Under review as a conference paper at ICLR 2026

LEGACY: A LIGHTWEIGHT DYNAMIC GRADIENT
COMPRESSION STRATEGY FOR DISTRIBUTED DEEP
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Distributed learning has achieved remarkable success in training deep neural
networks (DNNs) on large datasets, but the communication bottleneck limits
its scalability. Various compression techniques have been proposed to allevi-
ate this limitation; however, they either use fixed parameters throughout train-
ing or rely on complex and computationally intensive methods to adapt compres-
sion parameters. Instead of the hard-to-tune hyperparameters required by adap-
tive compressors, this paper investigates the impact of two fundamental factors
in DNN training—the layer size of the networks and their training phases—
to design a simple yet efficient dynamic scheduler for any compressor, guiding
the selection of compression parameters. We present a Lightweight Efficient
GrAdient Compression strategY or LEGACY, which, in theory, can work with
any compression technique to produce a simple dynamic counterpart. We bench-
mark LEGACY on distributed and federated training, involving seven different
DNN architectures, ranging from ResNet, Transformer-XL, to GPT-2, across
large and challenging datasets, including ImageNet, WikiText-103, and Open-
WebText. On ImageNet-1K, with an equivalent average data volume, LEGACY’s
dynamic compression strategies improve the Top-1 accuracy of ResNet-50 by
7 — 11% compared to uniform Top-0.1% compression, while on WikiText-103,
the layer-based dynamic strategy reduces the perplexity of Transformer-XL by
~ 26% relative to the same baseline. In addition, we evaluate LEGACY un-
der constrained and federated settings, and demonstrate that it scales effectively
to a 100-worker configuration while maintaining strong accuracy under aggres-
sive compression. We publish anonymized code at:https://github.com/
LEGACY-compression/LEGACY.

1 INTRODUCTION

Distributed learning on multiple computing nodes is widely adopted to achieve optimal training per-
formance for large deep neural networks (DNNs) (You et al., 2018} Wongpanich et al., 2021} | Xu
et al.l2021a)). However, the training requires exchanging gradients between the nodes; the massive
volume of the exchanged data creates a communication bottleneck, and different compressed com-
munication techniques (quantization (Dettmers|, |2015; |Alistarh et al |2017; Bernstein et al.,|2018),
sparsification (Aji & Heafield, [2017; [Stich et al., 2018} |Alistarh et al., 2018}, [Dutta et al., [2020),
low-rank (Vogels et al.,[2019)), and hybrid (Basu et al.,[2019)) are designed to mitigate this problem.

Among these techniques, sparsifiers achieve baseline performance by only sending a small subset
of the gradient components. E.g., by communicating only 0.36% of the largest gradient elements of
ResNet-50 (He et al.l[2016) trained on ImageNet-1K (Deng et al.||2009), Lin et al.|(2018)) achieves a
baseline no compression performance. Nevertheless, almost a decade after being introduced by |Aji
& Heafield| (2017) for gradient compression, there is no clear recipe for what & to set for training
different DNN models using the Top-% sparsifier. While Top-% sends fixed data volume in each
training iteration, the threshold sparsifier (a.k.a hard-threshold (Stroml [2015} [Sahu et al., 2021))
communicates gradient components with absolute magnitude greater than a threshold, A > 0. It sets
anything less than A to zero. This allows the threshold sparsifier to send a variable amount of data in
each iteration and has a better convergence guarantee (Sahu et al.,[2021). One can see the threshold
sparsifier as a simple adaptive counterpart of Top-k as it sends variable data volume in each training
iteration. However, the same question persists—how to tune the threshold,)\, in practice?

https://github.com/LEGACY-compression/LEGACY
https://github.com/LEGACY-compression/LEGACY

Under review as a conference paper at ICLR 2026

—— Very small(<10%?) —— Medium(<10°) Very large(= 10°) = = Uniform Topk
—— Small(< 6.102) Large(< 109) —— Global compression ratio

100

= = Top-k 3.92% — = Top-k 3.92% -1 1 1 1 1 — = Top-k 4.22%

8017

—_—

— = Top-k 4.22%

60

100 *k/d
100*k/d
100 *k/d

40

20

- ——— e
0 0 0

Very Small Medium Large Very 0 5 10 15 20 25 30 Very SmallMediumLarge Very
small large Epoch small large

0 50 100 150 200 250 300
Epoch

(a) Compression by epoch (b) Total compression (c) Compression by epoch (d) Total compression
Figure 1: Compression ratio (in percentage, we use % x 100) vs. the training iterations and layer size in
training ResNet-18 on CIFAR-100 ((a) and (b)) and NCF on MovieLens-20 M ((c) and (d)) using the Top-k
and Threshold sparsifiers. For ResNet18 and NCF, k is set to 3.92%, and 4.22%, respectively, and A = 0.1.

Not only the sparsifiers, (or Top-k in particular) for any compressors, the existing literature predom-
inantly focuses on uniform compression throughout the training, where the same compression ratio
is used for all layers. Although varying the compression ratio for each layer at different stages of
training is feasible, this area is not well-explored and most available literature proposes compute-
heavy methods to find the best compressor (Khirirat et al., [2021}, [Xin et al.| |2023; Markov et al.,
2024])). Attempts were made to achieve optimal compression performance by adopting different adap-
tive strategies; see §A] In contrast, we investigated Occam’s Razor principle: “plurality should not
be posited without necessity.” Instead of employing computationally intensive strategies, can we
provide a simple yet efficient strategy for quickly selecting a compression parameter for each layer,
achieving a good balance between compressed data volume and model performance?

In that pursuit, we train two DNN architectures: (i) ResNet-18 (He et al., 2016) on CIFAR 100
(Krizhevsky et al.l [2009) (baseline no compression Top-1 accuracy is 73.38%) and (ii) NCF on
MovieLens-20M (Harper & Konstan, [2015)) (baseline no compression best Hit-Rate @10 is 95.59%),
on standard PyTorch benchmark using 2 NVIDIA A100-SXM4 GPUs with 80 GB memory, con-
nected via 400 Gbps network bandwidth. We use the Top-k and threshold sparsifiers and set the
hyperparameters k and A to send the same data volume. While uniform Top-£ achieves a Top-1
accuracy of 73.04% on ResNet-18 and a best Hit-Rate@10 of 91.33% on NCEF, threshold sparsifier
achieves a Top-1 accuracy of 73.32% on ResNet-18 and a best Hit-Rate@10 of 92.7% on NCF,
respectively. To get a better insight into threshold sparsifier’s superior performance over the Top-k,
we plot the compression ratio for different layers of ResNet-18 over iterations and the total aver-
age compression of its different size layers; see Figures [T(a)-(b). We observed that the small and
medium layers (dimension less than 10% to up to 10°) are not so severely compressed during the
training compared to the large and very large layers (dimension more than 10%)—Ilarger layers expe-
rience extremely aggressive compression—even more aggressive than the uniform Top-k for those
layers. Additionally, regardless of their sizes, during the beginning phase of the training, the layers
are less aggressively compressed compared to the final training phase. We made almost identical
observations in the NCF training; see Figures |I| (c)-(d).

Our empirical observations in using the Top-k sparsifier and its adaptive counterpart for DNN train-
ing indicate two key factors: (a) the layer size of the DNNs influence in choosing how much one
needs to compress, and (b) the training phase of the DNNs can be a critical contributor in the
dynamic compressor design. Moreover, the second observation is consistent with recent research
on the critical training regime of DNNs (Achille et al.l [2019; |Agarwal et al., [2021a} Zhang et al.,
2022). Although our quest for designing a dynamic compressor primarily started with sparsifiers,
the above-mentioned simple factors can be used conjointly with any compressor in designing its ef-
ficient counterpart. Based on them, we propose a compression framework that dynamically sets the
compression level based on the epoch and layer size. Although both words, adaptive and dynamic,
can depict our framework, we prefer to refer to it as dynamic, as we do not use any complicated,
hard-to-compute, infeasible gradient statistics during training.

‘We list our contributions as follows:

Dynamic compressor scheduler (§2). We present a Lightweight Efficient GrAdient Compression
StrategY or LEGACY that, in theory, can work with any compression technique to produce its sim-
ple dynamic counterpart. LEGACY is based on easy-to-obtain information—Ilayer size and training
phase. Designing LEGACY is empirically motivated and stands on solid technical intuitions; see §2.1}

Under review as a conference paper at ICLR 2026

Irrespective of the DNN models and training dataset, LEGACY can guide the selection of compression
parameters based on the layer size or training phase; see system design in §C| To simplify hyper-
parameter selection, we propose a simplified version of LEGACY in called Simple-LEGACY or
S-LEGACY; §C.I.1]demonstrates how the two LEGACY approaches can be combined.

Theoretical insights (§3).Under the usual assumptions for stochastic first-order algorithms in the
compressed, distributed setup, we validate the influence of our policies on the convergence of com-
pressed SGD using biased and unbiased -compressors; see Theorem|I]in

Benchmarking (§4). We benchmark LEGACY through a variety of numerical experiments involv-
ing diverse DNN architectures (convolution and residual networks, transformer, recommender sys-
tem and GPT-2—a total of 7 models) trained for different tasks (image classification on CIFAR
10, CIFAR 100, and ImageNet-1K, text prediction on WikiText-103, OpenWebText, and collab-
orative filtering on Movielens-20M—a total of 6 datasets; see Table [6] in by using Top-%,
Random-k (sparsifiers), QSGD |Alistarh et al.|(2017) (quantizer), and PowerSGD (low-rank) |Vogels
et al.| (2019) as base compressors. We report our results using test accuracy, communicated data
volume, throughput, and computation time. Additionally, we compared LEGACY against 5 state-of-
the-art adaptive compressors (CAT Khirirat et al.| (2021)), Variance-based compression |Tsuzuku et al.
(2018)), Accordion Agarwal et al.|(2021a), AdaComp|Chen et al.|(2018a)), and L-Greco|Markov et al.
(2024)). Finally, in §D.3] we evaluate LEGACY in resource-constrained environments (compute and
network bandwidth; §D.3.T), federated learning (§D.3.2), and a large-scale configuration with 100
CPU workers (§D.3.3)), demonstrating its scalability.

1.1 RELATED WORK AND BACKGROUND
Due to limited space, we moved the related work to §A]

Notations. We use ||z|| to denote the ¢2-norm of a vector x. By g;: and Vf;,, we denote the
stochastic gradient and full gradient, respectively, at the i*" node at iteration .

Compressor. A random operator, C(+) : R? — R% is a compression operator if E¢ |z — C(z)||? <
(1 — 8)||z||? for all z € R?, where § > 0 is the compression factor. A smaller § indicates a more
aggressive compression. In our setup, 6 € (0, 1], and C is a d-compressor. The popular sparsifiers,
Topy, and Randomy, have § = % and E||z — Top, (z)[|* < E||z — Randomy,(z)||? < (1— £)||z||2.

2 DESIGNING A DYNAMIC COMPRESSOR

From Figure[I] we observe two key factors in DNN training. First, the compression ratio has more
impact at the beginning of training than at the end. Second, it is better to compress large layers
and keep small layers uncompressed (or easy compression). But can these observations also be
theoretically justified so that we can build a dynamic compressor scheduler based on them?

To answer this, we formulate the impact of unbiased compressors on the decrease rate for the gradi-
ent descent (GD) algorithm under two relatively easier-to-analyze cases: (i) smooth, strongly convex
functions, and (i) smooth, nonconvex functions with PL condition. There is no loss of generality
in considering GD instead of distributed SGD — analysis of GD offers ease of notation, and under
simple arguments, leads us to a practical scheduler.

Setup. Consider the empirical risk minimization (ERM) problem with n computing nodes:

min
r€ERd

F(z) := iZf,-(m)] , (1)
i=1

where f;(z) := E,,p,l(x; z) is the loss function at node ¢ on input z; sampled from its distribution,
D;. Let g;, be the stochastic gradient computed at the i node in iteration ¢ and of the form
git = Vit + &y, with E[§; +|z;] = 0. We made general assumptions in §B.1|to prove our results.

2.1 INSIGHT THROUGH THE LENS OF THE COMPRESSED GD

Let C; be unbiased &;-compressors for all ¢ € [T]. The iterative update rule of the compressed GD
algorithm with fixed stepsize, 7 > 0 and unbiased d;-compressors in solving (1) is given by

Ter1 =t — NC(VEF(24)). 2)

Under review as a conference paper at ICLR 2026

In the following lemma, we quantify the decrease in the quantity, ||z 41— ||? under the smoothness
and strong convexity assumption; see the proof in

Lemma 1. Let F follow Assumptions[Ijand 2] Then with fixed stepsize n, the sequence of iterates,
{z+}1>0 of compressed GD updates satisfy

Ec, 241 — 2> < (1= 2um + 0 pL(2 = 8,)) |z — 2.

D(8¢):=Real decrease

Note that D(4;) is a function of the compression factor. For no compression, 6; = 1, we obtain:
41 — 2| < (1= 2un + pn?L) ||z — 2.||* := D(1) := Ideal decrease.

Ideally, we are interested in d; € (0, 1] such that D(d;) (i.e., the compressed GD decrease) is as
close as possible to D(1) (i.e., the non-compressed GD decrease). We have

A= D(6) — D(1) = pn?L(1 — &)||z¢ — 4|2
To have A ~ 0, we require:

(i) Strategy I: Compression based on the training phase. At the beginning of the training, we have
||z — 24]|* > 0. Therefore, to make A ~ 0 we need to choose §; — 1 (no or easy compression). At
the end of the training, ||z; — x. ||2 ~ 0. Hence, no strong control is needed on d; to keep A small.
In this case, one can choose d; ~ 0 (aggressive compression).

(ii) Strategy II: Compression based on the layer sizes. We observed that a small subset of layers
in DNN training dominates the communication overhead. E.g., for the models benchmarked in
this paper, the largest 20% of layers account for ~ 90% of the total parameter volume, while the
remaining 80% contribute to only 10%. This makes large layers ideal candidates for aggressive
compression, as they are usually overparameterized with more redundancy and can tolerate higher
compression without significantly affecting model quality.

