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Abstract

Machine learning is traditionally studied at the model level: researchers measure
and improve the accuracy, robustness, bias, efficiency, and other dimensions of
specific models. In practice, however, the societal impact of any machine learning
model depends on the context into which it is deployed. To capture this, we
introduce ecosystem-level analysis: rather than analyzing a single model, we
consider the collection of models that are deployed in a given context. For example,
ecosystem-level analysis in hiring recognizes that a job candidate’s outcomes are
determined not only by a single hiring algorithm or firm but instead by the collective
decisions of all the firms to which the candidate applied. Across three modalities
(text, images, speech) and eleven datasets, we establish a clear trend: deployed
machine learning is prone to systemic failure, meaning some users are exclusively
misclassified by all models available. Even when individual models improve over
time, we find these improvements rarely reduce the prevalence of systemic failure.
Instead, the benefits of these improvements predominantly accrue to individuals
who are already correctly classified by other models. In light of these trends, we
analyze medical imaging for dermatology, a setting where the costs of systemic
failure are especially high. While traditional analyses reveal that both models and
humans exhibit racial performance disparities, ecosystem-level analysis reveals
new forms of racial disparity in model predictions that do not present in human
predictions. These examples demonstrate that ecosystem-level analysis has unique
strengths in characterizing the societal impact of machine learning.'

1 Introduction

Machine learning (ML) is pervasively deployed. Systems based on ML mediate our communication
and healthcare, influence where we shop or what we eat, and allocate opportunities like loans and jobs.
Research on the societal impact of ML typically focuses on the behavior of individual models. If we
center people, however, we recognize that the impact of ML on our lives depends on the aggregate
result of our many interactions with ML models.

In this work, we introduce ecosystem-level analysis to better characterize the societal impact of
machine learning on people. Our insight is that when a ML model is deployed, the impact on users
depends not only on its behavior but also on the behavior of other models and decision-makers (left of
Figure 1). For example, the decision of a single hiring algorithm to reject or accept a candidate does
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Figure 1: Ecosystem-level analysis. Individuals interact with decision-makers (left), receiving
outcomes that constitute the failure matrix (right).

not determine whether or not the candidate secures a job; the outcome of her search depends on the
decisions made by all the firms to which she applied. Likewise, in selecting consumer products like
voice assistants, users choose from options such as Amazon Alexa, Apple Siri, or Google Assistant.
From the user’s perspective, what is important is that at least one product works.

In both settings, there is a significant difference from the user’s perspective between systemic failure,
in which zero systems correctly evaluate them or work for them, and any other state. The difference
in marginal utility between zero acceptances and one acceptance is typically much higher than the
difference between one acceptance and two acceptances. This non-linearity is not captured by average
error metrics. For example, imagine that three companies are hiring and there are ten great candidates.
All three companies wrongly reject the same two great candidates for a false negative error rate of
20%. Now imagine that each company wrongly rejects different candidates. The second decision
ecosystem has the same false negative error rate, 20%, but no systemic failures or jobless candidates.

Ecosystem-level analysis is a methodology that centers on the failure matrix (F'; right of Figure 1):
I encapsulates the outcomes individuals receive from all decision-makers. Of special interest
are systemic failures: exclusively negative outcomes for individuals such as misclassifications or
rejections from all decision-makers [Bommasani et al., 2022]. To establish general trends in deployed
machine learning, we draw upon a large-scale audit [HAPI; Chen et al., 2022a] that spans three
modalities (images, speech, text), three commercial systems per modality, and eleven datasets overall.
Because HAPI contains predictions from some of the largest commercial ML providers — including
Google, Microsoft, and Amazon — and the models evaluated are deployed models that real users
interact with, evaluating HAPI has real-world implications.

Across all settings, ecosystem-level analysis reveals a consistent pattern of homogeneous outcomes.
In each of the HAPI datasets, many instances are classified correctly by all three commercial systems
and many instances are classified incorrectly by all three systems. The pattern of outcomes across
the decision ecosystem is homogenous if the rates of systemic failure and consistent classification
success significantly exceed the rate predicted by independent instance-level behavior. Since the
commercial systems analyzed in this dataset are popular and widely used, being failed by all systems
in the dataset has societally meaningful consequences.

Ecosystem-level analysis enriches our understanding not only of the status quo, but also of how
models change over time. In particular, it allows us to ask, when individual models improve, how do
ecosystem-level outcomes change? Since HAPI tracks the performance of the same systems over
a three-year period, we consider all cases where at least one of the commercial systems improves.
For example, Amazon’s sentiment analysis API reduced its error rate on the WAIMATI dataset by
2.5% from 2020 to 2021; however, this improvement did not decrease the systemic failure rate at
all. Precisely O out of the model’s 303 improvements are on instances on which all other models
had failed. These findings generalize across all cases: on average, just 10% of the instance-level
improvement of a single commercial system occurs on instances misclassified by all other models.
This is true even though systemic failures account for 27% of the instances on which the models
could have improved. Thus most model improvements do not significantly reduce systemic failures.



To build on these trends, we study medical imaging, a setting chosen because the costs to individuals
of systemic failure of medical imaging classification are especially high. We compare outcomes from
prominent dermatology models and board-certified dermatologists on the DDI dataset [Daneshjou
et al., 2022]: both models and humans demonstrate homogeneous outcomes, though human outcomes
are more homogenous. Given established racial disparities in medicine for both models and humans,
fairness analyses in prior work show that both humans and models consistently perform worse for
darker skin tones (e.g. Daneshjou et al. [2022] show lower ROC-AUC on DDI). Ecosystem-level
analysis surfaces new forms of racial disparity in models that do not present in humans: models are
more homogenous when evaluating images with darker skin tones, meaning that all systems agree in
their correct or incorrect classification, whereas human homogeneity is consistent across skin tones.

Our work contributes to a growing literature on the homogeneous outcomes of modern machine
learning [Ajunwa, 2019, Engler, 2021, Creel and Hellman, 2022, Bommasani et al., 2022, Fishman
and Hancox-Li, 2022, Wang and Russakovsky, 2023, Jain et al., 2023]. While prior work conceptual-
izes these phenomena, our work introduces new methodology to study these problems and provides
concrete findings for a range of ML deployments spanning natural language processing, computer
vision, speech, and medical imaging. Further, by centering individuals, we complement established
group-centric methods [Barocas and Selbst, 2016, Buolamwini and Gebru, 2018, Koenecke et al.,
2020], unveiling new forms of racial disparity. Ecosystem-level analysis builds on this existing work,
providing a new tool that contributes to holistic evaluations of the societal impact of machine learning.

Developing better methodologies for ecosystem-level analysis of deployed machine learning systems
is important for two reasons. First, systemic failures in socially consequential domains could exclude
people from accessing goods such as jobs, welfare benefits, or correct diagnoses. Individuals who are
failed by only one model can gain informal redress by switching to another model, for example by
seeking second doctor’s opinion or switching banks. Individuals failed by all models cannot. Socially
consequential systemic failures can happen due to reliance on APIs, such as image recognition APIs
used to identify cancers, speech recognition APIs used to verify individuals for banking, or facial
recognition APIs used to unlock devices. Systemic failures can also occur in algorithmic decision-
making systems such as those used for hiring, lending, and criminal justice. The social importance of
avoiding systemic failures in all of these systems is clear.

Second, as decision-makers become more likely to rely on the same or similar algorithms to make
decisions [Kleinberg and Raghavan, 2021] or to use the same or similar components in building their
decision pipelines [Bommasani et al., 2022], we believe that the prevalence of systemic failures could
increase. Measuring systemic failures as they arise with the tools we present in this paper will expand
our understanding of their prevalence and likely causes.

2 Ecosystem-level Analysis

How individuals interact with deployed machine learning models determines ML’s impact on their
lives. In some contexts, individuals routinely interact with multiple ML models. For example, when
a candidate applies to jobs, they typically apply to several firms. The decision each company makes
to accept or reject the candidate may be mediated by a single hiring algorithm. In other contexts,
individuals select a single model from a set of options. For example, when a consumer purchases a
voice assistant, they typically choose between several options (e.g. Amazon Alexa, Google Assistant,
Apple Siri) to purchase a single product (e.g. Amazon Alexa). Centering people reveals a simple but
critical insight: exclusively receiving negative outcomes, as when individuals are rejected from every
job or unable to use every voice assistant, has more severe consequences than receiving even one
positive outcome.

