
Faster Query Times for Fully Dynamic k-Center
Clustering with Outliers

Leyla Biabani
Eindhoven University of Technology

Eindhoven, The Netherlands
l.biabani@tue.nl

Annika Hennes
Heinrich Heine University Düsseldorf

Düsseldorf, Germany
annika.hennes@hhu.de

Morteza Monemizadeh
Eindhoven University of Technology

Eindhoven, The Netherlands
m.monemizadeh@tue.nl

Melanie Schmidt
Heinrich Heine University Düsseldorf

Düsseldorf, Germany
mschmidt@hhu.de

Abstract

Given a point set P ⊆M from a metric space (M,d) and numbers k, z ∈ N, the
metric k-center problem with z outliers is to find a set C∗ ⊆ P of k points such
that the maximum distance of all but at most z outlier points of P to their nearest
center in C∗ is minimized. We consider this problem in the fully dynamic model,
i.e., under insertions and deletions of points, for the case that the metric space has
a bounded doubling dimension dim. We utilize a hierarchical data structure to
maintain the points and their neighborhoods, which enables us to efficiently find
the clusters. In particular, our data structure can be queried at any time to generate
a (3 + ε)-approximate solution for input values of k and z in worst-case query
time ε−O(dim)k log n log log∆, where ∆ is the ratio between the maximum and
minimum distance between two points in P . Moreover, it allows insertion/deletion
of a point in worst-case update time ε−O(dim) log n log∆. Our result achieves a
significantly faster query time with respect to k and z than the current state-of-the-
art by Pellizzoni, Pietracaprina, and Pucci [18], which uses ε−O(dim)(k+z)2 log∆
query time to obtain a (3 + ε)-approximate solution.

1 Introduction

Clustering is a fundamental problem in machine learning and it has applications in many areas
ranging from natural to social sciences. As a basic unsupervised learning method, it allows us to find
structure in data. Classical center-based clustering methods for objectives like k-means, k-median
and k-center have been around for many decades [9, 13, 16]. Since the beginning of clustering, the
data to be analyzed has changed dramatically, raising new challenges for clustering methods. Data
nowadays comes in large to huge batches and is often prone to inherent change: Content on social
media platforms is constantly added, re-organized or deleted, streaming services handle an always
ongoing flow of people starting and stopping to watch, tweets are the fastest method to distribute
news – and delete them later if desired. Data analysis methods thus face the challenge of analyzing
huge amounts of data, ideally permanently updating their solution.

In this paper, we consider the problem of dynamic k-center clustering with outliers. The (metric)
k-center problem is to find a set C∗ ⊆ P of k points such that the maximum distance of all points of
P to their nearest center in C∗ is minimized. This objective is well understood, 2-approximations for
the problem are known [9, 13] and better approximations are not possible unless P equals NP [14].

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Table 1: Fully dynamic k-center algorithms without outliers.

Year Ref. Metric Update time Approx

2018 [3] general amort. O(k2 log δ
ε) 2 + ε

2019 [19] Eucl. Rd amort. O(εd log∆ log n) 16

2021 [10] doubl. ε−O(dim) log∆ log log∆ 2 + ε

2023 [1] general amort. O(k polylog(n,∆)) 2 + ε

Considering outliers for k-center is very natural. Since k-center minimizes the maximum radius, a
single measuring error can destroy the structure completely. Thus, the (k, z)-center problem allows
us to ignore z points. These belong to no clusters but are deemed to be outliers, and so they are
ignored when determining the maximum radius of a cluster. The concept was introduced in 2001
by Charikar, Khuller, Mount, and Narasimhan [6] who as one result provide a 3-approximation for
k-center with outliers. This variant has since been the subject of many papers, and the best-known
approximation algorithm for it, which gives a 2-approximation, was derived as recently as 2016 [2].

In parallel, fully dynamic k-center algorithms (without outliers) have been developed [1, 3, 8, 10]
which work with a changing point set given as a stream of insertions and deletions. All these maintain
a data structure that allows for continual updates to keep adapting to the changing data. An overview
is given in Table 1. All results in this table support some form of membership queries: Given a point,
return the cluster / center of the cluster of that point in the approximate solution. This type of query
can typically be answered in time O(1). Reporting the centers takes more time or is not necessarily
explained how to do.

Now the challenge is to combine the two parallel developments into a fully dynamic algorithm for
(k, z)-center clustering. We discuss the setting more precisely and then our results and related work.

Our setting We say that a metric space has doubling dimension dim if dim is the smallest positive
integer such that any ball of radius r can be covered by at most 2dim balls of radius r/2. For an
overview of this concept, we also refer the reader to [12, 11]. Let (M,d) denote such a metric
space and let P ⊆ M be a set of points. By dmin := inf{d(x, y) | x, y ∈ P, x ̸= y} and
dmax := sup{d(x, y) | x, y ∈ P} we denote the minimum and maximum inter-point distance within
P , respectively. Without loss of generality, we assume that dmin = 2. Let ∆ := dmax / dmin be the
aspect ratio of P .

We are observing a dynamic stream, i.e., we start with a point set P = ∅ and then process a sequence
of operations whose length is unknown a priori. Each operation either adds a point from M to P or it
deletes a point which is currently in P from P . We assume only deletions of points that are currently
present are allowed, and we also assume that we can always compute d in time O(1) (otherwise,
multiply all times mentioned in this paper by the time necessary to make one distance computation).
We refer to the point set after time t (i.e., after t operations happened) as Pt. If it is clear from the
context, we will sometimes drop the subscript. We assume that dmax and dmin are fixed throughout
the whole sequence of updates, i.e. dmax = sup{d(x, y) | x, y ∈ Pt, t ≥ 0}, and analogously for
dmin. Therefore, ∆ is an upper bound on the aspect ratio over all updates and is known in advance.
This is in accordance with a sequence of other works [1, 4, 3, 7, 10, 19].

The problem that we address is the dynamic k-center problem with z outliers or in short (k, z)-
center problem: Given Pt and numbers k and z, produce a set C ⊆ Pt of size at most k such that
the maximum distance of all but at most z points to their nearest neighbor is minimized. More
formally, minZ⊆Pt,|Z|≤z maxx∈Pt\Z minc∈C d(x, c) is minimized among all possible choices of C
with |C| ≤ k. 1

1Notice the small detail that we do not ask to compute Z but only to provide centers that are good centers
under the assumption that at most z points can be ignored. In the offline setting, finding Z can be done by
assigning every point in P to its closest point in C and then ignoring the z points farthest away. In the dynamic
setting and with our data structure, we could also produce the outliers. However, we believe that the outliers are
less interesting than the centers, and since there could be substantially many outliers, we rather only report the
cluster centers to avoid a linear dependence on z.

2

Table 2: Fully dynamic k-center algorithms with outliers and their update/query times.

Year Ref. Metric Update time Query time Approx

2022 [4] general O(1ε (k + z)2 log∆) O(1ε (k + z)2 log∆) 14 + ε

2023 [18] doubl. 1
εO(dim) log∆

1
εO(dim) (k + z)2 log∆ 3 + ε

2023 [7] doubl. O(k
εdim + z) log4(k∆εδ) O((k

εdim
+ z)2k log (k

εdim
+ z)) 3 + ε

now Thm 1.1 doubl. 1
εO(dim) log n log∆ 1

εO(dim) k log n log log∆ 3 + ε

Our focus is on building a dynamic algorithm that has a low update time for insertion and deletions.
We are allowed to store P (and additional information). Our aim is to achieve an update time for
our data structure that is independent of k and a query time that is at most linear in k. For this, it is
necessary to consider a restricted model, as Bateni et al. [1] showed that in arbitrary metric spaces,
an update time of Ω(k) is necessary. We consider metric spaces of bounded doubling dimension.
Obviously, time Θ(k) is necessary to return an actual solution, so we distinguish between update time
for insertion and deletions of points and query time for obtaining a solution from the data structure.

Our result compared to related work We present a deterministic (3+ε)-approximation algorithm
for the k-center problem with z outliers in bounded doubling dimension that is fully dynamic, i.e.,
points can be inserted and deleted. Our algorithm is based on a data structure that requires space
linear in n and does not need to know k and z in advance. As a result, we can answer queries for all
k and z, or in other words, k and z can be part of the query. Moreover, our algorithm does not require
knowledge of the doubling dimension dim of the underlying metric space, and it only appears in the
analysis.

Theorem 1.1 (Main theorem). Let (M,d) be a metric space of bounded doubling dimension dim,
and let ε > 0 be an error parameter. There exists a deterministic dynamic algorithm that allows the
insertion or deletion of points from M using worst-case ε−O(dim) log n log∆ update time. Moreover,
at any time t, it can be queried by parameters k and z to compute a (3 + ε)-approximate solution
for the k-center problem with z outliers of Pt using worst-case ε−O(dim)k log n log log∆ query time,
where Pt is the set of points that are inserted but not deleted up to time t, and n is the size of Pt.

The first approximation algorithm for this problem has been obtained by Chan, Lattanzi, Sozio, and
Wang in 2022 [4], which has an approximation ratio of 14 + ε. Very recently and in independent
work, Pellizzoni, Pietracaprina, and Pucci [18] derived an algorithm with approximation ratio 3 + ε.
For the problem of distributed k-center with outliers, De Berg, Biabani, and Monemizadeh [7] give
a randomized dynamic algorithm that also achieves a guarantee of 3 + ε with failure probability δ.
Both of these and also we develop algorithms that answer solution queries rather than membership
queries, i.e., they can produce a center set at any time and this set is an approximately good solution
for the current k-center with outliers instance. We state the update times (for insertions and deletions
of points) and the query times (for reporting the current approximate solution) of these and our
approaches in Table 2.

All three known results have a dependency on (k + z)2 in their query time which we improve to a
linear dependence on k and no dependence on z. This gives our approach an advantage even if k or z
are only mildly dependent on n: Already for k ∈ O(log n) and z ∈ O(

√
n), the query complexity

of [18] would be linear in n compared to the poly-logarithmic dependency in terms of n for our
query time. More interestingly, for a realistic regime where z is an epsilon-fraction of n, the query
time of the dynamic algorithm presented in [18] has quadratic dependency in terms of n while our
query time still has a logarithmic dependency in terms of n and linear dependency in terms of k. [4]
also states a bicriteria approximation where the number of outliers can be violated with improved
running time, but the dependency on k is still quadratic. When comparing to [7], it should be noted
that their algorithm is only applicable to the Euclidean metric space, is randomized and only works
against oblivious adversaries. Further, the coreset size (and the space complexity) of the algorithm
in [7] is x = O(kϵ−dim log∆ + z). In the streaming model, in order to extract the solution, one
needs to run an offline algorithm on the coreset. In this way, the query time of this algorithm is
O(kx2 log x) = O(k(z2 + k2)ϵ−2dim log2 ∆) which is significantly worse than the query time of
our algorithm.