In contrast, smaller layers, although inexpensive in terms of raw data, often carry gradients that are
crucial to model convergence. Preserving the fidelity of these gradients is essential. We can reduce
the compression severity on these smaller, more sensitive layers by reallocating the bandwidth saved
from compressing large layers more aggressively. This reallocation improves gradient quality Where
1t matters most, w1thout 1ncrea51ng overall communlcatlon cost. g

, Han e The small layers
w1th less redundancy than the large layers are cru01a1 and thelr subopnmalzty (@if compressed too
much) may lead to larger errors. Therefore, compared to uniform J-compressors, with strategy II,
it is better to easily or not compress small layers, i.e., s =~ 1, and focus on compressing large
layers with compression §; /~ J. With this strategy, we result in similar data volume and improved
convergence. Even a slight increase in compression aggressiveness for large layers, such as reducing
the transmitted gradient volume from Top-k with k& = 10% to k = 9.95%, can yield a substantial
benefit. While the 0.05% reduction is negligible for a large layer in terms of both volume and
performance impact, the reclaimed budget can represent a significant increase for smaller layers,
potentially allowing a shift from transmitting just 10% to over 50% of their gradients; in some
cases, it can be a 100% reduction or no compression. Such redistributions dramatically enhance
gradient representation in small layers, improving convergence stability and overall model accuracy
with minimal trade-offs; see a practical example and another angle to look at Strategy II in §C.1.3]

To further extend our theoretical insight for Strategy-I, in the next lemma, we consider GD for
minimizing a smooth nonconvex function under the PL condition and quantify the functional sub-
optimality gap, E¢, (F;+1) — F\; see the proof in

Lemma 2. Letr F follow Assumptions |I| and Then with stepsize n = %, the sequence of it-
erates, {x,}i>0 of compressed GD updates satisfy E¢,(Fi41) — Fi < (1 - &T”) (Fy — Fy) =

D(6;) := Real decrease.

Substituting 6; = 1 gives the ideal decrease, i.e., the decrease in the functional suboptimality
gap without compression: Fy 1 — F, < (1 — &) (F, — F,) := D(1) := Ideal decrease. To have
A= D(6;) — D(1) = (1 — 6;) % (Fy — F,) =~ 0, we require: (i) At the beginning of the training
Fy — F, > 0. Therefore, we need to choose d; =~ 1 (no or easy compression) to keep A =~ 0. (if)
At the end of the training F} — F,. ~ 0. Therefore, we can choose d; ~ 0 (aggressive compression).

Under review as a conference paper at ICLR 2026

Algorithm 1: Compressed distributed training Table 1: Functions used in our framework.

without error feedback (EF)

Input: Num_ber Of nodes n, lear_ning rate 7, Function Description

number of iterations T, batch-size B per node - -
as Npatch Chooseparam Decide compression

Output: The trained model = parameters

fort =0,1,...,Tdo Compress Apply compression to
On each node i: each layer .
gi,t = Calculategradient(Z;, Dpatcn) Communicate Send compressed gradient
ksi,+ = Chooseparam(gi ¢, t) to the server
Ji,+ = Compress(gi,t, ki,t) Receive Gather the compressed
Communicate(gs,:) gradients from workers
On Master: Decompress Restore the original
[G1,ts- .-, dn,t] = Receive(n) tensor shape
g1ty -y gnt] = AverageGrads Average the received

Decompress([gi,¢, - - -, Enyt)) gradients

gt = AverageGrads([g1,¢,. .., gn,t]) Broadcast Broadcast the averaged
Broadcast(g:) gradient
On each node i: Update Optimizer independent
Z¢+1 = Update(xt, g¢, 1) parameter update

2.2 A DYNAMIC COMPRESSOR SCHEDULER

Motivated by the previous section, we formally define a dynamic compressor scheduler for com-
pressed distributed training on n workers. Although our scheduler is optimizer agnostic, for sim-
plicity, we consider the optimizer to be SGD. Given a stepsize sequence, {7 > 0};>¢ and &;-
compressors, the update rule for compressed distributed SGD on n workers is given by

Ti41 = Tt — % Z?:l Ce(git)- 3)

Algorithm [I| provides a general compressed communication framework without error feedback
(Karimireddy et al.l |2019).Our approaches build on this framework by adjusting the compression
level via the chooseparam function; highlighted in blue. We require two user-inferred hyperparam-
eters: (i) a sorted list of p decreasing compression levels, {51-}?:1, of the d-compressor C;, where
0, being the most aggressive compression factor, and (i) a sorted list of p non-decreasing thresh-
olds, {\; > O}le, which represents either an iteration or a layer size at which we use a certain
compression level d;, in Algorithm[I] The threshold change is based on the following approaches:

(i) Training epoch dependent. We start with a less intense compression and gradually increase its
intensity during the training. In Epoch compression, we progressively increase the compression
level § as training progresses; see Function In this case, the non-decreasing thresholds {\; }7_;
denote the iterations or epochs at which the compression intensity increases.

(it) Layer size. We employ an easy compression for small layers as their size is insignificant com-

pared to the larger ones. We achieve this through LayerSizeCompression; see Function |3} In this
Function, we used the thresholds {\; }}_; to group layers by their sizes; smaller layers are affected
by a less intense compression, while the larger layers experience a more aggressive compression.

2.2.1 SYSTEM ARCHITECTURE, Simple-LEGACY, AND COMBINED APPROACH

We present the system architecture of LEGACY in §C} and Figure[5] We note that there is no recipe for
choosing right compression parameters. Their choice depends on factors such as the dataset, model
architecture, network bandwidth, and many more; see | Xu et al.|(2021a) and references therein. Our
proposed LEGACY does not require hard-to-tune hyperparameters—the layer sizes can be determined
and grouped based on their relative sizes, the only rule for choosing compression parameters based
on the training phase is to choose to decrease compression parameters over iterations.

To simplify the selection of hyperparameters used in LEGACY ({\;}}_, for thresholds and {4, }7_;
for compression levels), we propose a simplified version of LEGACY in §C.I|called Simple-LEGACY
or S-LEGACY. This version requires only two hyperparameters for the epoch or layer-based ap-
proach and three for the mixed approach. That is, S-LEGACY-E requires only a default compression
parameter J,, and the number of training phases n; S-LEGACY-L requires J,, and a decrease ratio
s; S-LEGACY-M (stands for using both layer and epoch-based) in §C.I.1|demonstrates how the two
LEGACY approaches can be combined and it requires 6,, n, and s.

Under review as a conference paper at ICLR 2026

6100 4 BisEos ® Siwolox So.al1 ® doss ® 6w Bo.1E1 BsEqs
4 BoisEoos & BisEs Siola Silio 61 Bo.os5E0.15 V BosEis ---- base line
& Bifoa Siloa ® Sioloo 60.1
o 074
: 0.925 ¥ o e
080 0.900
’ ® - 0.70 +
R 0875 .
0.75 . T'o.850 e 2068 N
o * e e
2 30.825 3 066
So.70[* 9 %
< < * <
0.84 ® 0.800 0.64 -
- * 0.92 * N 062 »
0.65 0.82 t 0.775 Y 0.62 ¥
[
0.60 0T 020 o022 0.750 0¥E 020 o022 o060 06055020 0.002!
T0- 0T o T0- o o T0- 07
Relative Avg. Data Volume Relative Avg. Data Volume Relative Avg. Data Volume
(a) AlexNet (CIFAR10) (b) ResNet 9 (CIFAR10) (c) ResNet 18 (CIFAR100)
0.96
* 160
0.94 250, @ v 07
é 140) 1 4 ¥
092 06 °
M 200 120 %
0.90 e & > = e
S v £ * 0.018 0.020 0,022 Zos
3 . 5 ¥ £ ¥
< 088 2150 Y 3 04 °
T o.] £ 0.60
0.86| * 4 m < -
084l * .85 100 03 — ®
t 3
082 . i ° ool B
08019 0.0020 0.002 50 ® : 03518 0.020 0.022
0.80
0T 0" ToT To" 0T

10~
Relative Avg. Data Volume

10~
Relative Avg. Data Volume

10~
Relative Avg. Data Volume

(d) NCF (Movielens-20m) (e) Transformer-XL(WikiText-103) (f) ResNet 50 (ImageNet-1K)

Figure 2: Layer-size and training epoch dependent Top-k and uniform Top-k (denoted by dcompression) —
Relative average data volume vs. model quality.

3 CONVERGENCE GUARANTEE

In this Section, we establish the nonconvex convergence of distributed SGD with §,-compressors. To

prove a general distributed convergence with a § compressor, biased or unbiased, we want to estimate
2 S . .

E|||L (20, Celgie))]] |a:t}, as this is highly influenced by LEGACY ’s strategies. To

achieve that, we adopt slightly different approaches for biased and unbiased compressors, C;.

the quantity,

Denote 3; := (1 — 6;)(M + 1) + M, where M, 0 > 0 are constants such that for all z; € R?, the
stochastic noise, &; ; follows E[||&; 4]|? |] < M||V fi4]|? + o2 see Assumption The constants
appearing are due to the general Assumptions in §B.1} For biased compressors, we adopt a few
extra assumptions. First, we consider a (C,¢?) bounded similarity assumption on the variance of
the gradients among the workers. This Assumption is stronger than Assumption [6] but a similar
assumption was proposed in Sahu et al.| (2021)), and we rely on it for algebraic purposes in proving
the convergence for the general case. Due to limited space, we defer the biased-compressor results,

including intermediate Lemmas and the main complexity theorem, to §B.3.2}
Lemma 3. (Compression Bounds) Let the stochastic noise follow Assumption[3] Let C; be unbiased
d¢-compressors for all t € [T, and let F follow Assumption|6| We have E ||% S G (g”)H2 <

200 (F, =) + (14 2) |VRJ? + 22 + (52) 02,

Using the previous Lemma, the following theorem gives the complexity results for unbiased §; com-
pressors, which are similar to the classical complexity results for compressed SGD-type algorithms;
see Dutta et al| (2020); [Stich & Karimireddy| (2020); [Sahu et al| (2021). The proof is given in §B.3]

Theorem 1. (Nonconvex convergence) (i) Let Assumptions|[] and|6| hold. Let C; be unbiased
1

1 AL2M+1)T\ 2 .
PR aCIEEg (- we have:
2 n

d¢-compressors for all t € [T). For a stepsize n < min

Ln(B2M+1)+207)
2n(1—%_w) .

ming_o1,..7-1 E|VE|? < 3(Fo—Fy) j + 0, where 6 =

L L
Tn(1-5 - L2

The above Theorem primarily guarantees that the (nonconvex) convergence of distributed SGD with
d¢-compressors in each iteration (which the policies of LEGACY govern: a changing compression

Under review as a conference paper at ICLR 2026

0.925 0.
3 * .,
0.900 4 : . oo* 250 A -
i 0.80 S "
0.875 b o < 200 :
T0.850 e 30_75 1;5 E=)]
e o ® Bl ¥
S o825 . 3 B150 p
o ® 9070 ® 5 kg
< 0.800 < o
®
- 100
0.775 0.65 \
0.750 . : 50 :
A 0.60- v
0.40 0.45 0.50 0.55 0. 59 1.001.01 0.4 0.5 0.6 0.7 0.69 1.00 1.01 0.34 0.35 0.36 0.37_0.38 0.39 0.40 0 41)59 1.00 1.01
Throughput Throughput Throughput
(a) ResNet9 (CIFAR10) (b) AlexNet (CIFAR10) (c) Transfromer-XL(WikiText-103)

Figure 3: Layer-size and training epoch dependent Top-k and uniform Top-k — Throughput vs. model quality,
where experiments with similar global compression ratios are linked with a dotted line; see legend in Figure@

—— Variance(a=2,7=0.999) Adacomp(L=100) —— CAT —— BosgEoa —— Silos — o6
3 /f/f"“ﬁ’
0.8 0.8 \
0.8 A
206 QO-G 0.7 | A
e = o
3 0.4 304 306
o (v} [}
< < <05
0.2 0.2
0.4 =
0.0 0.0 0.3 -
0 5 10 15 20 25 30 0 1000 = 2000 3000 = 4000 0 100 200 300 400 500
Epoch Wall Clock Time (s) Data Volume (MB)
(a) Test accuracy vs. epoch (b) Test accuracy vs. Time (c) Test accuracy vs. data volume

Figure 4: Comparison of LEGACY with Top-k and other adaptive compressors in training ResNet9 on CIFAR10.

level over iteration and §; modulates the effect of epoch- or layer-based strategies). The factor,
Ln(B(2M+1)+207)

2n(1— L1 — LICIED

o= }° is the so-called variance, incurred due to the effect of multiple factors,

including compression ratio, ;.

4 BENCHMARKING AND EVALUTAION

Environment and Configuration. We run our experiments on 4 NVIDIA A100-SXM4 GPUs (2
GPUs for AlexNet, ResNet-9, ResNet-18, and GPT-2 training, and 4 GPUs for Transformer-XL,
NCEF, and ResNet-50 training) with 80GB memory and interconnected with 400 GBps bandwidth.
LEGACY is built on|Dutta et al.|(2020);|Sahu et al.|(2021)); for Transformer-XL, we used the NVIDIA
Training Examples benchmark |[Nvidia with reduced steps; CIFAR10, CIFAR100 and NCF tests
were implemented using Dutta et al.| (2020), [Sahu et al.| (2021), and |[Nvidia, respectively. We used
30 epochs for AlexNet, ResNet-9, and NCF training, 300 epochs for ResNet18 training, and 4,500
steps for the Transformer training. For ImageNet-1K, we employed |PyTorch|and trained ResNet-50
for 50 epochs. We follow [karpathy Andrej| (2023) implementation for our GPT-2 experiments and
use 100K training iterations; see Tables [and[7]in §D.T]for a detailed summary and Tables[OHI4]in

reproducibility.

