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ABSTRACT

Attribution methods are essential for interpreting deep learning models, helping to
align model decisions with human understanding. However, their trustworthiness
remains uncertain. Previous work has highlighted several design flaws in attribu-
tion methods such as the choice of reference points and the selection of attribu-
tion paths, but we argue that even a theoretically perfect attribution method—one
that provides the true ground truth—cannot fully resolve the trust issue. For the
first time, we summarize the specific manifestations of such issue: Two samples
with infinitely close distances but different classification results share the same
important feature attention region. We rigorously derive this phenomenon and
construct scenarios demonstrating that attribution trust issues persist even under
ideal conditions. Our findings provide a new benchmark for evaluating attribu-
tion methods and highlight the need for cautious application in real-world scenar-
ios. Our code is available at: https://anonymous.4open.science/r/
Distrust-8677/.

1 INTRODUCTION

In the field of interpretability in machine learning, attribution methods aim to measure the contribu-
tion of input features to model decisions, thereby enhancing model transparency and interpretabil-
ity (Carvalho et al., 2019). With the widespread application of deep learning in high-risk domains,
its ”black-box” nature has generated a strong demand for decision interpretability. Attribution meth-
ods provide an intuitive understanding of model behavior and hold significant applications in crit-
ical fields such as medical diagnosis (Graziani et al., 2020), financial risk control (Tarashev et al.,
2016), and autonomous driving (Shi et al., 2024). However, the robustness and stability of attri-
bution methods remain challenging, particularly regarding their manipulability in high-dimensional
data and complex neural network structures. Therefore, research on the reliability and generaliza-
tion capability of attribution methods constitutes a crucial direction in the field of machine learning
interpretability (Linardatos et al., 2020).

In practical applications, we employ attribution methods to examine the interpretability performance
of deep learning models. Generally, trust between humans and models can be established by com-
paring the model’s attention regions with human-understandable patterns. Dombrowski et al. (2019)
have demonstrated that, given knowledge of the inner workings of interpretability algorithms, model
explanations can be manipulated by imperceptible perturbations in input samples, suggesting inher-
ent flaws in attribution algorithms. Although many attribution methods attempt to mitigate such
deficiencies by adhering to more rigorous attribution axioms (Zhu et al., 2024a;c), this can still lead
to trust crises. While continuous refinement of algorithmic design can improve the credibility of
attribution, to avoid this cat-and-mouse game, our paper will discuss the issue of attribution trust
beyond algorithmic design flaws. Admittedly, trust itself is an inherently abstract concept. Here,
we provide a slightly more concrete analogy for the notion of ”trust”: just as we fear the possibility
of vehicle malfunction and thus worry about safety when informed of potential brake loosening,
similarly, we must highlight that interpretability results derived from attribution algorithms may
yield counterintuitive conclusions under certain inevitable (and theoretically demonstrable) scenar-
ios. Therefore, attribution outcomes should always be interpreted cautiously and critically, given
these intrinsic limitations.

Suppose we have obtained a ”perfect” attribution algorithm through continuous iterations, one that
can provide ground truth attribution results. For two samples that are infinitely similar—typically
perturbed by an imperceptible amount within the limits of computational precision—yet classified

1

https://anonymous.4open.science/r/Distrust-8677/
https://anonymous.4open.science/r/Distrust-8677/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

into different labels, if their ground truth attribution results fall within the same region, then despite
the explanation aligning with the ground truth, we still cannot fully trust this attribution algorithm,
because it fails to capture the decisive factors that lead to differing classification outcomes.

Based on the above discussion, we summarize the specific manifestation of the attribution trust issue
as follows:

Two samples with infinitely close distances but different classification results share the same im-
portant feature attention region.

Here, one might fall into a logical misconception—specifically, the empiricist fallacy—which as-
sumes that two nearly identical samples naturally produce identical attribution results due to their
close proximity. This intuitive reasoning overlooks a critical assumption of attribution methods: the
two indistinguishable samples may belong to entirely different classes. For example, in Figure 1, two
visually indistinct samples exist, one classified as a dog and the other as a cat. Attribution heatmaps,
however, aim to highlight the essential features of each respective class. Remarkably, despite their
differing labels, these nearly identical samples yield the same attribution results (later in our pa-
per, we formally demonstrate that these attributions correspond precisely to the same ground truth).

Category: Dog 

Dog - key 

features highlighted

Cat - key 

features highlighted

Attribution

Attribution

  Pixel-wise 

almost identical, yet 

technically distinct

 Sharing 

the same 

ground truth

Category: Cat 

Figure 1: It’s a dog! Because of the
features in the top-right! No wait—it’s
a cat! Because of the features in the
bottom-left! Strangely enough, both ex-
planations assign exactly the same im-
portance. Should we really trust attribu-
tions like this?