2.1 Definition

Recognizing how ML is deployed, we introduce ecosystem-level analysis as a methodology for
characterizing ML’s cumulative impacts on individuals. Consider NN individuals that do, or could,
interact with k£ decision-makers that apply ¢ labels according to their decision-making processes
hi,...,hg. Individual ¢ is associated with input x;, label y;, and receives the label yf = h; (2;) from
decision-maker j.
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classification). For consistency, we order the entries of decision-makers (and, thereby, the columns of
the failure matrix) in order of ascending failure rate: F'[:, 1] is the outcome profile associated with
the decision-maker with the fewest failures and F'[:, k] is the outcome profile associated with the
decision-maker with the most failures. The failure matrix is the central object in ecosystem-level
analysis (see Figure 1).

Systemic Failures. Individual ¢ experiences systemic failure if they exclusively experience failure
across the domain of interest: F'[¢,:] = [1,...,1]. Not only are systemic failures the worst possible
outcomes, but they also often result in additional harms. If an individual applying to jobs is rejected
everywhere, they may be unemployed. If no commercial voice assistant can recognize an individual’s
voice, they may be fully locked out of accessing a class of technology. In our ecosystem-level
analysis, we focus on systemic failures as a consequential subset of the broader class of homogeneous
outcomes [Bommasani et al., 2022].

3 Homogeneous Outcomes in Commercial ML APIs (HAPI)

To establish general trends made visible through ecosystem-level analysis, we draw upon a large-scale
three-year audit of commercial ML APIs [HAPI; Chen et al., 2022a] to study the behavior of deployed
ML systems across three modalities, eleven datasets, and nine commercial systems.

3.1 Data

Chen et al. [2022a] audit commercial ML APIs, tracking predictions across these APIs when evaluated
on the same eleven standard datasets over a period of three years (2020 — 2022). We consider ML,
APIs spanning three modalities (text, images, speech), where each modality is associated with a task
(SA: sentiment analysis, FER: facial emotion recognition, SCR: spoken command recognition) and
3 APIs per modality (e.g. IBM, Google, Microsoft for spoken command recognition). The models
evaluated are from Google (SA, SCR, FER), Microsoft (SCR, FER), Amazon (SA), IBM (SCR),
Baidu (SA), and Face++ (FER). Additionally, each modality is associated with three to four datasets,
amounting to eleven datasets total; further details are deferred to the supplement.

To situate our notation, consider the DIGIT dataset for spoken command recognition and the associated
APIs (IBM, Google, Microsoft). For each instance (i.e. image) z; in DIGIT, the outcome profile
f; € {0, 1}3 is the vector of outcomes. The entries are ordered by ascending model failure rate: F'[:, 1]
corresponds to the most accurate model (Microsoft) and F'[:, 3] corresponds to the least accurate
model (Google).

Facial emotion recognition Spoken command recognition Sentiment analysis
RAFDB AFNET EXPW FER+ ‘ FLUENT DIGIT AMNIST ‘ SHOP YELP IMDB WAIMAI
Dataset size 153k 287.4k 31.5k 6.4k 30.0k 2.0k 30.0k 62.8k 20.0k 25.0k  12.0k
Number of classes 7 7 7 7 31 10 10 2 2 2 2

h; failure rate (i.e. error) | 0.283 0277 0272 0.156 | 0.019 0.217 0.015 0.078 0.043 0.136  0.110
ho failure rate (i.e. error) | 0.343 0.317 0348 0316 | 0.025 0.259 0.015 0.095 0.111 0.219  0.151
hs failure rate (i.e. error) | 0.388 0.359 0378 0323 | 0.081 0.472 0.043 0.122  0.486 0.484  0.181
Systemic failure rate 0.152 0.178  0.181  0.066 0.01 0.129 0.002 0.039 0.021 0.043 0.065

Table 1: Basic statistics on HAPI datasets including the (observed) systemic failure rate (i.e. fraction
of instances misclassified by all models).

Descriptive statistics. To build general understanding of model performance in HAPI, we provide
basic descriptive statistics (Table 1). For most datasets, all APIs achieve accuracies within 5-10% of
each other (exceptions include DIGIT, YELP, IMDB). Interestingly, we often find the systemic failure
rate is roughly half the failure rate of the most accurate model h;.



3.2 Ecosystem-level Behavior

In order for a measure of systemic failure to be useful, it must be (i) meaningful and (ii) comparable
across systems. A challenge to the meaningfulness of any proposed metric is that systemic failures
occur more often in an ecosystem with many inaccurate models. A metric for systemic failure
that primarily communicated the aggregate error rates of models in the ecosystem would not be
meaningful as an independent metric. It also would not support goal (ii) because we could not
compare the rates of systemic failure across ecosystems with varying model accuracies. It would
be difficult to identify a system with a ‘large’ rate of systemic failure because the systemic failure
properties would be swamped by the error rates of the models in the ecosystem. Therefore, achieving
meaningfulness and comparability requires the metric to incorporate error correction.

Assuming model independence is a helpful baseline because it adjusts for model error rates without
making assumptions about the correlation between models in the ecosystem. To avoid assumptions
and for the sake of simplicity, therefore, we juxtapose the observed behavior with a simple theoretical
model in which we assume models fail independently of each other. Under this assumption, the
distribution of the baseline number of model failures ¢ € {0, ..., k} follows a Poisson-Binomial
distribution parameterized by their failure rates (Equation 2).

The baseline of independence also means that our metric does not attempt to quantify whether it is
“reasonable” that the models all fail on some instances. For example, some instances might be harder
(or easier) than others, making it more likely that all models will fail (or succeed) to classify that
instance. However, “hardness” is observer-relative. What is hard for one class of models might be
easy for another class of model, and likewise with humans with particular capabilities or training.
Therefore ’correcting’ the metric to account for hardness would relativize the metric to the group of
humans or class of models for whom that instance is hard. We choose independence as a baseline to
be neutral on this point. However, we depart from independence in Appendix §A.3, exploring how
a baseline that assumes some level of correlation between models can more accurately model the
observed distribution of ecosystem-level outcomes.

Comparing the true observed distribution of ecosystem-level outcomes with the baseline distribution
helps illuminate how correlated outcomes are across models. Below we define Pypserveqd (Equation 1)
and Phaseline (Equation 2).

SN 1t =55 Fli )| 1
N (D
Phaseline ( failures) = Poisson-Binomial(fi, ..., fx)[] 2)

Pobserved(t failures) =

Finding 1: Homogenous Outcomes. In Figure 2a, we compare the observed and baseline distri-
butions for the spoken command recognition dataset DIGIT. We find the observed ecosystem-level
outcomes are more clearly homogenous compared to the baseline distribution: the fraction of in-
stances that receive either extreme outcome (all right or all wrong) exceeds the baseline rate. These
findings generalize to all the datasets (Figure 2b): the observed rate always exceeds the baseline rate
for the homogeneous outcomes (above the line y = ) and the reverse mostly holds for intermediary
outcomes.

4 Do Model Improvements Improve Systemic Failures?

The performance of a deployed machine learning system changes over time. Developers serve new
versions to improve performance [Chen et al., 2022b,a], the test distribution shifts over time [Koh
et al., 2021], and the users (sometimes strategically) change their behavior [Bjorkegren et al., 2020].
In spite of this reality, most analyses of the societal impact of machine learning only consider static
models.

Ecosystem-level analysis provides a new means for understanding how models change and how
those changes impact people. When models change, what are the broader consequences across their
model ecosystem? Do single-model improvements on average improve ecosystem-level outcomes by
reducing systemic failures? And to what extent are the individuals for whom the model improves the
same individuals were previously systemically failed?
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Figure 2: Homogeneous outcomes. Ecosystem-level analysis surfaces the general trend of ho-
mogeneous outcomes: the observed rates that all models succeed/fail consistently exceeds the
corresponding baseline rates. Figure 2a shows that models in the DIGIT dataset are more likely to all
fail or all succeed on an instance than baseline. Figure 2b shows that across all datasets, systemic
failure (red dots) and consistent success (blue dots) of all three models on an instance are both more
common than baseline, whereas intermediate results are less common than baseline.
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Figure 3: Model improvement is not concentrated on systemic failures. When a model improves,
we compare the distribution of outcome profiles of the other two models on its initial failures (potential
improvements) to the distribution on the instances it improved on (observed improvements). Across all
improvements, including Amazon’s improvement on WAIMALI (left), there is a clear over-improvement

on [v/, v'] (above y = x on right) and under-improvement on [X, X] (below the identity line on
right).