LEGACY Setup. In the main paper, for simplicity, we split the training into two phases: beginning
B (first half of the total epochs) and end E (rest of the total epochs); each phase uses a different
compression level. For layer sizes, we categorize layers into two groups: small layers, S with fewer
than 10* elements, and large layers, L with 10* elements or more. With this formalization, Ss, Ls,
means small layers are compressed with compression factor, §; and large layers compressed with
compression factor, do, and By, E5, denotes two-phase training, beginning phase with compression
factor, 41, and end phase with 9. In we show the efficacy of LEGACY by adding multiple
training phases and more layer granularity.

4.1 MODEL QUALITY VS. TRANSMITTED DATA VOLUME

Figure [2a] shows the accuracy of AlexNet on CIFAR-10; uniform Top-k compression with k =
0.1%d (corresponding to the dp.1) results in an accuracy of 75.7%. However, using Top-k as base
compression in LEGACY, the strategy, By 15F0.05, Which starts with a compression ratio of 0.15%
for the first half of the epochs and then switches to an aggressive compression ratio of 0.05%,

Under review as a conference paper at ICLR 2026

Table 2: Comparison of LEGACY with uniform QSGD on training ResNet9 on CIFAR 10.

Methods Uniform QSGD |Alistarh et al.| (2017) LEGACY-E LEGACY-L
Top-1 Accuracy 87.21 87.98 88.42
Avg. relative data volume 18.78% 18.76% 16.4%

achieves a higher accuracy of 79.18%. Notably, the reverse strategy By.o5FE0.15 results in a lower
accuracy of 73.6%. When we compress smaller layers at 1% while keeping the larger layers at the
0.1% ratio, S7Lg 1, the accuracy improves by 5.14% over the uniform compression. Figures
—[2f] show similar results across different DNN models and challenging, larger datasets, including
ImageNet-1K and WikiText, with accuracy improvements up to 7-11% on ImageNet-1K compared
to the uniform compression strategy. For language model in Figure the perplexity improves
~ 26%, from 253.57 with uniform dq.; to 188.8 with dynamic compression Sy L. 1.

Takeaways. For comparable data volumes, starting with mild compression and gradually increasing
it outperforms uniform or inverse strategies by allowing DNN models to retain crucial information
during early training phases. This approach balances the need for sufficient data in the early stages
with the efficiency of higher compression later. Similarly, leaving small layers uncompressed or
lightly compressed results in only a minor increase in data volume but improves perplexity by 26%
on WikiText-103 and accuracy by 7% on ImageNet-1K.

4.2 MODEL QUALITY VS. TRAINING THROUGHPUT

Figure [3|shows the impact of compression on model quality as a function of the relative throughput.
Test cases with a similar average compression ratio (£10%) are connected with dotted lines. The
throughput under compression is lower than the no-compression baseline because the workers are
connected through high-bandwidth links, making the compression overhead relatively higher than
the communication cost. Analyzing the groups (connected by the dotted lines), we observe that
the average compression ratio influences the model performance and throughput; sending more
data improves accuracy but reduces throughput. Applying moderate compression during the initial
training phase and to smaller layers yields better performance for a similar average compression
ratio. In Figure for ResNet9, a uniform Top-0.1% compression results in 75% accuracy, and
50.29% relative throughput. while our epoch-based strategy, By 15F0.05, yields similar relative
throughput but improved accuracy, reaching 79.18%. Meanwhile, the layer size-based strategy,
S1Lg.1, further improves throughput to 53.16% and accuracy to 80.85%, yielding gains of 5.7% in
throughput and 6.6% in accuracy compared to the uniform compression. We observe similar findings
in Figures [3b]and [Bc] Generally, the dynamic strategies in LEGACY (denoted by ’+’ for epoch-based
and ’x’ for layer size-based) for linked points are positioned either above (indicating better accuracy)
or to the right (indicating better throughput) of the uniform case for AlexNet and ResNet9. For the
Transformer-XL, LEGACY strategy points are located to the right of or below the uniform case, under
similar average compression ratios, indicating a better perplexity, with improvements of up to ~26%
in perplexity and ~4.5% in throughput compared to uniform compression.

Takeaways. Our layer-based strategy can increase accuracy and throughput compared to the uni-
form or inverse approaches, although the throughput gains are limited due to the high-speed network
in the data center. For the layer size-based approach, not compressing small layers eliminates the
computational overhead. For the epoch-based approach, sending more data at the beginning appears
to balance out the aggressive communication towards the end, yielding similar throughput while
leveraging the early training stages to achieve better accuracy.

4.3 COMPARISON WITH ADAPTIVE GRADIENT COMPRESSORS

We evaluate our approaches, Bs, Es, and S5, Ls,, using Top-k in LEGACY against three state-of-the-
art adaptive compressors (Adacomp (Chen et al.|(2018al)), variance-based compression Tsuzuku et al.
(2018)), and CAT |Khirirat et al.[(2021)) in terms of the trained model quality and the training time.
As shown in Figures fa-Ab] our scheduler achieves higher accuracy at comparable data volumes.
Although we are slower than AdaComp, which is threshold-based and 2x faster than the uniform
Top-k and our strategies, we achieve a 12% accuracy gain while sending only ~75MB more data;
see Figure Variance-based compression requires access to per-sample gradients, which are not
supported by most deep learning frameworks; obtaining these values using a batch size of one is
extremely slow. We used OPACUS |Yousefpour et al.|(2021) to get faster per-sample gradients. Still,
it remains ~ 6x slower than our approaches with a 15% lower accuracy. CAT requires testing many

Under review as a conference paper at ICLR 2026

Table 3: Comparison of LEGACY and adaptive compressors on ResNet-18 training on CIFAR-100
using PowerSGD as the base compressor. The | arrows indicate the relative data-volume gain com-
pared to the baseline PowerSGD, while the 1" arrows indicate the performance gain compared to the
baseline PowerSGD. By sending way less data compared to PowerSGD and other SOTA adaptive
compressors, L-GreCO and Accordion, LEGACY achieves a superior performance.

Metric PowerSGD L-GreCo Accordion LEGACY-E LEGACY-L

Top-1 Acc. 74.58 75.23 (10.87%) 75.11 (10.71%) 75.55 (11.3%) 75.21 (10.84%)

Avg. data volume 2.85% 2.19% (123.16%) 2.02% (129%) 1.11%(|61%) 1.1%(161%)

values at each iteration before choosing the sparsity, resulting in 11x slower performance, sending
around 575Mb of data, and incurring 25% lower accuracy than our approaches. Our strategies are
robust as they choose the compression ratios and control the total and per-iteration data volume.
In contrast, except for Accordion, other adaptive methods can neither be applied to different com-
pressors nor provide an estimate of the data volume. We also found that at the core, these methods
exhibit similar behavior to our strategies, confirming the effectiveness of our approach, which does
not require additional computation. See the complexity results in[D.4]

4.3.1 QUANTIZATION AND LOW-RANK FACTORIZATION WITH LEGACY

QSGD Alistarh et al.[| (2017) experiment details and results. We train ResNet-9 on CIFAR-10
using 2 workers for 30 epochs. QSGD has one user-defined parameter s > 1, the quantization level.
For uniform QSGD, we fix s = 32. For LEGACY we introduce more granularity, we use 3 groups
to represent three different training phases, the beginning of training (1-10 epoch, with s = 64),
the middle of training (11-20 epoch, with s = 32), and the end of training (21-30 epoch, with
s = 16); and 4 groups to represent four distinct layer sizes, very small layer, S(< 600) are left
uncompressed, medium-sized layers, M (< 100,000 with s = 256), large layers, L (< 1,000, 000,
with s = 64) and huge layers, H (> 1,000, 000, with s = 16). Table shows LEGACY-L renders a
1.39% accuracy gain relative to uniform QSGD by sending about 12.67% less data.

PowerSGD [Vogels et al. (2019) experiment details and results. We train ResNet-18 on the
CIFAR-100 dataset using 2 workers for 200 epochs with PowerSGD as the base compressor, and we
compare LEGACY with two adaptive compressors, Accordion Agarwal et al.| (2021a)) and L-GreCo
Markov et al.[(2024). PowerSGD has one user-defined parameter, rank (r). The smaller the rank,
the more aggressive the compression is. For uniform PowerSGD, we use r = 3, for L-GreCo and
Accordion, we kept the same configuration as in their public implementation. We note that in those
implementations, to improve accuracy, the authors used no compression for the first 1,000 itera-
tions. This strategy leads to a higher volume of transmitted data. For LEGACY-E, we use 4 groups
to represent 4 different training phases, the first quartile of training Q1 (1-50 epoch, with » = 6),
the second quartile Q2 (51-100 epoch, with r = 4), third quartile Q3 (101-150 epoch, with r = 3),
and the final quartile Q4 (150-200 epoch, with » = 2); and for LEGACY-L (stands for layer-based)
we use 4 groups to represent 4 distinct layer sizes, small layer, S(< 600) are left uncompressed,
medium-sized layers, M (< 100,000 with r = 8), large layers, L (< 1,000, 000, with » = 3) and
huge layers, H (> 1,000, 000, with r = 2). Tableshows the results on PowerSGD combined with
LEGACY. Uniform rank-3 PowerSGD transmits about 2.85% of the total data volume and achieves
74.58% test accuracy. All adaptive compressors outperform uniform rank-3 PowerSGD, albeit by a
smaller margin. Interestingly, both strategies in LEGACY outperform the adaptive compressors while
only sending half of their communicated data volume; see Table E[Moreover, in contrast to L-
GreCo, LEGACY is compute-free; it does not need to calculate optimal parameters per layer at each
call. Our results demonstrate that LEGACY is compatible with different compression paradigms, and
show its flexibility and versatility in handling different compression techniques.

4.4 EVALUATING LEGACY ON GPT-2

In addition to evaluating LEGACY on classical benchmarks, which include ResNet-9, ResNet-50,
and Transformer-XL models trained on CIFAR-100, ImageNet-1K, and WikiText-103, we further
evaluate LEGACY in a modern setting by training GPT-2 small (124M parameters) Radford et al.
(2019) on the OpenWebText corpus (=~ 40G B)|Gokaslan & Cohen|(2019) using 2 A100 GPUs. For
uniform Top-k, we fix the sparsification ratio at 5%. For LEGACY layer-based, we introduce structural
granularity by grouping layers by parameter count: small layers (< 1,000) are left uncompressed,

Under review as a conference paper at ICLR 2026

Table 4: Training GPT-2 with LEGACY scheduler; validation loss the lower the better. The | arrows
indicate the relative improvement compared to the baseline uniform Top-k.

Metric Uniform Top-k LEGACY-E LEGACY-L
Validation Loss 3.14 3.05 (12.87%) 3.01(14.14%)
Avg. relative data volume 5% 5% 5.02%

medium layers (< 1,000, 000) transmit the top 10%, large layers (< 10,000, 000) transmit 5%,
and the largest layers (> 10,000, 000) transmit 4% of their updates. For LEGACY epoch-based, the
sparsification ratio varies across training phases: 10% for the first 10% of iterations, 7% for the next
10%, followed by 5% and 4% across the next two 30% segments, and 3% for the remainder. Table
summarizes the resulting validation losses. Both LEGACY variants outperform the uniform Top-k
while transmitting a similar amount of data, with the layer-based strategy yielding the best results.

4.5 ADDITIONAL BENCHMARKING AND DISCUSSIONS

Due to limited space, we perform a diverse set of experiments in §D]that demonstrate the efficacy,
scalability, and ease of use of LEGACY in different scenarios. This Section serves as a guide to them.
We use Random-k as the base compressor in LEGACY and show accuracy vs. data volume results in

Figure [6] §D] Table [] reports the average Top-1 test accuracy of ResNet9 and AlexNet on
CIFARI10, derived from 7 independent runs; the results are in agreement with By using Top-k
as the base compressor (with and without error feedback) in LEGACY, we provide the model quality
vs. wall clock time results in §D.3.1] The model accuracy depends on the compressed gradients being
transmitted, not on their transfer speed; the results are generalizable across different bandwidths. In
we perform the scalability of LEGACY to 100 workers in a data center environment without
constraining the network bandwidth. We also note that, fast networks do not always harvest the
compression benefit (Xu et all, 202Ta)), as compression overhead can be significant; in §D.3] we
show the efficacy of LEGACY in bandwidth-limited federated training. See the limitations and future
direction in §E}

5 CONCLUSION

We introduce LEGACY, an open-source, lightweight framework for dynamic gradient compression
in distributed DNN training. In contrast to the compute-intensive adaptive compressors, LEGACY
operates dynamically based on two simple factors—layer size and training phase—and provides a
simple yet efficient dynamic scheduler for any compressors. Our benchmarking of LEGACY using
Top-k, Random-k, QSGD, and PowerSGD as base compressors show consistent performance gains
compared to the uniform compressors and five other state-of-the-art adaptive compressors across
large and challenging datasets, including ImageNet-1K and OpenWebText. Finally, in bandwidth-
constrained federated training, we profile the efficacy and scalability of LEGACY and establish the
need of a simple, dynamic scheduler.

REFERENCES

Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep networks.
In Proc. of ICLR, 2019.

Saurabh Agarwal, Hongyi Wang, Kangwook Lee, Shivaram Venkataraman, and Dimitris S. Papail-
iopoulos. Accordion: Adaptive gradient communication via critical learning regime identification.
In MLSys, 2021a.

Saurabh Agarwal, Hongyi Wang, Shivaram Venkataraman, and Dimitris S. Papailiopoulos. On the
utility of gradient compression in distributed training systems. CoRR, 2021b.

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. In
Proc. of EMNLP, 2017.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. = QSGD:
Communication-efficient SGD via gradient quantization and encoding. In Proc. of NeurIPS, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric
Renggli. The convergence of sparsified gradient methods. In Proc. of NeurIPS, 2018.

10

Under review as a conference paper at ICLR 2026

Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-SGD: Distributed
SGD with quantization, sparsification, and local computations. In Proc. of NeurIPS, 2019.

El Houcine Bergou, Konstantin Pavlovich Burlachenko, Aritra Dutta, and Peter Richtarik. Person-
alized federated learning with communication compression. Transactions on Machine Learning
Research, 2023.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signSGD: Compressed optimisation for non-convex problems. In Proc. of ICML, 2018.

Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal, Wei Zhang, and Kailash Gopalakr-
ishnan. Adacomp: adaptive residual gradient compression for data-parallel distributed training.
Proc. of AAAI, 2018a.

Chia-Yu Chen, Jiamin Ni, Songtao Lu, Xiaodong Cui, Pin-Yu Chen, Xiao Sun, et al. Scalecom: Scal-
able sparsified gradient compression for communication-efficient distributed training. In Proc. of
NeurIPS, 2020a.

Mengqgiang Chen, Zijie Yan, Jiangtao Ren, and Weigang Wu. Standard deviation based adaptive
gradient compression for distributed deep learning. In IEEE/ACM CCGRID, 2020b.

Tianyi Chen, Georgios B. Giannakis, Tao Sun, and Wotao Yin. Lag: lazily aggregated gradient for
communication-efficient distributed learning. In Proc. of NeurIPS, 2018b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In Proc. of CVPR, 2009.

Xiaoge Deng, Dongsheng Li, Tao Sun, and Xicheng Lu. Communication-efficient distributed learn-
ing via sparse and adaptive stochastic gradient. I[EEE Transactions on Big Data, 2024.

Tim Dettmers. 8-bit approximations for parallelism in deep learning. In ICLR, 2015.

Nikoli Dryden, Tim Moon, Sam Ade Jacobs, and Brian Van Essen. Communication quantization
for data-parallel training of deep neural networks. In Proc. of MLHPC, 2016.

Aritra Dutta, El Houcine Bergou, Ahmed M. Abdelmoniem, Chen-Yu Ho, Atal Narayan Sahu,
Marco Canini, and Panos Kalnis. On the discrepancy between the theoretical analysis and prac-
tical implementations of compressed communication for distributed deep learning. In Proc. of
AAAI 2020.

Negar Foroutan Eghlidi and Martin Jaggi. Sparse communication for training deep networks. arXiv
preprint arXiv:2009.09271, 2020.

gloo. Gloo: Collective communications library with various primitives for multi-machine training.
https://github.com/facebookincubator/gloo.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus), 2019.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Jinrong Guo, Wantao Liu, Wang Wang, Jizhong Han, Ruixuan Li, Yijun Lu, and Songlin Hu. Ac-
celerating distributed deep learning by adaptive gradient quantization. In ICASSP, 2020.

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst., 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proc. of CVPR, 2016.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
2021.

11

https://github.com/facebookincubator/gloo
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

Under review as a conference paper at ICLR 2026

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback fixes
SignSGD and other gradient compression schemes. In Proc. of ICML, 2019.

karpathy Andrej. nanogpt. https://github.com/karpathy/nanoGPT, 2023.

Sarit Khirirat, Sindri Magniisson, Arda Aytekin, and Mikael Johansson. A flexible framework for
communication-efficient machine learning. Proc. of AAAI, 2021.

Diederik P. Kingma and Jimmy Ba. ADAM: A Method for Stochastic Optimization. In Proc. of
ICLR, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William Dally. Deep gradient compression: Re-
ducing the communication bandwidth for distributed training. In Proc. of ICLR, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proc. of ICLR, 2019.

Rongwei Lu, Jiajun Song, Bin Chen, Laizhong Cui, and Zhi Wang. DAGC: Data-aware adaptive
gradient compression. In IEEE INFOCOM, 2023.

Peng Luo, F. Richard Yu, Jianyong Chen, Jiangiang Li, and Victor C. M. Leung. A novel adap-
tive gradient compression scheme: Reducing the communication overhead for distributed deep
learning in the internet of things. IEEE Internet of Things Journal, 2021.

Ilia Markov, Kaveh Alim, Elias Frantar, and Dan Alistarh. L-GreCo: Layerwise-adaptive gradient
compression for efficient data-parallel deep learning. In MLSys, 2024.

Lin Meng, Yuzhong Sun, and Weimin Li. Near-linear scaling data parallel training with overlapping-
aware gradient compression. In /EEE ICPADS, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In Proc. of ICLR, 2017.

Konstantin Mishchenko, Ahmed Khaled, and Peter Richtarik. Random reshuffling: Simple analysis
with vast improvements. Proc. of NeurlPS, 2020.

Yuki Miyauchi, Haruki Mori, Tetsuya Youkawa, Kazuki Yamada, Shintato Izumi, Masahiko Yoshi-
moto, Hiroshi Kawaguchi, and Atsuki Inoue. Layer skip learning using LARS variables for 39%
faster conversion time and lower bandwidth. In ICECS, 2018.

NCCL. NCCL: NVIDIA Collective Communication Library. https://developer.nvidia.
com/nccll

Yuri Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming,
2013.

Nvidia. Nvidia deep learning examples. https://github.com/NVIDIA/
DeeplLearningExamples.

PyTorch. Pytorch examples. https://github.com/pytorch/examplesl

Linping Qu, Shenghui Song, and Chi-Ying Tsui. FedAQ: Communication-efficient federated edge
learning via joint uplink and downlink adaptive quantization. arXiv preprint arXiv:2406.18156,
2024.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 1951.

Mengzhe Ruan, Guangfeng Yan, Yuanzhang Xiao, Lingi Song, and Weitao Xu. Adaptive Top-K in
SGD for communication-efficient distributed learning. In IEEE GLOBECOM, 2023.

12

https://github.com/karpathy/nanoGPT
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/pytorch/examples

Under review as a conference paper at ICLR 2026

Atal Narayan Sahu, Aritra Dutta, Ahmed M. Abdelmoniem, Trambak Banerjee, Marco Canini, and
Panos Kalnis. Rethinking gradient sparsification as total error minimization. In Proc. of NeurlPS,
2021.

Shaohuai Shi, Zhenheng Tang, Qiang Wang, Kaiyong Zhao, and Xiaowen Chu. Layer-wise adaptive
gradient sparsification for distributed deep learning with convergence guarantees. In Proc. of
ECAI 2020.

Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Sgd with delayed
gradients. Journal of Machine Learning Research, 2020.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory. In
Proc. of NeurlPS, 2018.

N. Strom. Scalable distributed DNN training using commodity GPU cloud computing. In Proc. of
INTERSPEECH, 2015.

Guangyu Sun, Matias Mendieta, Aritra Dutta, Xin Li, and Chen Chen. Towards multi-modal trans-
formers in federated learning. In Proc. of ECCV, 2024.

Yusuke Tsuzuku, Hiroto Imachi, and Takuya Akiba. Variance-based gradient compression for effi-
cient distributed deep learning. In Proc. of ICLR, 2018.

Thijs Vogels, Sai Praneeth Reddy Karimireddy, and Martin Jaggi. PowerSGD: Practical low-rank
gradient compression for distributed optimization. In Proc. of NeurIPS, 2019.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen
Wright. Atomo: Communication-efficient learning via atomic sparsification. In Proc. of NeurIPS.
2018.

Hui-Po Wang, Sebastian Stich, Yang He, and Mario Fritz. ProgFed: Effective, communication, and
computation efficient federated learning by progressive training. In Proc. of ICML, 2022.

Yiding Wang, Decang Sun, Kai Chen, Fan Lai, and Mosharaf Chowdhury. Egeria: Efficient dnn
training with knowledge-guided layer freezing. In Proc. of EuroSys, 2023.

Zeqin Wang, Qingyang Duan, Yuedong Xu, and Liang Zhang. An efficient bandwidth-adaptive gra-
dient compression algorithm for distributed training of deep neural networks. Journal of Systems
Architecture, 2024.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. In Proc. of NeurlPS,
2017.

Arissa Wongpanich, Hieu Pham, James Demmel, Mingxing Tan, Quoc Le, Yang You, and Sameer
Kumar. Training efficientnets at supercomputer scale: 83% imagenet top-1 accuracy in one hour.
In IEEE IPDPSW, 2021.

Jihao Xin, Ivan Ilin, Shunkang Zhang, Marco Canini, and Peter Richtarik. Kimad: Adaptive gradient
compression with bandwidth awareness. In DistributedML, 2023.

Hang Xu, Chen-Yu Ho, Ahmed M. Abdelmoniem, Aritra Dutta, El Houcine Bergou, Konstantinos
Karatsenidis, Marco Canini, and Panos Kalnis. Grace: A compressed communication framework
for distributed machine learning. In /IEEE ICDCS, 2021a.

Hang Xu, Kelly Kostopoulou, Aritra Dutta, Xin Li, Alexandros Ntoulas, and Panos Kalnis. Deepre-
duce: A sparse-tensor communication framework for federated deep learning. Proc. of NeurlPS,
2021b.

Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. Imagenet training in
minutes. In Proc. of ICPP, 2018.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan

Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. In Proc. of ICLR, 2020.

13

Under review as a conference paper at ICLR 2026

Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani
Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, et al. Opacus: User-friendly
differential privacy library in pytorch. In Proc. of NeurIPS, 2021.

Mingchao Yu, Zhifeng Lin, Krishna Narra, Songze Li, Youjie Li, Nam Sung Kim, Alexander G.
Schwing, Murali Annavaram, and Salman Avestimehr. Gradiveq: Vector quantization for
bandwidth-efficient gradient aggregation in distributed CNN training. In Proc. of NeurIPS, 2018.

Hao Zhang, Tingting Wu, Zhifeng Ma, Feng Li, and Jie Liu. Dynamic layer-wise sparsification for
distributed deep learning. Future Generation Computer Systems, 2023a.

Jingzhao Zhang, Haochuan Li, Suvrit Sra, and Ali Jadbabaie. Neural network weights do not con-
verge to stationary points: An invariant measure perspective. In Proc. of ICML, 2022.

Lin Zhang, Longteng Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Evaluation and optimization
of gradient compression for distributed deep learning. In IEEE ICDCS, 2023b.

14

Under review as a conference paper at ICLR 2026

CONTENTS
I Tntroduction|
1.1 Related work and background| 3
[2__Designing a dynamic compressor| 3
2.1 Insight through the lens of the compressed GD|. 3
2.2 A dynamic compressor scheduler{. o 0 0oL, 5
[2.2.1 System architecture, Simple-LEGACY, and combined approach| 5
|3 Convergence guarantee| 6
@ Benchmarking and evalutaion| 7
4.1 Model quality vs. transmitted data volume| 7
4.2 Model quality vs. training throughput| 8
4.3 Comparison with adaptive gradient compressors| 8
4.3.1 Quantization and Low-rank factorization with LEGACY| 9
4.4 Evaluating LEGACY on GPT-2|. 9
4.5 Additional benchmarking and discussions| oL, 10
5 Conclusion 10
A Related work| 16
[B_Theorefical results 17
[B.T Assumptions| e e e e e e e e 17
IB.I. Inequalitiesused 18
IB.2 Convergenceof GD|. 18
IB.2.1 Convergence of GD on strongly convex functions| 19
IB.2.2" Convergence of GD on nonconvex functions with PL condition|. 19
IB.3 Convergence proots for nonconvex distributed SGD| 20
IB.3.1 Unbiased compressors| 20
IB.3.2 Biased compressors|. 22
|[C System architecture — LEGACY, hyperparameter selection, Variants of LEGACY| 25
[CT SImpIe TEGACY] o o e e e e e e e e e 25
IC.I.. Mixedapproach| 26
[C12 Numericalresults of SSTEGACY-M| 26
|C.1.3 Strategy II: Example| 27
[DAddendum to experimental evaluations| 27
ID.1 Reproducibility] 27
ID.2 LEGACY on different compression classes|. 28

15

Under review as a conference paper at ICLR 2026

ID.2.1 Random-k in LEGACY as base compressor|. 28

ID.3 Scalability of LEGACY| o e 29

ID.3.1 LEGACY on constrained environments| 29

ID.3.2 Federated training of ResNet-18 on CIFAR-10] 30

ID.3.3 Scaling LEGACY to 100 Workers in a DataCenter| 31

ID.4" Time and space complexity of LEGACY and other adaptive compressors|. 32

E Timiag T Tirection 32

[Ethics statement and potential negative impact| 34
APPENDIX

Organization. We organized the Appendix as follows: In Section[A] we detail the related work. In
Section [B| we quote the general assumptions and provide detailed proofs of our theoretical results
quoted in the main paper. We present the system architecture — LEGACY, hyperparameter selec-
tion, different variants of LEGACY, including simplified LEGACY in Section[C] Section [D]discusses
additional numerical results. Finally, in Section [E] we discuss the limitations and future research
directions.

A RELATED WORK

Gradient compression techniques are broadly divided into four classes: quantization (Dettmers
2015} [Alistarh et all 2017; [Wen et al, 2017; Bernstein et al.| [2018)), sparsification (Aji Zé Hea%ei&
2017, |Stich et al.} 2018} [Alistarh et al., 2018)), low-rank (Wang et al.} 2018}, [Yu et al., 2018}, [Vogels|
et al, 2019), and hybrid (Strom| 2015} Dryden et all, 2016; Basu et al.; 2019).

Adaptive compression. L-Greco Markov et al.|(2024) utilizes dynamic programming to determine
the optimal compression parameter for each layer under a fixed communication budget. Kimad
and ACE[Wang et al.| (2024) dynamically monitors network bandwidth instead of using
a fixed communication budget; CAT [Khirirat et al.| (2021) employs a communication cost model to
optimize compression efficiency per communicated bit at each iteration/Achille et al.|(2019) empha-
sizes model sensitivity in a certain period, Accordion |Agarwal et al.| (2021a)) aims to identify and
respond to this regime by applying a lighter compression during the critical periods. Conversely,

LAGS-SGD (2020), and COVAP |Meng et al.|(2023) take a different approach by adjusting

the compression level to overlap gradient communications with computational tasks.