Moreover, a prevalent viewpoint is that an ideal attri-
bution algorithm should detect subtle differences, such
as a minor pixel change altering a classification. While
correct and desirable, this also introduces a conceptual
paradox: the feature identified as crucial for transform-
ing a ”dog” into a ”cat” is simultaneously essential for
distinguishing a ”cat” from a ”dog,” forming an equiv-
alent dual problem. Thus, attribution methods correctly
capture subtle differences, yet yield effectively identical
explanations across different classes, directly undermin-
ing interpretability and trustworthiness. For instance, in
tumor prediction, attribution highlighting the same re-
gion regardless of the presence or absence of a tumor
poses a fundamental question: does interpretability gen-
uinely enhance trust, or does it unintentionally confuse
user decision-making?

In our paper, we formally demonstrate that no matter how
an attribution algorithm overcomes its design flaws to
achieve a ”perfect” ground truth explanation, such sam-
ples inevitably exist, implying that attribution distrust is
an inherent issue. Furthermore, these samples must be
meaningful in real-world scenarios rather than chaotic,
random samples. Of course, beyond illustrating the trust
issue, the ground truth explanation of attribution can also serve as an evaluation criterion to assess
whether an algorithm produces high-quality attribution results. We argue that although attribution
algorithms face trust issues, this does not render them entirely useless. Attribution methods still play
a crucial role in the current field of deep learning and have many valuable applications (Dombrowski
et al., 2019; Zhu et al., 2024b; Pan et al., 2021; Zhu et al., 2024d; Sundararajan et al., 2017; Wang
et al., 2021; Kapishnikov et al., 2021). Therefore, refining attribution algorithms remains necessary;
however, we must rigorously consider their scope of applicability. Our main contributions are as
follows:

• We identify an inherent trust issue in the design of attribution algorithms and theoretically
prove that this phenomenon is inevitable, highlighting a fundamental limitation that serves
as a cautionary insight for the field of interpretability research.

• We rigorously derive and provide the ground truth attribution results to illustrate the trust
issue, establishing them as a potential evaluation criterion for attribution algorithms.

• We conduct extensive experiments to substantiate our findings and make our implementa-
tion codes publicly available to facilitate further research.
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2 RELATED WORK

Current interpretability methods fall into two main categories: early gradient-based saliency analy-
sis and gradient-based attribution methods. The former uses model gradient information to assess
input feature impact on outputs. Simonyan et al. (2013) pioneered this approach with Saliency Map
(SM), which determines pixel influence on predictions by computing gradients of model output with
respect to input. However, SM produces noisy results and suffers from gradient vanishing and os-
cillations. To address these issues, Springenberg et al. (2014) introduced Guided Backpropagation
(GBP), which allows only positive gradients to pass through, reducing irrelevant feature influence
and generating smoother results. Yet by altering standard gradient propagation, GBP may cause in-
terpretations to deviate from actual neural network computations. Rather than direct gradient com-
putation, Bach et al. (2015) proposed Layer-wise Relevance Propagation (LRP), which attributes
relevance by recursively tracing neuron contributions within the network. Compared to SM, LRP
better aligns with neural network computational structure and provides more stable results, though
it requires selecting different propagation rules (such as the ϵ-rule or αβ-rule) based on network
architecture, increasing method complexity.

As neural networks deepen, gradient-based saliency methods struggle with smooth gradient vari-
ations, reducing interpretability. Sundararajan et al. (2017) proposed Integrated Gradients (IG),
which mitigates gradient oscillations by computing gradient integrals along a path from baseline in-
put (typically zero or average) to actual input. IG offers two advantages over methods like Saliency
Maps and Layer-wise Relevance Propagation: the Sensitivity Axiom ensures features with signifi-
cant prediction impact receive higher attribution values, and the Implementation Invariance Axiom
maintains consistent results across functionally equivalent networks. However, IG suffers from
high computational cost, noise sensitivity, and baseline selection difficulties. To improve efficiency,
Hesse et al. (2021) proposed Fast Integrated Gradients (Fast-IG), which uses adaptive sampling
to prioritize input regions with greater prediction impact, reducing computational overhead while
maintaining accuracy. Addressing noisy gradients, Kapishnikov et al. (2021) developed Guided In-
tegrated Gradients (GIG), which employs weighting functions to guide integral computation toward
relevant regions, smoothing gradient variations and improving attribution robustness.