3

The main difference of our approach is that it makes the greedy algorithm for k-center with outliers
dynamic while the previous dynamic algorithms extract a coreset and run the greedy algorithm on
this coreset. Known dynamic algorithms [4, 7, 18] for the k-center problem with outliers maintain a
coreset after every update. In particular, in [18], they extract the coreset by simply reading the solution
from the cover tree. To extract an approximate solution for this problem, one needs to run a known
(offline) greedy algorithm on this coreset. In this way, the query complexities of those algorithms are
dominated by the running time of the greedy algorithm. The novelty of our dynamic algorithm is that
we make the greedy algorithm itself dynamic. To this end, we use heap data structures to compute a
ball that covers the maximum number of points, and dynamic neighborhood sets to obtain points in
the expanded maximum ball and update their corresponding keys in the heap to recursively find the
next maximum balls.

Navigating nets. The state-of-the-art algorithm for the fully dynamic k-center problem (without
outliers) in doubling metrics, developed by Goranci et al. [10] uses navigating nets originally
introduced by Krauthgamer and Lee [15]. The basic idea of a navigating net is to start with the point
set Pt as the base net N1 and then compute coarser and coarser variants of it, resulting in a hierarchy
of nets N1, N2, . . . , N2i , For every level in this hierarchy, the points are good representatives of
the points in the level below but the higher we get in the net, we have fewer points that are better
separated. More precisely, following Krauthgamer and Lee [15], every level is a so-called r-net of
the level below it. An r-net on a set X is a subset Y ⊆ X that satisfies two properties:

1. ∀p ∈ X∃y ∈ Y : d(p, y) < r (Covering)

2. ∀x, y ∈ Y : d(x, y) ≥ r (Packing)

In a navigating net, one always assures that Nr is an r-net of Nr/2. Assume that the minimum
inter-point distance dmin satisfies dmin = 2 and that the ratio between maximum and minimum
inter-point distance is ∆. Then a navigating net with O(log∆) levels can be computed in a greedy
fashion. Intriguingly, one can show that in the resulting navigating net, the lowest level with |Nr| ≤ k
provides an 8-approximation for the k-center problem (without outliers, i.e., z = 0). This was
first observed (in the context of streaming algorithms and there known as the doubling algorithm)
by Charikar, Chekuri, Feder, and Motwani [5]. An additional trick to improve the approximation
ratio was discovered by McCutchen and Khuller [17] (again, in the setting of streaming). They
observed that the quality of the solutions depends heavily on what the radius of the lowest level
is, and that this radius can be shifted by small amounts, and one of the shifted versions will give a
2 + ε approximation. By maintaining the navigating net structure and using a similar shifting trick,
dynamic k-center algorithms maintain enough information to answer queries by checking one or a
few levels of the resulting navigating net and reporting the points on that level as the solution, as for
example in [1, 10].

Challenges with outliers. For the (k, z)-center problem, the challenge is that
there is no level in the navigating net which provides a good solution in itself.

OPT

Figure 1: For k = 1 and z = 3, k-center and
(k + z)-center provide bad estimations for the best
(k, z)-center solution in this example. We see: (a)
Dashed Ball: Optimum solution for (k, z)-center.
(b) Small Balls (too small): Optimum solution for
(k+z)-center. (c) Not drawn: the optimum solution
for k-center is a ball around all points (too large).

We know that an optimal (k, z)-center solution
has a radius that lies between the radius of a
k-center solution (because any k-center solution
is feasible for the (k, z)-center problem) and the
radius of a (k + z)-center solution (because any
(k, z)-center solution is feasible for the (k + z)-
center problem). But as Figure 1 shows, nei-
ther of the two choices may provide a good es-
timate for the optimum (k, z)-center solution.
Say level r1 is the first to satisfy |Nr1 | ≤ k + z
and level r2 is the first to satisfy |Nr2 | ≤ k.
Then the points in Nr2 are a feasible solution
for the (k, z)-center problem, but their radius
may be too large, while the radius of the solu-
tion in Nr1 is guaranteed to be small enough,
but these points may not constitute a feasible
solution for (k, z)-center. This is because every
point in Nr represents several points in the levels below it. So we cannot simply divide the k + z

4

points into k centers and z outliers (see Figure 1). Therefore, there is no individual level which we
can query to obtain a solution. Instead, we need to compute a solution from the navigating net levels
while making sure not to lose too much in terms of quality and query time.

Pellizzoni et al. [18] base their approach on the so-called “cover tree” data structure, which is similar
to that of a navigating net, to compute a coreset from which they construct the final solution. In their
approach, they find the lowest level with |Nr| ≤ 2O(dim)ε− dim(k + z) and demonstrate that such
Nr serves as an ε-coreset for (k, z)-center. However, since it is not a feasible solution, they utilize a
3-approximation greedy algorithm to obtain a (3 + ε)-approximate clustering, which requires a time
complexity of Ω(ε−2 dim(k + z)2). In this paper, we strategically integrate additional information at
each level to directly emulate the offline 3-approximation greedy algorithm by Charikar et al. [6] in
the dynamic setting. This approach enables us to achieve a time complexity that is linearly dependent
on k and remarkably independent of z.

2 Our data structure

In this section, we describe our data structure, which has O(log∆) levels. In each level r, we have
net Nr, which is an r-net of Nr/2. For each point p ∈ Nr, we keep its weight wr(p) and local
neighborhoods B1

p,r and B3
p,r, which are balls of radius (1 +O(ε))r and (3 +O(ε))r respectively.

Then we maintain max-heap Hr which is designed to store the total weights of neighborhoods B1
p,r

for all p ∈ Nr. We also keep repr(p) for each point p ∈ P , which is the representative of p in Nr.
Below, we provide a detailed explanation for elements of our data structure.

Input and set R. To start building our data structure, we require three input parameters: ∆, ε′, and
β, where 0 < ε′ < 1, and 1

2 < β ≤ 1. ∆ denotes the spread ratio of the underlying point set P and ε′

is the given error parameter. We utilize β to define R := {0}∪{β ·2ℓ | 0 ≤ ℓ ≤ ⌈log2 ∆⌉+1, ℓ ∈ Z}
as a set of levels. Additionally, we define ε := 2⌊log ε′⌋. This implies that ε′/2 < ε ≤ ε′. Furthermore,
if r ∈ R, then either εr ∈ R or εr < β.

Nets Nr. We maintain net Nr for each r ∈ R, satisfying the following conditions: N0 = Nβ = Pt,
where Pt is the set of points at time t, and for r > β, Nr is an r-net of Nr/2. For p ∈ Nr and
q ∈ Nr/2, we say p is a parent of q (and q is a child of p) if d(p, q) ≤ r. In our data structure, we
store all the parents and children for each point for all the nets. It is important to note that each point
can have at most 2O(dim) parents or children. In the full version, we explain how to handle each
insert/delete in time 2O(dim) log∆.

During the paper, we may refer to Nεr for 0 < εr < β, which means εr /∈ R. Besides, note that
since dmin = 2 and β < 2, Pt is an r-net for any 0 ≤ r ≤ β. To solve this issue, we define Nr := Pt

for any 0 < r < β, however, we do not explicitly keep any r-nets for 0 < r < β in our data structure
to prevent redundancy.

Representatives repr and weights wr. For all r ∈ R, we inductively define functions repr : Pt →
Nr such that each point p ∈ Pt has a unique representative repr(p) in net Nr. To define repr(p),
we consider three cases. First, if p ∈ Nr, then we define repr(p) := p. Second, if p /∈ Nr but
p ∈ Nr/2, we uniquely choose one of the parents of p in Nr as repr(p). Third, if p /∈ Nr/2 and
therefore p /∈ Nr, we define repr(p) = repr(repr/2(p)). Again to avoid inconsistency, we define
repr(p) := p for any 0 < r < β, but we do not store this explicitly. We show in Lemma 2.1 that the
distance between each point p and its representative in Nr is at most 2r.

Next, we define a weight function wr for every level. For every point p ∈ Nr, its weight
wr(p) denotes the number of points that p is representing in Nr. More formally, wr(p) =∣∣{q ∈ Pt | repr(q) = p}

∣∣. For a set X ⊆ Nr, we define wr(X) :=
∑

p∈X wr(p). Equivalently,
wr(X) =

∣∣{y ∈ Pt | repr(y) ∈ X}
∣∣. Note that the sum of weights of all representatives at any level

is equal to the total number of points, so wr(Nr) = |Pt| for all r ∈ R.

Since we store all the parents and children, we can easily update the representatives and therefore the
weights after each insert/delete. The details are presented in the full version.

5

Balls B1 and B3. Let r ∈ R. For every point p ∈ Nεr, we maintain the close neighborhood
B1

p,r := Ball(p, (1 + 4ε)r)∩Nεr and the extended neighborhood B3
p,r := Ball(p, (3 + 8ε)r)∩Nεr,

where Ball(p, λ) = {q ∈M | d(p, q) ≤ λ} denotes the ball of radius λ around p in the metric space
M . Then B1 := {B1

p,r | r ∈ R, p ∈ Nεr} and B3 := {B3
p,r | r ∈ R, p ∈ Nεr} are the collections

of local neighborhoods at different scales. As mentioned in Lemma 2.2, the size of each of these
neighborhoods is at most 2O(dim)/εdim. We also show that we can update these neighborhoods in
time 2O(dim)ε−2 dim log∆ after each insert/delete in the proof of Lemma 2.3.

Heaps Hr. For every r ∈ R, we maintain a max-heap Hr of the set {(p, wεr(B
1
p,r)) | p ∈ Nεr}

representing the weight of the close neighborhood of any point in level r. With Hr[p] we denote the
value of the max heap element with key p. Since B1

p,r might change, we need to find the position
of the respective heap element by its key p. Hence, for any level r, we keep a pointer from every
element in Nr to its corresponding element in Hr.