Among less compute-intensive strategies, (2021)) decides the compression based on a
probability that depends on the gradient value and the layer size. SDAGC [Chen et al.| (2020b) ad-

justs thresholds based on the standard deviation of gradients of each layer. AdaComp |Chen et al.
is similar to the threshold compressor, divides gradient components into bins and selects
significant components relative to the maximum value in each bin. Guo et al.|(2020) determines the
quantization level based on the gradient’s mean-to-standard deviation ratio; DAGC [Lu et al.| (2023)
assigns compression ratios to workers based on the data distribution. DLS [Zhang et al.|(2023a)) tries
to find a layer-wise Top-k compression level. AdapTop-k Ruan et al.|(2023) sends more components
at the beginning and end of the training and fewer components in the middle. |Chen et al.| (2018b);
Wang et al| (2022} [2023);|Deng et al | (2024) suggest freezing or skipping some layers based on their
deviation from the previous iteration or by evaluating the importance of the learning of each layer.
It can reduce communication and computation by avoiding the gradient computation for the first

layers Miyauchi et al.| (2018));[Wang et al.| (2022)). [Chen et al.| (2020a); [Qu et al.| (2024) compress up

and downlink communication.

Transition to low-bandwidth network. Compute-intensive techniques such as CAT Khirirat et al.
1) face performance trade-offs, particularly in fast network environments |Agarwal et al.
2021b). In such cases, using basic compressors might take longer than no compression baselines

[Eghlidi & Jaggil (2020); [Xu et al| (20214); Zhang et al.| (2023b)). The scenario changes in federated

16

Under review as a conference paper at ICLR 2026

learning (FL) (Kairouz et al.| 2021} Xu et al.l [2021b} [Bergou et al., 2023} |Sun et al.| 2024)), where
a low-bandwidth heterogeneous network is de facto. Hence, compression becomes necessary, but
employing complex adaptive compressors may reduce the data-saving advantages in FL, especially
when weaker nodes are involved. As a result, we need to focus more on lightweight and simple
principles to achieve adaptive compression.

B THEORETICAL RESULTS

This section complements Sections [2| and [3|in the main paper. We start with the Assumptions used
in the main paper.

B.1 ASSUMPTIONS

We make the following general assumptions.

Assumption 1. (Smoothness) The loss function f; : RY — R at each node i € [n] is L-smooth, i.e.
fily) < filz) + (Vfi(z),y — =) + %Hy —z||? for all x,y € R4

Assumption 2. (u-strongly convex) The loss function f; : R — R at each node i € [n] is -
strongly convex, i.e. fi(y) > fi(z) + (Vfi(z),y — x) + &|ly — «||* for all z,y € R%.

Remark 1. The above two assumptions together imply that F' is L-smooth and p-strongly convex.
Assumption 3. (Global minimum) There exists x, such that, F(x,) = F, < F(z), forall v € R%.

Assumption 4. (Polyak-Lojasiewicz Condition) The function F' satisfies Polyak-Lojasiewicz (PL)
condition with parameter 1 > 0 if for all x € R? the following holds:

1
LIVE@) 2 p(F(@) - F.)
Assumption 5. ((M, o) bounded noise) There exist constants M,c? > 0, such that for all ; €
R, the stochastic noise, &t follows
E[l& e[|] < M|V fi el + 0.

Remark 2. The above implies, E[||gi ¢||* | z:] < (M + 1)||V f; +|> + o2

Assumption 6. (Bounded variance of gradients) There exist constants A, B > 0 such that, for all
x € RY, the variance of gradients among nodes follow

& LiemIVfi(z) = VF(2)|* < 2A(F(2) — F.) + B.

We adopt a few extra assumptions than the previously stated ones for biased compressors. First, we
consider a (C, ¢?) bounded similarity assumption on the variance of the gradients among the workers
in Assumption [7| This Assumption is stronger than Assumption [6] but a similar assumption was
proposed in [Sahu et al.| (2021), and we rely on it for algebraic purposes in proving the convergence
for the general case.

Assumption 7. ((C, (?) bounded similarity) The variance of gradients among workers is bounded,
i.e., there exist constants, C,(> 0 such that, %Zie[n]HVfi(m) — VF(2)|? < C|VF(z)|]* + ¢?,
forall z € R%.

We impose an extra assumption on the expected direction of the compressed gradient for biased
compressors. A similar assumption was made in Dutta et al.| (2020) and several classic biased
compressors, such as Top-k, follow it.

Assumption 8. (Descent property of the compressed stochastic gradient) Let C; be a biased 6-
compressor such that % Sor 1 Ci(gix) = G- There exists 0 < o < 2 and 8 > 0 such that

E [QTVF\VF] > BE|VF|* - R,
where R is a small scalar residual that may appear due to the numerical inexactness of some oper-
ators or other computational overheads.

Remark 3. The above assumption is general, and one can characterize many compressors with this.
For instance, for Top-k, we have o = 2, 8 = k/d and R = 0. For simplicity and without loss of
generality, one can consider « = 2, f =1, and R = 0.

Assumption 9. There exists G > 0 such that, |VF|| < G, forallt € [T).

17

Under review as a conference paper at ICLR 2026

B.1.1 INEQUALITIES USED

1. If a,b € R? then we use a relaxed version of Peter-Paul inequality:
la + Blf* < 2[lal|* + 2{|b]|. 4)
2. If a,b € R? then the following holds:

1
2(a,b) < 2al* + 3 Ib]* (5)

3. Forz1,...,z, € R? we have:

I @il <n) llaill®. (6)
i=1 i=1

4. If X is arandom variable then:
E|X|I* = |E[X]|I* + E[IX - EIX]|*). M
Lemmad. Let C(-) : R? — R? be a §-compressor.
(i) If C(g) is unbiased then We have E||C(g)]|*> < (2 — 9)||g]/?-
(ii) If C(g) is biased then E||C(g)||*> < 2(2 — 9)||g]>.

Proof. (i) Recall for unbiased d-compressors, we have E|g — C(g)||> < (1 — §)||g||*. Since
E(C(g)) = g, from equation [7| we have,

By equation
Ellc(g)* ™ 2" BElg — (o) + IglP<(1 — 8)llgl> + llgl* = (2~ 8)ll9lI>

(it) On the other hand, for biased j-compressors, we have,

By equation@
E[|C(9)]* = Ellg—g+C(9)|® < 2E|g-C(9)llP+2lgll*<21-8)|glI*+2]lglI* = 2(2-8)lg]|*.
O
Lemma 5. Let I follow Assumption[6] Then we have for all t > 0,
1 n
~ IV idl® < 24(F — F) + B+ | VE|* ®)

i=1

Proof. The proof follows from the fact that 2 > [V fi,[|? = L3 | [V fi, — VF, + VFJ?
and Fy, := 23" | f;, forall ¢ > 0. Therefore,

1 « 1 <
= IVl = NV i = VE A+ VE|?
" i=1 n =1

1 n
- = Vi = VEIP + VR
1=1

By Assumption|[f]
<

2A(F, — F,) + B +||VE|?*.

Hence the result. O

B.2 CONVERGENCE OF GD

This section provides the convergence proofs GD on strongly convex and nonconvex functions with
PL conditions as given in Lemma [T]and Lemma 2]

18

Under review as a conference paper at ICLR 2026

B.2.1 CONVERGENCE OF GD ON STRONGLY CONVEX FUNCTIONS

Lemma 1. (Gradlent descent with unbiased compressor) Let F follow Assumptions[Ijand[2} Then
with stepsize n < @=L 5 T the sequence of iterates, {4 }1>0 of compressed GD updates satisfy

Ee,(|rer1 = wll?) < (1= 2um + 0*uL(2 = 61)) ||lze — 2. ©)

Proof. From the GD update in equation[2] we have
Tir1 — Tx = Tp — Ty — NC(VF (21)).
Squaring both sides and expanding, we have
o1 = 2ul* = [|ze — 2> = 20C (VF)T (20 — @) + 0P |Co(VF) 1.
By taking expectation on the randomness of the compressors C; we get:
Ec, ([wer1 — z.?) = lze = 2ul|® = 20V E] (21 — 2.) + n°Ee, | C(VE) |2

By Assumption@
< e = 2ul|® + 20 (Fu = Fy) — ppllce — .]|?

+12(2 = 8| VE|?

By Assumptionm
< e = 2ull* + 20 (Fr = Fy) — ppllze — .|

+202L(2 — 6;)(F; — F)

< (1= pn)llze = 2al|* + 20 (nL(2 = 6¢) — 1) (Fy — F)
By Assumption@
< (1= p)llwe = w]|* + o (nL(2 = &) — 1) [l — .|
< (1= 2un + 0 pL(2 = 8,)) l|lzs — .||
This completes the proof. O

B.2.2 CONVERGENCE OF GD ON NONCONVEX FUNCTIONS WITH PL CONDITION

Lemma 2. (i Gradzent descent with unbiased compressor) Let F follow Assumptions[Ijand[Then
with stepsize 1 = L, the sequence of iterates, {x;}1>0 of compressed GD updates satisfy

Ec,(Fir) — F, < (1 - 52’“‘) (F, — F,). (10)

Proof. Using the L-smoothness of F' as in Assumption [T we have

L
Fiq < F,+(VF,x1 —a) + §||33t+1 - xtHQ

By equation E
<

n{VE, C(VF @) + T IC(TR

By taking the expectation on the randomness of C; and by using the GD updates from equation [2]
we have

1
Ee, (Fit1) < Ft—*||VFt||2 57 BelIC(V(F))I?
By Lemrna@ 1 — 5t

< Fy — - Fy|I?
< t (L -)nv Y
< Fy — *HVFtHQ

By Assumption@ (St
< _t
< F 2L2/~L(Ft Fy).

Finally, subtracting F), from both sides, we get

5
Ec, (Fiv1) — Fy < (1 - Lt/i) (Fy — F)).

This completes the proof. O

19

Under review as a conference paper at ICLR 2026

B.3 CONVERGENCE PROOFS FOR NONCONVEX DISTRIBUTED SGD

In this section, we provide the convergence proofs of compressed distributed SGD on nonconvex
functions. We start with the key inequalities used in our proofs.

B.3.1 UNBIASED COMPRESSORS

Lemma 3. (Compression variance) Let C; be unbiased §;-compressor for all t € [T, and let F
follow Assumption[6] and the stochastic noise follow Assumption[5] Then we have

n n 2
E|||2 (ZCt(gi,t) - ZVf“) lz, | < (1
i=1 i=1
_ 2
(1= (M +1) + M) (A(F, - F) + B+ VE?) + %

Proof. We note that the compression operator, C;, and the stochastic noise, &; ¢+, are independent.
Therefore, while taking expectation on the randomness of the compression operator, C;, we condition
on the other source of randomness, and vice versa. We use E¢, to denote the expectation taken on
the randomness of the compression operator, C;, and conditioned on other sources of randomness.
So, taking expectation on the randomness of the compression operator, C; we have

1 (Z Ci(9it) — Z sz‘,t)

1 n
3 > Ee,lICi(gin) = V fisl
=1

2
Ec,

Ec, (Ct(9i,t))=9i,¢ 2
Al 24 2 §<gi,t —Vfit, 95t — ij,t>
i#]

2
o+ 3 ;@M — Vit 95t — Vi)
i#j

gi,t:vii‘t"l‘fi‘t

1 n
3 > Ee,lICi(gin) = gt + Gl
i=1

n

2
Z(Ect 1Ct(9i,t) — 9t + Ee, ||§i,t||2) T3 > (git = Vi i — Vi)

Ec, (Ct(git)):gi,t i

i=1 i£j
1 &)) 2
< 3 ; (1= 6)lga,ell® + €iell?) + 2 ;@i,t — Vit 9j0 — Vi)

Taking expectation conditioned on x;, and by using the tower property of expectation, we get

% (Z Ci(git) — vai,t>
i=1 i=1

The equality holds as E(g; ¢|x¢) = V fi+ and E(g; ¢|ar) = V fj ¢, forall i # j,i,j € [n]. By using
Assumption[5} write the above expression as

2
1

E | Ec, | < 5> (1= 8)E[llgi
i=1

?|e] + E[]|&is

2|5Ct])~

n

% Z (1= 60)E[lgi,e*|ze] + E[ll&i]I |2])

1

< = S (A=) (M + D)V firll® + (1= 6)0” + M|V fir]|* + 0°)
=1
By Lemma 1 1
< - (1 =8)(M +1)+ M) (2A(F;, — F,) + B+ ||[VE|*) + 5(2 — 6;)0”.
Hence the result. O

Based on the previous Lemma, the next lemma quantifies the quantity E H% Z?:l Ci(git) ||2 .

20

Under review as a conference paper at ICLR 2026

Lemma 6. Let C; be unbiased 6i-compressor for all t € [T). Let F follow Assumptions @ and
the stochastic noise follow Assumption 5] Then

< 2AB (F, — F,) + (1 + Bt) IVE,|?+ BB + <H> a2 (12)
n n " "

where 3y := (1 — 6;)(M + 1) + M.

n

2
% Z Ce(git)

i=1

E

Proof. Taking expectation on the randomness of the compression operator, C;, we have

n 2 n
Ee, £ Cilgin)| =Eell2D Cilgis) — VE + VE|?
i=1 =1
n 2 n
= Ec, |23 Cilgie) = VE| +|VEI?+2(1Y gie — VF,VF)
i=1 =1
By Lemma@ 1 9 1 9
< - (1 =6:) (M +1)+ M) (A(F, — F,) + B+ [|[VE?) + 5(2 —)0
HIVEP? +2(2Y gis — VF, VE). (13)

=1

Finally, we note that E(g; |z;) = fi:. By using the tower property of expectation, we denote
El|L 30 Clgi)I? = E(Ec,||£ Y0 Ci(gi)||*|@e). Taken together, from equation we have

E”%th(gi,t)HQ
i=1

1

< —((1=0)(M +1) + M) QA(F, = F,) + B+ |[VE[*) + “(2- 8)0% + [V

n
Hence the result. O

Finally, we can quote the non-convex descent lemma for compressed distributed SGD.

Lemma 7. (Non-convex descent lemma for unbiased compressors) Let Assumptions|[l], 3] and 6]
hold, and let C; be unbiased 6;-compressor for all t € [T|. Then

ALn? L L
E(Fin)—Fo < (1 " Zﬂ) E(F) —)~ (1 _m ’jf) E|VE?