Setup. Chen et al. [2022a] evaluated the performance of the commercial APIs on the same eleven
evaluation datasets each year in 2020-2022. Of all year-over-year comparisons, we restrict our
attention to cases where one of the three APIs for a given task improves by at least 0.5% accuracy.’
Let himp denote the model that improved. We identify the instances that hjy, initially misclassified in
the first year as potential improvements and the subset of these instances that hiy,, correctly classified
in the second year as improvements. Considering the initial distribution of failures for h;mp, we can
ask where does the hiy,, improve? We answer this by comparing the distribution of outcome profiles
for the other models (besides hinp) between the potential improvement and improvement sets.

2The supplement §B.3 contains an analysis that confirms our findings are robust to alternate thresholds.



Finding 2: Model improvements make little progress on systemic failures. As a case study, we
consider Amazon’s improvement on the WAIMAT dataset from 2020 to 2021. In Figure 3a, from left
to right, [X, X] indicates the other APIs (Baidu, Google) both fail, [X, v'] and [v', X] indicate exactly
one of the other APIs succeed, and [v', v'] indicates both succeed. The majority (64.7%) of Amazon’s
improvement is on instances already classified correctly by the other two APIs, far exceeding the
fraction of potential improvements that were classified correctly by Baidu and Google (34.1%) in
2020. In contrast, for systemic failures, the improvement of 11.6% falls far short of the potential
improvement of 36.7%. In fact, since models can also fail on instances they previously classified
correctly, the model’s improvement on systemic failures is even worse in terms of net improvement.
Amazon’s improvement amounts to no net reduction of systemic failures: the model improves on 78
systemic failures but also regresses on 78 instances that become new systemic failures, amounting to
no net improvement. The Baidu and Google APIs similarly show little improvement on systemic
failures even as models improve.

This finding is not unique to Amazon’s improvement on the WAIMAI dataset: in the 11 datasets we
study, we observe the same pattern of homogeneous improvements from 2020-2022. In Figure 3b, we
compare the observed improvement distribution® (y axis) to the potential improvement distributions (z
axis) across all model improvements. We find a clear pattern: systemic failures (the [X, X] category)
are represented less often in the observed improvement set than in the potential improvement set.
This finding indicates that when models improve, they under-improve on users that are already being
failed by other models. Instead, model improvements especially concentrate on instances where both
other models succeeded already.

Ecosystem-level analysis in the context of model improvements disambiguates two plausible situations
that are otherwise conflated: does single-model improvement (i) marginally or (ii) substantively
reduce systemic failures? We find the reduction of systemic failures is consistently marginal: in every
case, the reduction fails to match the the distribution seen in the previous year (i.e. every [X, X] red
point is below the line in Figure 3b).

5 Ecosystem-level Analysis in Dermatology (DDI)

Having demonstrated that ecosystem-level analysis reveals homogeneous outcomes across machine
learning deployments, we apply the ecosystem-level methodology to medical imaging. We consider
this setting to be an important use of ecosystem-level analysis because machine learning makes
predictions that inform the high-stakes treatment decisions made by dermatologists.

5.1 Data

Daneshjou et al. [2022] introduced the Diverse Dermatology Images (DDI) dataset of 656 skin lesion
images to evaluate binary classification performance at detecting whether a lesion was malignant or
benign. Images were labelled with the ground-truth based on confirmation from an external medical
procedure (biopsy). In addition, each image is annotated with skintone metadata using the Fitzpatrick
scale according to one of three categories: Fitzpatrick I & II (light skin), Fitzpatrick III & IV (medium
skin), and Fitzpatrick V & VI (dark skin). We use the predictions from Daneshjou et al. [2022] on
DDI for two prominent ML models (ModelDerm [Han et al., 2020] and DeepDerm [Esteva et al.,
2017]) and two board-certified dermatologists.* We defer further details to Appendix C.

5.2 Results

Finding 3: Both humans and models yield homogeneous outcomes; humans are more ho-
mogeneous. We compare observed and baseline ecosystem-level outcomes on DDI for models
(Figure 4a) and humans (Figure 4b). Consistent with the general trends in HAPI, model predictions
yield homogeneous outcomes. For human predictions from board-certified dermatologists, we also

3The supplement §B.4 contains analysis comparing ‘net improvements’ to ‘potential improvements’ as well;
the trends are consistent across both analyses.

4Daneshjou et al. [2022] also evaluated a third model [HAM10K; Tschandl et al., 2018] that almost always
predicts the majority class in this class-imbalanced setting. We exclude this model since its failures are not
interesting, but replicate our analyses in the supplement Appendix C to show the findings still hold if it is
included.
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Figure 5: Racial disparities for models but not humans. We stratify ecosystem-level analysis in
DDI by the three skin tone categories, plotting the difference between observed and baseline rates.
Models (leff) show clear racial disparities, exhibiting the most homogeneity for the darkest skin tones,
whereas humans (right) show no significant racial disparity.

see that outcomes are homogeneous. However, in comparing the two, we find that humans yield
even more homogeneous outcomes. We take this to be an important reminder: while we predict that
models are likely to produce homogeneous outcomes, we should also expect humans to produce
homogeneous outcomes, and in some cases more homogeneous outcomes.

Finding 4: Ecosystem-level analysis reveals new racial disparities in models but not humans.
Standard analyses of machine learning’s impact focus on model performance across groups [e.g.
Buolamwini and Gebru, 2018, Koenecke et al., 2020]. In Al for medicine, several works have taken
such an approach towards understanding fairness [Obermeyer et al., 2019, Seyyed-Kalantari et al.,
2021, Kim et al., 2022, Colwell et al., 2022]. Daneshjou et al. [2022] demonstrate racial disparities
for both model and human predictions on DDI and find that predictive performance is worst for
darkest skin tones, aligning with broader trends of racial discrimination in medicine and healthcare
[Vyas et al., 2020, Williams and Wyatt, 2015, Fiscella and Sanders, 2016].

Ecosystem-level analysis can build on these efforts. We conduct the same analysis from Figure 4
stratified by skin tone. In previous experiments, we had observed systemic failures across the whole
population. Here we measure systemic failures for subpopulations grouped by skin tone. In Figure 5,
we plot the difference between the observed and baseline rates on the y axis: the All bars (blue)
reproduce the homogeneity results from Figure 4.



Strikingly, ecosystem-level-analysis surfaces an important contrast between model behavior (/eff) and
human behavior (right). Models (Figure 5a) are most homogenous for darkest skin tones (Fitzpatrick
V & VI, dark brown) and least homogeneous for the lightest skin tones (Fitzpatrick I & II; cream):
The observed systemic failure rate for the darkest skin tones is 8.2% higher than the baseline, while
for the lightest skin tones it is 1.5% lower than the baseline. By contrast, humans (Figure 5b) show
no significant variation as a function of skin tone.

Ecosystem-level analysis therefore identifies a new form of racial disparity not previously documented.
Critically, while prior works show racial disparities for both models and humans, here we find a form
of racial disparity that is salient for models but not present for humans. We note that, in absolute
terms, homogeneity is higher for all racial groups in human predictions than model predictions,
though human predictions don’t display significant differences in homogeneity across racial group.
This demonstrates that ecosystem-level analysis can reveal new dimensions of fairness, allowing
stakeholders to identify the metrics that are most relevant in their context, be that model error or
systemic failure rate. Our tool helps researchers and stakeholders evaluate the holistic ecosystem
of algorithmic — and human — judgements that ultimately shapes outcomes for those subject to
algorithmic judgement.

6 Commentary

While ecosystem-level analysis reveals new dimensions of machine learning’s societal impact, it also
opens the door for further questions. We prioritize two here, deferring further discussion and a longer
related work section to the supplement. How can we explain the pervasive homogeneous outcomes
we have observed in deployed machine learning? And what are the implications of this work for both
researchers and policymakers?

6.1 Explanations for Homogeneous Outcomes

Our findings provide evidence across several settings for homogeneous outcomes in deployed machine
learning (Finding 1; §3) that are mostly unabated by model improvement (Finding 2; §4).

Data-centric explanations. We posit that “example difficulty” may give rise to homogeneous
outcomes and provide three analyses that instantiate variants of this hypothesis.

First, human ambiguity on the ground-truth may predict homogeneous outcomes. To test this, we
make use of the ten human annotations per example in the FER+ dataset within HAPI. We find that
the systemic failure rate is monotonically correlated with annotator disagreement with the majority
label. This suggests that some systemic failures are correlated with the ambiguity or “hardness” of
the image. However, we find that even some of the least ambiguous images, namely images on which
all or most annotators agree, have systemic failures. . This indicates that human ambiguity is only
partially explanatory of ecosystem-level model outcomes. We explore this further in §A.1.