Whenever an update happens to a set B1
p,r for some point p ∈ Nεr, we need to update the value of

wεr(B
1
p,r) as well as the value of Hr[p]. Each update in the max-heap Hr can be done in O(log n)

time using the standard max-heap operations. In the full version, we show that 2O(dim)ε− dim

log∆

updates happen to set B1. Therefore, we need 2O(dim)ε− dim

log∆ log n time to update the heaps.

A few lemmas about our data structure. Now we mention a few useful lemmas about our data
structure. The formal proofs can be found in the full version. The first lemma is about the distance of
each point to its representative, which is bounded because of a geometric series argument.
Lemma 2.1. Let p ∈ Pt and r ∈ R. Then d(p, repr(p)) ≤ 2r. In particular, d(p, repεr(p)) ≤ 2εr,
where ε = 2⌊log ε′⌋ for the error parameter ε′.

We next discuss the size of close neighborhoods and extended neighborhoods.
Lemma 2.2. Let r ∈ R and p ∈ Nεr. The sets B1

p,r and B3
p,r defined above are of size at most

2O(dim)ε− dim. In particular, the size is O(ε− dim) for a constant doubling dimension dim.

In the next lemma, we show that the update time is logarithmic in the spread ratio and the size of Pt.
Lemma 2.3. Let n be the size of point set Pt. Then after insertion/deletion of any point to Pt, we
can update our data structure in time 2O(dim)ε−2 dim log∆ log n.

Besides insertion and deletion updates, our data structure supports solution queries: in every time step,
it can produce a solution in the form of a center set and a radius. We will discuss this in more detail
and present an algorithm that outputs a (3 +O(ε))-approximation in time ε−O(dim)k log n log log∆
in the following section.

3 Our algorithm

Overview For a given level r in R and a number of centers k, the main procedure MAXCOVERAGE
produces a set of k centers and a value outliersWeight . One run of this procedure is deemed
successful if outliersWeight ≤ z at the end. Indeed, we will later show that outliersWeight
is an upper bound on the actual number of outliers in the clustering with centers C and radius
(3 + 10ε)r, which implies that this is a feasible solution. The algorithm FINDCENTERS finds one
such level for which MAXCOVERAGE is successful. We also ensure that this level is chosen such
that MAXCOVERAGE is not successful on the next lower level r/2, which guarantees that the radius
of our solution does not deviate from the optimal solution by too much.

In our algorithm, we repeatedly find areas that subsume the most points. In order to do this efficiently,
we maintain the collections of close neighborhoods and their weights in max-heaps. Fix a level r ∈ R.
For k iterations, the root node of the current heap corresponds to the next center of our solution. After
picking it, we mark points in the extended neighborhood because our final approximate solution will
cover these points and they should not contribute to the weight of other neighborhoods anymore.

6

Procedure MAXCOVERAGE(k,r)
1 C ← ∅, Marked← ∅, outliersWeight ← n
2 Let H be a copy of Hr

3 for i = 1 to k do
4 Let ci be the key with maximum value in heap H
5 C ← C ∪ {ci}
6 for each y ∈ B3

ci,r such that y /∈ Marked do
7 Marked← Marked∪{y}
8 for each x ∈ B1

y,r do
9 Decrease H[x] by wεr(y)

10 outliersWeight ← outliersWeight −wεr(y)

11 return C, outliersWeight

Algorithm 1: FINDCENTERS(k, z)

Output :Centers C of a (3 + 10ε)ρ-approximation for
(k, z)-center

1 if MAXCOVERAGE(k, 0). outliersWeight ≤ z then
2 return MAXCOVERAGE(k, 0)

3 By performing a binary-search on R, find r̂ such that
MAXCOVERAGE(k, r̂). outliersWeight ≤ z, and
MAXCOVERAGE(k, r̂/2). outliersWeight > z if r̂ > 2

4 return MAXCOVERAGE(k, r̂)

As these points are now cov-
ered, we decrease the weights
of heap elements represent-
ing points therein accordingly.
These steps are performed by
MAXCOVERAGE. Note that for
maintenance reasons, one run of
FINDCENTERS should leave the
original heaps unchanged. We
could make a copy of the heap
before processing it in MAXCOV-
ERAGE, but it is faster to work on
the original heaps and just roll
back all the updates done dur-
ing MAXCOVERAGE at the end
of the algorithm, as described in
Lemma 3.8.

It remains to find a good value
for r. By applying a binary
search, we find a radius r such
that the value of outliersWeight
outputted by MAXCOVERAGE(k,
r) is at most z, while the respec-
tive output on the lower level r/2
is more than z. Note that it is pos-
sible to find such a pair of sub-
sequent radii via binary search
although the search space might
not be monotone. In the special case that there are at most z points in total, we can just set the radius
to 0. This is done in Algorithm 1 (FINDCENTERS(k, z)).

Analysis Next, we prove the approximation guarantee and time complexity of our algorithm.

Let r and k be fixed, and let i ∈ [1, k] be an integer. For any point y ∈ Nεr, we say y is marked
after the i-th iteration of the loop in Line 3 of MAXCOVERAGE, if y ∈

⋃i
j=1 B

3
cj ,r, and we

say it is unmarked if it is not the case. For simplicity, we may refer to a point as marked or
unmarked without specifying the iteration if it is clear from the context. We define set Ui :=

{y ∈ Nεr | y /∈
⋃i

j=1 B
3
cj ,r} as the set of unmarked points after the i-th iteration. We next define

Oi := {p ∈ Pt | repεr(p) /∈
⋃i

j=1 B
3
cj ,r} as the set of points that are considered outliers after the

i-th iteration of the loop. Equivalently, Oi := {p ∈ Pt | repεr(p) ∈ Ui}. After the i-th iteration of
the loop in Line 3, for each y ∈ Nεr, Hr[y] is the total weight of unmarked points in B1

y,r.

Lemma 3.1 (Invariant for heaps). Let k be an integer, 0 ≤ i ≤ k, and r ∈ R. Then for any y ∈ Nεr

it holds Hr[y] = wεr(B
1
y,r ∩ Ui) after the i-th iteration.

FINDCENTERS(k, z) returns a solution when outliersWeight ≤ z. To show that this solution is
feasible, it remains to prove that outliersWeight is an upper bound on the actual number of outliers
of this solution.

Lemma 3.2 (Feasible solution). Consider a radius r ∈ R, and an integer k. Then
MAXCOVERAGE(k, r) returns k centers and a value outliersWeight , such that the total number of
points in Pt that are not within distance (3 + 10ε)r of these k centers is at most outliersWeight .

Proof. Let outliersWeight denote MAXCOVERAGE(k, r). outliersWeight . We want to prove
that MAXCOVERAGE(k, r) returns {c1, . . . , ck} such that |Pt \

⋃
j≤k Ball(cj , (3 + 10ε)r)| ≤

outliersWeight . In every iteration i, outliersWeight is decreased by wεr(y) for every y ∈
B3

ci,r \Marked. After processing y, we add it to Marked. This way, we ensure that no y is charged
twice. Therefore, by the end of the algorithm, outliersWeight is decreased by wεr(

⋃
j≤k B

3
cj ,r).

7

Hence, in the end, the value of outliersWeight is

outliersWeight = n− wεr(
⋃
j≤k

B3
cj ,r)

= |Pt| − |{p ∈ Pt | repεr(p) ∈
⋃
j≤k

B3
cj ,r}| .

For all p ∈ Pt , if repεr(p) ∈
⋃

j≤k B
3
cj ,r, then d(cj , repεr(p)) ≤ (3 + 8ε)r holds for at least

one j ≤ k by definition of B3
cj ,r. Using Lemma 2.1, this implies d(cj , p) ≤ d(cj , repεr(p)) +

d(repεr(p), p) ≤ (3+ 8ε)r+2εr = (3+ 10ε)r. Hence, {p ∈ Pt | repεr(p) ∈
⋃

j≤k B
3
cj ,r} ⊆ {p ∈

Pt | ∃j ≤ k : d(cj , p) ≤ (3 + 10ε)r} and therefore

outliersWeight ≥|Pt| − |{p ∈ Pt | ∃j ≤ k : d(cj , p) ≤ (3 + 10ε)r}|

= |Pt| − |
⋃
j≤k

Ball(cj , (3 + 10ε)r) ∩ Pt| .

Consider a fixed optimal solution. The following insight is crucial for our proof: In every iteration of
MAXCOVERAGE(k, r) for r ≥ OPT, we select a ball that covers a sufficient number of unmarked
points. To be precise, it exceeds the number of currently considered outliers in any optimal cluster.
Lemma 3.3 (Invariant for picking ci). Let r ≥ OPT, where r ∈ R, and let c∗ ∈ Pt be a center of an
optimal solution for k-center with z outliers. Assume that we execute MAXCOVERAGE(k, r). Then
for any i ∈ [1, k], the ci picked in Line 4 is such that |Ball(c∗, OPT)∩Oi−1| ≤ wεr(B

1
ci,r ∩Ui−1).

Proof. We define ĉ := repεr(c
∗), the representative of c∗ in Nεr. Recall that B1

ĉ,r = {y ∈ Nεr |
d(ĉ, y) ≤ (1 + 4ε)r}. Lemma 3.1 states that H[y] = wεr(B

1
y,r ∩ Ui−1) holds for all y ∈ Nεr

after the (i − 1)-th iteration. Since ci is on top of the max-heap H , we have wεr(B
1
ĉ,r ∩ Ui−1) ≤

wεr(B
1
ci,r ∩Ui−1). Therefore, it remains to show that |Ball(c∗,OPT)∩Oi−1| ≤ wεr(B

1
ĉ,r ∩Ui−1).

According to the definition of representative and weight function, we first have

|Ball(c∗,OPT) ∩Oi−1| ≤
∑

y∈repεr(Ball(c∗,OPT)∩Oi−1)

wεr(y) .

We next show that for any point p ∈ Ball(c∗,OPT) ∩ Pt, its representative on level εr lies in B1
ĉ,r,

i.e. repεr(p) ∈ B1
ĉ,r. Let p ∈ Ball(c∗,OPT) ∩ Pt be an arbitrary point, then d(c∗, p) ≤ OPT ≤ r.