To select an appropriate attribution reference point, Wang et al. (2021) proposed the Boundary-based
Integrated Gradients (BIG) method, which, for the first time, utilizes the nearest adversarial sam-
ple to the original input as the reference point and performs integration between this point and the
target input to compute attributions. However, BIG defines the neural network’s decision boundary
using a linear attribution path, while neural network decision boundaries are typically nonlinear.
As a result, BIG may fail to accurately capture the true attribution mechanism of the model. To ad-
dress this limitation, Zhu et al. (2024b) introduced the AttEXplore method, which optimizes decision
boundaries through model parameter exploration and transferable adversarial attacks. This approach
enables attribution methods to effectively traverse multiple decision boundaries, reducing overfitting
and improving generalization capability. The More Faithful and Accelerated Boundary-based At-
tribution (MFABA) method (Zhu et al., 2024c) incorporates second-order gradient information by
approximating the Hessian matrix using a second-order Taylor expansion, thereby enhancing the
precision of attribution computations. Additionally, MFABA employs an adaptive gradient ascent
strategy, allowing adversarial samples to cross decision boundaries along the steepest gradient as-
cent direction rather than following a fixed linear path. Furthermore, the Iterative Search Attribution
(ISA) method (Zhu et al., 2024a) introduces an iterative search mechanism that dynamically adjusts
the attribution search path by combining gradient ascent and gradient descent. This iterative adjust-
ment improves the accuracy of capturing key feature contributions in the model’s decision-making
process.

Despite significant progress in attribution methods for deep learning interpretability, their reliabil-
ity remains problematic. Bilodeau et al. (2024) theoretically showed that widely used attribution
methods may perform no better than random guessing when satisfying completeness and linearity
properties. Completeness requires attribution sums to equal the difference between model outputs
for given and baseline inputs, but this overlooks that neural networks may exhibit different attri-
bution patterns across regions. Linearity mandates that attribution methods preserve additivity for
linear model combinations, which aids mathematical tractability but neglects deep networks’ highly
nonlinear behavior. Consequently, attribution methods may assign importance to irrelevant fea-
tures or misleadingly suggest causal significance when decision boundaries are strongly nonlinear.
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Additionally, Dombrowski et al. (2019) argued that high-dimensional geometric properties make
interpretability methods vulnerable to manipulation, as attribution methods rely on local linear ap-
proximations that become highly sensitive to small perturbations in high-dimensional spaces, high-
lighting their lack of adversarial robustness. While existing studies focus on attribution algorithm
design flaws, our paper takes a different perspective: even if all design problems were resolved,
attribution methods would still face an inherent trust issue.

3 METHOD

3.1 PROBLEM DEFINITION

Here, we define the notations for attribution. Let f denote a neural network, and fA represent the
confidence score of class A. The input is given by x ∈ Rn, with label y, and the loss function is
denoted as L. C(x) = arg max

1≤k≤K
fk(x) represents the class with the highest output confidence.

The purpose of attribution is to calculate the attribution value of each dimension on the sample. A
higher attribution value for a particular dimension indicates its increased importance in determining
the model’s output.

3.2 DISTRUST ISSUES

The key to exposing the trust issue lies in constructing two samples that share an identical attention
region yet yield entirely different classification results. These samples must be indistinguishable to
human perception, which implies that their distance must be sufficiently small—potentially infinites-
imally small. Under such conditions, even when using a correct attribution algorithm, it becomes
impossible to distinguish between the attribution results of these two samples, which ultimately
leads to the trust issue. Here, by identical attention region, we specifically mean that the two sam-
ples assign the same importance scores to the same set of features. To quantify this similarity, we
compute attribution differences under three distance metrics—Manhattan distance, Euclidean dis-
tance, and Cosine distance—whose details can be found in Section 4.2. Building upon the previous
discussion and the example illustrated in Fig. 1, we formally define the trust issue as follows:

Given two samples with entirely different classification results yet infinitely close distances, any
correct attribution algorithm will yield identical attribution results. This implies that the attri-
bution outcome cannot serve as a reliable explanation for the model’s decision and, therefore,
cannot be trusted.

In investigating the trust issue, it is crucial to ensure that all referenced samples hold practical signif-
icance rather than being arbitrary noise samples. If we adopt a rigorous mathematical definition, all
examined samples must reside within Bϵ(x)

x∼P (x)

, where Bε(x) = {x̃ | ∥x̃−x∥ ≤ ε}. And ϵ is typically

a small value, requiring only a few pixels for images. The term P (x) denotes the true distribution of
input samples. In practical discussions, any training or test sample can be selected, and the analysis
can be conducted within its neighborhood, as these samples necessarily belong to the real sample
distribution.

