

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEGACY: A LIGHTWEIGHT DYNAMIC GRADIENT COMPRESSION STRATEGY FOR DISTRIBUTED DEEP LEARNING

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Distributed learning has achieved remarkable success in training deep neural
014 networks (DNNs) on large datasets, but the communication bottleneck limits
015 its scalability. Various compression techniques have been proposed to alleviate
016 this limitation; however, they either use fixed parameters throughout training
017 or rely on complex and computationally intensive methods to adapt compression
018 parameters. Instead of the hard-to-tune hyperparameters required by adaptive
019 compressors, this paper investigates the impact of two fundamental factors in DNN
020 training—the layer size of the networks and their training phases—to design a simple yet efficient *dynamic scheduler* for any compressor, guiding
021 the selection of compression parameters. We present a Lightweight Efficient
022 GrAdient Compression strategY or LEGACY, which, in theory, can work with
023 any compression technique to produce a simple dynamic counterpart. We bench-
024 mark LEGACY on distributed and federated training, involving [seven](#) different
025 DNN architectures, [ranging from ResNet, Transformer-XL, to GPT-2](#), across
026 large and challenging datasets, including ImageNet, WikiText-103, and [Open-
027 WebText](#). On ImageNet-1K, with an equivalent average data volume, LEGACY’s
028 dynamic compression strategies improve the Top-1 accuracy of ResNet-50 by
029 7 – 11% compared to uniform Top-0.1% compression, while on WikiText-103,
030 the layer-based dynamic strategy reduces the perplexity of Transformer-XL by
031 ~ 26% relative to the same baseline. In addition, we evaluate LEGACY under
032 constrained and federated settings, and demonstrate that it scales effectively
033 to a 100-worker configuration while maintaining strong accuracy under aggressive
034 compression. We publish anonymized code at: <https://github.com/LEGACY-compression/LEGACY>.

036 1 INTRODUCTION

037 Distributed learning on multiple computing nodes is widely adopted to achieve optimal training per-
038 formance for large deep neural networks (DNNs) (You et al., 2018; Wongpanich et al., 2021; Xu
039 et al., 2021a). However, the training requires exchanging gradients between the nodes; the massive
040 volume of the exchanged data creates a communication bottleneck, and different compressed com-
041 munication techniques (quantization (Dettmers, 2015; Alistarh et al., 2017; Bernstein et al., 2018),
042 sparsification (Aji & Heafield, 2017; Stich et al., 2018; Alistarh et al., 2018; Dutta et al., 2020),
043 low-rank (Vogels et al., 2019), and hybrid (Basu et al., 2019)) are designed to mitigate this problem.

044 Among these techniques, sparsifiers achieve baseline performance by only sending a small subset
045 of the gradient components. E.g., by communicating only 0.36% of the largest gradient elements of
046 ResNet-50 (He et al., 2016) trained on ImageNet-1K (Deng et al., 2009), Lin et al. (2018) achieves a
047 baseline no compression performance. Nevertheless, almost a decade after being introduced by Aji
048 & Heafield (2017) for gradient compression, there is no clear recipe for what k to set for training
049 different DNN models using the Top- k sparsifier. While Top- k sends fixed data volume in each
050 training iteration, the threshold sparsifier (a.k.a hard-threshold (Strom, 2015; Sahu et al., 2021))
051 communicates gradient components with absolute magnitude greater than a threshold, $\lambda \geq 0$. It sets
052 anything less than λ to zero. This allows the threshold sparsifier to send a variable amount of data in
053 each iteration and has a better convergence guarantee (Sahu et al., 2021). One can see the threshold
sparsifier as a *simple adaptive counterpart* of Top- k as it sends variable data volume in each training
iteration. However, the same question persists—how to tune the threshold, λ , in practice?

Figure 1: Compression ratio (in percentage, we use $\frac{k}{d} \times 100$) vs. the training iterations and layer size in training ResNet-18 on CIFAR-100 ((a) and (b)) and NCF on MovieLens-20 M ((c) and (d)) using the Top- k and Threshold sparsifiers. For ResNet18 and NCF, k is set to 3.92%, and 4.22%, respectively, and $\lambda = 0.1$.

Not only the sparsifiers, (or Top- k in particular) for any compressors, the existing literature predominantly focuses on uniform compression throughout the training, where the same compression ratio is used for all layers. Although varying the compression ratio for each layer at different stages of training is feasible, this area is not well-explored and most available literature proposes compute-heavy methods to find the best compressor (Khirirat et al., 2021; Xin et al., 2023; Markov et al., 2024). Attempts were made to achieve optimal compression performance by adopting different adaptive strategies; see §A. In contrast, we investigated Occam’s Razor principle: “plurality should not be posited without necessity.” Instead of employing computationally intensive strategies, can we provide a simple yet efficient strategy for quickly selecting a compression parameter for each layer, achieving a good balance between compressed data volume and model performance?

In that pursuit, we train two DNN architectures: (i) ResNet-18 (He et al., 2016) on CIFAR 100 (Krizhevsky et al., 2009) (baseline no compression Top-1 accuracy is 73.38%) and (ii) NCF on MovieLens-20M (Harper & Konstan, 2015) (baseline no compression best Hit-Rate@10 is 95.59%), on standard PyTorch benchmark using 2 NVIDIA A100-SXM4 GPUs with 80 GB memory, connected via 400 Gbps network bandwidth. We use the Top- k and threshold sparsifiers and set the hyperparameters k and λ to send the same data volume. While uniform Top- k achieves a Top-1 accuracy of 73.04% on ResNet-18 and a best Hit-Rate@10 of 91.33% on NCF, threshold sparsifier achieves a Top-1 accuracy of 73.32% on ResNet-18 and a best Hit-Rate@10 of 92.7% on NCF, respectively. To get a better insight into threshold sparsifier’s superior performance over the Top- k , we plot the compression ratio for different layers of ResNet-18 over iterations and the total average compression of its different size layers; see Figures 1(a)-(b). We observed that the small and medium layers (dimension less than 10^2 to up to 10^5) are not so severely compressed during the training compared to the large and very large layers (dimension more than 10^6)—larger layers experience extremely aggressive compression—even more aggressive than the uniform Top- k for those layers. Additionally, regardless of their sizes, during the beginning phase of the training, the layers are less aggressively compressed compared to the final training phase. We made almost identical observations in the NCF training; see Figures 1 (c)-(d).

Our empirical observations in using the Top- k sparsifier and its adaptive counterpart for DNN training indicate *two key factors*: (a) *the layer size of the DNNs* influence in choosing how much one needs to compress, and (b) *the training phase of the DNNs* can be a critical contributor in the dynamic compressor design. Moreover, the second observation is consistent with recent research on the *critical training regime of DNNs* (Achille et al., 2019; Agarwal et al., 2021a; Zhang et al., 2022). Although our quest for designing a dynamic compressor primarily started with sparsifiers, the above-mentioned simple factors can be used conjointly with any compressor in designing its efficient counterpart. Based on them, we propose a compression framework that dynamically sets the compression level based on the epoch and layer size. Although both words, adaptive and dynamic, can depict our framework, we prefer to refer to it as dynamic, as we do not use any complicated, hard-to-compute, infeasible gradient statistics during training.

We list our contributions as follows:

Dynamic compressor scheduler (§2). We present a Lightweight Efficient GrAdient Compression StrategY or LEGACY that, in theory, can work with any compression technique to produce its simple dynamic counterpart. LEGACY is based on easy-to-obtain information—layer size and training phase. Designing LEGACY is empirically motivated and stands on solid technical intuitions; see §2.1.

108 Irrespective of the DNN models and training dataset, LEGACY can guide the selection of compression
 109 parameters based on the layer size or training phase; see system design in §C. To simplify hyper-
 110 parameter selection, we propose a simplified version of LEGACY in §C.1 called **Simple**-LEGACY or
 111 S-LEGACY; §C.1.1 demonstrates how the two LEGACY approaches can be combined.

112 **Theoretical insights (§3).** Under the usual assumptions for stochastic first-order algorithms in the
 113 compressed, distributed setup, we validate the influence of our policies on the convergence of com-
 114 pressed SGD using biased and unbiased δ -compressors; see Theorem 1 in §3.

116 **Benchmarking (§4).** We benchmark LEGACY through a variety of numerical experiments involv-
 117 ing diverse DNN architectures (convolution and residual networks, transformer, recommender sys-
 118 tem and GPT-2—a total of 7 models) trained for different tasks (image classification on CIFAR
 119 10, CIFAR 100, and ImageNet-1K, text prediction on WikiText-103, OpenWebText, and collab-
 120 orative filtering on MovieLens-20M—a total of 6 datasets; see Table 6 in §D.1) by using Top- k ,
 121 Random- k (sparsifiers), QSGD Alistarh et al. (2017) (quantizer), and PowerSGD (low-rank) Vogels
 122 et al. (2019) as base compressors. We report our results using test accuracy, communicated data
 123 volume, throughput, and computation time. Additionally, we compared LEGACY against 5 state-of-
 124 the-art adaptive compressors (CAT Khirirat et al. (2021), Variance-based compression Tsuzuku et al.
 125 (2018), Accordion Agarwal et al. (2021a), AdaComp Chen et al. (2018a), and L-Greco Markov et al.
 126 (2024)). Finally, in §D.3, we evaluate LEGACY in resource-constrained environments (compute and
 127 network bandwidth; §D.3.1), federated learning (§D.3.2), and a large-scale configuration with 100
 CPU workers (§D.3.3), demonstrating its scalability.

128 1.1 RELATED WORK AND BACKGROUND

130 Due to limited space, we moved the related work to §A.

131 **Notations.** We use $\|x\|$ to denote the ℓ_2 -norm of a vector x . By $g_{i,t}$ and $\nabla f_{i,t}$, we denote the
 132 stochastic gradient and full gradient, respectively, at the i^{th} node at iteration t .

134 **Compressor.** A random operator, $\mathcal{C}(\cdot) : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is a *compression operator* if $\mathbb{E}_{\mathcal{C}}\|x - \mathcal{C}(x)\|^2 \leq$
 135 $(1 - \delta)\|x\|^2$ for all $x \in \mathbb{R}^d$, where $\delta > 0$ is the compression factor. A smaller δ indicates a more
 136 aggressive compression. In our setup, $\delta \in (0, 1]$, and \mathcal{C} is a δ -compressor. The popular sparsifiers,
 137 Top $_k$ and Random $_k$ have $\delta = \frac{k}{d}$, and $\mathbb{E}\|x - \text{Top}_k(x)\|^2 \leq \mathbb{E}\|x - \text{Random}_k(x)\|^2 \leq (1 - \frac{k}{d})\|x\|^2$.

138 2 DESIGNING A DYNAMIC COMPRESSOR

140 From Figure 1, we observe two key factors in DNN training. First, the compression ratio has more
 141 impact at the beginning of training than at the end. Second, it is better to compress large layers
 142 and keep small layers uncompressed (or easy compression). But can these observations also be
 143 theoretically justified so that we can build a dynamic compressor scheduler based on them?

144 To answer this, we formulate the impact of unbiased compressors on the decrease rate for the gradi-
 145 ent descent (GD) algorithm under two relatively easier-to-analyze cases: (i) smooth, strongly convex
 146 functions, and (ii) smooth, nonconvex functions with PL condition. There is no loss of generality
 147 in considering GD instead of distributed SGD — analysis of GD offers ease of notation, and under
 148 simple arguments, leads us to a practical scheduler.

149 **Setup.** Consider the *empirical risk minimization* (ERM) problem with n computing nodes:

$$151 \min_{x \in \mathbb{R}^d} \left[F(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) \right], \quad (1)$$

154 where $f_i(x) := \mathbb{E}_{z_i \sim \mathcal{D}_i} l(x; z_i)$ is the loss function at node i on input z_i sampled from its distribution,
 155 \mathcal{D}_i . Let $g_{i,t}$ be the stochastic gradient computed at the i^{th} node in iteration t and of the form
 156 $g_{i,t} = \nabla f_{i,t} + \xi_{i,t}$, with $\mathbb{E}[\xi_{i,t}|x_t] = 0$. We made general assumptions in §B.1 to prove our results.

158 2.1 INSIGHT THROUGH THE LENS OF THE COMPRESSED GD

159 Let \mathcal{C}_t be unbiased δ_t -compressors for all $t \in [T]$. The iterative update rule of the compressed GD
 160 algorithm with fixed stepsize, $\eta \geq 0$ and unbiased δ_t -compressors in solving (1) is given by

$$161 x_{t+1} = x_t - \eta \mathcal{C}_t(\nabla F(x_t)). \quad (2)$$

162 In the following lemma, we quantify the decrease in the quantity, $\|x_{t+1} - x_*\|^2$ under the smoothness
 163 and strong convexity assumption; see the proof in §B.2.

164 **Lemma 1.** *Let F follow Assumptions 1 and 2. Then with fixed stepsize η , the sequence of iterates,
 165 $\{x_t\}_{t \geq 0}$ of compressed GD updates satisfy*

$$167 \mathbb{E}_{\mathcal{C}_t} \|x_{t+1} - x_*\|^2 \leq \underbrace{(1 - 2\mu\eta + \eta^2\mu L(2 - \delta_t))}_{D(\delta_t):=\text{Real decrease}} \|x_t - x_*\|^2.$$

$$168$$

$$169$$

170 Note that $D(\delta_t)$ is a function of the compression factor. For no compression, $\delta_t = 1$, we obtain:

$$172 \|x_{t+1} - x_*\|^2 \leq (1 - 2\mu\eta + \mu\eta^2 L) \|x_t - x_*\|^2 := D(1) := \text{Ideal decrease.}$$

$$173$$

$$174$$

175 Ideally, we are interested in $\delta_t \in (0, 1]$ such that $D(\delta_t)$ (i.e., the compressed GD decrease) is as
 176 close as possible to $D(1)$ (i.e., the non-compressed GD decrease). We have

$$177 \Delta := D(\delta_t) - D(1) = \mu\eta^2 L(1 - \delta_t) \|x_t - x_*\|^2.$$

$$178$$

$$179$$

180 To have $\Delta \approx 0$, we require:

181 (i) **Strategy I: Compression based on the training phase.** At the beginning of the training, we have
 $\|x_t - x_*\|^2 \gg 0$. Therefore, to make $\Delta \approx 0$ we need to choose $\delta_t \rightarrow 1$ (no or easy compression). At
 182 the end of the training, $\|x_t - x_*\|^2 \approx 0$. Hence, no strong control is needed on δ_t to keep Δ small.
 183 In this case, one can choose $\delta_t \approx 0$ (aggressive compression).

184 (ii) **Strategy II: Compression based on the layer sizes.** We observed that a small subset of layers
 185 in DNN training dominates the communication overhead. E.g., for the models benchmarked in
 186 this paper, the largest 20% of layers account for $\sim 90\%$ of the total parameter volume, while the
 187 remaining 80% contribute to only 10%. This makes large layers ideal candidates for aggressive
 188 compression, as they are usually overparameterized with more redundancy and can tolerate higher
 189 compression without significantly affecting model quality.

190 In contrast, smaller layers, although inexpensive in terms of raw data, often carry gradients that are
 191 crucial to model convergence. Preserving the fidelity of these gradients is essential. We can reduce
 192 the compression severity on these smaller, more sensitive layers by reallocating the bandwidth saved
 193 from compressing large layers more aggressively. This reallocation improves gradient quality where
 194 it matters most, without increasing overall communication cost. E.g., for Top- k , the contribution
 195 of compressed elements from large layers to the quantity $\|x_t - x_*\|$ is small. The small layers
 196 with less redundancy than the large layers are crucial, and their suboptimality (if compressed too
 197 much) may lead to larger errors. Therefore, compared to uniform δ -compressors, with strategy II,
 198 it is better to easily or not compress small layers, i.e., $\delta_s \approx 1$, and focus on compressing large
 199 layers with compression $\delta_l \approx \delta$. With this strategy, we result in similar data volume and improved
 200 convergence. Even a slight increase in compression aggressiveness for large layers, such as reducing
 201 the transmitted gradient volume from Top- k with $k = 10\%$ to $k = 9.95\%$, can yield a substantial
 202 benefit. While the 0.05% reduction is negligible for a large layer in terms of both volume and
 203 performance impact, the reclaimed budget can represent a significant increase for smaller layers,
 204 potentially allowing a shift from transmitting just 10% to over 50% of their gradients; in some
 205 cases, it can be a 100% reduction or no compression. Such redistributions dramatically enhance
 206 gradient representation in small layers, improving convergence stability and overall model accuracy
 207 with minimal trade-offs; see a practical example and another angle to look at Strategy II in §C.1.3.