2
2 _
S (B (220),
2 n n

Proof. By using the L-smoothness of ' we have

Fon< By — (VE, 20 —) + 2|z — 2|
By using the update rule ;1 — z; = —2* Z?=1 Ct(gi,+) the above becomes

2
Fii< By — (VE, " Colgin)) + 2512500 Colgin)|1* (14)

Taking expectation with respect to the randomness of C; on the above expression for all ¢ € [T, we
find

2
Ec, (Fit1)< Fy = (VE, 2300 gis) + L#Ect 1% 270 Celgie) |17

Taking expectation conditioned on ¢, we have

Ln? -
E(Fipi)z) < E(Ft|:ct)—nt1E||VFt||2+%E (I}Lth(gi,t)nﬂxt).
i=1

21

Under review as a conference paper at ICLR 2026

By using Lemma [f]on the above, we find

E(Filz:) < E(Fz) — nE[|VE]|?
L 2A B 2—-90
SO (220 5 (14 2) o+ 2 (220 02).
2 n n n

Taking the final expectation, by using the tower property of expectation, and rearranging the terms,
we have

ALn? L L
E(Fip1) - F, < (1 + Ztﬁt) (E(F) — F,) —n, (1 = Zﬁt

2 _
Lt (Bﬁt N (2 ‘St) 02> . (15)
2 n n

)Envw

Hence the result.

B.3.2 BIASED COMPRESSORS

Lemma 8. Let C; be biased §-compressors for all t € [T), and let F follow Assumption@ and the
stochastic noise follow Assumption |5} Then we have

|1 ict(gi,t)||2|zt] < 22-0)(M+1)(C+D|VE|?+2(2—6) (M +1)¢>+07).

Proof. Taking expectation, E¢, on [|£ 377" | C;(g;.)||> we have

ECtH% th(gi,t)”
i=1

By equationd] 1 &
< EZEC,,HCt(Qi,t)H
By Lemma@

< 2(2 - 0)— ZHQMHQ

By Assumption

< 2(2 - 6;)(M leszt||2+2(2—6t)

= 2(2 — 6;)(M + 1)H vam — VE|?+2(2—=6)(M +1)||[VF]]* +2(2 — 6;)0

=1
2(2 = 6:)(M + 1)(C|VF|* +¢*) +2(2 — 6)) (M + 1) [VF|* 4 2(2 — 6)0

Now, by taking the conditional expectation on z; and using Lemma 5] we obtain the result.

By Assumption m
<

O

Lemma 9. (Non-convex descent lemma for biased compressors) Let Assumptions[I} [5} and[7|hold,
and let Cy be biased 6-compressor for all t € [T that follows Assumption@ Then

e (BE|VE|* = L (2 = 6,)(M +1)(C + DE|VE|?) < E(F — Fita)
+Ln7 (2= 6) (0% + (M + 1)¢?) + nR.

Proof. By using the L-smoothness of F, and using the update rule z;; —z; = =" v Ci(git)
we have from equation [T4}

2 n
Fon < F— VFt,mZCt (9it)) + gt ||%ZCt(gzt)||
i=1

22

Under review as a conference paper at ICLR 2026

Taking expectation with respect to the randomness of V F} on the above expression for all ¢ € [T
and by using Assumption[8] we find

Ln? -
E(Fit1) < Fi— AE|VE|* +nR+ %E (II&L ZCt(gi’t)HZVFt) .

i=1

Taking expectation conditioned on z;, we have

E(Fii|zy) < — B B[V Fy||* +77tR+ E

||1 th git) |$t] -

Now using Lemma 8] we get
E(Fpalze) < Fo— BoE[VE(® +n R
+ Lp? (2 6)(M + 1)1+ O)|[VEI? + (2 - 8) (M +1)¢2 +02)).

Taking the final expectation, by using the tower property of expectation, and rearranging the terms,
we have the result.

NONCONVEX CONVERGENCE RESULTS

The next Lemma is instrumental in proving the nonconvex convergence of distributed SGD with
d-compressors.

Lemma 10. [Mishchenko et al.|(2020) Let for 0 < t < T the following holds:

pey1 < (1 +a)pe —bg: + ¢, (16)
where {p;}1_o and {q;}1_, are non-negative sequences and a,b,c > 0 are constants. Then
. (1+a)” c
< =, 17
o, @S T Pot g (17

Proof. Dividing both sides of equation[16|by (1 + a)'*! and summing from ¢ = 0,1,--- , T we
have

T

tpt_Z(t+1Qt+Z f+1’

t=0

T Ty
Z t+1pt+ Szzjo (+a)

t=0

which after rearranging is

> e g+ Y (g
t:O 1+)t+1qt Po — 1+)T+1PT+1 (1+a)t
1 —lzé,wehave
T
< — 18
qt; 1+)T _;1+at+1qt_b+ab (18)
Hence the result. O

Finally, we are set to prove Theorem I}

Theorem 1. (Nonconvex convergence) (i) (Unbiased) Let Assumptions [I| , B and [6] hold,

and let C; be unbiased Oi-compressor for all t € [T]. For a fixed stepsize n; = n <
_1
min <L L(12M+1) ’ (AL(2A774+1)T) 2) we have:
PR — '
3 Ly (B(2M + 1) + 202
min E||VF(x,)]* < (Fy— F) 1 L BRM 41 +207)
t=0,1,-T-1 Ty (1 —Ln_ %) on (1 _Ln_ W)

23

Under review as a conference paper at ICLR 2026

(ii) (Biased) Let Assumptions [7] and [9 hold, and let C; be biased &-compressors for
all t € [T) that follow Assumption and For a stepsize n < L(2—6t)(M+€)(C+1)G2*Q’ we

. _ . . 2Ln(o?4+(M+1)¢?
have: miny—¢ 1 ..7—1 E|VF|* < % + &, where 6 = W + 5%, and

(1 In@—s)(M41)(C 1G>
A= (1 =) .

Proof. (i) From Lemmam we have

ALn? Ly, L
BF) - P < (14 2280 (R - £ - (1= 5 -

2
Ln? (B 2—-90
+i (5’5 + (t> 0.2))
2 n n
The above inequality satisfies the condition of equation with a

n (1 —Ln_ W) o= %’2 (% + %‘2> . Therefore, we obtain

)MWEW

ALn?(2M+1) b
n)

(1 + :“Ln2(2M+1))T

Ln? ([B(2M+1) 252
: b (e 4)

n n

. 2 < — .
_omin, E[VE(z)|" < F)+ (19)

n n

1 _ Ln _ Ln@M+1) (Fo 1 _ Ln _ Ln(2M+1)
n\l-—=s-—— nl—-=-—"

_1
2

Using that x+1 < exp x and withn < (in the first term of the RHS of equation

we get

AL(2M+1)T>

ALn2(2M + 1)\ © ALn2(2M + 1)T
(1+ n*(+)> gexp(n°(2M +1)

) <exp(l) <3.
n n
Finally, using the above in the inequality (I9), we have

Ly (B(2M + 1) + 207
’ (Fo — Fy) + n (B(+)+U).
m (1 _ % _ L17(2]\/I+1))

min E|VF(x)]]? <
t=0,1,-T—1 Ty (1 _ % _ %)
Hence the result.
(ii) With || VF;|| < G from Assumption[9} we have
L2 = 6)(M +1)(C + 1)GEe
B

Consider g, =1 < TE=3,)(M +’(f) (eZSiTeary Then the above inequality reduces to

nmmvmw(l)SEw%mﬂwmﬁaﬁowﬂwM+new%R

E(F; — Fiy1) . L2 —6;) (0% + (M +1)¢?) n B
npA BA BA

By unrolling the recurrence relation, we have

E[VE|* <

T-1 T-1
1 o Fo—E(F) Ln(o®+(M+1)¢?) R
— N E|VE|® < 2 — ki

With 0 < §; < 1 we get (also, using Assumption E[),

T—1

1 Fo—F, 2Ln(c?+(M+1)¢*) R
— g E(|VE > < —
T < IVE[" < TnBA + BA +,6’A’

which further reduces to

] Fo—F, 2Ln(c*+(M+1)¢*) R
* L —_—
t:o,{?-l-I}TflEHVFt” - TnBA + BA + BA

Hence the proof.

24

Under review as a conference paper at ICLR 2026

Function 3: LayerSizeCompression({)\; }ip:1 ,{6; }?:1)

Function 2: epocnconpression({x;}7_,. {5:}7_,) Input: Gradient g; ¢ at iteration ¢ from worker 3

Input: Current iteration, ¢ Qutput: compression parameters list

Output: Compression parameter, d; for each layer L in g; do

j = index of the smallest threshold from Jj = index of the smallest threshold from {X;}}_;
{Ai}Y_, such that iteration ¢ < \; ; such that |L| < \j;

return J; Append §; to compression parameters list;

return compression parameters list;

Function 1

ML Framework Transmitting worker\
TensorFlow, PyTorch
Layer based

h Compression operator
chooseparam [TopK, QSGD, etc.]
compression

\ Function 2 /

Epoch based

. Receiving worker
compression
—

ML Framework
TensorFlow, PyTorch

Communicate
Communicate

Decompression

Figure 5: System architecture. The LEGACY framework is highlighted in blue.

C SYSTEM ARCHITECTURE — LEGACY, HYPERPARAMETER SELECTION,
VARIANTS OF LEGACY

We present Lightweight Efficient GrAdient Compression StrategY or LEGACY; see the system archi-
tecture in Figure[5] LEGACY is compatible with any machine learning framework (e.g., TensorFlow,
PyTorch), and offers a simple API that can be embedded with various gradient compressors (e.g.,
Top-k, QSGD, etc.). In Algorithm [I} for simplicity, we used LEGACY in a parameter-server archi-
tecture, and employed the Top-k sparsifier as the base compressor in the main paper. However, this
is an abstraction and proof of concept. LEGACY is agnostic to the base gradient compressor and the
communication protocol. We conducted Top-k experiments using the NCCL A11Gather commu-
nication collective NCCL, to show the scalability of LEGACY, we performed CPU-based experiments
in §D.3|using G1loolgloo, and utilized A11Reduce for the PowerSGD experiments in Since
LEGACY only impacts the selection of compression parameters, it can be seamlessly integrated into
any framework or scenario (e.g., parameter-server, ring all-reduce, etc.) where gradient compression
is applicable.

For transmitting workers, LEGACY is executed through the intermediary API call chooseparam in
Algorithm 1} responsible for selecting the appropriate compression parameters for each layer. After
gradient computation through any ML benchmark, based on the user’s strategy, epoch compres-
sion Function [2| (M = 1) or Layer size compression Function |3{ (W = 0) is invoked to dynamically
determine the compression parameters for each layer, which are then applied to the gradient com-
pressor in the worker. Additionally, Functions [2| and [3|in LEGACY can be used conjointly with the
base-compressor; see the blue three-point arrow. Other than chooseparam, LEGACY uses other well-
known APIs for communication, averaging, broadcasting, etc.; see Table[I} The receiving worker
applies reverse operations and decompresses the received gradient. LEGACY can be used for uplink
and downlink bidirectional compression by simply compressing the gradient sent from the server.

C.1 SIMPLE LEGACY

We note that there is no recipe for choosing compression parameters. The choice of compression
parameters depends on multiple factors such as the dataset used, DNN model architecture, network
topology, network bandwidth, and many more; see |Xu et al.| (2021a) and references therein. In
contrast to compute-heavy state-of-the-art adaptive compressors, LEGACY is based on two simple
propositions: (a) the layer size of the DNNs influences in choosing how much one needs to compress,
smaller layers have insignificant effect compared to large layers, and (b) the training phase of the
DNNs can be a critical contributor in the adaptive compressor design, the end training phase can
tolerate severe compression without any accuracy lost. While the layer sizes can be determined and
grouped based on their relative sizes, the only rule for choosing compression parameters based on

25

Under review as a conference paper at ICLR 2026

the training phase is to choose to decrease compression parameters over iterations; §4.3.1] validates
this on QSGD and PowerSGD.

To simplify the selection of hyperparameters used in LEGACY ({\;}}_; for thresholds and {4, }7_;
for compression levels), we proposed a simplified version called S-LEGACY. This version requires
only two hyperparameters for the epoch or layer-based approach and three for the mixed approach.
That is, S-LEGACY-E requires only a default compression parameter ¢,, and the number of training
phases n; S-LEGACY-L requires d,, and a decrease ratio s; S-LEGACY-M (stands for using both layer
and epoch-based) requires §,,, n, and s.

S-LEGACY determines grouping and compression parameters based on the specified hyperparame-
ters and two additional functions that depend on the compressors used during training: (i) vol(d)
computes or estimates the communicated data volume v for a given compression parameter §; and
(if) vol~*(v) determines or estimates the compression parameter § that produces a specified data
volume v.

Grouping. In LEGACY, we used {\;}_; to define training phases or layer groups. In S-LEGACY, we
simplify this grouping as follows:

S-LEGACY-E. The training duration 7" is uniformly divided into n phases. Group g; consists of
iterations within the interval ((i — 1)<, iL].

S-LEGACY-L. Layers are grouped by order of magnitude. Group g; consists of layers L satisfying
100°~! < |L| < 100?, where |L| denotes the layer size.

Compression parameters. S-LEGACY eliminates the need to set the compression parameters for
each group manually. Instead, these parameters are automatically calculated to ensure a similar
communicated data volume as the default compression parameter 6,,, while following the principles
established by LEGACY.

S-LEGACY-E. First, compute the uniform data volume V,, that would be communicated with §,,.
For group g;, the compression parameter is ; = vol~*(V;), where V; is the data volume V; =

n—1

at 1.5V, (first phase) and ending at 0.5V, (last phase).

1.5 — =) V... This ensures progressively aggressive compression across training phases, starting

S-LEGACY-L. Compress the largest layer group g, more aggressively than d,: J, =
vol, ' (1= s) - voly(d,)), where s < 5% is the decrease ratio, and vol,,(6) represents the data vol-
ume of the group g, when compressed with §. Distribute the saved volume s - vol,(d,,) uniformly

across the other groups: §; = vol; ! (;;%1 -voly(0y) + voli(éu)>. Since the groups are ordered by

magnitude, this adjustment applies lighter compression to smaller groups and progressively more
aggressive compression to larger groups, ensuring that J,, is not exceeded except for g,.