Second, human error may predict homogeneous outcomes. To test this, we compare human pre-
dictions on DDI with the ground truth biopsy results. We stratify ecosystem-level analysis by
dermatologist performance, comparing (i) instances both dermatologists get right, (ii) instances they
both get wrong, and (iii) instances where they disagree and exactly one is right. We find that when
both dermatologists fail, there continues to be outcome homogenization. However, when both derma-
tologists succeed, there is no homogeneity and the observed rates almost exactly match the baseline
rates for every image. This suggests human error is also partially predictive of ecosystem-level model
outcomes. We explore this further in §A.2.

Finally, more expressive theoretical models can better capture the observed trends than our simple full
instance-level independence model. We introduce a two-parameter model. « fraction of instances are
categorized as difficult and the remaining 1 — o are easy. A model’s failure rate f; over all examples

scales to (1 + A) f] on hard examples and ( — %) fj on easy examples. Partitioning examples in

this way, while continuing to assume instance-level independence, inherently homogenizes: models
are more likely to systemically succeed on easy instances and systemically fail on hard instances. To
best fit the HAPI data, the resulting average « (0.2 — 0.3) and A (1 — 4, meaning these examples
are 2 — 5x harder) values are quite extreme. In other words, for this theoretical model to fit the



data, a significant fraction (=~ 25%) would need to be considerably harder (=~ 3.5x) than the overall
performance. We explore this further in §A.3.

These analyses contribute to an overarching hypothesis that example difficulty partially explains
homogeneous outcomes. While we discuss the construct of difficulty in the supplement, we draw
attention to two points. First, difficulty is largely in the eye of the beholder: what humans or models
perceive as difficult can differ [e.g. adversarial examples; Goodfellow et al., 2014]. Thus while
example difficulty could be caused by inherent properties of the example (such as noisy speech or
corrupted images), it could just as well be due to model properties, such as all the models having
made similar architectural assumptions or having parallel limitations in their training data. Second,
whether or not homogeneous outcomes are caused by example difficulty does not change their societal
impact. The consequences of systemic failure can be material and serious (e.g. unemployment).

Model-centric Explanations and Algorithmic Monoculture. An alternative family of explana-
tions put forth in several works is that correlated outcomes occur when different deployed machine
learning models share training data, model architectures, model components, learning objectives or
broader methodologies [Ajunwa, 2019, Engler, 2021, Bommasani et al., 2021, Creel and Hellman,
2022, Fishman and Hancox-Li, 2022, Bommasani et al., 2022, Wang and Russakovsky, 2023]. Such
algorithmic monoculture [Kleinberg and Raghavan, 2021, Bommasani et al., 2022] in fact appears to
be increasingly common as many deployed systems, including for the tasks in HAPI, are derived
from the same few foundation models [Bommasani et al., 2023, Madry, 2023]. Unfortunately, we
are unable to test these hypotheses because we know very little about these deployed commercial
systems, but we expect they form part of the explanation and encourage future work in this direction.

Implications for Researchers. Our paper shows that ecosystem-level research can reveal
previously-invisible social impacts of machine learning. We believe this methodology concretizes
the impact of decision-making in real contexts in which individuals would typically be affected
by decisions from many actors (e.g. job applications, medical treatment, loan applications, or rent
pricing). As we demonstrate in DDI, our methodology applies equally to human-only, machine-only,
and more complex intertwined decision-making. We anticipate understanding of homogeneous
outcomes arising from any or all of these sources will be valuable.

Implications for Policymakers. Given the pervasive and persisting homogeneous outcomes we
document, there may be a need for policy intervention. In many cases no single decision-maker
can observe the decisions made by others in the ecosystem, so individual decision-makers (such as
companies) may not know that systemic failures exist. In addition, systemic failures are not currently
the responsibility of any single decision-maker, so no decision-maker is incentivized to act alone.
Consequently, policy could implement mechanisms to better monitor ecosystem-level outcomes
and incentivize ecosystem-level improvement. In parallel, regulators should establish mechanisms
for recourse or redress for those currently systemically failed by machine learning [see Voigt and
von dem Bussche, 2017, Cen and Raghavan, 2023].

7 Conclusion

We introduce ecosystem-level analysis as a new methodology for understanding the cumulative
societal impact of machine learning on individuals. Our analysis on HAPI establishes general
trends towards homogeneous outcomes that are largely unaddressed even when models improve.
Our analysis on DDI exposes new forms of racial disparity in medical imaging that arise in model
predictions but not in human predictions. Moving forward, we hope that future research will build on
these empirical findings by providing greater theoretical backing, deeper causal explanations, and
satisfactory sociotechnical mitigations. To ensure machine learning advances the public interest, we
should use approaches like ecosystem-level analysis to holistically characterize its impact.

10



Acknowledgments and Disclosure of Funding

We would like to thank Shibani Santurkar, Mina Lee, Deb Raji, Meena Jagadeesan, Judy Shen,
p-lambda, and the Stanford ML group for their feedback on this work. We would like to thank James
Zou and Lingjiao Chen for guidance with using the HAPI dataset. We would like to thank Roxana
Daneshjou for providing the DDI dataset along with guidance on how to analyze the dataset. In
addition, the authors would like to thank the Stanford Center for Research on Foundation Models
(CRFM) and Institute for Human-Centered Artificial Intelligence (HAI) for providing the ideal home
for conducting this interdisciplinary research. RB was supported by the NSF Graduate Research
Fellowship Program under grant number DGE-1655618. This work was supported in part by a
Stanford HAI/Microsoft Azure cloud credit grant and in part by the AI2050 program at Schmidt
Futures (Grant G-22-63429).

References

Rishi Bommasani, Kathleen Creel, Ananya Kumar, Dan Jurafsky, and Percy Liang. Picking on the
same person: Does algorithmic monoculture lead to outcome homogenization? In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=-H6kKm4DVo.

Lingjiao Chen, Zhihua Jin, Evan Sabri Eyuboglu, Christopher Ré, Matei Zaharia, and James Y
Zou. HAPI: A Large-scale Longitudinal Dataset of Commercial ML API Predictions. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in
Neural Information Processing Systems, volume 35, pages 24571-24585. Curran Associates,
Inc., 2022a. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
9bcd0bdb2777£e8c729b682f07e993f1-Paper-Datasets_and_Benchmarks.pdf.

Roxana Daneshjou, Kailas Vodrahalli, Roberto A. Novoa, Melissa Jenkins, Weixin Liang, Veronica
Rotemberg, Justin Ko, Susan M. Swetter, Elizabeth E. Bailey, Olivier Gevaert, Pritam Mukherjee,
Michelle Phung, Kiana Yekrang, Bradley Fong, Rachna Sahasrabudhe, Johan A. C. Allerup, Utako
Okata-Karigane, James Zou, and Albert S. Chiou. Disparities in dermatology ai performance on a
diverse, curated clinical image set. Science Advances, 8(32):eabq6147, 2022. doi: 10.1126/sciadv.
abq6147. URL https://www.science.org/doi/abs/10.1126/sciadv.abq6147.

Ifeoma Ajunwa. The paradox of automation as anti-bias intervention. Cardozo L. Rev., 41:1671,
2019. URL https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2746078.

Alex Engler. Enrollment algorithms are contributing to the crises of higher education. report,
The Brookings Institution, September 2021. URL https://www.brookings.edu/research/
enrollment-algorithms-are-contributing-to-the-crises-of-higher-education/.

Kathleen Creel and Deborah Hellman. The algorithmic leviathan: Arbitrariness, fairness, and
opportunity in algorithmic decision-making systems. Canadian Journal of Philosophy, 52(1):
26-43, 2022. doi: 10.1017/can.2022.3. URL https://papers.ssrn.com/sol3/papers.cfm?
abstract_id=3786377.

Nic Fishman and Leif Hancox-Li. Should attention be all we need? the epistemic and ethical
implications of unification in machine learning. 2022 ACM Conference on Fairness, Accountabil-
ity, and Transparency, 2022. URL https://dl.acm.org/doi/fullHtml/10.1145/3531146.
3533206.

Angelina Wang and Olga Russakovsky. Overcoming bias in pretrained models by manipulating the
finetuning dataset. arXiv preprint arXiv:2303.06167, 2023. URL https://arxiv.org/abs/
2303.06167.