The most idealized assumption is that we can create the most accurate attribution algorithm, as our
goal is to capture the true intent of the model—identifying the input features that are genuinely
important for the model’s decision-making process. Unfortunately, we cannot guarantee that an
attribution algorithm is absolutely correct. We can only rely on fidelity metrics such as the insertion
score and deletion score (Petsiuk et al., 2018) to determine whether one attribution algorithm is
superior to another. However, by adopting this assumption, we aim to articulate the central argument
of this paper: even if we obtain the most accurate attribution algorithm, the trust issue will still
persist. This remains an unavoidable challenge in the study of deep learning interpretability. To
rigorously substantiate the trust issue, we first present the core theoretical foundation of this paper.

Theorem 1: Given a model f , a sample x, and a sample perturbation ∆x, such that C(x) ̸= C(x+
∆x). Then for ∀φ > 0,∃x1, x2 ∈ [γ(t) | t ∈ (0, 1)] satisfying C(x1) ̸= C(x2) and ∥x1−x2∥ < φ.

where γ(t) = x+α(t)∆x, γ(0) = x and γ(1) = x+∆x. α(t) is a continuous monotonic function.
The condition x1, x2 ∈ [γ(t) | t ∈ (0, 1)] ensures that both x1 and x2 lie on the path connecting
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x and x + ∆x, thereby guaranteeing that x1 and x2 belong to Bε(x). Additionally, the condition
∥x1 − x2∥ ≤ ∆x implies that by continuously constructing x1 and x2, the distance between x and
x+∆x can be progressively reduced.

Proof of Theorem 1: In practice, a typical neural network can be viewed as a finite composition of
“linear mappings plus activation functions.” Because the finite composition of continuous functions
remains continuous, such a neural network is essentially built from continuous functions through a
limited set of fundamental continuous operations—namely addition, multiplication, and composi-
tion—thus maintaining continuity. In mathematical terms, to rigorously establish the continuity of
such a neural network, one typically employs the ε-δ definition from real analysis or topology. For
a function f : Rn → RK , continuity over Rn implies that for any x ∈ Rn and for any ε > 0, there
exists some δ > 0 such that ∥x′ − x∥ < δ =⇒ ∥f(x′) − f(x)∥ < ε. Due to the continuity of
the neural network, there exists a t∗ such that γ(t∗) lies on the decision boundary. In other words,
at γ(t∗), at least two output components coincide, leading to a switch in the maximally activated
component. In the neighborhood of t∗, let us define t1 = t∗ − η and t2 = t∗ + η. As long as η is
sufficiently small and satisfies 0 < t∗ − η < t∗ + η < 1, we then obtain x1 := γ(t1), x2 := γ(t2).
Because the trajectory crosses the decision boundary, it necessarily follows that C(x1) ̸= C(x2).
Meanwhile, as ε → 0, ∥x1−x2∥ approaches 0, implying that it can be made arbitrarily small. There-
fore, we can readily derive that ∥x1 − x2∥ = ∥γ(t1)− γ(t2)∥ = |α(t1)− α(t2)| · ∥∆x∥ ≤ ∥∆x∥.

Consequently, from a theoretical standpoint, we can indeed construct two semantically meaningful
samples whose pairwise distance becomes arbitrarily small yet still yield differing classifica-
tion outcomes (completely indistinguishable to the human eye). The existence of x and x + ∆x
serves to confine the construction of x1 and x2 within Bε(x), thereby ensuring that both x1 and x2

remain semantically meaningful. To generate x and x + ∆x, one can leverage adversarial attack
strategies (Goodfellow et al., 2014):

xt = xt−1 + η · sign ∂L(xt, y)

∂xt
(1)

Eq. 1 specifies the update rule for x, where η denotes the attack learning rate and x0 = x. Suppose
the adversarial attack completes in T steps, meaning C(xT ) ̸= C(x0). We then define ∆x =
xT −x0. To ensure xT remains within Bε(x), we must choose ε ≥ η ·T . Note that this construction
is not unique—any method that satisfies these conditions for ∆x would also suffice.