208 To further extend our theoretical insight for Strategy-I, in the next lemma, we consider GD for
 209 minimizing a smooth nonconvex function under the PL condition and quantify the functional sub-
 210 optimality gap, $E_{\mathcal{C}_t}(F_{t+1}) - F_*$; see the proof in §B.2.

211 **Lemma 2.** *Let F follow Assumptions 1 and 4. Then with stepsize $\eta = \frac{1}{L}$, the sequence of iterates,
 212 $\{x_t\}_{t \geq 0}$ of compressed GD updates satisfy $E_{\mathcal{C}_t}(F_{t+1}) - F_* \leq \left(1 - \frac{\delta_t \mu}{L}\right) (F_t - F_*) :=$
 213 $D(\delta_t) := \text{Real decrease.}$*

214 Substituting $\delta_t = 1$ gives the ideal decrease, i.e., the decrease in the functional suboptimality
 215 gap without compression: $F_{t+1} - F_* \leq \left(1 - \frac{\mu}{L}\right) (F_t - F_*) := D(1) := \text{Ideal decrease.}$ To have
 $\Delta := D(\delta_t) - D(1) = (1 - \delta_t) \frac{\mu}{L} (F_t - F_*) \approx 0$, we require: (i) At the beginning of the training
 $F_t - F_* \gg 0$. Therefore, we need to choose $\delta_t \approx 1$ (no or easy compression) to keep $\Delta \approx 0$. (ii)
 216 At the end of the training $F_t - F_* \approx 0$. Therefore, we can choose $\delta_t \approx 0$ (aggressive compression).

216
 217
Algorithm 1: Compressed distributed training
 218 without error feedback (EF)
 219
 220 **Input:** Number of nodes n , learning rate η ,
 221 number of iterations T , batch-size B per node
 222 as n_{batch}
 223 **Output:** The trained model x
 224 **for** $t = 0, 1, \dots, T$ **do**
 225 **On each node i :**
 226 $g_{i,t} = \text{Calculategradient}(x_t, n_{batch})$
 227 $k_{i,t} = \text{Chooseparam}(g_{i,t}, t)$
 228 $\tilde{g}_{i,t} = \text{Compress}(g_{i,t}, k_{i,t})$
 229 $\text{Communicate}(\tilde{g}_{i,t})$
 230 **On Master:**
 231 $[\tilde{g}_{1,t}, \dots, \tilde{g}_{n,t}] = \text{Receive}(n)$
 232 $[g_{1,t}, \dots, g_{n,t}] =$
 233 $\text{Decompress}([\tilde{g}_{1,t}, \dots, \tilde{g}_{n,t}])$
 234 $g_t = \text{AverageGrads}([g_{1,t}, \dots, g_{n,t}])$
 235 $\text{Broadcast}(g_t)$
 236 **On each node i :**
 237 $x_{t+1} = \text{Update}(x_t, g_t, \eta)$
 238
 239

Table 1: Functions used in our framework.

Function	Description
Chooseparam	Decide compression parameters
Compress	Apply compression to each layer
Communicate	Send compressed gradient to the server
Receive	Gather the compressed gradients from workers
Decompress	Restore the original tensor shape
AverageGrads	Average the received gradients
Broadcast	Broadcast the averaged gradient
Update	Optimizer independent parameter update

2.2 A DYNAMIC COMPRESSOR SCHEDULER

Motivated by the previous section, we formally define a dynamic compressor scheduler for compressed distributed training on n workers. Although our scheduler is optimizer agnostic, for simplicity, we consider the optimizer to be SGD. Given a stepsize sequence, $\{\eta_t \geq 0\}_{t \geq 0}$ and δ_t -compressors, the update rule for compressed distributed SGD on n workers is given by

$$x_{t+1} = x_t - \frac{\eta_t}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}). \quad (3)$$

Algorithm 1 provides a general compressed communication framework without error feedback (Karimireddy et al., 2019). Our approaches build on this framework by adjusting the compression level via the `chooseparam` function; highlighted in blue. We require two user-inferred hyperparameters: (i) a sorted list of p decreasing compression levels, $\{\delta_i\}_{i=1}^p$, of the δ -compressor \mathcal{C}_t , where δ_p being the most aggressive compression factor, and (ii) a sorted list of p non-decreasing thresholds, $\{\lambda_i \geq 0\}_{i=1}^p$, which represents either an iteration or a layer size at which we use a certain compression level δ_i , in Algorithm 1. The threshold change is based on the following approaches:

(i) **Training epoch dependent.** We start with a less intense compression and gradually increase its intensity during the training. In Epoch compression, we progressively increase the compression level δ as training progresses; see Function 2. In this case, the non-decreasing thresholds $\{\lambda_i\}_{i=1}^p$ denote the iterations or epochs at which the compression intensity increases.

(ii) **Layer size.** We employ an easy compression for small layers as their size is insignificant compared to the larger ones. We achieve this through `LayerSizeCompression`; see Function 3. In this Function, we used the thresholds $\{\lambda_i\}_{i=1}^p$ to group layers by their sizes; smaller layers are affected by a less intense compression, while the larger layers experience a more aggressive compression.

2.2.1 SYSTEM ARCHITECTURE, **Simple**-LEGACY, AND COMBINED APPROACH

We present the system architecture of LEGACY in §C; and Figure 5. We note that there is *no recipe for choosing right compression parameters*. Their choice depends on factors such as the dataset, model architecture, network bandwidth, and many more; see Xu et al. (2021a) and references therein. Our proposed LEGACY does not require hard-to-tune hyperparameters—the layer sizes can be determined and grouped based on their relative sizes, the only rule for choosing compression parameters based on the training phase is to *choose to decrease compression parameters over iterations*.

To simplify the selection of hyperparameters used in LEGACY ($\{\lambda_i\}_{i=1}^p$ for thresholds and $\{\delta_i\}_{i=1}^p$ for compression levels), we propose a simplified version of LEGACY in §C.1 called **Simple**-LEGACY or S-LEGACY. This version requires only two hyperparameters for the epoch or layer-based approach and three for the mixed approach. That is, S-LEGACY-E requires only a default compression parameter δ_u and the number of training phases n ; S-LEGACY-L requires δ_u and a decrease ratio s ; S-LEGACY-M (stands for using both layer and epoch-based) in §C.1.1 demonstrates how the two LEGACY approaches can be combined and it requires δ_u , n , and s .

Figure 2: Layer-size and training epoch dependent Top- k and uniform Top- k (denoted by $\delta_{\text{compression}}$) — Relative average data volume vs. model quality.

3 CONVERGENCE GUARANTEE

In this Section, we establish the nonconvex convergence of distributed SGD with δ_t -compressors. To prove a general distributed convergence with a δ compressor, biased or unbiased, we want to estimate the quantity, $\mathbb{E} \left[\left\| \frac{1}{n} \left(\sum_{i=1}^n \mathcal{C}_t(g_{i,t}) \right) \right\|^2 \mid x_t \right]$, as this is highly influenced by LEGACY’s strategies. To achieve that, we adopt slightly different approaches for biased and unbiased compressors, \mathcal{C}_t .

Denote $\beta_t := (1 - \delta_t)(M + 1) + M$, where $M, \sigma^2 \geq 0$ are constants such that for all $x_t \in \mathbb{R}^d$, the stochastic noise, $\xi_{i,t}$ follows $\mathbb{E}[\|\xi_{i,t}\|^2 \mid x_t] \leq M \|\nabla f_{i,t}\|^2 + \sigma^2$; see Assumption 5. The constants appearing are due to the general Assumptions in §B.1. For biased compressors, we adopt a few extra assumptions. First, we consider a (C, ζ^2) bounded similarity assumption on the variance of the gradients among the workers. This Assumption is stronger than Assumption 6, but a similar assumption was proposed in Sahu et al. (2021), and we rely on it for algebraic purposes in proving the convergence for the general case. Due to limited space, we defer the biased-compressor results, including intermediate Lemmas and the main complexity theorem, to §B.3.2.

Lemma 3. (Compression Bounds) *Let the stochastic noise follow Assumption 5. Let \mathcal{C}_t be unbiased δ_t -compressors for all $t \in [T]$, and let F follow Assumption 6. We have $\mathbb{E} \left[\left\| \frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}) \right\|^2 \right] \leq \frac{2A\beta_t}{n} (F_t - F_\star) + \left(1 + \frac{\beta_t}{n} \right) \|\nabla F_t\|^2 + \frac{B\beta_t}{n} + \left(\frac{2-\delta_t}{n} \right) \sigma^2$.*

Using the previous Lemma, the following theorem gives the complexity results for unbiased δ_t compressors, which are similar to the classical complexity results for compressed SGD-type algorithms; see Dutta et al. (2020); Stich & Karimireddy (2020); Sahu et al. (2021). The proof is given in §B.3.

Theorem 1. (Nonconvex convergence) *(i) Let Assumptions 1, 3, 5, and 6 hold. Let \mathcal{C}_t be unbiased δ_t -compressors for all $t \in [T]$. For a stepsize $\eta \leq \min \left(\frac{1}{\frac{L}{2} + \frac{L(2M+1)}{n}}, \left(\frac{AL(2M+1)T}{n} \right)^{-\frac{1}{2}} \right)$ we have:*

$$\min_{t=0,1,\dots,T-1} \mathbb{E} \|\nabla F_t\|^2 \leq \frac{3(F_0 - F_\star)}{T\eta \left(1 - \frac{L\eta}{2} - \frac{L\eta}{n} \right)} + \hat{\sigma}, \text{ where } \hat{\sigma} = \frac{L\eta(B(2M+1) + 2\sigma^2)}{2n \left(1 - \frac{L\eta}{2} - \frac{L\eta(2M+1)}{n} \right)}.$$

The above Theorem primarily guarantees that the (nonconvex) convergence of distributed SGD with δ_t -compressors in each iteration (which the policies of LEGACY govern: a changing compression

Figure 3: Layer-size and training epoch dependent Top- k and uniform Top- k — Throughput vs. model quality, where experiments with similar global compression ratios are linked with a dotted line; see legend in Figure 2.

Figure 4: Comparison of LEGACY with Top- k and other adaptive compressors in training ResNet9 on CIFAR10.

level over iteration and δ_t modulates the effect of epoch- or layer-based strategies). The factor, $\hat{\sigma} = \frac{L\eta(B(2M+1)+2\sigma^2)}{2n(1-\frac{L\eta}{2}-\frac{L\eta(2M+1)}{n})}$, is the so-called *variance*, incurred due to the effect of multiple factors, including compression ratio, δ_t .

4 BENCHMARKING AND EVALUTAION

Environment and Configuration. We run our experiments on 4 NVIDIA A100-SXM4 GPUs (2 GPUs for AlexNet, ResNet-9, ResNet-18, and GPT-2 training, and 4 GPUs for Transformer-XL, NCF, and ResNet-50 training) with 80GB memory and interconnected with 400 GBps bandwidth. LEGACY is built on Dutta et al. (2020); Sahu et al. (2021); for Transformer-XL, we used the NVIDIA Training Examples benchmark Nvidia with reduced steps; CIFAR10, CIFAR100 and NCF tests were implemented using Dutta et al. (2020), Sahu et al. (2021), and Nvidia, respectively. We used 30 epochs for AlexNet, ResNet-9, and NCF training, 300 epochs for ResNet18 training, and 4,500 steps for the Transformer training. For ImageNet-1K, we employed PyTorch and trained ResNet-50 for 50 epochs. **We follow karpathy Andrej (2023) implementation for our GPT-2 experiments and use 100K training iterations;** see Tables 6 and 7 in §D.1 for a detailed summary and Tables 9–14 in §D.1 reproducibility.

LEGACY Setup. In the main paper, for simplicity, we split the training into two phases: beginning B (first half of the total epochs) and end E (rest of the total epochs); each phase uses a different compression level. For layer sizes, we categorize layers into two groups: small layers, S with fewer than 10^4 elements, and large layers, L with 10^4 elements or more. With this formalization, $S_{\delta_1}L_{\delta_2}$ means small layers are compressed with compression factor, δ_1 and large layers compressed with compression factor, δ_2 , and $B_{\delta_1}E_{\delta_2}$ denotes two-phase training, beginning phase with compression factor, δ_1 , and end phase with δ_2 . In §D.2, we show the efficacy of LEGACY by adding multiple training phases and more layer granularity.

4.1 MODEL QUALITY VS. TRANSMITTED DATA VOLUME

Figure 2a shows the accuracy of AlexNet on CIFAR-10; uniform Top- k compression with $k = 0.1\%d$ (corresponding to the $\delta_{0.1}$) results in an accuracy of 75.7%. However, using Top- k as base compression in LEGACY, the strategy, $B_{0.15}E_{0.05}$, which starts with a compression ratio of 0.15%, for the first half of the epochs and then switches to an aggressive compression ratio of 0.05%,

378 Table 2: Comparison of LEGACY with uniform QSGD on training ResNet9 on CIFAR 10.
379

380 Methods	381 Uniform QSGD Alistarh et al. (2017)	382 LEGACY-E	383 LEGACY-L
384 Top-1 Accuracy	385 87.21	386 87.98	387 88.42
388 Avg. relative data volume	389 18.78%	390 18.76%	391 16.4%

392 achieves a higher accuracy of 79.18%. Notably, the reverse strategy $B_{0.05}E_{0.15}$ results in a lower
393 accuracy of 73.6%. When we compress smaller layers at 1% while keeping the larger layers at the
394 0.1% ratio, $S_1L_{0.1}$, the accuracy improves by 5.14% over the uniform compression. Figures 2b
395 – 2f show similar results across different DNN models and challenging, larger datasets, including
396 ImageNet-1K and WikiText, with accuracy improvements up to 7-11% on ImageNet-1K compared
397 to the uniform compression strategy. For language model in Figure 2e, the perplexity improves
398 $\sim 26\%$, from 253.57 with uniform $\delta_{0.1}$ to 188.8 with dynamic compression $S_{10}L_{0.1}$.

399 **Takeaways.** For comparable data volumes, starting with mild compression and gradually increasing
400 it outperforms uniform or inverse strategies by allowing DNN models to retain crucial information
401 during early training phases. This approach balances the need for sufficient data in the early stages
402 with the efficiency of higher compression later. Similarly, leaving small layers uncompressed or
403 lightly compressed results in only a minor increase in data volume but improves perplexity by 26%
404 on WikiText-103 and accuracy by 7% on ImageNet-1K.

405 4.2 MODEL QUALITY VS. TRAINING THROUGHPUT

410 Figure 3 shows the impact of compression on model quality as a function of the relative throughput.
411 Test cases with a similar average compression ratio ($\pm 10\%$) are connected with dotted lines. The
412 throughput under compression is lower than the no-compression baseline because the workers are
413 connected through high-bandwidth links, making the compression overhead relatively higher than
414 the communication cost. Analyzing the groups (connected by the dotted lines), we observe that
415 the average compression ratio influences the model performance and throughput; sending more
416 data improves accuracy but reduces throughput. Applying moderate compression during the initial
417 training phase and to smaller layers yields better performance for a similar average compression
418 ratio. In Figure 3a, for ResNet9, a uniform Top-0.1% compression results in 75% accuracy, and
419 50.29% relative throughput, while our epoch-based strategy, $B_{0.15}E_{0.05}$, yields similar relative
420 throughput but improved accuracy, reaching 79.18%. Meanwhile, the layer size-based strategy,
421 $S_1L_{0.1}$, further improves throughput to 53.16% and accuracy to 80.85%, yielding gains of 5.7% in
422 throughput and 6.6% in accuracy compared to the uniform compression. We observe similar findings
423 in Figures 3b and 3c. Generally, the dynamic strategies in LEGACY (denoted by '+' for epoch-based
424 and 'x' for layer size-based) for linked points are positioned either above (indicating better accuracy)
425 or to the right (indicating better throughput) of the uniform case for AlexNet and ResNet9. For the
426 Transformer-XL, LEGACY strategy points are located to the right of or below the uniform case, under
427 similar average compression ratios, indicating a better perplexity, with improvements of up to $\sim 26\%$
428 in perplexity and $\sim 4.5\%$ in throughput compared to uniform compression.

429 **Takeaways.** Our layer-based strategy can increase accuracy and throughput compared to the uni-
430 form or inverse approaches, although the throughput gains are limited due to the high-speed network
431 in the data center. For the layer size-based approach, not compressing small layers eliminates the
432 computational overhead. For the epoch-based approach, sending more data at the beginning appears
433 to balance out the aggressive communication towards the end, yielding similar throughput while
434 leveraging the early training stages to achieve better accuracy.