By the triangle inequality, d(ĉ, repεr(p)) ≤ d(ĉ, c∗)+ d(c∗, p)+ d(p, repεr(p)). Besides, Lemma 2.1
implies that d(ĉ, c∗) ≤ 2εr and d(p, repεr(p)) ≤ 2εr. Putting everything together we have

d(ĉ, repεr(p)) ≤ d(ĉ, c∗) + d(c∗, p) + d(p, repεr(p)) ≤ 2εr + r + 2εr = (1 + 4ε)r .

Besides, p ∈ Oi−1 is equivalent to repεr(p) ∈ Ui−1. Therefore, p ∈ Ball(c∗,OPT) ∩Oi−1 implies
repεr(p) ∈ B1

ĉ,r ∩ Ui−1, and we have repεr(Ball(c
∗,OPT) ∩Oi−1) ⊆ B1

ĉ,r ∩ Ui−1. Thus,∑
y∈repεr(Ball(c∗,OPT)∩Oi−1)

wεr(y) ≤
∑

y∈B1
ĉ,r∩Ui−1

wεr(y) = wεr(B
1
ĉ,r ∩ Ui−1) ,

which finishes the proof.

Utilizing Lemma 3.3, we can now show that the weight of the final output of MAXCOVERAGE(k, r)
with r ≥ OPT is at least the number of points covered by any optimal solution.
Lemma 3.4 (Invariant for coverage weight). Let C∗ be the set of k centers of an optimal solution
for k-center with z outliers on Pt, and let OPT be the radius of this solution. Let r ≥ OPT, where
r ∈ R. Then, ∣∣∣∣ ⋃

c∗∈C∗

Ball(c∗, OPT) ∩ Pt

∣∣∣∣ ≤ wεr

(k⋃
j=1

B3
cj ,r

)
(recall that B3

cj ,r = Ball(cj , (3 + 8ε)r) ∩Nεr and wεr(B
3
cj ,r) = |{y ∈ Pt | repεr(y) ∈ B3

cj ,r}|).

8

Proof. To prove the lemma, we show that for any i ∈ [0, k], there is a charging that satisfies the
following conditions: 1) There is a set {c∗1, . . . , c∗i } ⊆ C∗ and a function that charges each point in⋃i

j=1 Ball(c
∗
j , OPT) ∩ Pt to a point y ∈

⋃i
j=1 B

3
cj ,r, and 2) for any point y ∈

⋃i
j=1 B

3
cj ,r, at most

wεr(y) points from
⋃i

j=1 Ball(c
∗
j , OPT) ∩ Pt are mapped to y.

We prove this claim by induction on i. The base case i = 0 trivially holds. Assume that i ≥ 1 and the
induction hypothesis holds for i − 1. That is, there is a charging satisfying conditions 1 and 2 for
i− 1. Then, we prove that these conditions hold for i.

To define center c∗i , we consider two cases:

Case 1: there exists a center c∗ ∈ C∗ \ {c∗1, . . . , c∗i−1} for which B1
ci,r hits the set of representa-

tives of Ball(c∗,OPT). That is, we have repεr(Ball(c
∗,OPT)) ∩ B1

ci,r ̸= ∅. We then let
c∗i = c∗. We map every point of Ball(c∗,OPT) to its unique representative.

Case 2: the first case is not correct. Then, we let c∗i be any arbitrary point in C∗ \ {c∗1, . . . , c∗i−1}.
In this case, we charge the uncharged points of Ball(c∗i ,OPT) to B1

ci,r.

We first consider Case 1. We charge each point p ∈ Ball(c∗i , OPT) to its representative repεr(p).
We next prove the following claim:

Claim. Let p ∈ Ball(c∗i , OPT). If Case 1 happens, then for every point q ∈ Pt that is charged
to repεr(p), it holds that repεr(q) = repεr(p).

Proof. For the sake of contradiction, assume that there is a point q ∈ Pt such that q
is charged to repεr(p) and repεr(q) ̸= repεr(p). It means that at an iteration j < i,
Case 2 happened and q is charged to repεr(p). Since Case 2 happened at iteration j,
we have repεr(Ball(c

∗
i , OPT)) ∩ B1

cj ,r = ∅ and also q is charged to a point in B1
cj ,r.

Adding it to the assumption that q is charged to repεr(p) we have repεr(p) ∈ B1
cj ,r.

Besides, p ∈ Ball(c∗i , OPT) and therefore we have repεr(p) ∈ repεr(Ball(c
∗
i , OPT)).

This implies that repεr(p) ∈ repεr(Ball(c
∗
i , OPT)) ∩ B1

cj ,r, which is a contradiction to
repεr(Ball(c

∗
i , OPT)) ∩B1

cj ,r = ∅. ◁

ci c∗

repεr(q)

q p

repεr(p)

B1
ci,r

repεr(Ball(c∗,OPT))

Ball(c∗,OPT)

Figure 2: Illustration of the claim’s consequences.

The claim implies that for
each point p ∈ Ball(c∗, OPT),
at most wεr(repεr(p)) points
are charged to repεr(p). See
Figure 2, where the left blue ball
represents B1

ci,r, the right blue
one indicates the area that points
from repεr(Ball(c

∗,OPT)) can
lie in, and the orange circle
represents Ball(c∗,OPT). For
each point p ∈ Ball(c∗, OPT),
we have repεr(p) ∈ B3

ci,r:
Let q ∈ Ball(c∗,OPT)
be such that repεr(q) ∈
repεr(Ball(c

∗,OPT)) ∩ B1
ci,r.

The distance of ci to any
representative of a point p ∈ Ball(c∗,OPT) is

d(ci, repεr(p)) ≤ d(ci, repεr(q)) + d(repεr(q), q) + d(q, c∗) + d(c∗, p) + d(p, repεr(p))
≤ (1 + 4ε)r + 2εr + 2OPT+2εr ≤ (3 + 8ε)r,

implying that repεr(p) ∈ B3
ci,r.

For Case 2: note that if p ∈ Pt \ Oi−1, then by definition of Oi−1, we have repεr(p) /∈ Ui−1,
and hence repεr(p) ∈ ∪

i−1
j=1B

1
cj ,r by definition of Ui−1. So, by induction hypothesis, p is already

charged to repεr(p). Therefore, we only need to charge each point p ∈ Ball(c∗, OPT) ∩ Oi−1.
By Lemma 3.3 we have |Ball(c∗, OPT) ∩Oi−1| ≤ wεr(B

1
ci,r ∩ Ui−1). Also, we only charged to

9

the points in ∪i−1
j=1B

3, which means that no point is charged a point in Ui−1. Therefore, points in
Ball(c∗, OPT) ∩Oi−1 can be charged to points in B1

ci,r ∩ Ui−1.

Lemma 3.5. Let r ∈ R and OPT be the optimal radius for k-center clustering of Pt with z outliers.
Then if r ≥ OPT , the value outliersWeight returned by MAXCOVERAGE(k, r) is at most z.

Proof. Let C = {c1, . . . , ck} be the set of centers returned by MAXCOVERAGE(k, r) and C∗ be the
set of centers of an optimal k-center clustering of Pt with z outliers. By the same reasoning as in the
proof of Lemma 3.2, it is

outliersWeight = n− wεr(∪ki=1B
3
ci,r) .

Besides, Lemma 3.4 states that wεr(∪ki=1B
3
ci,r) ≥ | ∪c∗∈C∗ Ball(c∗, OPT) ∩ Pt|. Moreover, as C∗

are the centers of an optimal solution, n− | ∪c∗∈C∗ Ball(c∗, OPT) ∩ Pt| ≤ z. Putting everything
together, we have

outliersWeight ≤ n− wεr(∪ki=1B
3
ci,r) ≤ n− | ∪c∗∈C∗ Ball(c∗, OPT) ∩ Pt| ≤ z ,

which finishes the proof.

Lemma 3.2 and Lemma 3.5 together imply that the solution returned by Algorithm 1 is feasible.
Further, it can be shown that the level r̂ at which FINDCENTERS(k, z) becomes successful, fulfills
r̂ ≤ r∗. Together, this implies the following statement.
Lemma 3.6 (Approximation guarantee). Let OPT > 0 be the optimal radius for the k-center
clustering of Pt with z outliers, and let r∗ be the minimum number in R such that r∗ ≥ OPT . Then
FINDCENTERS(k, z) returns a (3+ 10ε)ρ-approximate solution for k-center clustering problem with
z outliers, where ρ = r∗

OPT .

For ρ defined in Lemma 3.6, 1 ≤ ρ < 2 holds according to the definition of R. It immediately leads to
a (6 +O(ε))-approximation algorithm. Next in Lemma 3.7, we show how to get ρ ≤ (1 + ε), which
improves the approximation ratio of our algorithm to 3 +O(ε). The idea is to run parallel instances
of our data structure with different values for parameter β, so that always OPT ≤ r < (1 + ε)OPT
holds for a r ∈ R in one of the instances.
Lemma 3.7 (Optimizing the approximation ratio). Let OPT > 0, and let ε > 0 be fixed. We define
m := ⌈1/ log2 (1 + ε)⌉. Suppose we have m parallel instances of our data structure with parameter
β = 2i/m−1 for the i-th instance. Then in at least one of the instances, we find a (3 + O(ε))-
approximation solution for k-center clustering with z outliers by calling FINDCENTERS(k, z).

The procedure MAXCOVERAGE(k, r) needs to temporarily edit the heap Hr. This can be done by
working on a copy of the heap, as indicated in line 2. The following result describes how this can be
done faster, without actually copying the heap. The idea is to work in place and roll back all changes
in the end. The formal proof is given in the full version.
Lemma 3.8 (Imitating of copying Hr). Let u be the number of times that MAXCOVERAGE(k, r)
updates heap H . Then copying heap Hr in Line 2, as well as all these u updates, can be handled in
total time O(u log n).

By using Lemma 3.8 and Lemma 2.2, we get the query time in Lemma 3.9.
Lemma 3.9 (Query time). Let k and z be two given parameters. Then FINDCENTERS(k, z) described
in Algorithm 1 has a time complexity of 2O(dim)ε−2 dimk log n log log∆.

4 Conlusion

We developed a data structure for the fully dynamic k-center with z outliers problem in metrics
of bounded doubling dimension. As compared to other works, the algorithm exhibits an improved
query time while achieving the currently best-known approximation ratio of 3 + ε. The query time is
optimal with respect to the dependency on k. Although the exponential dependency on the doubling
dimension in the running times seems necessary, it is actually not clear if this could be improved
to tackle even wider classes of metric spaces. This would be an interesting aspect for future work.
However, Chan et al. [4] show that an amortized running time of Ω(z) would be needed in general
metric spaces.