After obtaining x and x + ∆x, we can construct x1 and x2 from xT−1 and xT , respectively. In
this setup, ∥x1 − x2∥∞ = η. By making the attack learning rate η arbitrarily small, the difference
between x1 and x2 inevitably approaches zero. This reduction process is always achievable: for
example, one can scale η by η

S and perform S attack steps to reach the same goal, where the update
rule becomes xt = xt−1 + η

S · (xT − xT−1). During these steps, at least one will succeed in
reaching the adversarial objective. Iterating this procedure repeatedly shrinks η, ultimately yielding
an arbitrarily small gap between x1 and x2. In practice, we often adopt a smaller η from the outset
to bypass the repeated scaling stage.

Next, we show that these two samples share the same ground-truth attribution result and provide the
method used to compute this ground truth. We begin with an intuitive explanation of why their attri-
butions coincide. Consider two infinitesimally close samples whose classifications differ; their only
difference arises from the residual x2−x1 (or equivalently x1−x2), which yields the same outcome
in both cases. These features contained in the residual are critical for both classes: removing any of
these features from either class induces a shift in its category. In other words, the fewer the features
that need to be altered to change the classification, the more essential those features must be. When
this change is infinitesimally small, it highlights that these features are of the highest importance. To
illustrate this more intuitively, consider a scenario where a sample transitions from class A to class B
due to changes in 10 feature dimensions. For clarity, we simplify the discussion by focusing solely
on the feature dimensions, temporarily ignoring the magnitude of changes. Suppose further analy-
sis reveals that modifying only 3 of these dimensions is sufficient to induce the class change. This
implies that the remaining 7 dimensions are not essential, as they are not necessary for the transi-
tion. By extension, features whose influence diminishes in the infinitesimal limit can be considered
non-informative. In contrast, the minimal set of features that retains discriminative power under
infinitesimal perturbations constitutes the most critical components for the classification decision.

Let us denote r = x2 − x1 as the residual shifting x1 to x2. Let A be the class of x1 and B the
class of x2. From this definition, ∥r∥∞ approaches an infinitesimal value; hence, it is precisely this
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negligibly small residual r that transitions the model’s output from class A to class B. Because
the perturbation is vanishingly small, there always exists a neighborhood where a first-order Taylor
approximation is reliable and higher-order effects are negligible; this local linearity is the basic
assumption behind gradient descent in neural networks and is also the locality premise used by
surrogate methods such as LIME. Concretely, for any sufficiently smooth scalar functional R we
use

R(x+∆x) = R(x) + ∆x · ∂R(x)

∂x
+O(|∆x|2), (2)

where O(|∆x|2) denotes higher-order infinitesimals that vanish faster than |∆x| as |∆x| → 0.
Moreover, due to the infinite proximity mentioned in the theory above, r serves only this single task,
thereby ignoring any changes in the outputs of other classes. Unless all other classes are entirely
correlated with the class needs to be changed—a condition that is practically impossible—such cases
are bound to arise.

We apply the first-order expansion in Eq. equation 2 with ∆x = r at the relevant base point.

Since the role of r is to lower the confidence in class A while boosting the confidence in class B, we
define R(x) = fA(x) − fB(x). (To avoid ambiguity, while operations like softmax consider other
class confidences, they are treated as internal mechanisms, and our analysis remains independent
of such details.) Our aim is to construct a ground-truth attribution that captures the influence of
different components in r on R(x). To that end, we derive the following equation:

R(x2)−R(x1) = r · ∂R(x1)

∂x1
= −r · ∂R(x2)

∂x2
=

n∑
i=1

ri
∂R(x1)

∂x1(i)
=

n∑
i=1

(
− ri

∂R(x2)

∂x2(i)

)
(3)

In particular, ri · ∂R(x1)
∂x1(i)

can be viewed as the attribution score for the i-th dimension, and the
ground-truth computation process adheres to the attribution axioms introduced in (Sundararajan
et al., 2017). In Eq. 3, the sum of per-dimension attributions within r equals the difference in
R(x), thereby indicating how r contributes to the shift in the class output. This approximation
becomes increasingly accurate as the distance between x1 and x2 tends to zero because the neglected
term in Eq. equation 2 is O(|r|2), i.e., a higher-order infinitesimal. At this scale, higher-order
infinitesimals can be omitted, which is the basic assumption underlying gradient descent and is
widely adopted in neural networks. Because our perturbation distance is vanishingly small, one
can always identify a region where this approximation holds reliably.