C.1.1 MIXED APPROACH

The mixed approach, S-LEGACY-M, combines S-LEGACY-L and S-LEGACY-E, requiring the previ-
ously defined parameters: the default compression parameter ¢,, the number of training phases n,
and the decrease ratio s. S-LEGACY-M begins by applying S-LEGACY-E to partition the training
period, then uses S-LEGACY-L to determine compression parameters for each layer group, with the
compression parameter §; from S-LEGACY-E for the current phase serving as the default compression
parameter. Use the epoch-based method (S-LEGACY-E) to divide the training period into n phases
and compute {J;}7 ;. Then for each phase 4, use ¢; as the default compression parameter for the
layer-based method (S-LEGACY-L) to calculate compression parameters for layer groups within that

phase; see results in §C.1.2]
C.1.2 NUMERICAL RESULTS OF S-LEGACY-M

We train AlexNet and ResNet9 on CIFAR-10 and ResNet18 on CIFAR-100 using two workers. We
compare the uniform compression methods, Top-1% and Random-1%, with S-LEGACY approaches
using n = 5 phases and a decrease ratio of s = 5%.

26

Under review as a conference paper at ICLR 2026

Table 5: Accuracy for S-LEGACY methods.

Network Method Uniform S-LEGACY-L S-LEGACY-E S-LEGACY-M

AlexNet Top-k 78.1 79.3 78.6 81.1
Random-k 67.7 72.4 71.13 72.6

ResNet9 Top-k 85.86 86.7 87.52 88.03
Random-k 77.58 81.8 81.9 82.04

ResNet18 Top-k 64.4 66.2 66.18 66.5
Random-k 50.4 51.9 52.2 52.1

The results in Table [5] demonstrate that the simplified S-LEGACY approaches outperform uniform
compression methods and alleviate the burden of manually selecting the hyperparameters required
by LEGACY.

C.1.3 STRATEGY II: EXAMPLE

To illustrate this approach, consider using a sparsifier with a baseline sparsity of 1%. Instead of
applying uniform compression, we divide layers into quartiles: Q1 (largest 25%) to Q4 (smallest
25%), and slightly reduce Q1°’s sparsity to 0.99%, reallocating the saved compression budget across
the other quartiles. In AlexNet, this small adjustment enables Q2 to be compressed at 8.4%, Q3
at 37.6%, and Q4 at 74.2%. Similarly, in ResNet18, with Q1 compressed at 0.99%, Q4 receives
a full 100%, meaning all gradients are transmitted uncompressed. Though the difference in Q1 is
minimal, the resulting improvement for smaller layers is substantial, justifying the observed gains
in model performance.

Another angle in understanding compression across layers is from the perspective of communicated
data volume. Let us divide the layers into two groups: small and large. Let S represent the total size
of the small layers (e.g., layers with fewer than 10* elements) and L represent the total size of the
large layers (e.g., layers with more than 10* elements). We assume S < L. E.g., in our experiments,
the ratio, ﬁLL is 0.9996, 0.987, and 0.997 for Transformer, ResNet-9, and AlexNet, respectively.

We aim to select 6, and §; such that the overall data volume remains consistent with that obtained
using a uniform compression, ¢, throughout the training. Let the compressed data volume when
using a uniform compression § be Vinitorm and layer-based LEGACY (when using d5 on the small
layers and 6; on the large layers) be Viynamic-

We have Viniform o (L +5) and Viynamic o 0;L + 0,.S. Therefore, to keep the same overall data
volume, Viniform = Vdynamic, implies (L + S) ~ 6L + 6,5, thatis, 0L ~ § L + (§, —0)S. Based
on our assumption, S < L, together with §; < § < §; < 1, we obtain § = d;, as (J —5)% — 0. We
do not have any explicit assumption on d5, so we can choose it close to 1, that is, easy compression.
We postulate, it is better to compress the large layers and leave the small layers uncompressed.

D ADDENDUM TO EXPERIMENTAL EVALUATIONS

In this section, we provide additional experimental details and benchmarking results, which we were
unable to discuss in the main paper due to limited space.

D.1 REPRODUCIBILITY

We implement the sparsifiers in PyTorch. Tables [0} [IT] [12] [[3] and [T4] provide the experimen-
tal details for each of the tasks. We used the default hyperparameters provided in the mentioned
repositories for each task.

We postulated that LEGACY can be used conjointly with any compression techniques in designing
its compute-free, adaptive counterpart. In this section, we provide additional experimental details
and benchmarking results to demonstrate that LEGACY can be seamlessly integrated with other
compression classes: sparsification (Random-k), quantization (QSGD |Alistarh et al.| (2017)), and
low-rank factorization (PowerSGD [Vogels et al.|(2019)). These results, which we could not cover in
detail in the main paper due to limited space, further validate LEGACY’s versatility across different
compression approaches.

27

Under review as a conference paper at ICLR 2026

Table 6: Summary of the benchmarks and quality metrics used in this work.

Task Model Dataset Training Q“*“W Basel'me Optimizer
parameters metric quality
AlexNet CIFAR-10 2,255,296 Accuracy 84.99% Robbins & Monro, (1951)
Image ResNet9 CIFAR-10 6,573,120 Accuracy 92.07% [Robbins & Monro
Classification ResNet18 CIFAR-100 11,220,132 Accuracy 73.43% -
ResNet50 ImageNet 25,559,081 Accuracy 59.43%
Recommendation NCF Movielens-20m 31,832,577 HR@10 95.53% ADAM Kingma & Ba|(2015)
I\L,[fi‘fﬁi; Transformer-XL ~ WikiText-103 191,950,208 Perplexity 39.47 LAMB |You et al.| (2020
GPT-2 small OpenWebText 124,373,760 Validation loss 2.85 AdamW |L0shch110v & Hutter|(2019)
fie‘?era.‘ed ResNet18 CIFAR-10 11,173,962 Accuracy 85.37% SGD-M [Nesterov|(2013
earning

Table 7: Dataset and training configuration.

Dataset Training
Name Size Workers used Time (min) Independent Runs Performed
CIFAR10 Krizhevsky et al.| (2009) 160MB 2 5 15
CIFAR100 |Krizhevsky et al.[(2009) 160MB 2 20 15
ImageNet Deng et al|(2009) 140GB 4 2100 1
Movielens-20m [Harper & Konstan|(2015) 190MB 4 2 10
WikiText-103 IW m 500MB 4 190 4
OpenWebText Gokaslan et al.[(2019) 40GB 2 1440 1

D.2 LEGACY ON DIFFERENT COMPRESSION CLASSES

In this Section, we show the efficacy of LEGACY on Random-k as the base compressor.

D.2.1 RANDOM-k IN LEGACY AS BASE COMPRESSOR

Following the configuration described in Sectionf] we provide additional tests, using the Random-
k as the base compressor in LEGACY. Figure [] displays the accuracy versus relative average data
volume throughout training for AlexNet, ResNet-9, and Transformer-XL.

In Table [8] we report the accuracy of ResNet-9 and AlexNet, including standard deviations ob-
tained through independent runs using Top-k and Random-k as base compressors in LEGACY. Top-k
demonstrates superior performance relative to Random-k. The tests revealed comparable findings
to those discussed in Subsection[d.1] further validating the importance of small layers and the initial
training phase in improving compression efficiency.

Table 8: Comparison of average compression ratios vs. mean accuracy with standard deviation
derived from 7 runs.

ResNet9 AlexNet

Method Compression ratio Average ratio Accuracy Average ratio Accuracy

Baseline N/A 100% 92.07 £0.13 100% 84.98 +0.34
Topk 0.1% 0.1% 75.72 £ 1.07 0.1% 65.53 £ 0.86
Topk-epoch Bo.o5FEo.15 0.1% 73.65 £ 0.16 0.1% 59.85£49
Topk-epoch Bo.15Fo.05 0.1% 79.18 £ 0.26 0.1% 66.25 £ 0.62
Topk-layer S10L0.1 0.12% 82.94 + 0.79 0.13% 70.27 £ 0.91
Randomk 0.1% 0.1% 50.04 £ 0.8 0.1% 43.58 £ 0.45
Randomk-layer S10Lo.1 0.12% 68.67 + 0.53 0.13% 62.13 £ 0.45

28

Under review as a conference paper at ICLR 2026

6100 & BisEos SioLoa A Soila Go.55 610 V Boaba V BsEis
Bo.15E0.05 d BisEs Siola Silio ® & Bo.osEo.15 BosExs ---- base line
& Bifoa ® Siloa R Srolos ® %01
450
09
0.8 % - 400
* 350
Y 08
307 . > ° 2300 v
© © x
< x g oA D250
0 0.6 0097 a o
o] 9] 5200 -
< < a
os| * 06 150
100 ¥
. ¥
04 05 50

107 1071
Relative Avg. Data Volume

107 107t
Relative Avg. Data Volume

107 1071
Relative Avg. Data Volume

(a) AlexNet (CIFAR10) (b) ResNet9 (CIFAR10) (c) Transformer-XL (wikitext-103)

Figure 6: Layer-size and training epoch dependent Random-% compression, where Ss, L;, means
small layers(< 10%) compressed with compression factor, 6, and large layers compressed with com-
pression factor, d2, and Bj, E5, denotes two-phase training, beginning phase (half of the total train-

ing epoch) with compression factor, 4; and ending phase with compression factor d5.

D.3 SCALABILITY OF LEGACY

We performed our previous experiments on high-performance GPUs in a data center, connected
by a fast network, and consisting of a limited number of workers. To evaluate performance in more
constrained environments, we now simulate scenarios with a larger number of workers and restricted
resources.

D.3.1 LEGACY ON CONSTRAINED ENVIRONMENTS

Testbed and setup. We trained ResNet-18 on CIFAR-10 using 50 workers, sharing a 1 Gbps network
bandwidth, with every worker operating on an Intel Xeon Platinum 8276 CPU instead of a GPU. In
this part, we integrated error feedback (EF) in our tests; the implementation of EF is based on|Sahu
et al[(2021). We use Gloo AllGather for internodal communication. Figure[7]profiles the accuracy
per wall clock time for 4100 seconds, which is the time required for compressors to complete 30
epochs. For the compression parameters of each method, we employed the following so that all
methods transmit (almost) equal average data volume:

* Top-k: 1.7% uniform compression.

* Accordion: Set low and high compression ratio to ko, = 0.1% and knigh = 10%, respec-
tively, achieving an average compression ratio of 1.98%.

» Top-k Epoch-based: The total training duration of 30 epochs was divided into four seg-
ments: three segments of 8 epochs each, followed by a final segment of 7 epochs. Compres-
sion ratios were set to 5%, 1%, 0.5%, and 0.1% for each segment, respectively, resulting in
an average compression ratio of 1.75%.

» Top-k Layer-based: Layers were categorized based on size into five groups: very small (<
100), small (< 600), medium (< 10°), large (< 10°), and very large (> 10°). Assigned
compression ratios were 80%, 50%, 20%, 5%, and 0.1% for each group respectively, trans-
mitting 1.77% of the gradients.

Results. Although the no-compression baseline achieves the highest accuracy, the time required is
also large in environments with limited and weak resources. In this test, the baseline needed more
than 6 hours to complete 30 epochs, while the compression tests took ~ 4100 seconds, thereby
achieving the best return for time. From Figure we can observe that the Epoch-based Top-k
strategy achieves the best performance in the first 1000 seconds, which is expected as the method is
running through a light compression of 5% during this period, compared to the other compressors
that are using around a 1.7% compression ratio. The uniform compressors required approximately
double the time (a little less than 2000s) to reach this level of accuracy. On the other hand, the Top-k
strategy based on layer size, stands out with the best accuracy when the layer size groups are more
refined; creating more groups helps in controlling the compression for sensitive and small layers to
achieve better accuracy.

29

Under review as a conference paper at ICLR 2026

—— Accordion No compression —— Topk-epoch —— Topk-layer —— Topk

09 09 50000

0.8 0.8

40000

0.7 0.7

>0.6 30000
[9

©

505
20000
o4

Data Volume (MB)

0.3 10000

/
0.2

ol
0.1

01t pccordio 612 | gGACHREGACYL G100
1000 2000 3000 4000 1000 2000 3000 4000
Wall Clock Time (s) Wall Clock Time (s)

(c) ResNet18 training in Fl environ-
(a) ResNetl8 training (with EF) (b) ResNet18 training (without EF) ment, total data volume.

Figure 7: In (a) and (b), we show accuracy vs. wall clock time of training ResNet-18 on CIFARI10,
with and without EF, respectively. In (c), we show the total communicated data volume in ResNet-
18 on CIFARI1O training in an FL environment; see legend in Figure @

—— Accordion(8, 0.2) 5100 — Bon_s — 515L1_2 — 51_3
0.9 0.9 0.9
0.8 o8 [0.81-14
07 07 07 [
206 506 206
e © e
505 Cos 505
S04 IS Soa
P 20.4 <V
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 5 10 15 20 25 30 0 5000 10000 15000 20000 25000 0 10000 20000 30000 40000 50000
Epoch Wall Clock Time (s) Data Volume (MB)
(a) Accuracy vs. Epoch (b) Accuracy vs. Time (c) Accuracy vs. data volume

Figure 8: Training ResNet18 on CIFAR10 in a FL Environment; 4100 is no compression baseline.

Takeaways. In resource-limited environments, the strategies in LEGACY perform better in terms of
obtaining a better accuracy faster. The initial mild compression phase of the epoch-based strategy
allows it to benefit from the early training phase and outperform other methods, which take signif-
icant time to match its performance, even after the epoch strategy enters the aggressive phase. On
the other hand, applying light compression to small layers enhances model performance. In both
strategies, creating more groups aids in refining the compression more effectively to achieve better
performance.

D.3.2 FEDERATED TRAINING OF RESNET-18 ON CIFAR-10

Fast networks do not always harvest the compression benefit [Xu et al.| (2021a); bandwidth-limited
federated training is an authentic area in assessing our strategies.