435 4.3 COMPARISON WITH ADAPTIVE GRADIENT COMPRESSORS

436 We evaluate our approaches, $B_{\delta_1}E_{\delta_2}$ and $S_{\delta_1}L_{\delta_2}$, using Top- k in LEGACY against three state-of-the-
437 art adaptive compressors (Adacom Chen et al. (2018a), variance-based compression Tsuzuku et al.
438 (2018), and CAT Khirirat et al. (2021)) in terms of the trained model quality and the training time.
439 As shown in Figures 4a–4b, our scheduler achieves higher accuracy at comparable data volumes.
440 Although we are slower than AdaComp, which is threshold-based and $2\times$ faster than the uniform
441 Top- k and our strategies, we achieve a 12% accuracy gain while sending only $\sim 75\text{MB}$ more data;
442 see Figure 4c. Variance-based compression requires access to per-sample gradients, which are not
443 supported by most deep learning frameworks; obtaining these values using a batch size of one is
444 extremely slow. We used OPACUS Yousefpour et al. (2021) to get faster per-sample gradients. Still,
445 it remains $\sim 6\times$ slower than our approaches with a 15% lower accuracy. CAT requires testing many

432
 433 Table 3: Comparison of LEGACY and adaptive compressors on ResNet-18 training on CIFAR-100
 434 using PowerSGD as the base compressor. The \downarrow arrows indicate the relative data-volume gain com-
 435 pared to the baseline PowerSGD, while the \uparrow arrows indicate the performance gain compared to the
 436 baseline PowerSGD. By sending way less data compared to PowerSGD and other SOTA adaptive
 437 compressors, L-GreCO and Accordion, LEGACY achieves a superior performance.

Metric	PowerSGD	L-GreCo	Accordion	LEGACY-E	LEGACY-L
Top-1 Acc.	74.58	75.23 (\uparrow 0.87%)	75.11 (\uparrow 0.71%)	75.55 (\uparrow 1.3%)	75.21 (\uparrow 0.84%)
Avg. data volume	2.85%	2.19% (\downarrow 23.16%)	2.02% (\downarrow 29%)	1.11% (\downarrow 61%)	1.1% (\downarrow 61%)

442
 443 values at each iteration before choosing the sparsity, resulting in $11 \times$ slower performance, sending
 444 around 575Mb of data, and incurring 25% lower accuracy than our approaches. Our strategies are
 445 robust as they choose the compression ratios and control the total and per-iteration data volume.
 446 In contrast, except for Accordion, other adaptive methods can neither be applied to different com-
 447 pressors nor provide an estimate of the data volume. We also found that at the core, these methods
 448 exhibit similar behavior to our strategies, confirming the effectiveness of our approach, which does
 449 not require additional computation. See the complexity results in D.4.

450 4.3.1 QUANTIZATION AND LOW-RANK FACTORIZATION WITH LEGACY

451 **QSGD Alistarh et al. (2017) experiment details and results.** We train ResNet-9 on CIFAR-10
 452 using 2 workers for 30 epochs. QSGD has one *user-defined* parameter $s \geq 1$, the quantization level.
 453 For uniform QSGD, we fix $s = 32$. For LEGACY we introduce more granularity, we use 3 groups
 454 to represent three different training phases, the beginning of training (1-10 epoch, with $s = 64$),
 455 the middle of training (11-20 epoch, with $s = 32$), and the end of training (21-30 epoch, with
 456 $s = 16$); and 4 groups to represent four distinct layer sizes, very small layer, $S(< 600)$ are left
 457 uncompressed, medium-sized layers, $M (< 100,000$ with $s = 256$), large layers, $L (< 1,000,000$,
 458 with $s = 64$) and huge layers, $H (\geq 1,000,000$, with $s = 16$). Table 2 shows LEGACY-L renders a
 459 1.39% accuracy gain relative to uniform QSGD by sending about 12.67% less data.

460 **PowerSGD Vogels et al. (2019) experiment details and results.** We train ResNet-18 on the
 461 CIFAR-100 dataset using 2 workers for 200 epochs with PowerSGD as the base compressor, and we
 462 compare LEGACY with two adaptive compressors, Accordion Agarwal et al. (2021a) and L-GreCo
 463 Markov et al. (2024). PowerSGD has one user-defined parameter, rank (r). The smaller the rank,
 464 the more aggressive the compression is. For uniform PowerSGD, we use $r = 3$, for L-GreCo and
 465 Accordion, we kept the same configuration as in their public implementation. We note that in those
 466 implementations, to improve accuracy, the authors used no compression for the first 1,000 itera-
 467 tions. This strategy leads to a higher volume of transmitted data. For LEGACY-E, we use 4 groups
 468 to represent 4 different training phases, the first quartile of training Q1 (1-50 epoch, with $r = 6$),
 469 the second quartile Q2 (51-100 epoch, with $r = 4$), third quartile Q3 (101-150 epoch, with $r = 3$),
 470 and the final quartile Q4 (150-200 epoch, with $r = 2$); and for LEGACY-L (stands for layer-based)
 471 we use 4 groups to represent 4 distinct layer sizes, small layer, $S(< 600)$ are left uncompressed,
 472 medium-sized layers, $M (< 100,000$ with $r = 8$), large layers, $L (< 1,000,000$, with $r = 3$) and
 473 huge layers, $H (\geq 1,000,000$, with $r = 2$). Table 3 shows the results on PowerSGD combined with
 474 LEGACY. Uniform rank-3 PowerSGD transmits about **2.85%** of the total data volume and achieves
 475 74.58% test accuracy. All adaptive compressors outperform uniform rank-3 PowerSGD, albeit by a
 476 smaller margin. Interestingly, both strategies in LEGACY outperform the adaptive compressors while
 477 only sending half of their communicated data volume; see Table 3. Moreover, in contrast to L-
 478 GreCo, LEGACY is compute-free; it does not need to calculate optimal parameters per layer at each
 479 call. Our results demonstrate that LEGACY is compatible with different compression paradigms, and
 480 show its flexibility and versatility in handling different compression techniques.

4.4 EVALUATING LEGACY ON GPT-2

481 In addition to evaluating LEGACY on classical benchmarks, which include ResNet-9, ResNet-50,
 482 and Transformer-XL models trained on CIFAR-100, ImageNet-1K, and WikiText-103, we further
 483 evaluate LEGACY in a modern setting by training GPT-2 small (124M parameters) Radford et al.
 484 (2019) on the OpenWebText corpus ($\approx 40GB$) Gokaslan & Cohen (2019) using 2 A100 GPUs. For
 485 uniform Top-k, we fix the sparsification ratio at 5%. For LEGACY layer-based, we introduce structural
 486 granularity by grouping layers by parameter count: small layers ($< 1,000$) are left uncompressed,

486
 487 Table 4: Training GPT-2 with LEGACY scheduler; validation loss the lower the better. The \downarrow arrows
 488 indicate the relative improvement compared to the baseline uniform Top- k .

Metric	Uniform Top-k	LEGACY-E	LEGACY-L
Validation Loss	3.14	3.05 (\downarrow 2.87%)	3.01 (\downarrow 4.14%)
Avg. relative data volume	5%	5%	5.02%

493 medium layers ($< 1,000,000$) transmit the top 10%, large layers ($< 10,000,000$) transmit 5%,
 494 and the largest layers ($\geq 10,000,000$) transmit 4% of their updates. For LEGACY epoch-based, the
 495 sparsification ratio varies across training phases: 10% for the first 10% of iterations, 7% for the next
 496 10%, followed by 5% and 4% across the next two 30% segments, and 3% for the remainder. Table
 497 4 summarizes the resulting validation losses. Both LEGACY variants outperform the uniform Top- k
 498 while transmitting a similar amount of data, with the layer-based strategy yielding the best results.

499 500 4.5 ADDITIONAL BENCHMARKING AND DISCUSSIONS

501 Due to limited space, we perform a diverse set of experiments in §D that demonstrate the efficacy,
 502 scalability, and ease of use of LEGACY in different scenarios. This Section serves as a guide to them.
 503 We use Random- k as the base compressor in LEGACY and show accuracy vs. data volume results in
 504 §D.2.1, Figure 6. §D Table 8 reports the average Top-1 test accuracy of ResNet9 and AlexNet on
 505 CIFAR10, derived from 7 independent runs; the results are in agreement with §4.1. By using Top- k
 506 as the base compressor (with and without error feedback) in LEGACY, we provide the model quality
 507 vs. wall clock time results in §D.3.1. The model accuracy depends on the compressed gradients being
 508 transmitted, not on their transfer speed; the results are generalizable across different bandwidths. In
 509 §D.3.3, we perform the scalability of LEGACY to 100 workers in a data center environment without
 510 constraining the network bandwidth. We also note that, fast networks do not always harvest the
 511 compression benefit (Xu et al., 2021a), as compression overhead can be significant; in §D.3, we
 512 show the efficacy of LEGACY in bandwidth-limited federated training. See the limitations and future
 513 direction in §E.

514 5 CONCLUSION

515 We introduce LEGACY, an open-source, lightweight framework for dynamic gradient compression
 516 in distributed DNN training. In contrast to the compute-intensive adaptive compressors, LEGACY
 517 operates *dynamically* based on two simple factors—layer size and training phase—and provides a
 518 simple yet efficient dynamic scheduler for any compressors. Our benchmarking of LEGACY using
 519 Top- k , Random- k , QSGD, and PowerSGD as base compressors show consistent performance gains
 520 compared to the uniform compressors and five other state-of-the-art adaptive compressors across
 521 large and challenging datasets, including ImageNet-1K and OpenWebText. Finally, in bandwidth-
 522 constrained federated training, we profile the efficacy and scalability of LEGACY and establish the
 523 need of a simple, dynamic scheduler.

524 525 REFERENCES

526 Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep networks.
 527 In *Proc. of ICLR*, 2019.

528 Saurabh Agarwal, Hongyi Wang, Kangwook Lee, Shivaram Venkataraman, and Dimitris S. Papail-
 529 iopoulos. Accordion: Adaptive gradient communication via critical learning regime identification.
 530 In *MLSys*, 2021a.

531 Saurabh Agarwal, Hongyi Wang, Shivaram Venkataraman, and Dimitris S. Papailiopoulos. On the
 532 utility of gradient compression in distributed training systems. *CoRR*, 2021b.

533 Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. In
 534 *Proc. of EMNLP*, 2017.

535 Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
 536 Communication-efficient SGD via gradient quantization and encoding. In *Proc. of NeurIPS*, 2017.

537 Dan Alistarh, Torsten Hoefer, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric
 538 Renggli. The convergence of sparsified gradient methods. In *Proc. of NeurIPS*, 2018.

540 Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-SGD: Distributed
 541 SGD with quantization, sparsification, and local computations. In *Proc. of NeurIPS*, 2019.

542

543 El Houcine Bergou, Konstantin Pavlovich Burlachenko, Aritra Dutta, and Peter Richtárik. Personalized
 544 federated learning with communication compression. *Transactions on Machine Learning
 545 Research*, 2023.

546 Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
 547 signSGD: Compressed optimisation for non-convex problems. In *Proc. of ICML*, 2018.

548

549 Chia-Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal, Wei Zhang, and Kailash Gopalakrishnan.
 550 Adacom: adaptive residual gradient compression for data-parallel distributed training.
 551 Proc. of AAAI, 2018a.

552 Chia-Yu Chen, Jiamin Ni, Songtao Lu, Xiaodong Cui, Pin-Yu Chen, Xiao Sun, et al. Scalecom: Scalable
 553 sparsified gradient compression for communication-efficient distributed training. In *Proc. of
 554 NeurIPS*, 2020a.

555 Mengqiang Chen, Zijie Yan, Jiangtao Ren, and Weigang Wu. Standard deviation based adaptive
 556 gradient compression for distributed deep learning. In *IEEE/ACM CCGRID*, 2020b.

557

558 Tianyi Chen, Georgios B. Giannakis, Tao Sun, and Wotao Yin. Lag: lazily aggregated gradient for
 559 communication-efficient distributed learning. In *Proc. of NeurIPS*, 2018b.

560 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-Scale
 561 Hierarchical Image Database. In *Proc. of CVPR*, 2009.

562

563 Xiaoge Deng, Dongsheng Li, Tao Sun, and Xicheng Lu. Communication-efficient distributed learning
 564 via sparse and adaptive stochastic gradient. *IEEE Transactions on Big Data*, 2024.

565 Tim Dettmers. 8-bit approximations for parallelism in deep learning. In *ICLR*, 2015.

566

567 Nikoli Dryden, Tim Moon, Sam Ade Jacobs, and Brian Van Essen. Communication quantization
 568 for data-parallel training of deep neural networks. In *Proc. of MLHPC*, 2016.

569

570 Aritra Dutta, El Houcine Bergou, Ahmed M. Abdelmoniem, Chen-Yu Ho, Atal Narayan Sahu,
 571 Marco Canini, and Panos Kalnis. On the discrepancy between the theoretical analysis and practical
 572 implementations of compressed communication for distributed deep learning. In *Proc. of
 573 AAAI*, 2020.

574 Negar Foroutan Eghlidi and Martin Jaggi. Sparse communication for training deep networks. *arXiv
 575 preprint arXiv:2009.09271*, 2020.

576 gloo. Gloo: Collective communications library with various primitives for multi-machine training.
 577 <https://github.com/facebookincubator/gloo>.

578

579 Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. [http://Skylion007.github.io/
 OpenWebTextCorpus](http://Skylion007.github.io/

 580 OpenWebTextCorpus), 2019.

581 Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. [http://
 /Skylion007.github.io/OpenWebTextCorpus](http://

 582 /Skylion007.github.io/OpenWebTextCorpus), 2019.

583 Jinrong Guo, Wantao Liu, Wang Wang, Jizhong Han, Ruixuan Li, Yijun Lu, and Songlin Hu. Accelerating
 584 distributed deep learning by adaptive gradient quantization. In *ICASSP*, 2020.

585

586 F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. *ACM
 587 Trans. Interact. Intell. Syst.*, 2015.

588

589 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
 590 In *Proc. of CVPR*, 2016.

591 Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
 592 Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
 593 and open problems in federated learning. *Foundations and trends® in machine learning*, 2021.

594 Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback fixes
 595 SignSGD and other gradient compression schemes. In *Proc. of ICML*, 2019.
 596

597 karpathy Andrey. nanogpt. <https://github.com/karpathy/nanoGPT>, 2023.
 598

599 Sarit Khirirat, Sindri Magnússon, Arda Aytekin, and Mikael Johansson. A flexible framework for
 600 communication-efficient machine learning. *Proc. of AAAI*, 2021.
 601

602 Diederik P. Kingma and Jimmy Ba. ADAM: A Method for Stochastic Optimization. In *Proc. of
 603 ICLR*, 2015.
 604

605 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 606 *Technical report, University of Toronto*, 2009.
 607

608 Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William Dally. Deep gradient compression: Re-
 609 ducing the communication bandwidth for distributed training. In *Proc. of ICLR*, 2018.
 610

611 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *Proc. of ICLR*, 2019.
 612

613 Rongwei Lu, Jiajun Song, Bin Chen, Laizhong Cui, and Zhi Wang. DAGC: Data-aware adaptive
 614 gradient compression. In *IEEE INFOCOM*, 2023.
 615

616 Peng Luo, F. Richard Yu, Jianyong Chen, Jianqiang Li, and Victor C. M. Leung. A novel adap-
 617 tive gradient compression scheme: Reducing the communication overhead for distributed deep
 618 learning in the internet of things. *IEEE Internet of Things Journal*, 2021.
 619

619 Ilia Markov, Kaveh Alim, Elias Frantar, and Dan Alistarh. L-GreCo: Layerwise-adaptive gradient
 620 compression for efficient data-parallel deep learning. In *MLSys*, 2024.
 621

621 Lin Meng, Yuzhong Sun, and Weimin Li. Near-linear scaling data parallel training with overlapping-
 622 aware gradient compression. In *IEEE ICPADS*, 2023.
 623

622 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 623 models. In *Proc. of ICLR*, 2017.
 624

624 Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Random reshuffling: Simple analysis
 625 with vast improvements. *Proc. of NeurIPS*, 2020.
 626

626 Yuki Miyauchi, Haruki Mori, Tetsuya Youkawa, Kazuki Yamada, Shintato Izumi, Masahiko Yoshi-
 627 moto, Hiroshi Kawaguchi, and Atsuki Inoue. Layer skip learning using LARS variables for 39%
 628 faster conversion time and lower bandwidth. In *ICECS*, 2018.
 629

629 NCCL. NCCL: NVIDIA Collective Communication Library. [https://developer.nvidia.
 630 com/nccl](https://developer.nvidia.com/nccl).
 631

632 Yuri Nesterov. Gradient methods for minimizing composite functions. *Mathematical Programming*,
 633 2013.
 634

634 Nvidia. Nvidia deep learning examples. [https://github.com/NVIDIA/
 635 DeepLearningExamples](https://github.com/NVIDIA/DeepLearningExamples).
 636

637 PyTorch. Pytorch examples. <https://github.com/pytorch/examples>.
 638

639 Linping Qu, Shenghui Song, and Chi-Ying Tsui. FedAQ: Communication-efficient federated edge
 640 learning via joint uplink and downlink adaptive quantization. *arXiv preprint arXiv:2406.18156*,
 641 2024.
 642

642 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 643 models are unsupervised multitask learners. 2019.
 644

645 Herbert Robbins and Sutton Monro. A stochastic approximation method. *Annals of Mathematical
 646 Statistics*, 1951.
 647

647 Mengzhe Ruan, Guangfeng Yan, Yuanzhang Xiao, Linqi Song, and Weitao Xu. Adaptive Top-K in
 648 SGD for communication-efficient distributed learning. In *IEEE GLOBECOM*, 2023.