Shomik Jain, Vinith M. Suriyakumar, Kathleen Creel, and Ashia C. Wilson. Algorithmic pluralism:
A structural approach towards equal opportunity. ArXiv, abs/2305.08157, 2023. URL https:
//arxiv.org/abs/2305.08157.

Solon Barocas and Andrew D. Selbst. Big data’s disparate impact. California Law Review, 104:671,
2016. URL https://www. jstor.org/stable/24758720.

11


https://openreview.net/forum?id=-H6kKm4DVo
https://proceedings.neurips.cc/paper_files/paper/2022/file/9bcd0bdb2777fe8c729b682f07e993f1-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9bcd0bdb2777fe8c729b682f07e993f1-Paper-Datasets_and_Benchmarks.pdf
https://www.science.org/doi/abs/10.1126/sciadv.abq6147
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2746078
https://www.brookings.edu/research/enrollment-algorithms-are-contributing-to-the-crises-of-higher-education/
https://www.brookings.edu/research/enrollment-algorithms-are-contributing-to-the-crises-of-higher-education/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3786377
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3786377
https://dl.acm.org/doi/fullHtml/10.1145/3531146.3533206
https://dl.acm.org/doi/fullHtml/10.1145/3531146.3533206
https://arxiv.org/abs/2303.06167
https://arxiv.org/abs/2303.06167
https://arxiv.org/abs/2305.08157
https://arxiv.org/abs/2305.08157
https://www.jstor.org/stable/24758720

Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in com-
mercial gender classification. In FAT, 2018. URL https://proceedings.mlr.press/v81/
buolamwinil8a/buolamwinil8a.pdf.

Allison Koenecke, Andrew Joo Hun Nam, Emily Lake, Joe Nudell, Minnie Quartey, Zion Mengesha,
Connor Toups, John R. Rickford, Dan Jurafsky, and Sharad Goel. Racial disparities in automated
speech recognition. Proceedings of the National Academy of Sciences of the United States of Amer-
ica, 117:7684 — 7689, 2020. URL https://www.pnas.org/doi/10.1073/pnas.1915768117.

Jon Kleinberg and Manish Raghavan. Algorithmic monoculture and social welfare. Proceedings of
the National Academy of Sciences, 118(22):¢2018340118, 2021. doi: 10.1073/pnas.2018340118.
URL https://www.pnas.org/doi/abs/10.1073/pnas.2018340118.

Lingjiao Chen, Matei Zaharia, and James Zou. How did the model change? efficiently assessing
machine learning API shifts. In International Conference on Learning Representations, 2022b.
URL https://openreview.net/forum?id=gFDFKC4gHL4.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning,
pages 5637-5664. PMLR, 2021. URL https://arxiv.org/abs/2012.07421.

Daniel Bjorkegren, Joshua E. Blumenstock, and Samsun Knight. Manipulation-proof machine
learning, 2020. URL https://arxiv.org/abs/2004.03865.

Seung Han, Ilwoo Park, Sung Chang, Woohyung Lim, Myoung Kim, Gyeong Park, Jebyeong
Chae, Chang-Hun Huh, and Jung-Im Na. Augment intelligence dermatology : Deep neural
networks empower medical professionals in diagnosing skin cancer and predicting treatment
options for 134 skin disorders. Journal of Investigative Dermatology, 140, 03 2020. doi: 10.
1016/j.jid.2020.01.019. URL https://www.sciencedirect.com/science/article/pii/
50022202X203013667via’%3Dihub.

Andre Esteva, Brett Kuprel, Roberto Novoa, Justin Ko, Susan Swetter, Helen Blau, and Sebastian
Thrun. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542, 01
2017. doi: 10.1038/nature21056. URL https://wuw.nature.com/articles/nature21056.

Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The ham10000 dataset: A large collection of
multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data, S, 08 2018.
doi: 10.1038/sdata.2018.161. URL https://www.nature.com/articles/sdata2018161.

Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. Dissecting racial bias in
an algorithm used to manage the health of populations. Science, 366(6464):447-453,2019. URL
https://www.science.org/doi/10.1126/science.aax2342.

Laleh Seyyed-Kalantari, Haoran Zhang, Matthew BA McDermott, Irene Y Chen, and Marzyeh
Ghassemi. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs
in under-served patient populations. Nature medicine, 27(12):2176-2182, 2021. URL https:
//www.nature.com/articles/s41591-021-01595-0.

Yong-hun Kim, Ajdin Kobic, and Nahid Y. Vidal. Distribution of race and fitzpatrick skin types
in data sets for deep learning in dermatology: A systematic review. Journal of the American
Academy of Dermatology, 87(2):460-461, August 2022. doi: 10.1016/j.jaad.2021.10.010. URL
https://doi.org/10.1016/3.jaad.2021.10.010.

Rebecca L. Colwell, Anand K. Narayan, and Andrew B. Ross. Patient race or ethnicity and the use
of diagnostic imaging: A systematic review. Journal of the American College of Radiology, 19
(4):521-528, April 2022. doi: 10.1016/j.jacr.2022.01.008. URL https://doi.org/10.1016/j.
jacr.2022.01.008.

Darshali A. Vyas, Leo G. Eisenstein, and David S. Jones. Hidden in plain sight — reconsidering
the use of race correction in clinical algorithms. New England Journal of Medicine, 383(9):
874-882, August 2020. doi: 10.1056/nejmms2004740. URL https://doi.org/10.1056/
nejmms2004740.

12


https://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf
https://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf
https://www.pnas.org/doi/10.1073/pnas.1915768117
https://www.pnas.org/doi/abs/10.1073/pnas.2018340118
https://openreview.net/forum?id=gFDFKC4gHL4
https://arxiv.org/abs/2012.07421
https://arxiv.org/abs/2004.03865
https://www.sciencedirect.com/science/article/pii/S0022202X20301366?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0022202X20301366?via%3Dihub
https://www.nature.com/articles/nature21056
https://www.nature.com/articles/sdata2018161
https://www.science.org/doi/10.1126/science.aax2342
https://www.nature.com/articles/s41591-021-01595-0
https://www.nature.com/articles/s41591-021-01595-0
https://doi.org/10.1016/j.jaad.2021.10.010
https://doi.org/10.1016/j.jacr.2022.01.008
https://doi.org/10.1016/j.jacr.2022.01.008
https://doi.org/10.1056/nejmms2004740
https://doi.org/10.1056/nejmms2004740

David R. Williams and Ronald Wyatt. Racial bias in health care and health. JAMA, 314(6):555, August
2015. doi: 10.1001/jama.2015.9260. URL https://doi.org/10.1001/jama.2015.9260.

Kevin Fiscella and Mechelle R. Sanders. Racial and ethnic disparities in the qual-
ity of health care. Annual Review of Public Health, 37(1):375-394, March 2016.
doi:  10.1146/annurev-publhealth-032315-021439. URL https://doi.org/10.1146/
annurev-publhealth-032315-021439.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv 1412.6572, 12 2014. URL https://arxiv.org/abs/1412.6572.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
S. Buch, D. Card, Rodrigo Castellon, Niladri S. Chatterji, Annie Chen, Kathleen Creel, Jared
Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren E. Gillespie, Karan
Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson,
John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas F. Icard, Saahil Jain, Dan
Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, O. Khattab,
Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak,
Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma,
Ali Malik, Christopher D. Manning, Suvir P. Mirchandani, Eric Mitchell, Zanele Munyikwa,
Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles,
Hamed Nilforoshan, J. F. Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park,
Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Robert Reich, Hongyu Ren,
Frieda Rong, Yusuf H. Roohani, Camilo Ruiz, Jackson K. Ryan, Christopher R’e, Dorsa Sadigh,
Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishna Parasuram Srinivasan, Alex Tamkin,
Rohan Taori, Armin W. Thomas, Florian Tramer, Rose E. Wang, William Wang, Bohan Wu,
Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei A. Zaharia,
Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy
Liang. On the opportunities and risks of foundation models. ArXiv, abs/2108.07258, 2021. URL
https://crfm.stanford.edu/assets/report.pdf.

Rishi Bommasani, Dilara Soylu, Thomas I Liao, Kathleen A Creel, and Percy Liang. Ecosystem
graphs: The social footprint of foundation models. arXiv preprint arXiv:2303.15772,2023. URL
https://arxiv.org/abs/2303.15772.