In this context, the only assumption underlying this process is that the model satisfies a local first-
order approximation. This assumption is even weaker than that required by gradient descent dur-
ing model training, where the model is expected to exhibit first-order behavior over the scale of
the learning rate. In contrast, our assumption holds only in an infinitesimally small neighborhood.
Moreover, to avoid potential misunderstandings, it is important to emphasize that this gradient-based
assumption is significantly weaker than those typically made in gradient-based attribution methods.
In such methods, gradients are assumed to be meaningful over the step size of the integration path,
which spans a much larger range than the local approximation considered here. Therefore, these
are fundamentally different processes. Moreover, the infinitesimal nature of r strictly confines the
contribution of each dimension, ensuring a unique set of attributions for any given pair {x1, x2}.
Consequently, one can leverage these pairs and the derived ground truth to rigorously assess whether
different attribution methods produce valid attributions. This process requires only the storage of
the corresponding samples x1 and x2, along with the attribution results constructed across differ-
ent dimensions. The evaluation can then be performed by measuring the discrepancy between the
attribution result generated by the algorithm on x1 and the established ground truth.

4 CASE STUDY

4.1 MODEL AND BASELINES

Although our theoretical analysis is rigorous, infinitesimal concepts cannot be directly applied in
practice due to finite numerical precision. It is important to emphasize that the correctness of our
conclusions is guaranteed by theory, not by empirical observation. The experiments presented here
should therefore be understood as a case study designed to illustrate how the theory manifests under
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finite computational precision, rather than as a proof of the theory itself. This distinction also high-
lights that while the theoretical results are exact, practical implementations inevitably approximate
them within machine precision.

To further investigate this, we provide an empirical example that evaluates the effect of numerical
precision. In this experiment, we use the ResNet50 (He et al., 2016) model as the backbone for
classification. We select nine interpretability methods, including Integrated Gradients (Sundararajan
et al., 2017) (IG), Fast-Integrated Gradients (Hesse et al., 2021) (Fast-IG), Guided Integrated Gra-
dients (Kapishnikov et al., 2021) (Guided-IG), Boundary-based Integrated Gradients (Wang et al.,
2021) (BIG), SmoothGrad (Smilkov et al., 2017), Saliency Map (Simonyan et al., 2013) (SM),
More Faithful and Accelerated Boundary-based Attribution (Zhu et al., 2024c) (MFABA), AttEX-
plore (Zhu et al., 2024b), and Iterative Search Attribution (Zhu et al., 2024a) (ISA). All experiments
are conducted on an NVIDIA L40S GPU with Python 3.12.2. To ensure fairness, all experiments
adopt an identical preprocessing pipeline, including clamping input values to [0, 1] and applying Im-
ageNet mean–std normalization before feeding into model. Thus, every attribution method operates
under the same input conditions, enabling a fair comparison.

It is worth noting that only certain methods, such as Integrated Gradients and its variants (Fast-IG,
Guided-IG, BIG), satisfy the attribution axioms defined in (Sundararajan et al., 2017). In con-
trast, a number of widely used approaches—including Grad-CAM (Selvaraju et al., 2017), Grad-
CAM++ (Chattopadhay et al., 2018), DeepLIFT (Shrikumar et al., 2017), Layer-wise Relevance
Propagation (LRP) (Bach et al., 2015), DeepSHAP/SHAP (Lundberg & Lee, 2017), and RISE (Pet-
siuk et al., 2018)—do not satisfy these axioms. Since our focus is on attribution methods that adhere
to the axiomatic framework, we do not include these non-compliant methods in our experiments.

Nevertheless, even attribution methods that are axiomatically correct (e.g., IG) are not immune to
risks: our theoretical framework demonstrates that trust-related vulnerabilities may persist regard-
less of whether the method satisfies attribution axioms. Hence, our experiments should be inter-
preted as a case study that verifies the compatibility of state-of-the-art attribution methods with our
theoretical assumptions, while also revealing that similar risks emerge for other approaches. The
phenomenon we identify is thus not confined to a specific method but reflects a broader issue that
requires careful handling.

In this sense, our work calls for the interpretability community to pay closer attention to these risks
and to develop practical solutions that explicitly address them, rather than assuming that the adoption
of theoretically sound methods alone is sufficient.

We also employ the ImageNet dataset (Deng et al., 2009) in this paper. Following the setup in
ISA (Zhu et al., 2024a), we randomly sample 1000 instances from ImageNet to evaluate the perfor-
mance of various interpretability methods.

4.2 DISTANCE METRICS

To quantitatively analyze attribution differences, we employ three distance metrics. The Manhattan
distance (L1 norm) sums the absolute differences between corresponding elements, capturing the
total variation in attribution maps. The Euclidean distance (L2 norm) takes the square root of the sum
of squared differences, reflecting the overall magnitude of deviation. Finally, the Cosine distance,
defined as 1 − cos(θ) with cos(θ) denoting the cosine similarity between two attribution vectors,
measures directional differences in attributions rather than magnitude.