10

5 Acknowledgements

The authors would like to thank the anonymous reviewers for their insightful comments. Annika
Hennes’ and Melanie Schmidt’s research was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – project number 456558332.

References
[1] MohammadHossein Bateni, Hossein Esfandiari, Hendrik Fichtenberger, Monika Henzinger, Ra-

jesh Jayaram, Vahab Mirrokni, and Andreas Wiese. Optimal fully dynamic k-center clustering
for adaptive and oblivious adversaries. In Proceedings of the 2023 Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 2677–2727. Society for Industrial and Applied
Mathematics, 2023.

[2] Deeparnab Chakrabarty, Prachi Goyal, and Ravishankar Krishnaswamy. The non-uniform k-
center problem. In Proceedings of the 43rd International Colloquium on Automata, Languages,
and Programming (ICALP), volume 55 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 67,
15. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2016.

[3] T-H. Hubert Chan, Arnaud Guerqin, and Mauro Sozio. Fully dynamic k-center clustering. In
Proceedings of the 2018 World Wide Web Conference, pages 579–587, 2018.

[4] T-H. Hubert Chan, Silvio Lattanzi, Mauro Sozio, and Bo Wang. Fully dynamic k-center
clustering with outliers. In Computing and Combinatorics: 28th International Conference,
COCOON 2022, Shenzhen, China, October 22–24, 2022, Proceedings, pages 150–161. Springer,
2023.

[5] Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental clustering
and dynamic information retrieval. In Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing, pages 626–635, 1997.

[6] Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for facility
location problems with outliers. In S. Rao Kosaraju, editor, Proceedings of the Twelfth Annual
Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA, pages 642–651.
ACM/SIAM, 2001.

[7] Mark de Berg, Leyla Biabani, and Morteza Monemizadeh. k-center clustering with outliers in
the MPC and streaming model. CoRR, abs/2302.12811, 2023.

[8] Hendrik Fichtenberger, Monika Henzinger, and Andreas Wiese. On fully dynamic constant-
factor approximation algorithms for clustering problems. CoRR, abs/2112.07217, 2021.

[9] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
computer science, 38:293–306, 1985.

[10] Gramoz Goranci, Monika Henzinger, Dariusz Leniowski, Christian Schulz, and Alexander
Svozil. Fully dynamic k-center clustering in low dimensional metrics. In 2021 Proceedings of
the Workshop on Algorithm Engineering and Experiments (ALENEX), pages 143–153. SIAM,
2021.

[11] Anupam Gupta, Robert Krauthgamer, and James R Lee. Bounded geometries, fractals, and
low-distortion embeddings. In Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science, 2003, pages 534–543. IEEE, 2003.

[12] Juha Heinonen. Lectures on analysis on metric spaces. Springer Science & Business Media,
2001.

[13] Dorit S Hochbaum and David B Shmoys. A unified approach to approximation algorithms for
bottleneck problems. Journal of the ACM (JACM), 33(3):533–550, 1986.

[14] Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck location problems. Discrete
Applied Mathematics, 1(3):209–215, 1979.

11

[15] Robert Krauthgamer and James R Lee. Navigating nets: Simple algorithms for proximity search.
In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages
798–807. Citeseer, 2004.

[16] Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137, 1982. Originally published in 1957 as Bell Laboratories Technical
Memorandum.

[17] Richard Matthew McCutchen and Samir Khuller. Streaming algorithms for k-center clustering
with outliers and with anonymity. In Approximation, Randomization and Combinatorial
Optimization. Algorithms and Techniques, pages 165–178. Springer, 2008.

[18] Paolo Pellizzoni, Andrea Pietracaprina, and Geppino Pucci. Fully dynamic clustering and
diversity maximization in doubling metrics. CoRR, abs/2302.07771, 2023.

[19] Melanie Schmidt and Christian Sohler. Fully dynamic hierarchical diameter k-clustering and
k-center. arXiv preprint arXiv:1908.02645, 2019.

12

A Maintaining the data structure

As we explained in Section 2, our data structure consists of O(log∆) levels R := {0} ∪ {β · 2ℓ |
ℓ ∈ Z, 0 ≤ ℓ ≤ ⌈log2 ∆⌉+ 1}, where 1

2 < β ≤ 1 is a given parameter. Similar to Krauthgamer and
Lee [15], on each level r, we maintain net Nr, which is an r-net of Nr/2. In this section, we explain
how to maintain our data structure after each insert/delete update, and analyze the update time.

For every point p ∈ Nr, we maintain the sets of all its parents and all its children. We start by
bounding the number of children and parents of each point. Recall that p ∈ Nr is called a parent of
q ∈ Nr/2 if d(p, q) ≤ r. We first show that the number of children for each point is of size 2O(dim).

Lemma A.1 (Number of children). Let p ∈ Nr. The number of children of p is at most 22 dim.

Proof. For every child q ∈ Nr/2 of p it is d(p, q) ≤ r. Therefore, the set of children is covered by
Ball(p, r). Using the definition of doubling dimension twice, it follows that the set of children can be
covered by 22 dim balls of radius r/4. As any two points in Nr/2 have distance at least r/2, the claim
follows.

Then, in a similar fashion, we can deduce the number of parents.

Lemma A.2 (Number of parents). Let p ∈ Nr. The number of parents of p is bounded by 2O(dim).

A.1 Finding the neighbours

In this section, we explain FindNeighbours, which takes as input a value γ ≥ 2 and a point p ∈ Pt

and returns for every r ∈ R \ {0} the set of neighbors of p within distance γr. Later, we use this
procedure to maintain our data structure after insertions and deletions.

Procedure FINDNEIGHBOURS(p, γ)

1 rmax := β · 2⌈log2 ∆⌉

2 r ← rmax

3 Sr ← Nr

4 while r > β do
5 r ← r/2
6 Sr ← ∅
7 for all s ∈ S2r do
8 for all children q ∈ Nr of s do
9 if d(p, q) ≤ γ · r then

10 Sr ← Sr ∪ {q}

11 return Sβ , S2β , S4β , S8β , . . ., Srmax

Lemma A.3. Let p ∈ P , and γ ≥ 2. Then, for all r ∈ R \ {0}, set Sr that we compute in
FindNeighbours(p, γ) consists of all elements in Nr within distance γ · r of p.

Proof. We show the statement via induction on r. For r = rmax = β · 2⌈log∆⌉, line 3 implies
Sr = Nr and therefore the statement is trivially fulfilled. Now assume the statement holds for
2r, where r < rmax. Consider x ∈ Nr such that d(p, x) ≤ γr. Then, d(p, rep2r(x)) ≤ d(p, x) +
d(x, rep2r(x)) ≤ γr + 2r ≤ 2γr, hence, by induction hypothesis, rep2r(x) ∈ S2r. This means, x is
a child of an element in S2r, and the condition of the for loop in line 8 holds. As further d(p, x) ≤ γr
by assumption, x is added to Sr in line 10.

Next, we bound the size of set Sr in Lemma A.4.

Lemma A.4. Let r ∈ R. Then, set Sr computed in FindNeighbours(p, γ) is of size γdim2O(dim).

Proof. The condition in Line 9 of FindNeighbours implies that any point x ∈ Sr is within distance
γ · r of p. Hence, Sr is covered by Ball(p, γ · r). Besides, Sr ⊆ Nr, which means that the distance
between any two points in Sr is more than r. By applying the definition of doubling dimension, it

13

follows that Ball(p, γ · r) can be covered by γdim · 2O(dim) balls of radius r/2. Adding it to Sr ⊆ Nr

implies that each of these balls of radius r/2 contains at most one point from Sr. Therefore, Sr is of
size γdim · 2O(dim).

Lemma A.5. Let p ∈ P and γ ≥ 2 be given. Then, the procedure FindNeighbours(p, γ) runs in time
2O(dim)γdim log∆.

Proof. The while loop in Line 4 iterates backward through all the O(log∆) levels. On every level,
all children of all s ∈ S2r are examined. By Lemma A.4, |S2r| ∈ γdim2O(dim) and by Lemma A.1,
every s ∈ |S2r| has 22 dim children. Multiplying these terms yields the claim.

A.2 Insertion

In this section, we show how to maintain our data structure after the insertion of point p. As described
in Algorithm 2, we start by calling FindNeighbours, which goes through the levels from top to bottom
(high to low) and recursively computes set Sr for each level r. Lemma A.3 implies that for any
point q ∈ Nr, if d(p, q) ≤ r, then Sr contains q. This guarantees that later we can find all parents
and children of p using these Sr sets. Next, we go through the levels from bottom to top to find the
lowest level r̂, in which we can find a representative for p, or in other words, there is a q ∈ Nr̂ within
distance r̂ of p. Then, we add p to all levels lower than r̂. For levels r > r̂, we do not need to add
p to Nr because there is already a point in level r that can represent p by the definition of r̂. We
determine this representative recursively according to repr̂(p). Finally, we increase the weight for the
respective representative of p in each level by one.