Aleksander Madry. Advances in ai: Are we ready for a tech revolution? Cybersecurity, Information
Technology, and Government Innovation Subcommittee, 2023. URL https://oversight.house.
gov/wp-content/uploads/2023/03/madry_written_statement100.pdf.

Paul Voigt and Axel von dem Bussche. The eu general data protection regulation (gdpr). 2017. URL
https://link.springer.com/book/10.1007/978-3-319-57959-7.

Sarah H Cen and Manish Raghavan. The right to be an exception to a data-driven rule. 2023. URL
https://arxiv.org/abs/2212.13995.

Emad Barsoum, Cha Zhang, Cristian Canton-Ferrer, and Zhengyou Zhang. Training deep networks
for facial expression recognition with crowd-sourced label distribution. CoRR, abs/1608.01041,
2016. URL http://arxiv.org/abs/1608.01041.

Lisa Feldman Barrett, Ralph Adolphs, Stacy Marsella, Aleix M. Martinez, and Seth D. Pollak. Emo-
tional expressions reconsidered: Challenges to inferring emotion from human facial movements.
Psychological Science in the Public Interest, 20(1):1-68, 2019. doi: 10.1177/1529100619832930.
URL https://doi.org/10.1177/1529100619832930. PMID: 31313636.

Tuan Le Mau, Katie Hoemann, Sam H. Lyons, Jennifer M. B. Fugate, Emery N. Brown, Maria
Gendron, and Lisa Feldman Barrett. Professional actors demonstrate variability, not stereotypical
expressions, when portraying emotional states in photographs. Nature Communications, 12
(1), August 2021. doi: 10.1038/s41467-021-25352-6. URL https://doi.org/10.1038/
s41467-021-25352-6.

13


https://doi.org/10.1001/jama.2015.9260
https://doi.org/10.1146/annurev-publhealth-032315-021439
https://doi.org/10.1146/annurev-publhealth-032315-021439
https://arxiv.org/abs/1412.6572
https://crfm.stanford.edu/assets/report.pdf
https://arxiv.org/abs/2303.15772
https://oversight.house.gov/wp-content/uploads/2023/03/madry_written_statement100.pdf
https://oversight.house.gov/wp-content/uploads/2023/03/madry_written_statement100.pdf
https://link.springer.com/book/10.1007/978-3-319-57959-7
https://arxiv.org/abs/2212.13995
http://arxiv.org/abs/1608.01041
https://doi.org/10.1177/1529100619832930
https://doi.org/10.1038/s41467-021-25352-6
https://doi.org/10.1038/s41467-021-25352-6

Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. An investigation of why
overparameterization exacerbates spurious correlations. In Hal Daumé III and Aarti Singh, ed-
itors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 8346-8356. PMLR, 13-18 Jul 2020. URL
https://proceedings.mlr.press/v119/sagawa20a.html.

Shan Li, Weihong Deng, and Junping Du. Reliable crowdsourcing and deep locality-preserving
learning for expression recognition in the wild. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 2584-2593. IEEE
Computer Society, 2017. doi: 10.1109/CVPR.2017.277. URL https://doi.org/10.1109/
CVPR.2017.277.

Ali Mollahosseini, Behzad Hassani, and Mohammad H. Mahoor. Affectnet: A database for facial
expression, valence, and arousal computing in the wild. IEEE Trans. Affect. Comput., 10(1):18-31,
2019. doi: 10.1109/TAFFC.2017.2740923. URL https://doi.org/10.1109/TAFFC.2017.
2740923.

Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. From facial expression recognition
to interpersonal relation prediction. CoRR, abs/1609.06426, 2016. URL http://arxiv.org/
abs/1609.06426.

Loren Lugosch, Mirco Ravanelli, Patrick Ignoto, Vikrant Singh Tomar, and Yoshua Bengio. Speech
model pre-training for end-to-end spoken language understanding. In Gernot Kubin and Zdravko
Kacic, editors, Interspeech 2019, 20th Annual Conference of the International Speech Communica-
tion Association, Graz, Austria, 15-19 September 2019, pages 814-818. ISCA, 2019. doi: 10.21437/
Interspeech.2019-2396. URL https://doi.org/10.21437/Interspeech.2019-2396.

Zohar Jackson, César Souza, Jason Flaks, Yuxin Pan, Hereman Nicolas, and Adhish Thite.
Jakobovski/free-spoken-digit-dataset: v1.0.8, August 2018. URL https://doi.org/10.5281/
zenodo.1342401.

Soren Becker, Marcel Ackermann, Sebastian Lapuschkin, Klaus-Robert Miiller, and Wojciech Samek.
Interpreting and explaining deep neural networks for classification of audio signals. CoRR,
abs/1807.03418, 2018. URL http://arxiv.org/abs/1807.03418.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Dekang Lin, Yuji Matsumoto, and Rada
Mihalcea, editors, The 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, Proceedings of the Conference, 19-24 June, 2011, Portland,
Oregon, USA, pages 142—-150. The Association for Computer Linguistics, 2011. URL https:
//aclanthology.org/P11-1015/.

14


https://proceedings.mlr.press/v119/sagawa20a.html
https://doi.org/10.1109/CVPR.2017.277
https://doi.org/10.1109/CVPR.2017.277
https://doi.org/10.1109/TAFFC.2017.2740923
https://doi.org/10.1109/TAFFC.2017.2740923
http://arxiv.org/abs/1609.06426
http://arxiv.org/abs/1609.06426
https://doi.org/10.21437/Interspeech.2019-2396
https://doi.org/10.5281/zenodo.1342401
https://doi.org/10.5281/zenodo.1342401
http://arxiv.org/abs/1807.03418
https://aclanthology.org/P11-1015/
https://aclanthology.org/P11-1015/

Disagreement Percentage = 0.0 (n=1810) Disagreement Percentage = 10.0 (n=1142) Disagreement Percentage = 20.0 (n=946)

oo — I — . |
. Observed or Baseline

Disagreement Percentage = 30.0 (n=872) Disagreement Percentage = 40.0 (n=805) Disagreement Percentage = 50.0 (n=784) s Observed
Baseline

o 2o
o 0~

o
3

o
w

Proportion of instances
o
S

=}
N}

o
o

o
3

o
w

Proportion of instances
o
S

=}
N}

0.0 .
0 1 2 3 0 1 2 3 0 1 2 3

Models Correct Models Correct Models Correct

Figure 6: We stratify ecosystem-level analysis on FER+ by instance-level annotator disagreement —
which we take as a proxy for the ambiguity inherent to the input instance — and plot the difference
between observed and baseline rates for each instance subset. We observe homogeneous outcomes
for all subsets of data, regardless of the level of annotator disagreement on the instance.

A Data-centric Explanations for Homogeneous Outcomes

Prior work has explored model-centric explanations for homogeneous outcomes [Ajunwa, 2019,
Engler, 2021, Bommasani et al., 2021, Creel and Hellman, 2022, Fishman and Hancox-Li, 2022,
Bommasani et al., 2022, Wang and Russakovsky, 2023]. However, data-centric explanations are
comparatively less explored. We posit that properties of the underlying data could contribute to the
homogeneous outcomes that we observe in all of the datasets we examine. Intuitively, if we believe
that some examples are ‘hard’ and others are ‘easy’, then we might expect to see models all fail for
the ‘hard’ examples and all succeed for the ‘easy’ examples.

We test three variants of this hypothesis. In §A.1, we examine how the level of annotator disagreement
in the ground truth label impacts ecosystem-level behavior. In §A.2, we test how the accuracy of
human dermatologists in predicting the malignancy of a skin lesion image correlates with homoge-
neous outcomes. Finally, to build on these finer-grained empirical analyses, in §A.3, we introduce a
more express theoretical model. Under this model, parameterized by two difficulty parameters, we
compute a different baseline rate for ecosystem-level outcomes, showing it can better recover the
observation distribution.

A.1 Annotator disagreement

To study the effects of annotator disagreement, we make use of the FER+ dataset. Each instance of
the FER+ dataset, a facial emotion recognition dataset, contains emotion annotations from 10 human
annotators; the emotion label is determined by majority vote [Barsoum et al., 2016]. Because each
instance has been annotated by multiple annotators, we can calculate the annotator disagreement for
each instance and use this as a proxy for the ‘ambiguity’ of the instance. For example, an instance
where all 10 annotators agree that the label is ‘sad’ is less ambiguous than an instance where 6
annotators vote the label should be ‘fear’ and 4 vote that the label should be ‘surprise’.