4.3 EXPERIMENT 1: CONSTRUCTING GROUND TRUTH

In this section, we refer to Eq. 3 to construct the ground truth, where x1 and x2 are iteratively updated
using Eq. 1. Different learning rates η are set, which are continuously reduced with the experiments.
We first examine how decreasing the model’s output magnitude (by scaling the input-output relation-
ship) affects attribution accuracy. In this controlled setting, we treat attributions computed with an
infinitesimal step as the ground truth and compare them against attributions obtained with finite step
sizes η. We make infinitesimal approximations by continuously increasing the precision within the
allowable precision range. At the same time, Table 1 also shows that the improvement in precision
becomes increasingly smaller. Importantly, since all experiments are ultimately performed under
finite machine precision, the conclusions drawn here remain valid and evident within such com-
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Table 1: Attribution error vs. step size η for a decreasing-output scenario (Exp. 1). Smaller η yields
lower distances, indicating more accurate (true) attributions.

Metric η = 1/255 η = 1/2550 η = 1/25500

Manhattan Dist. 7499.56 3020.18 976.19
Euclidean Dist. 42.89 19.68 7.18
Cosine Dist. 0.0489 0.0235 0.0068

Table 2: Distance between each method’s attribution and the ground-truth attribution (Exp. 3).
Lower values indicate higher fidelity to true attributions. Gradient-based methods (Fast/GIG, IG,
SG, SM) have consistently low errors, whereas methods like BIG, MFABA, AttEXplore, ISA show
large deviations.

Metric FIG GIG IG SG BIG SM MFABA AttEXplore ISA

Manhattan 7638 7650 7653 7885 14692 7571 11223 11300 13385
Euclidean 42.09 42.98 42.57 43.98 74.75 42.49 59.98 58.77 73.88
Cosine 0.039 0.044 0.041 0.045 0.322 0.041 0.335 0.308 0.176

putational limits. In fact, when attribution differences shrink below machine precision, they also
fall beneath human perceptual discrimination, making such numerical extremity the most effective
practical evaluation approach.

When η = 1/255, it represents modifying a single pixel value in the image, whereas when η =
1/2550 or η = 1/25500, the modification to the image is even smaller than a single pixel value.
Table 1 summarizes the attribution error (distance between true and estimated attributions) for three
decreasing step sizes. As the output is scaled down, using a smaller η leads to dramatically smaller
attribution errors across all metrics.

As shown in Table 1, with η = 1/255, the Manhattan distance between the estimated and true
attributions is approximately 7499. However, when the step size is reduced by a factor of ten to
η = 1/2550, the Manhattan distance drops to around 3020, and with η = 1/25500, it further
decreases to about 976. We observe a similar monotonic decrease in Euclidean distance (from 42.89
to 7.18) and Cosine distance (from 0.0489 to 0.0068) as η shrinks.

Original Image x1 x2

(a) η = 1/255

Original Image x1 x2

(b) η = 1/2550

Original Image x1 x2

(c) η = 1/25500

Figure 2: Attribution results for different η. As η decreases, the attribution results become increas-
ingly consistent (Attributions of x1 and x2) become same.

From Figure 2, we can see that when the initial step size η is relatively large, the attribution re-
sults exhibit noticeable differences. However, as η decreases, the attribution results become almost
entirely consistent. From a results perspective, the phenomenon discussed in this work becomes
clearly evident when η = 1/25500, suggesting that this level of precision is sufficient as a constraint
in practice, particularly given the finite numerical resolution of computer implementations.

4.4 EXPERIMENT 2: ATTRIBUTION SIMILARITY ACROSS CASES

In this experiment, we apply nine different attribution algorithms to analyze two highly similar
images, x1 and x2, which belong to different classes (For example, x1 belongs to class A, x2 belongs
to class B). As shown in Figure 3, the attribution results for x1 and x2 are highly similar across all
methods. This validates the concern we raised earlier: when attribution algorithms process two
infinitesimally close samples that belong to different categories, they can produce nearly identical
attribution results.
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x1

FIG GIG IG SG BIG SM MFABA AttEXplore ISA

x2

FIG GIG IG SG BIG SM MFABA AttEXplore ISA

x1

FIG GIG IG SG BIG SM MFABA AttEXplore ISA

x2

FIG GIG IG SG BIG SM MFABA AttEXplore ISA

Figure 3: Attribution results for two infinitesimally close samples, x1 and x2, across different attri-
bution methods for different sample indices.