648 Atal Narayan Sahu, Aritra Dutta, Ahmed M. Abdelmoniem, Trambak Banerjee, Marco Canini, and
 649 Panos Kalnis. Rethinking gradient sparsification as total error minimization. In *Proc. of NeurIPS*,
 650 2021.

651 Shaohuai Shi, Zhenheng Tang, Qiang Wang, Kaiyong Zhao, and Xiaowen Chu. Layer-wise adaptive
 652 gradient sparsification for distributed deep learning with convergence guarantees. In *Proc. of*
 653 *ECAI*, 2020.

654 Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Sgd with delayed
 655 gradients. *Journal of Machine Learning Research*, 2020.

656 Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory. In
 657 *Proc. of NeurIPS*, 2018.

658 N. Strom. Scalable distributed DNN training using commodity GPU cloud computing. In *Proc. of*
 659 *INTERSPEECH*, 2015.

660 Guangyu Sun, Matias Mendieta, Aritra Dutta, Xin Li, and Chen Chen. Towards multi-modal trans-
 661 formers in federated learning. In *Proc. of ECCV*, 2024.

662 Yusuke Tsuzuku, Hiroto Imachi, and Takuya Akiba. Variance-based gradient compression for effi-
 663 cient distributed deep learning. In *Proc. of ICLR*, 2018.

664 Thijs Vogels, Sai Praneeth Reddy Karimireddy, and Martin Jaggi. PowerSGD: Practical low-rank
 665 gradient compression for distributed optimization. In *Proc. of NeurIPS*, 2019.

666 Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen
 667 Wright. Atomo: Communication-efficient learning via atomic sparsification. In *Proc. of NeurIPS*.
 668 2018.

669 Hui-Po Wang, Sebastian Stich, Yang He, and Mario Fritz. ProgFed: Effective, communication, and
 670 computation efficient federated learning by progressive training. In *Proc. of ICML*, 2022.

671 Yiding Wang, Decang Sun, Kai Chen, Fan Lai, and Mosharaf Chowdhury. Egeria: Efficient dnn
 672 training with knowledge-guided layer freezing. In *Proc. of EuroSys*, 2023.

673 Zejin Wang, Qingyang Duan, Yuedong Xu, and Liang Zhang. An efficient bandwidth-adaptive gra-
 674 dient compression algorithm for distributed training of deep neural networks. *Journal of Systems*
 675 *Architecture*, 2024.

676 Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
 677 Ternary gradients to reduce communication in distributed deep learning. In *Proc. of NeurIPS*,
 678 2017.

679 Arissa Wongpanich, Hieu Pham, James Demmel, Mingxing Tan, Quoc Le, Yang You, and Sameer
 680 Kumar. Training efficientnets at supercomputer scale: 83% imagenet top-1 accuracy in one hour.
 681 In *IEEE IPDPSW*, 2021.

682 Jihao Xin, Ivan Ilin, Shunkang Zhang, Marco Canini, and Peter Richtárik. Kimad: Adaptive gradient
 683 compression with bandwidth awareness. In *DistributedML*, 2023.

684 Hang Xu, Chen-Yu Ho, Ahmed M. Abdelmoniem, Aritra Dutta, El Houcine Bergou, Konstantinos
 685 Karatsenidis, Marco Canini, and Panos Kalnis. Grace: A compressed communication framework
 686 for distributed machine learning. In *IEEE ICDCS*, 2021a.

687 Hang Xu, Kelly Kostopoulou, Aritra Dutta, Xin Li, Alexandros Ntoulas, and Panos Kalnis. Deepre-
 688 duce: A sparse-tensor communication framework for federated deep learning. *Proc. of NeurIPS*,
 689 2021b.

690 Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. Imagenet training in
 691 minutes. In *Proc. of ICPP*, 2018.

692 Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
 693 Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
 694 learning: Training bert in 76 minutes. In *Proc. of ICLR*, 2020.

702 Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani
703 Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, et al. Opacus: User-friendly
704 differential privacy library in pytorch. In *Proc. of NeurIPS*, 2021.

705 Mingchao Yu, Zhifeng Lin, Krishna Narra, Songze Li, Youjie Li, Nam Sung Kim, Alexander G.
706 Schwing, Murali Annavaram, and Salman Avestimehr. Gradiveq: Vector quantization for
707 bandwidth-efficient gradient aggregation in distributed CNN training. In *Proc. of NeurIPS*, 2018.

708 Hao Zhang, Tingting Wu, Zhifeng Ma, Feng Li, and Jie Liu. Dynamic layer-wise sparsification for
709 distributed deep learning. *Future Generation Computer Systems*, 2023a.

710 Jingzhao Zhang, Haochuan Li, Suvrit Sra, and Ali Jadbabaie. Neural network weights do not con-
711 verge to stationary points: An invariant measure perspective. In *Proc. of ICML*, 2022.

712 Lin Zhang, Longteng Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Evaluation and optimization
713 of gradient compression for distributed deep learning. In *IEEE ICDCS*, 2023b.

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756	CONTENTS	
757		
758	1 Introduction	1
759	1.1 Related work and background	3
760		
761		
762	2 Designing a dynamic compressor	3
763	2.1 Insight through the lens of the compressed GD	3
764	2.2 A dynamic compressor scheduler	5
765	2.2.1 System architecture, Simple-LEGACY , and combined approach	5
766		
767		
768	3 Convergence guarantee	6
769		
770	4 Benchmarking and evalutaion	7
771	4.1 Model quality vs. transmitted data volume	7
772	4.2 Model quality vs. training throughput	8
773	4.3 Comparison with adaptive gradient compressors	8
774	4.3.1 Quantization and Low-rank factorization with LEGACY	9
775	4.4 Evaluating LEGACY on GPT-2	9
776	4.5 Additional benchmarking and discussions	10
777		
778		
779	5 Conclusion	10
780		
781		
782	A Related work	16
783		
784	B Theoretical results	17
785	B.1 Assumptions	17
786	B.1.1 Inequalities used	18
787	B.2 Convergence of GD	18
788	B.2.1 Convergence of GD on strongly convex functions	19
789	B.2.2 Convergence of GD on nonconvex functions with PL condition	19
790	B.3 Convergence proofs for nonconvex distributed SGD	20
791	B.3.1 Unbiased compressors	20
792	B.3.2 Biased compressors	22
793		
794		
795	C System architecture — LEGACY, hyperparameter selection, Variants of LEGACY	25
796		
797	C.1 Simple LEGACY	25
798	C.1.1 Mixed approach	26
799	C.1.2 Numerical results of S-LEGACY-M	26
800	C.1.3 Strategy II: Example	27
801		
802		
803		
804		
805		
806	D Addendum to experimental evaluations	27
807		
808	D.1 Reproducibility	27
809	D.2 LEGACY on different compression classes	28

810	D.2.1 Random- k in LEGACY as base compressor	28
811	D.3 Scalability of LEGACY	29
812	D.3.1 LEGACY on constrained environments	29
813	D.3.2 Federated training of ResNet-18 on CIFAR-10	30
814	D.3.3 Scaling LEGACY to 100 Workers in a Data Center	31
815	D.4 Time and space complexity of LEGACY and other adaptive compressors	32
816		
817		
818		
819	E Limitation and future direction	32
820		
821		
822	F Ethics statement and potential negative impact	34
823		
824	APPENDIX	
825		

Organization. We organized the Appendix as follows: In Section A, we detail the related work. In Section B, we quote the general assumptions and provide detailed proofs of our theoretical results quoted in the main paper. We present the system architecture — LEGACY, hyperparameter selection, different variants of LEGACY, including simplified LEGACY in Section C. Section D discusses additional numerical results. Finally, in Section E, we discuss the limitations and future research directions.

A RELATED WORK

Gradient compression techniques are broadly divided into four classes: quantization (Dettmers, 2015; Alistarh et al., 2017; Wen et al., 2017; Bernstein et al., 2018), sparsification (Aji & Heafield, 2017; Stich et al., 2018; Alistarh et al., 2018), low-rank (Wang et al., 2018; Yu et al., 2018; Vogels et al., 2019), and hybrid (Strom, 2015; Dryden et al., 2016; Basu et al., 2019).

Adaptive compression. L-Greco Markov et al. (2024) utilizes dynamic programming to determine the optimal compression parameter for each layer under a fixed communication budget. Kimad Xin et al. (2023) and ACE Wang et al. (2024) dynamically monitors network bandwidth instead of using a fixed communication budget; CAT Khirirat et al. (2021) employs a communication cost model to optimize compression efficiency per communicated bit at each iteration. Achille et al. (2019) emphasizes model sensitivity in a certain period, Accordion Agarwal et al. (2021a) aims to identify and respond to this regime by applying a lighter compression during the critical periods. Conversely, LAGS-SGD Shi et al. (2020), and COVAP Meng et al. (2023) take a different approach by adjusting the compression level to overlap gradient communications with computational tasks.

Among less compute-intensive strategies, Luo et al. (2021) decides the compression based on a probability that depends on the gradient value and the layer size. SDAGC Chen et al. (2020b) adjusts thresholds based on the standard deviation of gradients of each layer. AdaComp Chen et al. (2018a) is similar to the threshold compressor, divides gradient components into bins and selects significant components relative to the maximum value in each bin. Guo et al. (2020) determines the quantization level based on the gradient’s mean-to-standard deviation ratio; DAGC Lu et al. (2023) assigns compression ratios to workers based on the data distribution. DLS Zhang et al. (2023a) tries to find a layer-wise Top- k compression level. AdapTop- k Ruan et al. (2023) sends more components at the beginning and end of the training and fewer components in the middle. Chen et al. (2018b); Wang et al. (2022; 2023); Deng et al. (2024) suggest freezing or skipping some layers based on their deviation from the previous iteration or by evaluating the importance of the learning of each layer. It can reduce communication and computation by avoiding the gradient computation for the first layers Miyauchi et al. (2018); Wang et al. (2022). Chen et al. (2020a); Qu et al. (2024) compress up and downlink communication.

Transition to low-bandwidth network. Compute-intensive techniques such as CAT Khirirat et al. (2021) face performance trade-offs, particularly in fast network environments Agarwal et al. (2021b). In such cases, using basic compressors might take longer than no compression baselines Eghlidi & Jaggi (2020); Xu et al. (2021a); Zhang et al. (2023b). The scenario changes in federated

learning (FL) (Kairouz et al., 2021; Xu et al., 2021b; Bergou et al., 2023; Sun et al., 2024), where a low-bandwidth heterogeneous network is de facto. Hence, compression becomes necessary, but employing complex adaptive compressors may reduce the data-saving advantages in FL, especially when weaker nodes are involved. As a result, we need to focus more on lightweight and simple principles to achieve adaptive compression.

B THEORETICAL RESULTS

This section complements Sections 2 and 3 in the main paper. We start with the Assumptions used in the main paper.

B.1 ASSUMPTIONS

We make the following general assumptions.

Assumption 1. (Smoothness) The loss function $f_i : \mathbb{R}^d \rightarrow \mathbb{R}$ at each node $i \in [n]$ is L -smooth, i.e. $f_i(y) \leq f_i(x) + \langle \nabla f_i(x), y - x \rangle + \frac{L}{2} \|y - x\|^2$ for all $x, y \in \mathbb{R}^d$.

Assumption 2. (μ -strongly convex) The loss function $f_i : \mathbb{R}^d \rightarrow \mathbb{R}$ at each node $i \in [n]$ is μ -strongly convex, i.e. $f_i(y) \geq f_i(x) + \langle \nabla f_i(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2$ for all $x, y \in \mathbb{R}^d$.

Remark 1. The above two assumptions together imply that F is L -smooth and μ -strongly convex.

Assumption 3. (Global minimum) There exists x_* such that, $F(x_*) = F_* \leq F(x)$, for all $x \in \mathbb{R}^d$.

Assumption 4. (Polyak-Łojasiewicz Condition) The function F satisfies Polyak-Łojasiewicz (PL) condition with parameter $\mu \geq 0$ if for all $x \in \mathbb{R}^d$ the following holds:

$$\frac{1}{2} \|\nabla F(x)\| \geq \mu(F(x) - F_*).$$

Assumption 5. ((M, σ^2) bounded noise) There exist constants $M, \sigma^2 \geq 0$, such that for all $x_t \in \mathbb{R}^d$, the stochastic noise, $\xi_{i,t}$ follows

$$\mathbb{E}[\|\xi_{i,t}\|^2 | x_t] \leq M \|\nabla f_{i,t}\|^2 + \sigma^2.$$

Remark 2. The above implies, $\mathbb{E}[\|g_{i,t}\|^2 | x_t] \leq (M + 1) \|\nabla f_{i,t}\|^2 + \sigma^2$.

Assumption 6. (Bounded variance of gradients) There exist constants $A, B \geq 0$ such that, for all $x \in \mathbb{R}^d$, the variance of gradients among nodes follow

$$\frac{1}{n} \sum_{i \in [n]} \|\nabla f_i(x) - \nabla F(x)\|^2 \leq 2A(F(x) - F_*) + B.$$

We adopt a few extra assumptions than the previously stated ones for biased compressors. First, we consider a (C, ζ^2) bounded similarity assumption on the variance of the gradients among the workers in Assumption 7. This Assumption is stronger than Assumption 6, but a similar assumption was proposed in Sahu et al. (2021), and we rely on it for algebraic purposes in proving the convergence for the general case.

Assumption 7. ((C, ζ^2) bounded similarity) The variance of gradients among workers is bounded, i.e., there exist constants, $C, \zeta \geq 0$ such that, $\frac{1}{n} \sum_{i \in [n]} \|\nabla f_i(x) - \nabla F(x)\|^2 \leq C \|\nabla F(x)\|^2 + \zeta^2$, for all $x \in \mathbb{R}^d$.

We impose an extra assumption on the expected direction of the compressed gradient for biased compressors. A similar assumption was made in Dutta et al. (2020) and several classic biased compressors, such as Top- k , follow it.

Assumption 8. (Descent property of the compressed stochastic gradient) Let \mathcal{C}_t be a biased δ -compressor such that $\frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}) = \tilde{g}$. There exists $0 < \alpha \leq 2$ and $\beta > 0$ such that

$$\mathbb{E}[\tilde{g}^\top \nabla F | \nabla F] \geq \beta \mathbb{E}\|\nabla F\|^\alpha - R,$$

where R is a small scalar residual that may appear due to the numerical inexactness of some operators or other computational overheads.

Remark 3. The above assumption is general, and one can characterize many compressors with this. For instance, for Top- k , we have $\alpha = 2$, $\beta = k/d$ and $R = 0$. For simplicity and without loss of generality, one can consider $\alpha = 2$, $\beta = 1$, and $R = 0$.

Assumption 9. There exists $G \geq 0$ such that, $\|\nabla F_t\| \leq G$, for all $t \in [T]$.