Algorithm 2: INSERT(p)

1 rmax := β · 2⌈log2 ∆⌉

2 Sβ , S2β , S4β , S8β , . . ., Srmax
← FindNeighbours(p, 2)

3 // finding the lowest level r̂ that can have a representative for p
4 r ← β, r̂ ← 2rmax

5 while r ≤ rmax do
6 if there is a point s ∈ Sr such that d(p, s) ≤ r then
7 r̂ ← r
8 repr̂(p)← s
9 for all s ∈ Sr such that d(p, s) ≤ r do

10 Save s as a parent of p and save p as a child of s
11 break
12 r ← 2r

13 // adding p to all levels lower than r̂
14 for all r ∈ R such that r < r̂ do
15 Nr ← Nr ∪ {p}
16 Save p ∈ Nr as a parent of p ∈ Nr/2 and save p ∈ Nr/2 as a child of p ∈ Nr

17 repr(p)← p

18 UPDATENEIGHBOURHOODADD(p, r̂)
19 // finding the representative of p in all levels upper than r̂
20 r ← 2r̂
21 while r ≤ rmax do
22 repr(p)← repr(repr/2(p))
23 r ← 2r

24 // updating the weight function
25 for all r ∈ R do
26 wr(repr(p))← wr(repr(p)) + 1

After inserting the point p to Nεr, we need to compute B1
p,r and B3

p,r. Besides, for any point
q ∈ B1

p,r (q ∈ B3
p,r similarly), we need to add p to B1

q,r (B3
q,r similarly). We perform this operation

14

Procedure UPDATENEIGHBOURHOODADD(p, r̂): a procedure to update neighbourhoods after
adding p to all levels below Nr̂

1 rmax := β · 2⌈log2 ∆⌉

2 Tβ , T2β , T4β , T8β , . . ., Trmax ← FindNeighbours(p, (3 + 8ε)/ε)
3 // updating neighborhoods B1 and B3

4 for all r′ ∈ R such that r′ < r̂ and r′/ε ≤ rmax do
5 r := r′/ε ▷ r′ = εr

6 B3
p,r ← ∅, B1

p,r ← ∅
7 for all q ∈ Tr′ do
8 B3

p,r ← B3
p,r ∪ {q}, B3

q,r ← B3
q,r ∪ {p} ▷ d(p, q) ≤ (3 + 8ε)r

9 if d(p, q) ≤ (1 + 4ε)r then
10 B1

p,r ← B1
p,r ∪ {q}, B1

q,r ← B1
q,r ∪ {p}

in Procedure UpdateNeighbourhoodAdd. In Lemma A.6, we analyze the correctness and update time
of this procedure.

Lemma A.6. Let p be a point to be inserted and r̂ as in the algorithm after execution of the while
loop in Line 5. Then, UPDATENEIGHBOURHOODADD(p, r̂) that we invoke in Line 18 of Algorithm 2,
finds B1

p,r and B3
p,r for any r ∈ R such that εr < r̂. Besides, the total update time of this procedure

is 2O(dim)ε− dim log∆.

Proof. By Lemma A.3, Tr′ contains all points of Nr′ within distance (3 + 8ε)r′/ε of p. Then if we
define r := r′/ε, it holds that Tr′ contains all points of Nεr within distance (3+8ε)r′/ε = (3+8ε)r
of p. This means that we can find B3

p,r by exploring Tr′ , which we do in Line 8 of the procedure. By
restricting to points q in Tr′ such that d(p, q) ≤ (1 + 4ε)r, we find all the points that belong to B1

p,r.

We next discuss the running time. Lemma A.5 states that the running time of FindNeigh-
bours(p, (3 + 8ε)/ε) is 2O(dim)ε− dim log∆. Then, we iterate over Tr′ for at most O(log∆)
values of r′, which takes O(|Tr′ |) for each iteration. Lemma A.4 shows that Tr′ is of size
((3 + 8ε)/ε)dim2O(dim) = 2O(dim)ε− dim. Therefore, the total running time of these O(log∆)
iterations is also 2O(dim)ε− dim log∆, which finishes the proof.

Updating the heaps. To avoid redundancy, we do not include updating Heaps Hr in the pseu-
docodes. However, it can be easily handled. Note that neighborhoods B1

x,r and B1
y,r are balls of the

same size. Therefore, y ∈ B1
x,r is equivalent to x ∈ B1

y,r. Hence, whenever the weight of a point x in
Nr is changed, it is enough to update the weight of all points in B1

x,r and their corresponding element
in heap Hr. The size of B1

x,r is 2O(dim)ε− dim by Lemma 2.2, and we can do each heap update in
O(log n) time. Therefore, an extra 2O(dim)ε− dim log n factor will be multiplied by the running time
of Algorithm 2 due to maintaining the heaps.

Lemma A.7. Let n be the size of point set Pt. Then after insertion of any point to Pt, we can update
our data structure in time 2O(dim)ε−2 dim log∆ log n.

Proof. As we discussed above, a 2O(dim)ε− dim log n factor will be multiplied by the running time
of Algorithm 2 due to maintaining the heaps. Therefore, it is enough to show that the running time of
Algorithm 2 is 2O(dim)ε− dim log∆.

In Algorithm 2, we first call FindNeighbours(p, 2), which takes 2O(dim) log∆ according to
Lemma A.5. To find r̂, we next iterate over Sr for at most O(log∆) values of r. Then, we add p to all
levels lower than r̂, which takes time log∆. We next invoke UpdateNeighbourhoodAdd(p, r̂), which
is done in time 2O(dim)ε− dim log∆ according to Lemma A.6. This takes 2O(dim) log∆, since Sr is
of size 2O(dim) by Lemma A.4. Finally, we update the representatives of p and their weights, which
is done in time O(log∆). Putting everything together proves that the running time of Algorithm 2 is
2O(dim)ε− dim log∆, which finishes the proof.

15

A.3 Deletion

In this section, we explain how to maintain our data structure after the deletion of point p. As
described in Algorithm 3, we first produce sets Sr and Tr for all r ∈ R that are used for updating
parents and children as well as neighborhoods. We then iterate over the levels r ∈ R from bottom
to top. During the algorithm, we may elevate some points from Nr/2 \ Nr to Nr to maintain our
data structure. We refer to the set of these points that are elevated to Nr as Er. After changing the
representative of a point, we need to change the weights of its previous representative in the next
level as well as the indirect previous representatives in the upper levels. To make this process of
updating weights efficient, we define the set Dr and a function δr : Dr → Z for each r ∈ R. The set
Dr refers to the set of points q ∈ Nr whose weight should be updated by the value δr[q].

After deleting p, we need to find a new representative for any point q ∈ Nr/2 and also reduce wr/2(q)
from its previous indirect representatives in the upper levels. To do this, we decrease δ2r[rep2r(p)] by
wr/2(q). After deleting p from Nr, any point q ∈ Nr/2 that was represented by p in Nr would not
have any representative. Besides, we need to find a representative in Nr for the points in Er/2. Let
q ∈ Nr/2 be a point such that repr(q) = p or q ∈ Er/2. To find a new representative for q in Nr, we
consider two cases: either q has a parent in Nr \ {p} or p is the only parent of q in Nr.

For the first case, we choose a parent x ∈ Nr \ {p} of q as its representative in Nr. Then, we increase
wr(x) and δ2r[rep2r(x)] by wr/2(q) to update the weight of all points that represent q in higher
levels directly or indirectly. For the second case, we have to elevate q to Nr. After elevating q to
Nr, we need to find its parents and children. To find the children, it is enough to explore Sr/2. It
is because if s ∈ Nr/2 is a child of q ∈ Nr, then d(q, s) ≤ r. Adding it to d(p, q) ≤ r, we have
d(p, s) ≤ 2r = 4(r/2) by triangle inequality. Therefore, s ∈ Sr/2 and it is enough to explore Sr/2.
With a similar argument, it is enough to explore S2r to find the parents of q in N2r.

We next call UpdateNeighbourhoodElevate(q, r, Tr). In Lemma A.9, we show that this procedure
can compute B1

q,r/ε and B3
q,r/ε by exploring Tr.

At the end of each iteration, we call UPDATENEIGHBOURHOODREMOVE(p, r). This procedure
deletes p from all the neighborhoods of level r that contain p. Note that for i ∈ {1, 3}, p ∈ Bi

x,r and
x ∈ Bi

p,r are equivalent. Hence, it is enough to iterate over all x ∈ Bi
p,r and delete p from Bi

x,r for
i = {1, 3}.
To show that UpdateNeighbourhoodElevate computes the neighborhoods in Lemma A.9, we first
prove Lemma A.8, which is about the distance of the points in Er to p.
Lemma A.8. Let r ∈ R, and let Er be the set of elevated points in Algorithm 3. Then, for any point
q ∈ Er we have d(p, q) ≤ r.

Proof. Let r̂ be the smallest level in R such that q is elevated to it. It means that q is a child of
p ∈ Nr̂, and therefore, d(p, q) ≤ r̂. Besides, we have r̂ ≤ r, which implies d(p, q) ≤ r.

We next call UPDATENEIGHBOURHOODELEVATE to create B1
q,r and B3

q,r, as well as to add q to the
neighborhoods in level r that must contain q.
Lemma A.9. Let r′ ∈ R, q ∈ Er′ and Tr′ as constructed in Line 3 of Algorithm 3. We define
r := r′/ε. The procedure UpdateNeighbourhoodElevate(q, r′, Tr′) computes B1

q,r and B3
q,r and

updates the neighborhoods B1
q′,r (and B3

q′,r) for all q′ ∈ B1
q,r (q′ ∈ B3

q,r) by adding q to them.
Besides, this procedure runs in time O(ε− dim2O(dim)).

Proof. Let p be the point to be deleted when calling Algorithm 3. q ∈ Er′ implies that either p
was the representative of q in Nr′ , or q ∈ Er′/2. If p was the representative of q in Nr′ , we have
d(p, q) ≤ r′. Otherwise, if q ∈ Er′/2, Lemma A.8 states that d(p, q) ≤ r′/2 ≤ r′. Therefore,
d(p, q) ≤ r′ always holds. By Lemma A.3, Tr′ contains all points x ∈ Nr′ such that d(p, x) ≤
(1 + (3 + 8ε)/ε)r′ = r′ + (3 + 8ε)r, for r = r′/ε. Let q′ ∈ Nr′ be a point such that d(q, q′) ≤
(3 + 8ε)r. We claim that we add q′ to B3

q,r. To do this, it is enough to show that q′ ∈ Tr′ . As
we mentioned, d(p, q) ≤ r′ and d(q, q′) ≤ (3 + 8ε)r. Then by the triangle inequality we have
d(p, q′) ≤ d(p, q) + d(q, q′) ≤ r′ + (3+ 8ε)r, which means that q′ ∈ Tr′ and it is enough to explore
Tr′ for computing B3

q,r. Note that the same argument also works for B1
q,r.