4.5 EXPERIMENT 3: TRUSTWORTHINESS OF ATTRIBUTION METHODS

In the final experiment, we directly evaluate each method’s trustworthiness by comparing its attri-
butions to the ground-truth attribution. Here, the ground truth is defined as the attribution obtained
under the most stringent setting (the lowest η or essentially an oracle with minimal approximation
error). We compute the distance between each method’s attribution and this true attribution (for the
same input and output). Table 2 reports these distances, and Figure 3 visualizes them. The results
reveal clear discrepancies in how faithfully different methods recover the true attribution. Standard
gradient-based methods – FIG, GIG, vanilla IG, SG, and the method SM – all stay very close to
ground truth (Cosine distances ≈ 0.04, Euclidean ≈ 42, Manhattan around 7.6× 103). In fact, their
cosine similarity to the true attribution exceeds 0.96 (since Cosine distance ≈ 0.04), indicating that
these methods reliably identify the correct features and their importance.

In contrast, several methods deviate markedly from the true attributions. BIG, MFABA, and At-
tEXplore show much larger errors. BIG is furthest from the truth, with a Cosine distance of 0.322
(cosine similarity ∼0.68) and a Manhattan error of 14,692—about twice that of IG (7653). MFABA
and AttEXplore also perform poorly, with Cosine distances of 0.31–0.34 (an order of magnitude
worse than IG/SG) and Euclidean distances (≈59–75), about 1.5–1.8× higher than reliable methods.
ISA underperforms IG as well, with Cosine 0.176 (4× worse than IG) and Manhattan 13,385. These
results highlight that some attribution techniques substantially diverge from the truth. Figure 4 in
Appendix A illustrates this: methods like FIG, GIG, IG, SG, and SM have near-zero error bars,
while BIG, MFABA, and AttEXplore reach high values. Practically, relying on BIG-like methods
risks misleading users about key features. Experiment 2 thus confirms that not all attribution meth-
ods are trustworthy—IG and SG are more reliable, whereas others require caution or improvement
to align with ground truth.

5 CONCLUSION

In this work, we highlight a trust issue in attribution tasks, where even perfect algorithms can fail to
distinguish key decision boundaries, causing ambiguity in feature importance. Infinitesimally close
samples with different classifications can share the same attribution region, undermining reliabil-
ity. This issue points to a core limitation of the attribution framework, suggesting future research
must address inherent uncertainties in model explanations. While our method provides valuable in-
sights, its applicability in non-classification tasks remains limited, and alternative methods should
be explored to better handle these uncertainties.
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A ATTRIBUTION EVALUATION RESULTS FOR EXPERIMENT 3
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Figure 4: Deviation from Ground-Truth Attributions using different distance metrics. Lower values
indicate higher attribution faithfulness. FIG, GIG, IG, SG, and SM exhibit minimal deviations,
while BIG, MFABA, and AttEXplore have significantly higher errors, with ISA showing moderate
deviation.

B ADDITIONAL VISUALIZATION OF THE ATTRIBUTION DISTRUST ISSUE

In this appendix, we additionally show attribution visualizations for different pairs of input samples
x1 and x2. From additional visualization results, we can draw the same conclusion as presented
in Fig. 3 of the main text: for two infinitesimally close samples belonging to different classes,
attribution methods tend to assign importance to the same feature attention regions.

Original Image x1 x2

(a) η = 1/255

Original Image x1 x2

(b) η = 1/2550

Original Image x1 x2

(c) η = 1/25500

Figure 5: Additional attribution results for different η. As η decreases, the attribution results become
increasingly consistent (Attributions of x1 and x2 become the same).

Original Image x1 x2

(a) η = 1/255

Original Image x1 x2

(b) η = 1/2550

Original Image x1 x2

(c) η = 1/25500

Figure 6: Additional attribution results for different η. As η decreases, the attribution results become
increasingly consistent (Attributions of x1 and x2 become the same).
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Original Image x1 x2

(a) η = 1/255

Original Image x1 x2

(b) η = 1/2550

Original Image x1 x2

(c) η = 1/25500

Figure 7: Additional attribution results for different η. As η decreases, the attribution results become
increasingly consistent (Attributions of x1 and x2 become the same).

Original Image x1 x2

(a) η = 1/255

Original Image x1 x2

(b) η = 1/2550

Original Image x1 x2

(c) η = 1/25500

Figure 8: Additional attribution results for different η. As η decreases, the attribution results become
increasingly consistent (Attributions of x1 and x2 become the same).
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Figure 9: Additional attribution results for two infinitesimally close samples, x1 and x2, across
different attribution methods for different sample indices.
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