The test set of FER+ provided in HAPI contains instances with disagreement percentages ranging
from 0% to 50%. We stratify on the disagreement percentage of the instances and compare baseline
and observed ecosystem-level outcomes for each subset of instances.
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3 models correct. Emotion is Happy. 3 models correct. Emotion is Happy. 3 models correct. Emotion is Happy. 3 models correct. Emotion is Happy. 3 models correct. Emotion is Neutral.

Figure 7: Examples of homogeneous outcomes Instances that are sampled uniformly at random
from “0 models correct” (top row) or 3 models correct” (bottom row) in FER+. The systemic failures
(top row) do not appear to be inherently harder for humans to classify; more extensive analysis
appears in the supplement.
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Figure 8: Interpretation of the relationship between instance-level annotator disagreement and
homogeneous outcomes depends on if the strength of the effect is quantified as the ratio between
observed and baseline rates (left plot) or as the difference between observed and baseline rates (right

plot).

Examples. To build further intuition, we present several randomly sampled instances from the
FER+ facial emotion recognition dataset in Figure 7.° We emphasize that while systemic failures may
share structure, we do not believe these instances are inherently harder than ones on which models
perform well. The authors did not have difficulty labelling these examples, nor would other human
labelers. We address the question of why systemic failures arise in §6.

Homogenous Outcomes manifest regardless of annotator disagreement. In Figure 6, we find
that homogenous outcomes appear for all levels of annotator disagreement. While more ambiguous
examples exhibit higher model error rates and systemic failure rates, the observed rate of homogeneous
outcomes exceeds the baseline rate of homogeneous outcomes for all instance subsets. This suggests
that instance-level ambiguity does not (fully) explain the existence of homogenous outcomes— at
least in FER+.

The intensity of the effect varies by disagreement level, but the direction of the relationship
depends on how strength is quantified. In light of the observed existence of homogeneous

SWe acknowledge the task of facial emotion recognition has been the subject of extensive critique [e.g. Barrett
etal., 2019, Mau et al., 2021]). We provide examples for this task due to ease of visualization, but our claims
also hold for examples from the text and speech modalities that are provided in the supplement.
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sifies.
Figure 9: Homogeneous outcomes exists for the subset of instances where both dermatologists

misclassify the image but doesn’t exist for the subset where both dermatologists correctly classify the
image.
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outcomes across all levels of disagreement, we now examine how the intensity of this effect varies
with annotator disagreement. The relationship between annotator disagreement and the intensity
of homogeneous outcomes depends on the quantification method used to measure homogeneous
outcomes intensity. When quantifying the intensity as the difference between observed and baseline
rates, the effect becomes more pronounced as disagreement increases. However, when considering the
intensity as the ratio between observed and baseline rates, as in the homogenization metric introduced
by Bommasani et al. [2022], the effect is most pronounced at lower levels of disagreement.

A.2 Human accuracy

Each instance of the DDI dataset — a medical imaging skin lesion dataset — contains predictions
from 2 models and 2 humans with the ground truth generated from an external process (in this
case, a biopsy of the lesion). To understand how human-perceived difficulty relates to homogeneous
outcomes, we stratify instances on the dermatologist accuracy of that instance (each instance has a
dermatologist accuracy of 0%, 50%, or 100%) and examine homogeneous outcomes for each subset
of instances.

Model outcomes are homogenous for instances on which dermatologists fail and heterogeneous
for on which dermatologists succeed. In Figure 9, we find that model outcomes exhibit homoge-
neous outcomes for the subset of instances that both human dermatologists fail at to an even greater
extent than observed at the population level. In contrast, the observed and baseline distributions match
each other (meaning there is no homogeneous outcomes, heterogeneity or other form of deviation
between the distributions) for the subset of instances that both dermatologists get right. Note that in
the instances that both dermatologists fail at, both models systemically fail more than the baseline,
but both also succeed more than the baseline. While the correlation between human systemic failures
and model systemic failures seems intuitive, it’s less clear why models jointly succeed more than the
baseline on human systemic failures.

Given these surprising and unintuitive findings, we encourage future work to explain what features
of these instances lead models to pattern together. We speculate that these instances lack sufficient
informational cues, prompting the models to place excess emphasis on a narrow selection of features,
consistent with the literature of machine learning models being susceptible to spurious correlations
[e.g. Sagawa et al., 2020]. At face value, these results would suggest that human-level difficulty can
be predictive of outcome homogeneity, but we emphasize two caveats: (i) the DDI dataset’s sample
size is limited (155 instances of dermatologists both failing and 356 instances of dermatologists
both succeeding) and (ii) we rely on the judgments of just two human domain experts, meaning the
findings may not generalize to larger annotator pools of non-experts (as are common in many NLP or
computer vision datasets). In general, we caution against overgeneralizing this finding. We provide it
as an initial foray into understanding example difficulty in a unique setting where we have data that
supports an approximation of human-perceived difficulty.
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A.3 More expressive theoretical models

Finally, while we consistently find that observed ecosystem-level behaviors yield more homogeneous
outcomes than the instance-level independent model predictions would predict, we might intuit
there exists instance-level structure that should be encoded into the prior. Therefore, we consider
a theoretical framework to encode richer priors on what we might expect of models. As a simple
model, we will assume some instances are universally ‘hard’, meaning all models will perform worse
on average across these instances, and others are conversely ‘easy‘, meaning all models will perform
better on average across these instances.

As before, we note that there is not a universal standard according to which examples can be
considered ‘hard.” Some examples are easy for humans but hard for models; other examples are easy
for models but challenging for humans; and still other examples are challenging for some models
but not others. The three hypotheses we consider in this section explore these observer-relative
dimensions of hardness.

We use two parameters («, A) to parameterize this model, thereby adjusting the baseline rate that we
calculate for ecosystem-level outcomes. « specifies the composition of ‘hard’ vs ‘easy’ instances
in a dataset and A controls how much harder or easier the hard or easy examples, respectively, are

expected to be. Concretely, « fraction of instances are categorized as difficult and the remaining

1 — « are easy. A model’s failure rate f; over all examples scales to fjhard = (1+ A)f; on hard

examples and f;" = (1 — %) f; on easy examples.

The distribution of the baseline number of model failures ¢ € {0, ..., k} follows a weighted sum of

. . C e . 7 hard 3
two Poisson-Binomial distributions parameterized by the scaled hard f; “ and easy fjeasy model
error rates.

= hard

Pphard. (t failures) = (oz)Poisson—Binomial(flhaml7 R a1 3)
PSS (t failures) = (1 — a)Poisson-Binomial(f;" ..., fir™™)[t] 4)
Pbaseline(t failures) = ll]z:lsre(:lline [t] + Plf;:eyline [t} o)

Identifying o« and A values that recover the observed ecosystem-level outcomes in HAPI.
We utilize this framework to identify which («, A) combinations generate baseline distributions
that recover the observed distributions in the HAPI datasets. We perform a grid search for a €
[0.1,0.5] with a step size of 0.1 and A € [0.2, 5] with a step size of 0.2. Note that certain (o, A)
combinations can result in invalid error rates depending on the original error rates of models —i.e.

When( f%>fj<0.

For each dataset, we identify the («, A) combination that minimizes the L1 distance (equivalently the
total variation distance) between the observed and baseline distributions. In Figure 10, we visualize
the observed and baseline distributions for the distance-minimizing («, A) pair for each dataset, and

in Figure 11 we plot the L1 distance for each dataset as a function of o and A. The majority of the

best « values are 0.2 or 0.3 while the A values can range from 1 to 4 — indicating that the fjhard can

be up to 5x higher than fj

High A and low « represents a small group of very difficult instances that all models struggle
at. The combination of high A and low « values performing well suggests that we would need to
expect that a relatively small fraction of the dataset contains instances that are significantly harder
for all models to perform well at. Note that this framework assumes that all models consider the
same instances to be ‘hard’: this agreement is a form of homogenization that could be caused about
something inherent to the data or something about how the models are constructed.

B HAPI Experiments

In the main paper, we work extensively with the HAPI dataset of Chen et al. [2022a]. While we defer
extensive details about the dataset to their work, we include additional relevant details here as well as
any relevant decisions we made in using the HAPI dataset.
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Figure 10: Observed and baseline distributions of ecosystem-level outcomes for the (v, A) combina-
tion that yields the lowest L1 distance for each dataset.
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Effect of conditioning on model h; failing on distribution of other-model outcomes
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Figure 12: Change in the probability of observing each outcome profile for the other models upon
observing h; fail.