918 B.1.1 INEQUALITIES USED
919920 1. If $a, b \in \mathbb{R}^d$ then we use a relaxed version of Peter-Paul inequality:

921
$$\|a + b\|^2 \leq 2\|a\|^2 + 2\|b\|^2. \quad (4)$$

922

923 2. If $a, b \in \mathbb{R}^d$ then the following holds:

924
$$2\langle a, b \rangle \leq 2\|a\|^2 + \frac{1}{2}\|b\|^2. \quad (5)$$

925

926 3. For $x_1, \dots, x_n \in \mathbb{R}^d$ we have:

927
$$\left\| \sum_{i=1}^n x_i \right\|^2 \leq n \sum_{i=1}^n \|x_i\|^2. \quad (6)$$

928

929 4. If X is a random variable then:

930
$$\mathbb{E}\|X\|^2 = \|\mathbb{E}[X]\|^2 + \mathbb{E}[\|X - E[X]\|^2]. \quad (7)$$

931

932 **Lemma 4.** Let $\mathcal{C}(\cdot) : \mathbb{R}^d \rightarrow \mathbb{R}^d$ be a δ -compressor.933 (i) If $\mathcal{C}(g)$ is unbiased then We have $\mathbb{E}\|\mathcal{C}(g)\|^2 \leq (2 - \delta)\|g\|^2$.934 (ii) If $\mathcal{C}(g)$ is biased then $\mathbb{E}\|\mathcal{C}(g)\|^2 \leq 2(2 - \delta)\|g\|^2$.935 *Proof.* (i) Recall for unbiased δ -compressors, we have $\mathbb{E}\|g - \mathcal{C}(g)\|^2 \leq (1 - \delta)\|g\|^2$. Since
936 $\mathbb{E}(\mathcal{C}(g)) = g$, from equation 7 we have,
937

938
$$\mathbb{E}\|\mathcal{C}(g)\|^2 \stackrel{\text{By equation 7}}{=} \mathbb{E}\|g - \mathcal{C}(g)\|^2 + \|g\|^2 \leq (1 - \delta)\|g\|^2 + \|g\|^2 = (2 - \delta)\|g\|^2.$$

939

940 (ii) On the other hand, for biased δ -compressors, we have,
941

942
$$\mathbb{E}\|\mathcal{C}(g)\|^2 = \mathbb{E}\|g - g + \mathcal{C}(g)\|^2 \stackrel{\text{By equation 4}}{\leq} 2\mathbb{E}\|g - \mathcal{C}(g)\|^2 + 2\|g\|^2 \leq 2(1 - \delta)\|g\|^2 + 2\|g\|^2 = 2(2 - \delta)\|g\|^2.$$

943

944 \square 945 **Lemma 5.** Let F follow Assumption 6. Then we have for all $t \geq 0$,
946

947
$$\frac{1}{n} \sum_{i=1}^n \|\nabla f_{i,t}\|^2 \leq 2A(F_t - F_*) + B + \|\nabla F_t\|^2. \quad (8)$$

948

949 *Proof.* The proof follows from the fact that $\frac{1}{n} \sum_{i=1}^n \|\nabla f_{i,t}\|^2 = \frac{1}{n} \sum_{i=1}^n \|\nabla f_{i,t} - \nabla F_t + \nabla F_t\|^2$
950 and $F_t := \frac{1}{n} \sum_{i=1}^n f_{i,t}$ for all $t \geq 0$. Therefore,
951

952
$$\begin{aligned} \frac{1}{n} \sum_{i=1}^n \|\nabla f_{i,t}\|^2 &= \frac{1}{n} \sum_{i=1}^n \|\nabla f_{i,t} - \nabla F_t + \nabla F_t\|^2 \\ &= \frac{1}{n} \sum_{i=1}^n \|\nabla f_{i,t} - \nabla F_t\|^2 + \|\nabla F_t\|^2 \\ &\stackrel{\text{By Assumption 6}}{\leq} 2A(F_t - F_*) + B + \|\nabla F_t\|^2. \end{aligned}$$

953

954 Hence the result. \square

955 B.2 CONVERGENCE OF GD

956 This section provides the convergence proofs GD on strongly convex and nonconvex functions with
957 PL conditions as given in Lemma 1 and Lemma 2.
958

972 B.2.1 CONVERGENCE OF GD ON STRONGLY CONVEX FUNCTIONS
973974 **Lemma 1. (Gradient descent with unbiased compressor)** Let F follow Assumptions 1 and 2. Then
975 with stepsize $\eta \leq \frac{1}{(2-\delta_t)L}$, the sequence of iterates, $\{x_t\}_{t \geq 0}$ of compressed GD updates satisfy

976
$$E_{C_t}(\|x_{t+1} - x_\star\|^2) \leq (1 - 2\mu\eta + \eta^2\mu L(2 - \delta_t)) \|x_t - x_\star\|^2. \quad (9)$$

977

978 *Proof.* From the GD update in equation 2, we have
979

980
$$x_{t+1} - x_\star = x_t - x_\star - \eta \mathcal{C}_t(\nabla F(x_t)).$$

981

982 Squaring both sides and expanding, we have
983

984
$$\|x_{t+1} - x_\star\|^2 = \|x_t - x_\star\|^2 - 2\eta \mathcal{C}_t(\nabla F_t)^T (x_t - x_\star) + \eta^2 \|\mathcal{C}_t(\nabla F_t)\|^2.$$

985

986 By taking expectation on the randomness of the compressors \mathcal{C}_t we get:
987

988
$$\begin{aligned} \mathbb{E}_{\mathcal{C}_t}(\|x_{t+1} - x_\star\|^2) &= \|x_t - x_\star\|^2 - 2\eta \nabla F_t^T (x_t - x_\star) + \eta^2 \mathbb{E}_{\mathcal{C}_t} \|\mathcal{C}_t(\nabla F_t)\|^2 \\ &\stackrel{\text{By Assumption 2}}{\leq} \|x_t - x_\star\|^2 + 2\eta(F_\star - F_t) - \mu\eta \|x_t - x_\star\|^2 \\ &\quad + \eta^2(2 - \delta_t) \|\nabla F_t\|^2 \\ &\stackrel{\text{By Assumption 1}}{\leq} \|x_t - x_\star\|^2 + 2\eta(F_\star - F_t) - \mu\eta \|x_t - x_\star\|^2 \\ &\quad + 2\eta^2 L(2 - \delta_t)(F_t - F_\star) \\ &\leq (1 - \mu\eta) \|x_t - x_\star\|^2 + 2\eta(\eta L(2 - \delta_t) - 1)(F_t - F_\star) \\ &\stackrel{\text{By Assumption 2}}{\leq} (1 - \mu\eta) \|x_t - x_\star\|^2 + \mu\eta(\eta L(2 - \delta_t) - 1) \|x_t - x_\star\|^2 \\ &\leq (1 - 2\mu\eta + \eta^2\mu L(2 - \delta_t)) \|x_t - x_\star\|^2. \end{aligned}$$

989

990 This completes the proof. \square
991992 B.2.2 CONVERGENCE OF GD ON NONCONVEX FUNCTIONS WITH PL CONDITION
993994 **Lemma 2. (Gradient descent with unbiased compressor)** Let F follow Assumptions 1 and 4. Then
995 with stepsize $\eta = \frac{1}{L}$, the sequence of iterates, $\{x_t\}_{t \geq 0}$ of compressed GD updates satisfy

996
$$E_{C_t}(F_{t+1}) - F_\star \leq \left(1 - \frac{\delta_t\mu}{L}\right) (F_t - F_\star). \quad (10)$$

997

998 *Proof.* Using the L -smoothness of F as in Assumption 1 we have
999

1000
$$\begin{aligned} F_{t+1} &\leq F_t + \langle \nabla F_t, x_{t+1} - x_t \rangle + \frac{L}{2} \|x_{t+1} - x_t\|^2 \\ &\stackrel{\text{By equation 2}}{\leq} F_t - \eta \langle \nabla F_t, \mathcal{C}_t(\nabla F(x_t)) \rangle + \frac{\eta^2 L}{2} \|\mathcal{C}_t(\nabla F(x_t))\|^2. \end{aligned}$$

1001

1002 By taking the expectation on the randomness of \mathcal{C}_t and by using the GD updates from equation 2,
1003 we have

1004
$$\begin{aligned} \mathbb{E}_{\mathcal{C}_t}(F_{t+1}) &\leq F_t - \frac{1}{L} \|\nabla F_t\|^2 + \frac{1}{2L} \mathbb{E}_{\mathcal{C}_t} \|\mathcal{C}_t(\nabla F_t)\|^2 \\ &\stackrel{\text{By Lemma 4}}{\leq} F_t - \left(\frac{1}{L} - \frac{2 - \delta_t}{2L}\right) \|\nabla F_t\|^2 \\ &\leq F_t - \frac{\delta_t}{2L} \|\nabla F_t\|^2 \\ &\stackrel{\text{By Assumption 4}}{\leq} F_t - \frac{\delta_t}{2L} 2\mu(F_t - F_\star). \end{aligned}$$

1005

1006 Finally, subtracting F_\star from both sides, we get
1007

1008
$$\mathbb{E}_{\mathcal{C}_t}(F_{t+1}) - F_\star \leq \left(1 - \frac{\delta_t}{L}\mu\right) (F_t - F_\star).$$

1009

1010 This completes the proof. \square
1011

1026 B.3 CONVERGENCE PROOFS FOR NONCONVEX DISTRIBUTED SGD
10271028 In this section, we provide the convergence proofs of compressed distributed SGD on nonconvex
1029 functions. We start with the key inequalities used in our proofs.
10301031 B.3.1 UNBIASED COMPRESSORS
10321033 **Lemma 3. (Compression variance)** Let \mathcal{C}_t be unbiased δ_t -compressor for all $t \in [T]$, and let F
1034 follow Assumption 6, and the stochastic noise follow Assumption 5. Then we have

1035
$$\mathbb{E} \left[\left\| \frac{1}{n} \left(\sum_{i=1}^n \mathcal{C}_t(g_{i,t}) - \sum_{i=1}^n \nabla f_{i,t} \right) \right\|^2 | x_t \right] \leq \quad (11)$$

1036
$$\frac{1}{n} ((1 - \delta_t)(M + 1) + M) (2A(F_t - F_*) + B + \|\nabla F_t\|^2) + \frac{(2 - \delta_t)\sigma^2}{n}.$$

1037

1038 *Proof.* We note that the compression operator, \mathcal{C}_t , and the stochastic noise, $\xi_{i,t}$, are independent.
1039 Therefore, while taking expectation on the randomness of the compression operator, \mathcal{C}_t , we condition
1040 on the other source of randomness, and vice versa. We use $\mathbb{E}_{\mathcal{C}_t}$ to denote the expectation taken on
1041 the randomness of the compression operator, \mathcal{C}_t , and conditioned on other sources of randomness.
1042 So, taking expectation on the randomness of the compression operator, \mathcal{C}_t we have
1043

1044
$$\mathbb{E}_{\mathcal{C}_t} \left\| \frac{1}{n} \left(\sum_{i=1}^n \mathcal{C}_t(g_{i,t}) - \sum_{i=1}^n \nabla f_{i,t} \right) \right\|^2$$

1045
$$\mathbb{E}_{\mathcal{C}_t(\mathcal{C}_t(g_{i,t})=g_{i,t})} \frac{1}{n^2} \sum_{i=1}^n \mathbb{E}_{\mathcal{C}_t} \|\mathcal{C}_t(g_{i,t}) - \nabla f_{i,t}\|^2 + \frac{2}{n^2} \sum_{i \neq j} \langle g_{i,t} - \nabla f_{i,t}, g_{j,t} - \nabla f_{j,t} \rangle$$

1046
$$\stackrel{g_{i,t} = \nabla f_{i,t} + \xi_{i,t}}{=} \frac{1}{n^2} \sum_{i=1}^n \mathbb{E}_{\mathcal{C}_t} \|\mathcal{C}_t(g_{i,t}) - g_{i,t} + \xi_{i,t}\|^2 + \frac{2}{n^2} \sum_{i \neq j} \langle g_{i,t} - \nabla f_{i,t}, g_{j,t} - \nabla f_{j,t} \rangle$$

1047
$$\mathbb{E}_{\mathcal{C}_t(\mathcal{C}_t(g_{i,t})=g_{i,t})} \frac{1}{n^2} \sum_{i=1}^n \left(\mathbb{E}_{\mathcal{C}_t} \|\mathcal{C}_t(g_{i,t}) - g_{i,t}\|^2 + \mathbb{E}_{\mathcal{C}_t} \|\xi_{i,t}\|^2 \right) + \frac{2}{n^2} \sum_{i \neq j} \langle g_{i,t} - \nabla f_{i,t}, g_{j,t} - \nabla f_{j,t} \rangle$$

1048
$$\leq \frac{1}{n^2} \sum_{i=1}^n ((1 - \delta_t) \|g_{i,t}\|^2 + \|\xi_{i,t}\|^2) + \frac{2}{n^2} \sum_{i \neq j} \langle g_{i,t} - \nabla f_{i,t}, g_{j,t} - \nabla f_{j,t} \rangle.$$

1049

1050 Taking expectation conditioned on x_t , and by using the tower property of expectation, we get
1051

1052
$$\mathbb{E} \left[\mathbb{E}_{\mathcal{C}_t} \left[\left\| \frac{1}{n} \left(\sum_{i=1}^n \mathcal{C}_t(g_{i,t}) - \sum_{i=1}^n \nabla f_{i,t} \right) \right\|^2 \right] | x_t \right] \leq \frac{1}{n^2} \sum_{i=1}^n ((1 - \delta_t) \mathbb{E}[\|g_{i,t}\|^2 | x_t] + \mathbb{E}[\|\xi_{i,t}\|^2 | x_t]).$$

1053

1054 The equality holds as $\mathbb{E}(g_{i,t} | x_t) = \nabla f_{i,t}$ and $\mathbb{E}(g_{j,t} | x_t) = \nabla f_{j,t}$, for all $i \neq j, i, j \in [n]$. By using
1055 Assumption 5, write the above expression as
1056

1057
$$\frac{1}{n^2} \sum_{i=1}^n ((1 - \delta_t) \mathbb{E}[\|g_{i,t}\|^2 | x_t] + \mathbb{E}[\|\xi_{i,t}\|^2 | x_t])$$

1058
$$\leq \frac{1}{n^2} \sum_{i=1}^n ((1 - \delta_t)(M + 1) \|\nabla f_{i,t}\|^2 + (1 - \delta_t)\sigma^2 + M \|\nabla f_{i,t}\|^2 + \sigma^2)$$

1059
$$\stackrel{\text{By Lemma 5}}{\leq} \frac{1}{n} ((1 - \delta_t)(M + 1) + M) (2A(F_t - F_*) + B + \|\nabla F_t\|^2) + \frac{1}{n} (2 - \delta_t)\sigma^2.$$

1060

1061 Hence the result. □
10621063 Based on the previous Lemma, the next lemma quantifies the quantity $\mathbb{E} \left\| \frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}) \right\|^2$.
1064

1080
1081 **Lemma 6.** Let \mathcal{C}_t be unbiased δ_t -compressor for all $t \in [T]$. Let F follow Assumptions 3, 6, and
1082 the stochastic noise follow Assumption 5. Then

1083
$$\mathbb{E} \left\| \frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}) \right\|^2 \leq \frac{2A\beta_t}{n} (F_t - F_\star) + \left(1 + \frac{\beta_t}{n}\right) \|\nabla F_t\|^2 + \frac{B\beta_t}{n} + \left(\frac{2 - \delta_t}{n}\right) \sigma^2, \quad (12)$$

1086 where $\beta_t := (1 - \delta_t)(M + 1) + M$.