16

Algorithm 3: DELETE(p)

1 rmax := 2⌈log2 ∆⌉

2 Sβ , S2β , S4β , S8β , . . ., Srmax ← FindNeighbours(p, 4)
3 Tβ , T2β , T4β , T8β , . . ., Trmax

← FindNeighbours(p, 1 + (3 + 8ε)/ε)
4 Eβ/2 ← ∅, Dβ ← ∅, δβ ← ∅
5 r ← β
6 while r ≤ rmax do
7 Er ← ∅
8 D2r ← ∅ δ2r ← ∅
9 // updating the weights of the points in the level

10 wr(repr(p))← wr(repr(p))− 1
11 for all q ∈ Dr do
12 wr(q)← wr(q) + δr[q]
13 D2r, δ2r ←UPDATEWEIGHT(D2r, δ2r, rep2r(q), δr[q])
14 // updating the level
15 for all q ∈ Nr/2 \ {p} that repr(q) = p and all q ∈ Er/2 do
16 if repr(q) = p then
17 D2r, δ2r ←UPDATEWEIGHT(D2r, δ2r, rep2r(p),−wr/2(q))

18 // finding a new representative in Nr for q
19 if q has a parent x in Nr \ {p} then
20 repr(q)← x
21 wr(x)← wr(x) + wr/2(q)
22 D2r, δ2r ←UPDATEWEIGHT(D2r, δ2r, rep2r(x), wr/2(q))

23 else
24 // adding q to Nr

25 Nr ← Nr ∪ {q}, Er ← Er ∪ {q}
26 repr(q)← q , wr(q)← wr/2(q)
27 if d(q, p) ≤ 4r then
28 Sr ← Sr ∪ {q}
29 if d(q, p) ≤ (1 + (3 + 8ε)/ε) · r then
30 Tr ← Tr ∪ {q}
31 // finding all children of q by exploring Sr/2

32 for all s ∈ Sr/2 do
33 if d(q, s) ≤ r then
34 Save q as a parent of s, and s as a child of p

35 // finding all parents of q in N2r by exploring S2r

36 for all s ∈ S2r do
37 if d(q, s) ≤ 2r then
38 Save s as a parent of q, and q as a child of s

39 UpdateNeighbourhoodElevate(q, r, Tr)

40 Nr ← Nr \ {p}
41 r ← 2r
42 UPDATENEIGHBOURHOODREMOVE(p, r)

43 Delete all the data (such as parents, children, weight, and representative) corresponding to p

17

Further, B3
q,r (and B1

q,r) contains all points whose neighborhoods need to be updated to include q.
The procedure iterates through all q′ ∈ Tr′ , so the running time is O(|Tr′ |) = O(ε− dim2O(dim)).

Procedure UPDATEWEIGHT(D, δ, q, ω)
1 if q /∈ D then
2 D ← D ∪ {q}
3 δ[q]← 0

4 δ[q]← δ[q] + ω
5 return C, δ

Procedure UPDATENEIGHBOURHOODELEVATE(q, r′, Tr′): a procedure to update neighbour-
hoods after adding q to Nr′

1 r := r′/ε ▷ r′ = εr

2 if r > β · 2⌈log2 ∆⌉ then
3 return
4 B3

q,r ← ∅, B1
q,r ← ∅

5 for all q′ ∈ Tr′ do
6 if d(q, q′) ≤ (3 + 8ε)r then
7 B3

q,r ← B3
q,r ∪ {q}, B3

q′,r ← B3
q′,r ∪ {p}

8 if d(q, q′) ≤ (1 + 4ε)r then
9 B1

q,r ← B1
q,r ∪ {q′}, B1

q′,r ← B1
q′,r ∪ {q}

Procedure UPDATENEIGHBOURHOODREMOVE(p, r′): a procedure to update neighbourhoods
after removing p from Nr′

1 r := r′/ε ▷ r′ = εr

2 if r > β · 2⌈log2 ∆⌉ or p /∈ Nr′ then
3 return
4 for all q ∈ B3

p,r do
5 B3

q,r ← B3
q,r \ {p}

6 for all q ∈ B1
p,r do

7 B1
q,r ← B1

q,r \ {p}
8 Delete B3

p,r and B1
p,r

To prove the update time of Algorithm 3, we first prove Lemma A.10 and Lemma A.11.

Lemma A.10. Let r ∈ R. Then, the set Er in Algorithm 3 is of size 2O(dim).

Proof. Lemma A.8 states that d(p, q) ≤ r holds for any q ∈ Er. Moreover, Er ⊆ Nr, which implies
that the distance between any two points in Er is more than r by the definition of Nr. Therefore, the
definition of doubling dimension implies that |Er| ≤ 2O(dim).

Lemma A.11. Let r ∈ R. Then the set Dr in Algorithm 3 is of size 2O(dim).

Proof. To prove the lemma, we first claim that for any r ∈ R, if y ∈ Dr, then d(p, y) ≤ 2r.
We prove the claim by induction on r. For the base case, we consider r = β. Since Dβ = ∅,
the claim trivially holds for r = β. Now, we show that if the claim holds for r ∈ R, then it
also holds for 2r. Let v be a point in D2r. Then, v is added to D2r in one of the Lines 13,
17, or 22 of Algorithm 3. If it is added in Line 13, it means that there is a point q ∈ Dr, such
that v = rep2r(q). By the induction hypothesis, we have d(p, q) ≤ 2r. Besides, we know that

18

d(q, v) = d(q, rep2r(q)) ≤ 2r. Hence, d(p, v) ≤ 4r = 2(2r) holds by the triangle inequality. If v is
added to D2r in Line 17, we have v = rep2r(p), and we know that d(p, rep2r(p)) ≤ 2r. Therefore,
d(p, v) = d(p, rep2r(p)) ≤ 2r ≤ 2(2r). Finally, we consider the case that v is added to D2r in
Line 22. In this case, v = rep2r(x) for a point x ∈ Nr, and x = repr(q) for a point q ∈ Nr/2 such
that either q was a child of p or q ∈ Er/2. If q was a child of p, then d(p, q) ≤ r, and if q ∈ Er/2,
then d(p, q) ≤ r/2 ≤ r by Lemma A.8. Therefore, d(p, q) ≤ r always holds. Besides, d(q, x) ≤ r,
as x is a parent of q. Moreover, we have d(x, rep2r(x)) ≤ 2r. Putting everything together we have

d(p, v) = d(p, rep2r(x)) ≤ d(p, q) + d(q, x) + d(x, rep2r(x)) ≤ r + r + 2r = 2(2r) .

Thus, our claim holds.

In addition, Dr ⊆ Nr, which means that the distance between any two points in Dr is more than r.
Adding this to the claim, the definition of doubling dimension implies that Dr is of size 2O(dim).

Now, we can discuss the update time for maintaining our data structure after each deletion.

Lemma A.12. Let n be the size of the point set Pt. Then after deletion of any point from Pt, we can
update our data structure in time 2O(dim)ε−2 dim log∆ log n.

Proof. As we discussed in Section A.2, to maintain the heaps, a 2O(dim)ε− dim log n factor will be
multiplied by the running time of Algorithm 3. Hence, it is enough to show that the running time of
Algorithm 3 is 2O(dim)ε− dim log∆.

In Algorithm 3, we first call FindNeighbours for γ = 4 and γ = 1 + (3 + 8ε)/ε to find sets Sr and
Tr, which take time 2O(dim) log∆ and 2O(dim)ε− dim log∆, respectively, according to Lemma A.5.

We next iterate over O(log∆) levels and in each level, we iterate over some children of p and
the elevated points Er/2, and then we call UpdateNeighbourhoodRemove, which takes O(|B3

p,r|+
|B1

p,r|) = O(2O(dim)ε− dim). The number of p’s children and the elevated points are 2O(dim) by
Lemma A.2 and Lemma A.10, respectively. Thus, we iterate over 2O(dim) points in each level, and in
each iteration, all the operations other than UpdateNeighbourhoodElevate can be done in time 2O(dim).
Besides, the running time of UpdateNeighbourhoodElevate is O(|Tr′ |) = O(2O(dim)ε− dim). Hence,
the total running time of the iteration over the O(log∆) levels is O(2O(dim)ε− dim log∆).

Proof of Lemma 2.3 Now, adding Lemma A.7 and Lemma A.12 together, finishes the proof of
Lemma 2.3, which is about the update time of our data structure.

Lemma 2.3. Let n be the size of point set Pt. Then after insertion/deletion of any point to Pt, we
can update our data structure in time 2O(dim)ε−2 dim log∆ log n.

B Omitted Proofs

Lemma 2.1. Let p ∈ Pt and r ∈ R. Then d(p, repr(p)) ≤ 2r. In particular, d(p, repεr(p)) ≤ 2εr,
where ε = 2⌊log ε′⌋ for the error parameter ε′.

Proof. Let r′ ∈ R. As N2r′ is a 2r′-net of Nr′ , we know that d(repr′(p), rep2r′(repr′(p))) ≤ 2r′.
Further, by definition, rep2r′(p) = rep2r′(repr′(p)) and hence, d(repr′(p), rep2r′(p)) ≤ 2r′. Thus,

d(p, repr(p)) ≤
∑
r′<r,
r′∈R

d(repr′(p), rep2r′(p)) ≤ 2
∑
r′<r,
r′∈R

r′ = 2β
∑

ℓ<log r
β

2ℓ ≤ 2β2log
r
β = 2r . (1)

For r′ = εr, we make a case distinction. If εr ≥ β, then εr ∈ R and hence d(p, repεr(p)) ≤ 2εr by
Equation (1). If εr < β, then d(p, repεr(p)) = 0 ≤ 2εr because repεr(p) = p by definition.

Lemma 2.2. Let r ∈ R and p ∈ Nεr. The sets B1
p,r and B3

p,r defined above are of size at most
2O(dim)

εdim . In particular, the size is O(ε− dim) for a constant doubling dimension dim.

19

Proof. By recursively applying the definition of doubling dimension i times, we can cover a ball of
radius (3 + 8ε)r with at most 2i dim balls of radius (3+8ε)r

2i . For i = ⌈log 3+8ε
ε/2 ⌉ it follows that B3

p,r

can be covered by (2 · 3+8ε
ε/2)dim ∈ 2O(dim)

εdim
balls of radius εr

2 . As B3
p,r ⊆ Nεr, the distance between

any pair of points in B3
p,r is at least εr. Therefore, each of the εr

2 -balls contains at most one point,
which finishes the proof.

Lemma 3.1. Let k be an integer, 0 ≤ i ≤ k, and r ∈ R. After the i-th iteration of the loop in
Line 3, Hr[y] is the total weight of unmarked points in B1

y,r for each y ∈ Nεr. More formally,
Hr[y] = wεr(B

1
y,r ∩ Ui) for any y ∈ Nεr after the i-th iteration.