Testbed and setup. We emulate a constrained federated learning (FL) environment with 50 CPU
workers by using the same configuration as before. Additionally, we partition the CIFAR-10 dataset
into 50 subsets using a Dirichlet distribution with parameter « = 10 to mimic a non-i.i.d. data
distribution among the workers. We use Top-k as the base compressor in LEGACY and compare
the results with no compression baseline and Accordion |Agarwal et al.|(2021a)). This configuration
more accurately reflects the limitations encountered in a real-world FL environment, characterized
by heterogeneous data, constrained networks, and computational resources.

Result. We do not accumulate gradients at local nodes but communicate immediately to test the
resilience of training when the slow network is burdened with heavy communication. Our strategies
are robust in FL and outperformed the uniform Top-1.3% and Accordion, achieving a 16-35% gain
in accuracy, while being 6x faster than the no-compression baseline; see Figure [8b] Our layer-
based policy’s test accuracy is almost similar to the no-compression baseline, while the epoch-based
policy outperforms the uniform Top-1.3%. The adaptive policies in LEGACY significantly lower the
communicate data volume overhead in FL deployments; By FEy ¢ and S15L1 2 communicate only

30

Under review as a conference paper at ICLR 2026

Table 9: CIFAR-10 experiments

Dataset CIFAR-10
Architecture AlexNet, ResNet-9
Repository Layer-Wise-AAAI20 Dutta et al.| (2020)
See https://github.com/sands-lab/layer-wise—aaai20
License MIT
Number of workers 2
Global Batch-size 256 x 2
Optimizer vanilla SGD
LR scheduler piecewise-linear function that increases the

learning rate from O to 0.4 during the first 5 epochs
and then decreases to 0 till the last epoch
Number of Epochs 30
Repetitions 15, with different seeds

Table 10: Evaluation of LEGACY in large scale training of Resnet-18 on CIFAR-10.

Methods No compression Top-k LEGACY-E LEGACY-L
Top-1 Accuracy 89.34 69.1 71.8 80.76

1.3% and 1.23% of the data, respectively, compared to the no-compression baseline (Figure [8c));
also, see total communicated data volume during training in Figure Together, this indicates the
high quality of the trained model, consistent with the findings in data center training, and validates
our claim that the simple yet efficient principles in LEGACY are beneficial for federated deployments.

D.3.3 SCALING LEGACY TO 100 WORKERS IN A DATA CENTER

Testbed and setup. We used the same configuration as in [D.3.1] but scaled the system to 100
workers and removed the bandwidth limitation to accelerate training. As in the previous setup,
each worker operated on an Intel Xeon Platinum 8276 CPU, and all other parameters were kept
identical. The model accuracy depends on the compressed gradients being transmitted, not on their
transfer speed; the results are generalizable across different bandwidths (e.g., 400 Gbps, 10 Gbps,
or 1 Gbps). In practice, the compression strategy remains unchanged regardless of bandwidth;
only the transfer time varies. Consequently, under low-bandwidth conditions, LEGACY provides
substantial speedups over uncompressed training while also achieving higher accuracy than uniform
compression.

For compression, we configured each method to transmit approximately 1% of the gradients on
average, using the following parameters:

* Top-k: 1% uniform compression.

* Top-k Epoch-based: the first epoch used a 5% ratio, the second epoch 2%, followed by
1% for the next 18 epochs (epochs 3-20). For the final 10 epochs, we applied a 0.7% ratio,
resulting in an average compression ratio of 1.06%.

* Top-k Layer-based: layers were grouped by size into four categories: small (< 600),
medium (< 10%), large (< 109), and very large (> 10°). The small layer group was left
uncompressed. Compression ratios of 15%, 2%, and 0.1% were applied to the medium,
large, and very large groups, respectively, yielding an average compression ratio of 0.99%.

Results and takeaways. Table [I0] reports the results for the 100-worker setting. The no-
compression baseline achieves the highest accuracy (89.34%), but at the cost of substantial com-
munication overhead. Uniform Top-k suffers from a significant accuracy drop (69.1%), whereas
both variants of LEGACY perform considerably better, with LEGACY-E reaching 71.8% and LEGACY-L
achieving 80.76%. These results confirm that LEGACY scales effectively to 100-worker configura-
tions while maintaining strong accuracy under aggressive compression. Combined with the earlier
experiments in constrained environments, this demonstrates that LEGACY is both efficient and robust
across resource-limited and large-scale deployments, making it a practical solution for challenging
distributed training scenarios.

31

https://github.com/sands-lab/layer-wise-aaai20

Under review as a conference paper at ICLR 2026

Table 11: CIFAR-100 experiments

Dataset CIFAR-100
Architecture ResNet-18
Repository rethinking-sparsification [Sahu et al.| (2021}
Seehttps://github.com/sands—lab/rethinking—-sparsification
License MIT
Number of workers 2
Global Batch-size 256 x 2
Optimizer SGD with Nesterov Momentum
Momentum 0.9
Post warmup LR 0.1 x 16
LR-decay /10 at epoch 150 and 250
LR-warmup Linearly within 5 epochs, starting from 0.1
Number of Epochs 300
Weight decay 1074
Repetitions 15, with different seeds
Table 12: Language modelling task
Dataset WikiText103
Architecture Transformer-XL
Repository NVIDIA Deep Learning Examples |[Nvidia
Seehttps://github.com/NVIDIA/DeepLearningExamples
License Apache
Number of workers 4
Global Batch-size 256
Optimizer LAMB
LR-decay Cosine schedule from 0.01 to 0.001

LR-warmup Linearly within 1,000 iterations, reaching 0.01
Number of training steps 4500
Weight decay 0
Repetitions 4, with different seeds

D.4 TIME AND SPACE COMPLEXITY OF LEGACY AND OTHER ADAPTIVE COMPRESSORS

The time complexity of LEGACY is equivalent to the time complexity of the base compressor used.
LEGACY does not involve any back-of-the-hand calculation in choosing the adaptive version of the
compressor and needs negligible additional memory only to store the hyperparameters. Therefore,
LEGACY does not require time and space complexity while granting the capability to regulate the
communicated data volume, select the compressor, and decide whether to use error feedback.

In contrast, Accordion |Agarwal et al.| (2021a) does not provide control over the communicated data
volume since the duration of the critical regime is unknown, and it requires extra memory equivalent
to twice the size of the model to store accumulated gradients from the current and previous epoch
used in the algorithm. L-GreCo Markov et al.|(2024) require additional computations, which are
hidden during training by invoking L-GreCo infrequently (once per epoch in the conducted exper-
iments) and also necessitates extra memory to keep accumulated gradients and some intermediate
matrices used in the algorithm (according to the paper, it possesses a time complexity of O(D|L||C)
and a memory complexity of O(|L|D)), where |L| is the number of layers, C a list of compression
parameters to tests, and D is the discretization factor (with default value D = 10, 000)—the hyper-
parameters used in L-Greco. Finally, Adacomp Chen et al.|(2018a)), variance-based method |Tsuzuku
et al.| (2018), and CAT [Khirirat et al.| (2021) do not give the possibility to select the compression
method or control the communicated volume.

E LIMITATION AND FUTURE DIRECTION

Although adapting compression ratios based on layer size and training phase can significantly en-
hance model performance, it introduces additional hyperparameters. These hyperparameters define
the groups and the compression ratios for each group. While following the guidelines established by

32

https://github.com/sands-lab/rethinking-sparsification
https://github.com/NVIDIA/DeepLearningExamples

Under review as a conference paper at ICLR 2026

Table 13: Recommendation task

Dataset Movielens-20M
Architecture NCF
Repository NVIDIA Deep Learning Examples Nvidia

Seehttps://github.com/NVIDIA/DeepLearningExamples|

Number of workers 2
Global Batch-size 220
Optimizer ADAM
ADAM p; 0.25
ADAM jy 0.5
ADAM LR 4.5 x 1073
Number of Epochs 30
Weight decay 0
Dropout 0.5
Repetitions 10, with different seeds
License Apache
Table 14: ImageNet experiments
Dataset ImageNet
Architecture ResNet-50
Repository PyTorch Examples PyTorch
Seehttps://github.com/pytorch/examples
License BSD 3-Clause
Number of workers 4
Global Batch-size 256
Optimizer SGD
Momentum 0.9
LR-decay LR decayed by 10 every 30 epochs
Number of Epochs 50
Weight decay 1074
Repetitions 1

LEGACY can improve performance, identifying optimal hyperparameters is challenging and depends
on multiple factors, such as the dataset, DNN model architecture, network bandwidth, and the num-
ber and performance of workers. Regardless, in Section [C.I] we presented a simplified approach
that requires only two hyperparameters. In the future, we aim to develop more robust methods for
selecting LEGACY parameters, making the process more efficient and adaptable to varying scenarios.

In this work, we explored the impact of adapting compression based on two parameters—Ilayer size
and training iteration—that require no additional computation to determine. Additionally, we in-
vestigated the potential of optimizing compression using the layer position within the model. To
evaluate this, we grouped layers into two or three categories based on their position: the first and
last halves, or the first, middle, and last parts, respectively. Similar to our previous experiments,
we applied different compression strategies (aggressive for one group and mild for another, while
maintaining a similar data volume) and compared them to uniform compression. Our results did
not identify a clear best approach; strategies that performed well in one case failed in another. We
attribute this to model layer distributions—some models have smaller layers predominantly at the
beginning, while others have them concentrated at the end. Ignoring these distributions when ap-
plying compression can lead to aggressive compression on smaller layers, resulting in degraded
performance. We believe a more in-depth study that integrates layer position with layer size and
training phase could refine compression parameter selection and improve performance outcomes.

The paper primarily focuses on synchronous communication and does not consider addressing asyn-
chronous SGD setups, which is a nontrivial extension of this work. However, the dynamic compres-
sion strategies proposed by LEGACY are based on layer size and training phase, which are general
principles and could be adapted for asynchronous setups. This extension would require further care-
ful theoretical and experimental validation to ensure convergence and efficiency, and is left to future
work.

33

https://github.com/NVIDIA/DeepLearningExamples
https://github.com/pytorch/examples

Under review as a conference paper at ICLR 2026

LEGACY is feasible for real-time edge deployments because it uses lightweight meta-scheduling
on a base compressor based on simple factors like layer size and training phase, avoiding compu-
tationally intensive methods. The framework does not rely on hard-to-compute gradient statistics,
making it suitable for resource-constrained environments like edge devices. While the paper does
not provide explicit latency metrics for real-time edge deployments, it emphasizes its applicability in
several comparable settings: Minimal computational overhead in scheduling compression parame-
ters; Empirical results on distributed setups (e.g., training on GPUs with 400 Gbps bandwidth) show
that LEGACY does not introduce significant delays compared to uniform compression strategies.
To further harvest the compression benefit of LEGACY in bandwidth-limited federated training, we
deploy it using 50 and 100 workers, with every worker operating on an Intel Xeon Platinum 8276
CPU instead of a GPU, sharing a 1Gbps network bandwidth and no constraint on the bandwidth, re-
spectively. In both cases, LEGACY demonstrates superior performance compared to the base uniform
compressor. Taken together, LEGACY s lightweight nature makes it a promising candidate for edge
deployments.

With the advent of large multimodal models, fine-tuning can be seen as training a DNN model
with a special starting point. So, LEGACY’s compression strategy, based on layer size and training
phase, can be applied equally well to fine-tuning as it does to training from scratch. Fine-tuning
typically involves fewer updates for certain layers, so LEGACY for fine-tuning will dynamically
adjust compression parameters to these layers, making it robust to both training and fine-tuning
scenarios. However, when LEGACY relies on dynamic adjustments during different training phases,
in scenarios of fine-tuning with very short training durations, the benefits of LEGACY scheduling
may be diminished.

Finally, we note that adversarial attacks are orthogonal to the gradient compression strategies. How-
ever, LEGACY’s simple, layer- and epoch-based dynamic meta-scheduling makes it less prone to
adversarial gradient perturbations compared to adaptive compression strategies that depend on gradi-
ent magnitudes or other dynamic metrics. Thus, LEGACY can be combined safely with adversarial
attacks-resilient methods (methods using robust aggregation mechanisms). However, to test this
efficacy is not in the primary scope of this work.

F ETHICS STATEMENT AND POTENTIAL NEGATIVE IMPACT

Gradient compression techniques have been widely adopted since their introduction to the machine
learning community. The strategies used in developing our adaptive compression scheduler in this
work, theoretically and empirically, demonstrate their capability of achieving better accuracy in
DNN training in a distributed and federated setup. The present work is theoretically driven, and
experiments corroborate the theoretical claims. Therefore, we do not see any foreseeable harm it can
pose to human society. However, it is always possible that some individual or an organization can
use this idea to devise a fechnique that can appear harmful to society and bear evil consequences.
As authors, we are absolutely against any detrimental usage, regardless of, by any individual or
organization, under profit or non-profitable motivation, and pledge not to support any detrimental
endeavors concerning our idea therein.

34

	Introduction
	Related work and background

	Designing a dynamic compressor
	Insight through the lens of the compressed GD
	A dynamic compressor scheduler
	System architecture, Simple-LEGACY, and combined approach

	Convergence guarantee
	Benchmarking and evalutaion
	Model quality vs. transmitted data volume
	Model quality vs. training throughput
	Comparison with adaptive gradient compressors
	Quantization and Low-rank factorization with LEGACY

	Evaluating LEGACY on GPT-2
	Additional benchmarking and discussions

	Conclusion
	Related work
	Theoretical results
	Assumptions
	Inequalities used

	Convergence of GD
	Convergence of GD on strongly convex functions
	Convergence of GD on nonconvex functions with PL condition

	Convergence proofs for nonconvex distributed SGD
	Unbiased compressors
	Biased compressors

	System architecture — LEGACY, hyperparameter selection, Variants of LEGACY
	Simple LEGACY
	Mixed approach
	Numerical results of S-LEGACY-M
	Strategy II: Example

	Addendum to experimental evaluations
	Reproducibility
	LEGACY on different compression classes
	Random-k in LEGACY as base compressor

	Scalability of LEGACY
	LEGACY on constrained environments
	Federated training of ResNet-18 on CIFAR-10
	Scaling LEGACY to 100 Workers in a Data Center

	Time and space complexity of LEGACY and other adaptive compressors

	Limitation and future direction
	Ethics statement and potential negative impact

