodings are very valuable in this domain,
which is supported by the poor performance of DTQN without any positional encodings on this
domain (results shown in Table 1 and Figure 7). We value the flexibility of learning unique positional
encodings for each domain as it lets our model adapt to each environment.
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Figure 12: Cosine similarity of positional encodings from a trained DTQN agent across three domains
(left), and sinusoidal positional encodings (right). The brightness at point (i, j) indicates the similarity
between the ith and jth positional encoding. DTQN learns it’s positional encodings uniquely for
each domain.
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