Proof. Let Hi
r denote the state of the heap and M i the set Marked at the end of iteration i, and

H0
r and M0 denote the respective sets before entering the for-loop. It can easily be seen that

M i = ∪j≤iB
3
cj ,r for every i ≤ k by a simple induction. Initially, M0 = ∅ = ∪j≤0B

3
cj ,r. Now

assume M i−1 = ∪j≤i−1B
3
cj ,r for some i < k. Noting that M i−1 is only updated in line 7 of

MAXCOVERAGE(k, r), Lines 6 and 7 imply that all points from B3
ci,r that are not in M i−1 yet are

added to M i−1. Therefore, M i = M i−1 ∪ B3
ci,r = ∪j≤iB

3
cj ,r. Recall that Ui = Nεr \ ∪j≤iB

3
cj ,r.

This directly implies that Ui corresponds to the set of points that are still unmarked at the end of
iteration i, that is Ui = Nεr \M i. From this, it also immediately follows that Ui = Ui−1 \B3

ci,r.

Now we can show Hi
r[x] = wεr(B

1
x,r ∩ Ui) for all i ≤ k. For i = 0, the heap is not modified

and no points are covered yet, i.e. H0
r [x] = wεr(B

1
x,r) and U0 = Nεr. Now assume Hi−1

r [x] =

wεr(B
1
x,r ∩ Ui−1) for some i < k. Lines 6 to 9 in MAXCOVERAGE(k, r) are equivalent to

∀y ∈ B3
ci,r \M

i−1∀x ∈ B1
y,r : decrease Hr[x] by wεr(y) . (2)

Neighborhood membership is a symmetric relation in the following sense. If x ∈ Nεr is contained
within the local neighborhood of y ∈ Nεr, then the converse is also true: For every x, y ∈ Nεr such
that x ∈ By,r it also holds y ∈ Bx,r. Therefore, Equation (2) is equivalent to

∀x ∈ Nεr∀y ∈ B3
ci,r ∩B1

x,r \M i−1 : decrease Hr[x] by wεr(y) ,

which means that during iteration i, the heap value of x ∈ Nεr is reduced by wεr(B
3
ci,r∩B

1
x,r\M i−1).

Because of the equality B3
ci,r ∩B1

x,r \M i−1 = B3
ci,r ∩B1

x,r ∩ Ui−1, we can deduce

Hi
r[x] = Hi−1

r [x]− wεr(B
3
ci,r ∩B1

x,r ∩ Ui−1) = wεr(B
1
x,r ∩ Ui−1)− wεr(B

3
ci,r ∩B1

x,r ∩ Ui−1)

(3)
= wεr(B

1
x,r ∩ Ui−1 \ (B3

ci,r ∩B1
x,r ∩ Ui−1)) = wεr(B

1
x,r ∩ Ui−1 \B3

ci,r)

= wεr(B
1
x,r ∩ Ui) ,

where (3) follows from the fact that wεr(X \ Y) = wεr(X)− wεr(Y) for Y ⊆ X ⊆ Nεr.

Lemma 3.6. Let OPT > 0 be the optimal radius for the k-center clustering of Pt with z outliers,
and let r∗ be the minimum number in R such that r∗ ≥ OPT . Then FINDCENTERS(k, z) returns a
(3 + 10ε)ρ-approximate solution for k-center clustering problem with z outliers, where ρ = r∗

OPT .

Proof. We first show that r̂ ≤ r∗. To do this, we consider two cases: r̂ > 2 or r̂ ≤ 2. For the first case,
it holds that the outliersWeight returned by MAXCOVERAGE(k, r̂/2) is more than z, and then we
can conduct that OPT > r̂/2. It is because otherwise, MAXCOVERAGE(k, r̂/2). outliersWeight
would be less than z by Lemma 3.5, which is a contradiction. It means that r∗ > r̂/2, and then
according to the definition of R and r∗ we have r∗ ≥ r̂. Now we consider the second case that r̂ ≤ 2.
Since OPT > 0, we have OPT ≥ dmin = 2. Adding it to OPT ≤ r∗, which is an assumption of
this lemma, we have r̂ ≤ 2 ≤ OPT ≤ r∗. Thus r̂ ≤ r∗ holds in both cases.

Due to Lemma 3.2 and Lemma 3.5, MAXCOVERAGE(k, r̂) returned by FINDCENTERS(k, z) is a set
of k centers such that all but at most z points in Pt are within distance (3 + 10ε)r̂ of these centers.
Hence, FINDCENTERS(k, z) returns a (3+10ε)r̂

OPT -approximation solution. We also showed that r̂ ≤ r∗,
therefore, the approximation ratio is at most (3 + 10ε)ρ, where ρ = r∗

OPT .

20

Lemma 3.7. Let OPT > 0, and let ε > 0 be fixed. We define m := ⌈1/ log2 (1 + ε)⌉. Suppose we
have m parallel instances of our data structure with parameter β = 2i/m−1 for the i-th instance.
Then in at least one of the instances, we find a (3 + O(ε))-approximation solution for k-center
clustering with z outliers by calling FINDCENTERS(k, z).

Proof. Since we assume OPT > 0, then we have OPT ≥ dmin = 2. Let j∗ ∈ [1, ⌈log∆⌉] be
such that 2j

∗−1 < OPT ≤ 2j
∗
, and let i∗ ∈ [1,m] be such that 2j

∗−1+(i∗−1)/m < OPT ≤
2j

∗−1+i∗/m. For the instance with parameter β = 2i
∗/m−1, we have β · 2j∗ = 2j

∗−1+i∗/m ∈ R.
Therefore by Lemma 3.6, FINDCENTERS(k, z) returns a (3 + 10ε)ρ∗-approximation solution, where
ρ∗ = 2j

∗−1+i∗/m/OPT . To finish the proof of Lemma, we show that ρ∗ ≤ (1 + ε), which
immediately implies a (3 +O(ε))-approximation solution. According to the definition of i∗ we have
ρ∗ = 2j

∗−1+i∗/m/OPT ≤ 2j
∗−1+i∗/m/2j

∗−1+(i∗−1)/m = 21/m. Besides, m ≥ 1/ log2 (1 + ε)
holds by the definition for of m, which means 1/m ≤ log2 (1 + ε). Therefore, 21/m ≤ (1 + ε), and
then we have ρ∗ ≤ 21/m ≤ (1 + ε), which finishes the proof.

Lemma 3.8. Let u be the number of times that MAXCOVERAGE(k, r) updates heap H . Then
copying heap Hr in Line 2, as well as all these u updates, can be handled in total time O(u log n).

Proof. Procedure MAXCOVERAGE(k, r) sets H as a copy of Hr, and then it decreases the value
of some keys in H during the algorithm. Note that it never inserts or deletes a new key to H , and
the only possible update is decreasing the value of a key. We claim that it is not necessary to really
copy the heap Hr, which takes O(|Hr|) = O(n) time. Instead, we apply all the updates on Hr and
then undo them at the end of MAXCOVERAGE(k, r). Although the procedure can change Hr as
we defined, we guarantee that Hr is the same at the start and end of the procedure. To do this, we
keep a record of all u updates, and at end of MAXCOVERAGE(k, r), we undo all these u updates,
which means increasing the value of each updated key with the decreased value. Since the number of
updates is u, then we can do all the reverse updates in O(u log |Hr|) = O(u log n).

Lemma 3.9. Let k and z be two given parameters. Then FINDCENTERS(k, z) described in Algo-
rithm 1 has a time complexity of 2O(dim)ε−2 dimk log n log log∆.

Proof. FINDCENTERS(k, z) perform a binary-search on R and in each search, it invokes
MAXCOVERAGE two times. Therefore, MAXCOVERAGE is called O(log |R|) times in total,
which is O(log log∆) as |R| = O(log∆). Hence, it remains to show that the running time of
MAXCOVERAGE(k, r) is 2O(dim)ε−2 dimk log n.

Now, we discuss the running time of MAXCOVERAGE(k, r). This procedure consists of k iterations,
in which we iterate on all elements y ∈ B3

ci,r. Recall that Lemma 2.2 states B3
ci,r is of size at most

2O(dim)

εdim . Then for any y, we iterate on all elements x ∈ B1
y,r and update H[x] in Line 9. Again by

Lemma 2.2, the size of B1
y,r is at most 2O(dim)

εdim
. Therefore, we update heap H at most

(
2O(dim)

εdim

)2 · k
times. Then by Lemma 3.8, these heap updates and also copying heap Hr in Line 2 are done in total
time of 2O(dim)ε−2 dimk log n.

Proof of Theorem 1.1.
Theorem 1.1. Let (M,d) be a metric space of bounded doubling dimension dim, and let ε > 0
be an error parameter. There exists a deterministic dynamic algorithm that allows the insertion or
deletion of points from M using worst-case ε−O(dim) log n log∆ update time. Moreover, at any time
t, it can be queried by parameters k and z to compute a (3+ ε)-approximate solution for the k-center
problem with z outliers of Pt using worst-case ε−O(dim)k log n log log∆ query time, where Pt is the
set of points that are inserted but not deleted up to time t, and n is the size of Pt.

Proof. We maintain m = ⌈1/ log2(1+ε)⌉ instances of our data structure with parameter β = 2i/m−1

for the i-th instance. We first discuss the approximation ratio. If OPT > 0, then we find a
(3 +O(ε))-approximation solution by Lemma 3.7. Otherwise if OPT = 0, then by Lemma 3.5, the
outliersWeight returned by MAXCOVERAGE(k, 0) is at most z. In this case, we return a solution
with radius 0 in Line 2, which is an exact solution.

21

Now we discuss the update time. If we maintain m = O(1/ log(1+ε)) instances of our data structure
in parallel, it incurs an O(1/ log(1 + ε)) = O(ε−1) factor in the time complexity. In each instance,
the update time per insert/delete is 2O(dim)ε−2 dim log∆ log n by Lemma 2.3, and the k centers can
be computed in time O(2O(dim)ε−2 dimk log n log log∆) by Lemma 3.9 Therefore, we handle each
insert/delete in 2O(dim)ε−(2 dim+1) log∆ log n = ε−O(dim) log n log∆ total time and we can find
the centers in O(2O(dim)ε−(2 dim)+1k log n log log∆) = ε−O(dim)k log n log log∆ total time.

22

	Introduction
	Our data structure
	Our algorithm
	Conlusion
	Acknowledgements
	Maintaining the data structure
	Finding the neighbours
	Insertion
	Deletion

	Omitted Proofs