1088 *Proof.* Taking expectation on the randomness of the compression operator, \mathcal{C}_t , we have

1089
$$\begin{aligned} \mathbb{E}_{\mathcal{C}_t} \left\| \frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}) \right\|^2 &= \mathbb{E}_{\mathcal{C}_t} \left\| \frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}) - \nabla F_t + \nabla F_t \right\|^2 \\ &= \mathbb{E}_{\mathcal{C}_t} \left\| \frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}) - \nabla F_t \right\|^2 + \|\nabla F_t\|^2 + 2 \left\langle \frac{1}{n} \sum_{i=1}^n g_{i,t} - \nabla F_t, \nabla F_t \right\rangle \\ &\stackrel{\text{By Lemma 3}}{\leq} \frac{1}{n} ((1 - \delta_t)(M + 1) + M) (2A(F_t - F_\star) + B + \|\nabla F_t\|^2) + \frac{1}{n} (2 - \delta_t) \sigma^2 \\ &\quad + \|\nabla F_t\|^2 + 2 \left\langle \frac{1}{n} \sum_{i=1}^n g_{i,t} - \nabla F_t, \nabla F_t \right\rangle. \end{aligned} \quad (13)$$

1100 Finally, we note that $\mathbb{E}(g_{i,t}|x_t) = f_{i,t}$. By using the tower property of expectation, we denote
1101 $\mathbb{E}\|\frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t})\|^2 = \mathbb{E}(\mathbb{E}_{\mathcal{C}_t} \|\frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t})\|^2|x_t)$. Taken together, from equation 13, we have

1102
$$\begin{aligned} \mathbb{E} \left\| \frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}) \right\|^2 \\ &\leq \frac{1}{n} ((1 - \delta_t)(M + 1) + M) (2A(F_t - F_\star) + B + \|\nabla F_t\|^2) + \frac{1}{n} (2 - \delta_t) \sigma^2 + \|\nabla F_t\|^2. \end{aligned}$$

1103 Hence the result. \square

1104 Finally, we can quote the non-convex descent lemma for compressed distributed SGD.

1105 **Lemma 7. (Non-convex descent lemma for unbiased compressors)** Let Assumptions 1, 5, and 6
1106 hold, and let \mathcal{C}_t be unbiased δ_t -compressor for all $t \in [T]$. Then

1107
$$\begin{aligned} \mathbb{E}(F_{t+1}) - F_\star &\leq \left(1 + \frac{AL\eta_t^2\beta_t}{n}\right) (\mathbb{E}(F_t) - F_\star) - \eta_t \left(1 - \frac{L\eta_t}{2} - \frac{L\eta_t\beta_t}{n}\right) \mathbb{E}\|\nabla F_t\|^2 \\ &\quad + \frac{L\eta_t^2}{2} \left(\frac{B\beta_t}{n} + \left(\frac{2 - \delta_t}{n}\right) \sigma^2\right). \end{aligned}$$

1108 *Proof.* By using the L -smoothness of F we have

1109
$$F_{t+1} \leq F_t - \langle \nabla F_t, x_{t+1} - x_t \rangle + \frac{L}{2} \|x_{t+1} - x_t\|^2.$$

1110 By using the update rule $x_{t+1} - x_t = -\frac{\eta_t}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t})$ the above becomes

1111
$$F_{t+1} \leq F_t - \langle \nabla F_t, \frac{\eta_t}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}) \rangle + \frac{L\eta_t^2}{2} \left\| \frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}) \right\|^2. \quad (14)$$

1112 Taking expectation with respect to the randomness of \mathcal{C}_t on the above expression for all $t \in [T]$, we
1113 find

1114
$$\mathbb{E}_{\mathcal{C}_t}(F_{t+1}) \leq F_t - \langle \nabla F_t, \frac{\eta_t}{n} \sum_{i=1}^n g_{i,t} \rangle + \frac{L\eta_t^2}{2} \mathbb{E}_{\mathcal{C}_t} \left\| \frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}) \right\|^2.$$

1115 Taking expectation conditioned on x_t , we have

1116
$$\mathbb{E}(F_{t+1}|x_t) \leq \mathbb{E}(F_t|x_t) - \eta_t \mathbb{E}\|\nabla F_t\|^2 + \frac{L\eta_t^2}{2} \mathbb{E} \left(\left\| \frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}) \right\|^2 | x_t \right).$$

1134 By using Lemma 6 on the above, we find
 1135

$$\begin{aligned} 1136 \mathbb{E}(F_{t+1}|x_t) &\leq \mathbb{E}(F_t|x_t) - \eta_t \mathbb{E}\|\nabla F_t\|^2 \\ 1137 &\quad + \frac{L\eta_t^2}{2} \left(\frac{2A\beta_t}{n} (F_t - F_\star) + \left(1 + \frac{\beta_t}{n}\right) \|\nabla F_t\|^2 + \frac{B\beta_t}{n} + \left(\frac{2 - \delta_t}{n}\right) \sigma^2 \right). \end{aligned}$$

1139 Taking the final expectation, by using the tower property of expectation, and rearranging the terms,
 1140 we have
 1141

$$\begin{aligned} 1142 \mathbb{E}(F_{t+1}) - F_\star &\leq \left(1 + \frac{AL\eta_t^2\beta_t}{n}\right) (\mathbb{E}(F_t) - F_\star) - \eta_t \left(1 - \frac{L\eta_t}{2} - \frac{L\eta_t\beta_t}{n}\right) \mathbb{E}\|\nabla F_t\|^2 \\ 1144 &\quad + \frac{L\eta_t^2}{2} \left(\frac{B\beta_t}{n} + \left(\frac{2 - \delta_t}{n}\right) \sigma^2 \right). \end{aligned} \quad (15)$$

1146 Hence the result. □
 1147

1150 B.3.2 BIASED COMPRESSORS

1151 **Lemma 8.** *Let \mathcal{C}_t be biased δ -compressors for all $t \in [T]$, and let F follow Assumption 7, and the
 1152 stochastic noise follow Assumption 5. Then we have*

$$1154 \mathbb{E} \left[\left\| \frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}) \right\|^2 | x_t \right] \leq 2(2 - \delta_t)(M + 1)(C + 1)\|\nabla F_t\|^2 + 2(2 - \delta_t)((M + 1)\zeta^2 + \sigma^2).$$

1157 *Proof.* Taking expectation, $\mathbb{E}_{\mathcal{C}_t}$ on $\|\frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t})\|^2$ we have

$$\begin{aligned} 1159 \mathbb{E}_{\mathcal{C}_t} \left\| \frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}) \right\|^2 \\ 1160 &\stackrel{\text{By equation 6}}{\leq} \frac{1}{n} \sum_{i=1}^n \mathbb{E}_{\mathcal{C}_t} \|\mathcal{C}_t(g_{i,t})\|^2 \\ 1161 &\stackrel{\text{By Lemma 4}}{\leq} 2(2 - \delta_t) \frac{1}{n} \sum_{i=1}^n \|g_{i,t}\|^2 \\ 1162 &\stackrel{\text{By Assumption 5}}{\leq} 2(2 - \delta_t)(M + 1) \frac{1}{n} \sum_{i=1}^n \|\nabla f_{i,t}\|^2 + 2(2 - \delta_t)\sigma^2 \\ 1163 &= 2(2 - \delta_t)(M + 1) \frac{1}{n} \sum_{i=1}^n \|\nabla f_{i,t} - \nabla F_t\|^2 + 2(2 - \delta_t)(M + 1)\|\nabla F_t\|^2 + 2(2 - \delta_t)\sigma^2 \\ 1164 &\stackrel{\text{By Assumption 7}}{\leq} 2(2 - \delta_t)(M + 1)(C\|\nabla F_t\|^2 + \zeta^2) + 2(2 - \delta_t)(M + 1)\|\nabla F_t\|^2 + 2(2 - \delta_t)\sigma^2. \end{aligned}$$

1165 Now, by taking the conditional expectation on x_t and using Lemma 5, we obtain the result. □
 1166

1167 **Lemma 9. (Non-convex descent lemma for biased compressors)** *Let Assumptions 1, 5, and 7 hold,
 1168 and let \mathcal{C}_t be biased δ -compressor for all $t \in [T]$ that follows Assumption 8. Then*

$$\begin{aligned} 1169 \eta_t (\beta \mathbb{E}\|\nabla F_t\|^\alpha - L\eta_t(2 - \delta_t)(M + 1)(C + 1)\mathbb{E}\|\nabla F_t\|^2) &\leq \mathbb{E}(F_t - F_{t+1}) \\ 1170 &\quad + L\eta_t^2(2 - \delta_t) (\sigma^2 + (M + 1)\zeta^2) + \eta_t R. \end{aligned}$$

1171 *Proof.* By using the L -smoothness of F , and using the update rule $x_{t+1} - x_t = -\frac{\eta_t}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t})$, we have from equation 14:

$$1172 F_{t+1} \leq F_t - \langle \nabla F_t, \frac{\eta_t}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}) \rangle + \frac{L\eta_t^2}{2} \left\| \frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}) \right\|^2.$$

1188 Taking expectation with respect to the randomness of ∇F_t on the above expression for all $t \in [T]$
 1189 and by using Assumption 8, we find
 1190

$$1191 \mathbb{E}(F_{t+1}) \leq F_t - \beta \eta_t \mathbb{E}\|\nabla F_t\|^\alpha + \eta_t R + \frac{L\eta_t^2}{2} \mathbb{E} \left(\left\| \frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}) \right\|^2 | \nabla F_t \right).$$

1194 Taking expectation conditioned on x_t , we have
 1195

$$1196 \mathbb{E}(F_{t+1}|x_t) \leq F_t - \beta \eta_t \mathbb{E}\|\nabla F_t\|^\alpha + \eta_t R + \frac{L\eta_t^2}{2} \mathbb{E} \left[\left\| \frac{1}{n} \sum_{i=1}^n \mathcal{C}_t(g_{i,t}) \right\|^2 | x_t \right].$$

1198 Now using Lemma 8 we get
 1199

$$1200 \mathbb{E}(F_{t+1}|x_t) \leq F_t - \beta \eta_t \mathbb{E}\|\nabla F_t\|^\alpha + \eta_t R + 1201 L\eta_t^2 ((2 - \delta_t)(M + 1)(1 + C)\|\nabla F_t\|^2 + (2 - \delta_t)((M + 1)\zeta^2 + \sigma^2)).$$

1202 Taking the final expectation, by using the tower property of expectation, and rearranging the terms,
 1203 we have the result. \square
 1204

1205 NONCONVEX CONVERGENCE RESULTS

1207 The next Lemma is instrumental in proving the nonconvex convergence of distributed SGD with
 1208 δ -compressors.

1209 **Lemma 10.** *Mishchenko et al. (2020) Let for $0 \leq t \leq T$ the following holds:*

$$1210 \quad p_{t+1} \leq (1 + a)p_t - bq_t + c, \quad (16)$$

1212 where $\{p_t\}_{t=0}^T$ and $\{q_t\}_{t=0}^T$ are non-negative sequences and $a, b, c \geq 0$ are constants. Then
 1213

$$1214 \quad \min_{t=0,1,\dots,T-1} q_t \leq \frac{(1 + a)^T}{bT} p_0 + \frac{c}{b}. \quad (17)$$

1217 *Proof.* Dividing both sides of equation 16 by $(1 + a)^{t+1}$ and summing from $t = 0, 1, \dots, T$ we
 1218 have

$$1219 \quad \sum_{t=0}^T \frac{1}{(1 + a)^{t+1}} p_{t+1} \leq \sum_{t=0}^T \frac{1}{(1 + a)^t} p_t - \sum_{t=0}^T \frac{b}{(1 + a)^{t+1}} q_t + \sum_{t=0}^T \frac{c}{(1 + a)^{t+1}},$$

1222 which after rearranging is
 1223

$$1224 \quad \sum_{t=0}^T \frac{b}{(1 + a)^{t+1}} q_t \leq p_0 - \frac{1}{(1 + a)^{T+1}} p_{T+1} + \sum_{t=0}^T \frac{c}{(1 + a)^{t+1}}.$$

1227 Noting $\sum_{t=0}^T \frac{1}{(1+a)^{t+1}} \leq \frac{1}{1 - \frac{1}{1+a}} - 1 = \frac{1}{a}$, we have
 1228

$$1229 \quad \min_{t=0,1,\dots,T} q_t \sum_{t=0}^T \frac{1}{(1 + a)^{t+1}} \leq \sum_{t=0}^T \frac{1}{(1 + a)^{t+1}} q_t \leq \frac{p_0}{b} + \frac{c}{ab}. \quad (18)$$

1232 Hence the result. \square
 1233

1234 Finally, we are set to prove Theorem 1.

1235 **Theorem 1. (Nonconvex convergence)** (i) (Unbiased) Let Assumptions 1, 5, and 6 hold,
 1236 and let \mathcal{C}_t be unbiased δ_t -compressor for all $t \in [T]$. For a fixed stepsize $\eta_t := \eta \leq$
 1237 $\min \left(\frac{1}{\frac{L}{2} + \frac{L(2M+1)}{n}}, \left(\frac{AL(2M+1)T}{n} \right)^{-\frac{1}{2}} \right)$ we have:
 1239

$$1240 \quad \min_{t=0,1,\dots,T-1} \mathbb{E}\|\nabla F(x_t)\|^2 \leq \frac{3}{T\eta \left(1 - \frac{L\eta}{2} - \frac{L\eta}{n} \right)} (F_0 - F_\star) + \frac{L\eta (B(2M+1) + 2\sigma^2)}{2n \left(1 - \frac{L\eta}{2} - \frac{L\eta(2M+1)}{n} \right)}.$$

(ii) (Biased) Let Assumptions 1, 3, 5, 7 and 9 hold, and let C_t be biased δ -compressors for all $t \in [T]$ that follow Assumption and 8. For a stepsize $\eta < \frac{\beta}{L(2-\delta_t)(M+1)(C+1)G^{2-\alpha}}$, we have: $\min_{t=0,1,\dots,T-1} \mathbb{E}\|\nabla F\|^\alpha \leq \frac{(F_0 - F_*)}{T\eta\beta\mathcal{A}} + \hat{\sigma}$, where $\hat{\sigma} = \frac{2L\eta(\sigma^2 + (M+1)\zeta^2)}{\beta\mathcal{A}} + \frac{R}{\beta\mathcal{A}}$, and $\mathcal{A} := \left(1 - \frac{L\eta(2-\delta_t)(M+1)(C+1)G^{2-\alpha}}{\beta}\right)$.

Proof. (i) From Lemma 7 we have

$$\begin{aligned} \mathbb{E}(F_{t+1}) - F_* &\leq \left(1 + \frac{AL\eta_t^2\beta_t}{n}\right)(\mathbb{E}(F_t) - F_*) - \eta_t \left(1 - \frac{L\eta_t}{2} - \frac{L\eta_t\beta_t}{n}\right) \mathbb{E}\|\nabla F_t\|^2 \\ &\quad + \frac{L\eta_t^2}{2} \left(\frac{B\beta_t}{n} + \left(\frac{2-\delta_t}{n}\right)\sigma^2\right). \end{aligned}$$

The above inequality satisfies the condition of equation 16 with $a = \frac{AL\eta^2(2M+1)}{n}$, $b = \eta \left(1 - \frac{L\eta}{2} - \frac{L\eta(2M+1)}{n}\right)$, $c = \frac{L\eta^2}{2} \left(\frac{B(2M+1)}{n} + \frac{2\sigma^2}{n}\right)$. Therefore, we obtain

$$\min_{t=0,1,\dots,T-1} \mathbb{E}\|\nabla F(x_t)\|^2 \leq \frac{\left(1 + \frac{AL\eta^2(2M+1)}{n}\right)^T}{T\eta \left(1 - \frac{L\eta}{2} - \frac{L\eta(2M+1)}{n}\right)} (F_0 - F_*) + \frac{\frac{L\eta^2}{2} \left(\frac{B(2M+1)}{n} + \frac{2\sigma^2}{n}\right)}{\eta \left(1 - \frac{L\eta}{2} - \frac{L\eta(2M+1)}{n}\right)}. \quad (19)$$

Using that $x+1 \leq \exp x$ and with $\eta \leq \left(\frac{AL(2M+1)T}{n}\right)^{-\frac{1}{2}}$ in the first term of the RHS of equation 19, we get

$$\left(1 + \frac{AL\eta^2(2M+1)}{n}\right)^T \leq \exp\left(\frac{AL\eta^2(2M+1)T}{n}\right) \leq \exp(1) \leq 3.$$

Finally, using the above in the inequality (19), we have

$$\min_{t=0,1,\dots,T-1} \mathbb{E}\|\nabla F(x_t)\|^2 \leq \frac{3}{T\eta \left(1 - \frac{L\eta}{2} - \frac{L\eta}{n}\right)} (F_0 - F_*) + \frac{L\eta \left(B(2M+1) + 2\sigma^2\right)}{2n \left(1 - \frac{L\eta}{2} - \frac{L\eta(2M+1)}{n}\right)}.$$

Hence the result.

(ii) With $\|\nabla F_t\| \leq G$ from Assumption 9, we have

$$\eta_t\beta\mathbb{E}\|\nabla F_t\|^\alpha \left(1 - \frac{L\eta_t(2-\delta_t)(M+1)(C+1)G^{2-\alpha}}{\beta}\right) \leq \mathbb{E}(F_t - F_{t+1}) + L\eta_t^2(2-\delta_t)(\sigma^2 + (M+1)\zeta^2) + \eta_t R.$$

Consider $\eta_t = \eta < \frac{\beta}{L(2-\delta_t)(M+1)(C+1)G^{2-\alpha}}$. Then the above inequality reduces to

$$\mathbb{E}\|\nabla F_t\|^\alpha \leq \frac{\mathbb{E}(F_t - F_{t+1})}{\eta\beta\mathcal{A}} + \frac{L\eta(2-\delta_t)(\sigma^2 + (M+1)\zeta^2)}{\beta\mathcal{A}} + \frac{R}{\beta\mathcal{A}}.$$

By unrolling the recurrence relation, we have

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\|\nabla F_t\|^\alpha \leq \frac{F_0 - \mathbb{E}(F_t)}{T\eta\beta\mathcal{A}} + \frac{L\eta(\sigma^2 + (M+1)\zeta^2)}{T\beta\mathcal{A}} \sum_{t=0}^{T-1} (2-\delta_t) + \frac{R}{\beta\mathcal{A}}.$$

With $0 \leq \delta_t \leq 1$ we get (also, using Assumption 3),

$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\|\nabla F_t\|^\alpha \leq \frac{F_0 - F_*}{T\eta\beta\mathcal{A}} + \frac{2L\eta(\sigma^2 + (M+1)\zeta^2)}{\beta\mathcal{A}} + \frac{R}{\beta\mathcal{A}},$$

which further reduces to

$$\min_{t=0,1,\dots,T-1} \mathbb{E}\|\nabla F_t\|^\alpha \leq \frac{F_0 - F_*}{T\eta\beta\mathcal{A}} + \frac{2L\eta(\sigma^2 + (M+1)\zeta^2)}{\beta\mathcal{A}} + \frac{R}{\beta\mathcal{A}}.$$

Hence the proof. \square

```

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

```

Function 2: $\text{EpochCompression}(\{\lambda_i\}_{i=1}^p, \{\delta_i\}_{i=1}^p)$

Input: Current iteration, t
Output: Compression parameter, δ_j
 $j = \text{index of the smallest threshold from } \{\lambda_i\}_{i=1}^p \text{ such that iteration } t \leq \lambda_i$;
return δ_j

Function 3: $\text{LayerSizeCompression}(\{\lambda_i\}_{i=1}^p, \{\delta_i\}_{i=1}^p)$

Input: Gradient $g_{i,t}$ at iteration t from worker i
Output: compression parameters list
for each layer L in $g_{i,t}$ **do**
 $j = \text{index of the smallest threshold from } \{\lambda_i\}_{i=1}^p$
 $\text{such that } |L| \leq \lambda_j$;
Append δ_j to compression parameters list;
return compression parameters list;

Figure 5: System architecture. The LEGACY framework is highlighted in blue.