B.1 Data

We work with a subset of HAPI, a dataset introduced by Chen et al. [2022a] which contains
predictions from commercial ML APIs on a variety of standard benchmark datasets from 2020-2022.
HAPI contains benchmark datasets for three classification tasks and three structured prediction tasks.
We only work with the classification tasks — spoken command recognition (SCR), sentiment analysis
(SA), and facial emotion recognition (FER) — because they contain a single ground truth label where
the notion of a ‘failure’ is clear (i.e. a misclassification).

The three classifiation tasks span 3 modalities (text, images, speech), and each task is associated
with 4 datasets. However, we exclude one of these datasets: the COMMAND dataset has duplicate
example IDs with differing predictions from the same ML API provider in the same time period. This
makes calculating ecosystem-level outcomes impossible. After excluding the COMMAND dataset,
there are 11 datasets that we conduct ecosystem-level analysis on: RAFDB [Li et al., 2017], AFNET
[Mollahosseini et al., 2019], EXPW [Zhang et al., 2016], FER+ [Barsoum et al., 2016], FLUENT
[Lugosch et al., 2019], DIGIT [Jackson et al., 2018], AMNIST [Becker et al., 2018], SHOP, 5 YELP, 7,
IMDB [Maas et al., 2011] and WAIMAL. ®

Each dataset contains predictions from 3 commercial ML APIs in 2020, 2021, and 2022; however
the HAPI API did not return predictions from the Face++ model on AFNET in 2022, so we use 2021
predictions for AFNET when conducting experiments that only use predictions from a single year.

The HAPI dataset is distributed at https://github.com/1chen001/HAPT under Apache License
2.0.

B.2 Leader Following Effects in Systemic Failure

One consequence of homogeneous outcomes is that it concentrates failures on the same users, so
a user who interacts with a model and experiences a failure from that model is now more likely to
experience a failure from every other model in the ecosystem. To quantify the strength of this effect,
we examine how the probability of a user experiencing each outcome profile changes after that user
experiences one failure from a model.

In Figure 12, we find that, consistent with the observed homogeneous outcomes in HAPI, observing
a single model failure significantly increases the probability that the user will now experience failures
from all other models in the ecosystem. However, we also find that the strength of this effect is
strongly graded by the accuracy of the model for which we initially observe a failure. Upon observing
the most accurate model in the ecosystem fail for a user, the probability of that user experiencing a
systemic failure increases by 37% — whereas it only increases by around 16% when we observe the
least accurate model fail.

*https://github.com/SophonPlus/ChineseNlpCorpus/tree/master/datasets/online_
shopping_10_cats

"https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset

$https://github.com/SophonPlus/ChineseNlpCorpus/tree/master/datasets/waimai_10k
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Figure 13: We replicate the graph from Figure 3 but with various thresholds for how much a model
must improve for us to include it in the analysis. The patterns discussed in §4 are consistent across
choice of threshold.

This result suggests that instances that the most accurate model fails on are likely to be failed by the
less accurate models as well. This ‘leader following” phenomenon has implications for users in a
model ecosystem: users failed by the most accurate model likely have few options for alternative
models that could work for them.

B.3 Model improvement analysis is insensitive to threshold

In §4, we study how the improvement of a single model, in the sense that it becomes more impact,
manifests at the ecosystem-level. To define improvement, we set the (slightly arbitrary) threshold
that the model’s accuracy improve by 0.5%, which we found to be large enough to be material to a
model’s performance while small enough to capture most model improvements. In Figure 13, we plot
the outcome profile distribution in the observed improvements set against the distribution over the
potential improvements (as in Figure 3b) for 6 different thresholds of change. Across all thresholds,
the patterns we discuss in §4 hold: namely, models consistently under-improve on systemic failures.
This confirms that the findings and qualitative understanding we present is not particularly sensitive
to the exact value of this threshold.

B.4 Net Improvements

In §4, we define improvements as the specific instances that h;n, misclassifies in the first year and
correctly classifies in the second year. However, the size of this set — hereafter, gross improvements
— is always larger than the number of net improvements the model makes because updates to the
model tend to improve on some instances and regress on others. That is, there are two competing
forces when models change: the instances the model flips from incorrect to correct, but also the
instances the models from correct to incorrect. The difference of (i) and (ii) is the number of net
improvements.

In Figure 14, we use net improvements instead of gross improvements, replicating the plot from in
Figure 3. To calculate the outcome profile distribution over net improvements, we subtract the number
of gross declines from the number of gross improvements for each outcome profile: the denominator
is the number of gross improvements minus the number of gross declines across all outcome profiles.
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Figure 14: We replicate the graphs in Figure 3 but using ‘net improvements’ instead of ‘gross
improvements’. The overall trends are consistent between the two experiments: namely, Ajnp
under-improves on systemic failures.

The trends are generally consistent with what we observed when using gross improvements: Aipp
tends to make little progress on systemic failures. In fact, when considering net improvements,
models make even less improvement on systemic failures than before. We highlight WAIMAT as a
striking case study: there is no net improvements on systemic failures, despite a 2.5% decrease in
model error at the population level.

Overall, we emphasize that we recommend future research conducts analyses with both notions of
improvements. While we expect in many cases, as we have seen here, that the qualitative trends will
be similar, the interpretations may differ. For example, gross improvements more directly attend to
the concern that there are some individuals who, year-over-year, continue to be failed by some or
all models in the system. In contrast, net improvements more directly matches the sense in which
models are improving.

B.5 When Models Get Worse

As a related question to what we examine in Figure 3b, we examine what happens to ecosystem-level
outcomes when a model gets worse. We find that, when models get worse, they disproportionately
introduce new systemic failures into the system by ’over-declining’ on instances that other models
were already failing for. This further highlights how single-model measurements often fails to align
with ecosystem-level outcomes.

C Dermatology Experiments

C.1 Data

We work with DDI (Diverse Dermatology Images), a dataset introduced by Daneshjou et al. [2022],
which contains predictions from 3 models and 2 board-certified dermatologists on 656 skin lesion
images; the task is to predict whether a lesion is malignant or benign. The ground truth label comes
from an external-source: in this case, a biopsy of the lesion, which is considered the gold-standard
labeling procedure in this domain.

The 3 evaluated models include ModelDerm [Han et al., 2020], a publicly available ML. API, and two
models from the academic literature — DeepDerm [Esteva et al., 2017] and HAM10k [Tschandl et al.,
2018] — that were chosen by Daneshjou et al. [2022] on the basis of their "popularity, availability, and
previous demonstrations of state-of-the-art performance." Note that, in this case, none of the models
have been trained on any portion of the DDI dataset; the entire dataset serves as a test set.
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Figure 15: The distribution of outcome profiles for all year-over- year model declines across all
datasets

In addition, each image is annotated with skintone metadata using the Fitzpatrick scale according
to one of three categories: Fitzpatrick I & II (light skin), Fitzpatrick III & IV (medium skin), and
Fitzpatrick V & VI (dark skin). For all instances, the Fitzpatrick classification was determined
using consensus review of two board-certified dermatologists. Additionally, a separate group of
dermatologists rated the image quality of each image and discarded any low quality images; there
was no significant difference in image quality ratings between images of different FST classifications.

Data on model and dermatologist predictions was graciously provided by Daneshjou et al. [2022],
subject to the terms of their standard research use agreement described in https://ddi-dataset.
github.io/index.html#access.

C.2 Analyses are insensitive to including/excluding HAM10k

In §5, we don’t include predictions from Ham 10K because the model predicts a negative on almost
all instances: it has a precision of 0.99 but a recall of 0.06.

We decided to remove HAM10k because the pattern of near-universal negative predictions does not
reflect model behavior we would expect of models deployed in clinical settings. Namely, even if
deployed, the structure of the model errors are not particularly interesting and are largely predictable
(in direction). Beyond these fundamental reasons for excluding the model, we also removed the
model for reasons unique to our analysis. Including the model would have introduced an explicit
class correlation in systemic failures (i.e. almost all systemic failures would be malignant instances
and none would be benign instances) and would have complicated the comparison with humans since
there would be three models but only two humans.

To confirm that our findings hold independent of this choice, in Figure 16, we replicate Figure 4 and
Figure 5 but with outcomes from HAM10k included. We find that inclusion of HAM 10k exacerbates
the homogeneous outcomes of model outcomes and the racial disparities in model outcomes.
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Figure 16: We replicate the graphs in Figure 4 and Figure 5 but with the inclusion of HAM10K.
Homogeneous outcomes and racial disparities in models are even more pronounced when including

HAM10k.
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