C SYSTEM ARCHITECTURE — LEGACY, HYPERPARAMETER SELECTION, VARIANTS OF LEGACY

We present Lightweight Efficient GrAdient Compression StrategY or LEGACY; see the system architecture in Figure 5. LEGACY is compatible with any machine learning framework (e.g., TensorFlow, PyTorch), and offers a simple API that can be embedded with various gradient compressors (e.g., Top- k , QSGD, etc.). In Algorithm 1, for simplicity, we used LEGACY in a parameter-server architecture, and employed the Top- k sparsifier as the base compressor in the main paper. However, this is an abstraction and proof of concept. LEGACY is agnostic to the base gradient compressor and the communication protocol. We conducted Top- k experiments using the NCCL AllGather communication collective NCCL, to show the scalability of LEGACY, we performed CPU-based experiments in §D.3 using G100 gloo, and utilized AllReduce for the PowerSGD experiments in §4.3.1. Since LEGACY only impacts the selection of compression parameters, it can be seamlessly integrated into any framework or scenario (e.g., parameter-server, ring all-reduce, etc.) where gradient compression is applicable.

For transmitting workers, LEGACY is executed through the intermediary API call `chooseparam` in Algorithm 1, responsible for selecting the appropriate compression parameters for each layer. After gradient computation through any ML benchmark, based on the user’s strategy, epoch compression Function 2 ($\blacksquare = 1$) or Layer size compression Function 3 ($\blacksquare = 0$) is invoked to dynamically determine the compression parameters for each layer, which are then applied to the gradient compressor in the worker. Additionally, Functions 2 and 3 in LEGACY can be used conjointly with the base-compressor; see the blue three-point arrow. Other than `chooseparam`, LEGACY uses other well-known APIs for communication, averaging, broadcasting, etc.; see Table 1. The receiving worker applies reverse operations and decompresses the received gradient. LEGACY can be used for uplink and downlink bidirectional compression by simply compressing the gradient sent from the server.

C.1 SIMPLE LEGACY

We note that there is no recipe for choosing compression parameters. The choice of compression parameters depends on multiple factors such as the dataset used, DNN model architecture, network topology, network bandwidth, and many more; see Xu et al. (2021a) and references therein. In contrast to compute-heavy state-of-the-art adaptive compressors, LEGACY is based on two simple propositions: (a) the layer size of the DNNs influences in choosing how much one needs to compress, smaller layers have insignificant effect compared to large layers, and (b) the training phase of the DNNs can be a critical contributor in the adaptive compressor design, the end training phase can tolerate severe compression without any accuracy lost. While the layer sizes can be determined and grouped based on their relative sizes, the only rule for choosing compression parameters based on

1350 the training phase is to *choose to decrease compression parameters over iterations*; §4.3.1 validates
 1351 this on QSGD and PowerSGD.

1352 To simplify the selection of hyperparameters used in LEGACY ($\{\lambda_i\}_{i=1}^p$ for thresholds and $\{\delta_i\}_{i=1}^p$
 1353 for compression levels), we proposed a simplified version called S-LEGACY. This version requires
 1354 only two hyperparameters for the epoch or layer-based approach and three for the mixed approach.
 1355 That is, S-LEGACY-E requires only a default compression parameter δ_u and the number of training
 1356 phases n ; S-LEGACY-L requires δ_u and a decrease ratio s ; S-LEGACY-M (stands for using both layer
 1357 and epoch-based) requires δ_u , n , and s .

1358 S-LEGACY determines grouping and compression parameters based on the specified hyperparameters
 1359 and two additional functions that depend on the compressors used during training: (i) $vol(\delta)$
 1360 computes or estimates the communicated data volume v for a given compression parameter δ ; and
 1361 (ii) $vol^{-1}(v)$ determines or estimates the compression parameter δ that produces a specified data
 1362 volume v .

1363 **Grouping.** In LEGACY, we used $\{\lambda_i\}_{i=1}^p$ to define training phases or layer groups. In S-LEGACY, we
 1364 simplify this grouping as follows:

1365 **S-LEGACY-E.** The training duration T is uniformly divided into n phases. Group g_i consists of
 1366 iterations within the interval $((i-1)\frac{T}{n}, i\frac{T}{n}]$.

1367 **S-LEGACY-L.** Layers are grouped by order of magnitude. Group g_i consists of layers L satisfying
 1368 $100^{i-1} \leq |L| < 100^i$, where $|L|$ denotes the layer size.

1369 **Compression parameters.** S-LEGACY eliminates the need to set the compression parameters for
 1370 each group manually. Instead, these parameters are automatically calculated to ensure a similar
 1371 communicated data volume as the default compression parameter δ_u , while following the principles
 1372 established by LEGACY.

1373 **S-LEGACY-E.** First, compute the uniform data volume V_u that would be communicated with δ_u .
 1374 For group g_i , the compression parameter is $\delta_i = vol^{-1}(V_i)$, where V_i is the data volume $V_i =$
 1375 $\left(1.5 - \frac{i-1}{n-1}\right) V_u$. This ensures progressively aggressive compression across training phases, starting
 1376 at $1.5V_u$ (first phase) and ending at $0.5V_u$ (last phase).

1377 **S-LEGACY-L.** Compress the largest layer group g_p more aggressively than δ_u : $\delta_p \approx$
 1378 $vol_p^{-1}((1-s) \cdot vol_p(\delta_u))$, where $s \leq 5\%$ is the decrease ratio, and $vol_p(\delta)$ represents the data volume
 1379 of the group g_p when compressed with δ . Distribute the saved volume $s \cdot vol_p(\delta_u)$ uniformly
 1380 across the other groups: $\delta_i = vol_i^{-1}\left(\frac{s}{p-1} \cdot vol_p(\delta_u) + vol_i(\delta_u)\right)$. Since the groups are ordered by
 1381 magnitude, this adjustment applies lighter compression to smaller groups and progressively more
 1382 aggressive compression to larger groups, ensuring that δ_u is not exceeded except for g_p .

1383 C.1.1 MIXED APPROACH

1384 The mixed approach, S-LEGACY-M, combines S-LEGACY-L and S-LEGACY-E, requiring the previously
 1385 defined parameters: the default compression parameter δ_u , the number of training phases n ,
 1386 and the decrease ratio s . S-LEGACY-M begins by applying S-LEGACY-E to partition the training
 1387 period, then uses S-LEGACY-L to determine compression parameters for each layer group, with the
 1388 compression parameter δ_i from S-LEGACY-E for the current phase serving as the default compression
 1389 parameter. Use the epoch-based method (S-LEGACY-E) to divide the training period into n phases
 1390 and compute $\{\delta_i\}_{i=1}^n$. Then for each phase i , use δ_i as the default compression parameter for the
 1391 layer-based method (S-LEGACY-L) to calculate compression parameters for layer groups within that
 1392 phase; see results in §C.1.2.

1393

1394

1395 C.1.2 NUMERICAL RESULTS OF S-LEGACY-M

1396

1397

1398 We train AlexNet and ResNet9 on CIFAR-10 and ResNet18 on CIFAR-100 using two workers. We
 1399 compare the uniform compression methods, Top-1% and Random-1%, with S-LEGACY approaches
 1400 using $n = 5$ phases and a decrease ratio of $s = 5\%$.

1404 Table 5: Accuracy for S-LEGACY methods.
1405

1406 Network	1407 Method	1408 Uniform	1409 S-LEGACY-L	1410 S-LEGACY-E	1411 S-LEGACY-M
1407 AlexNet	1408 Top-k	1409 78.1	1410 79.3	1411 78.6	1412 81.1
	1408 Random-k	1409 67.7	1410 72.4	1411 71.13	1412 72.6
1409 ResNet9	1410 Top-k	1411 85.86	1412 86.7	1413 87.52	1414 88.03
	1410 Random-k	1411 77.58	1412 81.8	1413 81.9	1414 82.04
1411 ResNet18	1412 Top-k	1413 64.4	1414 66.2	1415 66.18	1416 66.5
	1412 Random-k	1413 50.4	1414 51.9	1415 52.2	1416 52.1

1414 The results in Table 5 demonstrate that the simplified S-LEGACY approaches outperform uniform
1415 compression methods and alleviate the burden of manually selecting the hyperparameters required
1416 by LEGACY.

1418 C.1.3 STRATEGY II: EXAMPLE

1419 To illustrate this approach, consider using a sparsifier with a baseline sparsity of 1%. Instead of
1420 applying uniform compression, we divide layers into quartiles: Q1 (largest 25%) to Q4 (smallest
1421 25%), and slightly reduce Q1’s sparsity to 0.99%, reallocating the saved compression budget across
1422 the other quartiles. In AlexNet, this small adjustment enables Q2 to be compressed at 8.4%, Q3
1423 at 37.6%, and Q4 at 74.2%. Similarly, in ResNet18, with Q1 compressed at 0.99%, Q4 receives
1424 a full 100%, meaning all gradients are transmitted uncompressed. Though the difference in Q1 is
1425 minimal, the resulting improvement for smaller layers is substantial, justifying the observed gains
1426 in model performance.

1427 Another angle in understanding compression across layers is from the perspective of communicated
1428 data volume. Let us divide the layers into two groups: small and large. Let S represent the total size
1429 of the small layers (e.g., layers with fewer than 10^4 elements) and L represent the total size of the
1430 large layers (e.g., layers with more than 10^4 elements). We assume $S \ll L$. E.g., in our experiments,
1431 the ratio, $\frac{L}{S+L}$ is 0.9996, 0.987, and 0.997 for Transformer, ResNet-9, and AlexNet, respectively.

1432 We aim to select δ_s and δ_l such that the overall data volume remains consistent with that obtained
1433 using a uniform compression, δ , throughout the training. Let the compressed data volume when
1434 using a uniform compression δ be V_{uniform} and layer-based LEGACY (when using δ_s on the small
1435 layers and δ_l on the large layers) be V_{dynamic} .

1436 We have $V_{\text{uniform}} \propto \delta(L + S)$ and $V_{\text{dynamic}} \propto \delta_l L + \delta_s S$. Therefore, to keep the same overall data
1437 volume, $V_{\text{uniform}} \approx V_{\text{dynamic}}$, implies $\delta(L + S) \approx \delta_l L + \delta_s S$, that is, $\delta L \approx \delta_l L + (\delta_s - \delta)S$. Based
1438 on our assumption, $S \ll L$, together with $\delta_l < \delta \ll \delta_s \leq 1$, we obtain $\delta \approx \delta_l$, as $(\delta_s - \delta) \frac{S}{L} \rightarrow 0$. We
1439 do not have any explicit assumption on δ_s , so we can choose it close to 1, that is, easy compression.
1440 We postulate, it is better to compress the large layers and leave the small layers uncompressed.

1442 D ADDENDUM TO EXPERIMENTAL EVALUATIONS

1443 In this section, we provide additional experimental details and benchmarking results, which we were
1444 unable to discuss in the main paper due to limited space.

1445 D.1 REPRODUCIBILITY

1446 We implement the sparsifiers in PyTorch. Tables 9, 11, 12, 13, and 14 provide the experimen-
1447 tal details for each of the tasks. We used the default hyperparameters provided in the mentioned
1448 repositories for each task.

1449 We postulated that LEGACY can be used conjointly with any compression techniques in designing
1450 its compute-free, adaptive counterpart. In this section, we provide additional experimental details
1451 and benchmarking results to demonstrate that LEGACY can be seamlessly integrated with other
1452 compression classes: sparsification (Random-k), quantization (QSGD Alistarh et al. (2017)), and
1453 low-rank factorization (PowerSGD Vogels et al. (2019)). These results, which we could not cover in
1454 detail in the main paper due to limited space, further validate LEGACY’s versatility across different
1455 compression approaches.

1458
1459
1460 Table 6: Summary of the benchmarks and quality metrics used in this work.
1461
1462
1463
1464
1465
1466
1467
1468
1469

Task	Model	Dataset	Training parameters	Quality metric	Baseline quality	Optimizer
Image Classification	AlexNet	CIFAR-10	2,255,296	Accuracy	84.99%	SGD Robbins & Monroe (1951)
	ResNet9	CIFAR-10	6,573,120	Accuracy	92.07%	SGD Robbins & Monroe (1951)
	ResNet18	CIFAR-100	11,220,132	Accuracy	73.43%	SGD-M Nesterov (2013)
	ResNet50	ImageNet	25,559,081	Accuracy	59.43%	SGD Robbins & Monroe (1951)
Recommendation	NCF	Movielens-20m	31,832,577	HR@10	95.53%	ADAM Kingma & Ba (2015)
Language Modelling	Transformer-XL	WikiText-103	191,950,298	Perplexity	39.47	LAMB You et al. (2020)
	GPT-2 small	OpenWebText	124,373,760	Validation loss	2.85	AdamW Loshchilov & Hutter (2019)
Federated Learning	ResNet18	CIFAR-10	11,173,962	Accuracy	85.37%	SGD-M Nesterov (2013)

1470
1471 Table 7: Dataset and training configuration.
1472

Dataset Name	Size	Workers used	Training Time (min)	Independent Runs Performed
CIFAR10 Krizhevsky et al. (2009)	160MB	2	5	15
CIFAR100 Krizhevsky et al. (2009)	160MB	2	20	15
ImageNet Deng et al. (2009)	140GB	4	2100	1
Movielens-20m Harper & Konstan (2015)	190MB	4	2	10
WikiText-103 Merity et al. (2017)	500MB	4	190	4
OpenWebText Gokaslan et al. (2019)	40GB	2	1440	1

1483
1484 D.2 LEGACY ON DIFFERENT COMPRESSION CLASSES
14851486 In this Section, we show the efficacy of LEGACY on Random- k as the base compressor.
14871488 D.2.1 RANDOM- k IN LEGACY AS BASE COMPRESSOR
14891490
1491 Following the configuration described in Section 4, we provide additional tests, using the Random-
1492 k as the base compressor in LEGACY. Figure 6 displays the accuracy versus relative average data
1493 volume throughout training for AlexNet, ResNet-9, and Transformer-XL.1494 In Table 8, we report the accuracy of ResNet-9 and AlexNet, including standard deviations ob-
1495 tained through independent runs using Top- k and Random- k as base compressors in LEGACY. Top- k
1496 demonstrates superior performance relative to Random- k . The tests revealed comparable findings
1497 to those discussed in Subsection 4.1, further validating the importance of small layers and the initial
1498 training phase in improving compression efficiency.
14991500 Table 8: Comparison of average compression ratios vs. mean accuracy with standard deviation
1501 derived from 7 runs.
1502

Method	Compression ratio	ResNet9		AlexNet	
		Average ratio	Accuracy	Average ratio	Accuracy
Baseline	N/A	100%	92.07 ± 0.13	100%	84.98 ± 0.34
Topk	0.1%	0.1%	75.72 ± 1.07	0.1%	65.53 ± 0.86
Topk-epoch	$B_{0.05}E_{0.15}$	0.1%	73.65 ± 0.16	0.1%	59.85 ± 4.9
Topk-epoch	$B_{0.15}E_{0.05}$	0.1%	79.18 ± 0.26	0.1%	66.25 ± 0.62
Topk-layer	$S_{10}L_{0.1}$	0.12%	82.94 ± 0.79	0.13%	70.27 ± 0.91
Randomk	0.1%	0.1%	50.04 ± 0.8	0.1%	43.58 ± 0.45
Randomk-layer	$S_{10}L_{0.1}$	0.12%	68.67 ± 0.53	0.13%	62.13 ± 0.45

Figure 6: Layer-size and training epoch dependent Random- k compression, where $S_{\delta_1}L_{\delta_2}$ means small layers ($\leq 10^5$) compressed with compression factor, δ_1 and large layers compressed with compression factor, δ_2 , and $B_{\delta_1}E_{\delta_2}$ denotes two-phase training, beginning phase (half of the total training epoch) with compression factor, δ_1 and ending phase with compression factor δ_2 .

D.3 SCALABILITY OF LEGACY

We performed our previous experiments on high-performance GPUs in a data center, connected by a fast network, and consisting of a limited number of workers. To evaluate performance in more constrained environments, we now simulate scenarios with a larger number of workers and restricted resources.

D.3.1 LEGACY ON CONSTRAINED ENVIRONMENTS

Testbed and setup. We trained ResNet-18 on CIFAR-10 using 50 workers, sharing a 1Gbps network bandwidth, with every worker operating on an Intel Xeon Platinum 8276 CPU instead of a GPU. In this part, we integrated error feedback (EF) in our tests; the implementation of EF is based on Sahu et al. (2021). We use Gloo AllGather for internodal communication. Figure 7 profiles the accuracy per wall clock time for 4100 seconds, which is the time required for compressors to complete 30 epochs. For the compression parameters of each method, we employed the following so that all methods transmit (almost) equal average data volume:

- Top- k : 1.7% uniform compression.
- Accordion: Set low and high compression ratio to $k_{low} = 0.1\%$ and $k_{high} = 10\%$, respectively, achieving an average compression ratio of 1.98%.
- Top- k Epoch-based: The total training duration of 30 epochs was divided into four segments: three segments of 8 epochs each, followed by a final segment of 7 epochs. Compression ratios were set to 5%, 1%, 0.5%, and 0.1% for each segment, respectively, resulting in an average compression ratio of 1.75%.
- Top- k Layer-based: Layers were categorized based on size into five groups: very small (≤ 100), small (≤ 600), medium ($\leq 10^5$), large ($\leq 10^6$), and very large ($\geq 10^6$). Assigned compression ratios were 80%, 50%, 20%, 5%, and 0.1% for each group respectively, transmitting 1.77% of the gradients.

Results. Although the no-compression baseline achieves the highest accuracy, the time required is also large in environments with limited and weak resources. In this test, the baseline needed more than 6 hours to complete 30 epochs, while the compression tests took ≈ 4100 seconds, thereby achieving the best return for time. From Figure 7a, we can observe that the Epoch-based Top- k strategy achieves the best performance in the first 1000 seconds, which is expected as the method is running through a light compression of 5% during this period, compared to the other compressors that are using around a 1.7% compression ratio. The uniform compressors required approximately double the time (a little less than 2000s) to reach this level of accuracy. On the other hand, the Top- k strategy based on layer size, stands out with the best accuracy when the layer size groups are more refined; creating more groups helps in controlling the compression for sensitive and small layers to achieve better accuracy.

Figure 7: In (a) and (b), we show accuracy vs. wall clock time of training ResNet-18 on CIFAR10, with and without EF, respectively. In (c), we show the total communicated data volume in ResNet-18 on CIFAR10 training in an FL environment; see legend in Figure 8.

Figure 8: Training ResNet18 on CIFAR10 in a FL Environment; δ_{100} is no compression baseline.

Takeaways. In resource-limited environments, the strategies in LEGACY perform better in terms of obtaining a better accuracy faster. The initial mild compression phase of the epoch-based strategy allows it to benefit from the early training phase and outperform other methods, which take significant time to match its performance, even after the epoch strategy enters the aggressive phase. On the other hand, applying light compression to small layers enhances model performance. In both strategies, creating more groups aids in refining the compression more effectively to achieve better performance.

D.3.2 FEDERATED TRAINING OF RESNET-18 ON CIFAR-10

Fast networks do not always harvest the compression benefit Xu et al. (2021a); bandwidth-limited federated training is an authentic area in assessing our strategies.

Testbed and setup. We emulate a constrained federated learning (FL) environment with 50 CPU workers by using the same configuration as before. Additionally, we partition the CIFAR-10 dataset into 50 subsets using a Dirichlet distribution with parameter $\alpha = 10$ to mimic a non-i.i.d. data distribution among the workers. We use Top- k as the base compressor in LEGACY and compare the results with no compression baseline and Accordion Agarwal et al. (2021a). This configuration more accurately reflects the limitations encountered in a real-world FL environment, characterized by heterogeneous data, constrained networks, and computational resources.

Result. We do not accumulate gradients at local nodes but communicate immediately to test the resilience of training when the slow network is burdened with heavy communication. Our strategies are robust in FL and outperformed the uniform Top-1.3% and Accordion, achieving a 16-35% gain in accuracy, while being 6 \times faster than the no-compression baseline; see Figure 8b. Our layer-based policy's test accuracy is almost similar to the no-compression baseline, while the epoch-based policy outperforms the uniform Top-1.3%. The adaptive policies in LEGACY significantly lower the communicate data volume overhead in FL deployments; $B_2E_{0.6}$ and $S_{15}L_{1.2}$ communicate only

1620
1621
1622 Table 9: CIFAR-10 experiments
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633

Dataset	CIFAR-10
Architecture	AlexNet, ResNet-9
Repository	Layer-Wise-AAAI20 Dutta et al. (2020)
	See https://github.com/sands-lab/layer-wise-aaai20
License	MIT
Number of workers	2
Global Batch-size	256×2
Optimizer	vanilla SGD
LR scheduler	piecewise-linear function that increases the learning rate from 0 to 0.4 during the first 5 epochs and then decreases to 0 till the last epoch
Number of Epochs	30
Repetitions	15, with different seeds

1634
1635 Table 10: Evaluation of LEGACY in large scale training of Resnet-18 on CIFAR-10.
1636
1637
1638

Methods	No compression	Top- k	LEGACY-E	LEGACY-L
Top-1 Accuracy	89.34	69.1	71.8	80.76

1640 1.3% and 1.23% of the data, respectively, compared to the no-compression baseline (Figure 8c);
 1641 also, see total communicated data volume during training in Figure 7c. Together, this indicates the
 1642 high quality of the trained model, consistent with the findings in data center training, and validates
 1643 our claim that the simple yet efficient principles in LEGACY are beneficial for federated deployments.

1644
1645 D.3.3 SCALING LEGACY TO 100 WORKERS IN A DATA CENTER
1646

1647 **Testbed and setup.** We used the same configuration as in D.3.1, but scaled the system to 100
 1648 workers and removed the bandwidth limitation to accelerate training. As in the previous setup,
 1649 each worker operated on an Intel Xeon Platinum 8276 CPU, and all other parameters were kept
 1650 identical. The model accuracy depends on the compressed gradients being transmitted, not on their
 1651 transfer speed; the results are generalizable across different bandwidths (e.g., 400 Gbps, 10 Gbps,
 1652 or 1 Gbps). In practice, the compression strategy remains unchanged regardless of bandwidth;
 1653 only the transfer time varies. Consequently, under low-bandwidth conditions, LEGACY provides
 1654 substantial speedups over uncompressed training while also achieving higher accuracy than uniform
 1655 compression.

1656 For compression, we configured each method to transmit approximately 1% of the gradients on
 1657 average, using the following parameters:

- 1658 • **Top- k :** 1% uniform compression.
- 1659 • **Top- k Epoch-based:** the first epoch used a 5% ratio, the second epoch 2%, followed by
 1660 1% for the next 18 epochs (epochs 3–20). For the final 10 epochs, we applied a 0.7% ratio,
 1661 resulting in an average compression ratio of 1.06%.
- 1662 • **Top- k Layer-based:** layers were grouped by size into four categories: small (≤ 600),
 1663 medium ($\leq 10^5$), large ($\leq 10^6$), and very large ($\geq 10^6$). The small layer group was left
 1664 uncompressed. Compression ratios of 15%, 2%, and 0.1% were applied to the medium,
 1665 large, and very large groups, respectively, yielding an average compression ratio of 0.99%.

1666 **Results and takeaways.** Table 10 reports the results for the 100-worker setting. The no-
 1667 compression baseline achieves the highest accuracy (89.34%), but at the cost of substantial com-
 1668 munication overhead. Uniform Top- k suffers from a significant accuracy drop (69.1%), whereas
 1669 both variants of LEGACY perform considerably better, with LEGACY-E reaching 71.8% and LEGACY-L
 1670 achieving 80.76%. These results confirm that LEGACY scales effectively to 100-worker configura-
 1671 tions while maintaining strong accuracy under aggressive compression. Combined with the earlier
 1672 experiments in constrained environments, this demonstrates that LEGACY is both efficient and robust
 1673 across resource-limited and large-scale deployments, making it a practical solution for challenging
 distributed training scenarios.

1674
1675
1676 Table 11: CIFAR-100 experiments
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689

Dataset	CIFAR-100
Architecture	ResNet-18
Repository	rethinking-sparsification Sahu et al. (2021)
	See https://github.com/sands-lab/rethinking-sparsification
License	MIT
Number of workers	2
Global Batch-size	256×2
Optimizer	SGD with Nesterov Momentum
Momentum	0.9
Post warmup LR	0.1×16
LR-decay	/10 at epoch 150 and 250
LR-warmup	Linearly within 5 epochs, starting from 0.1
Number of Epochs	300
Weight decay	10^{-4}
Repetitions	15, with different seeds

1690
1691 Table 12: Language modelling task
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703

Dataset	WikiText103
Architecture	Transformer-XL
Repository	NVIDIA Deep Learning Examples Nvidia
	See https://github.com/NVIDIA/DeepLearningExamples
License	Apache
Number of workers	4
Global Batch-size	256
Optimizer	LAMB
LR-decay	Cosine schedule from 0.01 to 0.001
LR-warmup	Linearly within 1,000 iterations, reaching 0.01
Number of training steps	4500
Weight decay	0
Repetitions	4, with different seeds

1704
1705 D.4 TIME AND SPACE COMPLEXITY OF LEGACY AND OTHER ADAPTIVE COMPRESSORS
1706

1707 The time complexity of LEGACY is equivalent to the time complexity of the base compressor used.
1708 LEGACY does not involve any back-of-the-hand calculation in choosing the adaptive version of the
1709 compressor and needs negligible additional memory only to store the hyperparameters. Therefore,
1710 LEGACY does not require time and space complexity while granting the capability to regulate the
1711 communicated data volume, select the compressor, and decide whether to use error feedback.

1712 In contrast, Accordion Agarwal et al. (2021a) does not provide control over the communicated data
1713 volume since the duration of the critical regime is unknown, and it requires extra memory equivalent
1714 to twice the size of the model to store accumulated gradients from the current and previous epoch
1715 used in the algorithm. L-GreCo Markov et al. (2024) require additional computations, which are
1716 hidden during training by invoking L-GreCo infrequently (once per epoch in the conducted experiments)
1717 and also necessitates extra memory to keep accumulated gradients and some intermediate
1718 matrices used in the algorithm (according to the paper, it possesses a time complexity of $O(D|L||C|)$
1719 and a memory complexity of $O(|L|D)$), where $|L|$ is the number of layers, C a list of compression
1720 parameters to tests, and D is the discretization factor (with default value $D = 10,000$)—the hyper-
1721 parameters used in L-GreCo. Finally, Adacomp Chen et al. (2018a), variance-based method Tsuzuku
1722 et al. (2018), and CAT Khirirat et al. (2021) do not give the possibility to select the compression
1723 method or control the communicated volume.

1724 E LIMITATION AND FUTURE DIRECTION
1725

1726 Although adapting compression ratios based on layer size and training phase can significantly en-
1727 hance model performance, it introduces additional hyperparameters. These hyperparameters define
1728 the groups and the compression ratios for each group. While following the guidelines established by

1728
1729
1730 Table 13: Recommendation task
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743

Dataset	Movielens-20M
Architecture	NCF
Repository	NVIDIA Deep Learning Examples Nvidia
See https://github.com/NVIDIA/DeepLearningExamples	
Number of workers	2
Global Batch-size	2^{20}
Optimizer	ADAM
ADAM β_1	0.25
ADAM β_2	0.5
ADAM LR	4.5×10^{-3}
Number of Epochs	30
Weight decay	0
Dropout	0.5
Repetitions	10, with different seeds
License	Apache

1744
1745 Table 14: ImageNet experiments
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Dataset	ImageNet
Architecture	ResNet-50
Repository	PyTorch Examples PyTorch
See https://github.com/pytorch/examples	
License	BSD 3-Clause
Number of workers	4
Global Batch-size	256
Optimizer	SGD
Momentum	0.9
LR-decay	LR decayed by 10 every 30 epochs
Number of Epochs	50
Weight decay	10^{-4}
Repetitions	1

LEGACY can improve performance, identifying optimal hyperparameters is challenging and depends on multiple factors, such as the dataset, DNN model architecture, network bandwidth, and the number and performance of workers. Regardless, in Section C.1, we presented a simplified approach that requires only two hyperparameters. In the future, we aim to develop more robust methods for selecting LEGACY parameters, making the process more efficient and adaptable to varying scenarios.

In this work, we explored the impact of adapting compression based on two parameters—layer size and training iteration—that require no additional computation to determine. Additionally, we investigated the potential of optimizing compression using the layer position within the model. To evaluate this, we grouped layers into two or three categories based on their position: the first and last halves, or the first, middle, and last parts, respectively. Similar to our previous experiments, we applied different compression strategies (aggressive for one group and mild for another, while maintaining a similar data volume) and compared them to uniform compression. Our results did not identify a clear best approach; strategies that performed well in one case failed in another. We attribute this to model layer distributions—some models have smaller layers predominantly at the beginning, while others have them concentrated at the end. Ignoring these distributions when applying compression can lead to aggressive compression on smaller layers, resulting in degraded performance. We believe a more in-depth study that integrates layer position with layer size and training phase could refine compression parameter selection and improve performance outcomes.

The paper primarily focuses on synchronous communication and does not consider addressing asynchronous SGD setups, which is a nontrivial extension of this work. However, the dynamic compression strategies proposed by LEGACY are based on layer size and training phase, which are general principles and could be adapted for asynchronous setups. This extension would require further careful theoretical and experimental validation to ensure convergence and efficiency, and is left to future work.

LEGACY is feasible for real-time edge deployments because it uses lightweight meta-scheduling on a base compressor based on simple factors like layer size and training phase, avoiding computationally intensive methods. The framework does not rely on hard-to-compute gradient statistics, making it suitable for resource-constrained environments like edge devices. While the paper does not provide explicit latency metrics for real-time edge deployments, it emphasizes its applicability in several comparable settings: Minimal computational overhead in scheduling compression parameters; Empirical results on distributed setups (e.g., training on GPUs with 400 Gbps bandwidth) show that LEGACY does not introduce significant delays compared to uniform compression strategies. To further harvest the compression benefit of LEGACY in bandwidth-limited federated training, we deploy it using 50 and 100 workers, with every worker operating on an Intel Xeon Platinum 8276 CPU instead of a GPU, sharing a 1Gbps network bandwidth and no constraint on the bandwidth, respectively. In both cases, LEGACY demonstrates superior performance compared to the base uniform compressor. Taken together, LEGACY’s lightweight nature makes it a promising candidate for edge deployments.

With the advent of large multimodal models, fine-tuning can be seen as training a DNN model with a special starting point. So, LEGACY’s compression strategy, based on layer size and training phase, can be applied equally well to fine-tuning as it does to training from scratch. Fine-tuning typically involves fewer updates for certain layers, so LEGACY for fine-tuning will dynamically adjust compression parameters to these layers, making it robust to both training and fine-tuning scenarios. However, when LEGACY relies on dynamic adjustments during different training phases, in scenarios of fine-tuning with very short training durations, the benefits of LEGACY scheduling may be diminished.

Finally, we note that adversarial attacks are orthogonal to the gradient compression strategies. However, LEGACY’s simple, layer- and epoch-based dynamic meta-scheduling makes it less prone to adversarial gradient perturbations compared to adaptive compression strategies that depend on gradient magnitudes or other dynamic metrics. Thus, LEGACY can be combined safely with adversarial attacks-resilient methods (methods using robust aggregation mechanisms). However, to test this efficacy is not in the primary scope of this work.

F ETHICS STATEMENT AND POTENTIAL NEGATIVE IMPACT

Gradient compression techniques have been widely adopted since their introduction to the machine learning community. The strategies used in developing our adaptive compression scheduler in this work, theoretically and empirically, demonstrate their capability of achieving better accuracy in DNN training in a distributed and federated setup. The present work is theoretically driven, and experiments corroborate the theoretical claims. Therefore, we do not see any foreseeable harm it can pose to human society. However, it is always possible that some individual or an organization can use this idea to devise a *technique* that can appear harmful to society and bear evil consequences. As authors, we are absolutely against any detrimental usage, regardless of, by any individual or organization, under profit or non-profitable motivation, and pledge not to support any detrimental endeavors concerning our idea therein.