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Abstract: Autonomous robots will need the ability to make task and motion plans
that involve long sequences of actions, e.g. to prepare a meal. One challenge is
that the feasibility of actions late in the plan may depend on much earlier actions.
This issue is exacerbated if these dependencies exist at a purely geometric level,
making them difficult to express for a task planner. Backtracking is a common
technique to resolve such geometric dependencies, but its time complexity limits
its applicability to short-horizon dependencies. We propose an approach to ac-
count for these dependencies by learning a search heuristic for task and motion
planning. We evaluate our approach on five quasi-static simulated domains and
show a substantial improvement in success rate over the baselines.
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1 Introduction

Figure 1: Packing do-
main from Section 5.
The goal is to place
blocks in the box, but
space constraints require
early placements to leave
room for later ones.

Solving long-horizon problems, (e.g., preparing a meal), is key toward
deploying autonomous robots. Model-based approaches, and in particu-
lar task and motion planning (TAMP) [1], offer strong generalization to
handle such tasks. A major challenge is that the decisions made early
on may be incorrect, but this may only become apparent multiple steps
later, such as picking a cucumber in the middle and later needing to slice
it down the middle. We propose an approach that learns how to use an
existing world model to plan efficiently, by predicting the long-horizon
consequences of the continuous choices made early during planning.

Bilevel TAMP approaches [2, 3, 4, 5, 6] split robot decision-making
into a task planner, which produces a sequence of abstract actions (e.g.,
pick→ · · · →slice), and a motion planner, which computes motions
to enact the abstract actions. If all of the long-horizon dependencies are
encoded at the task-planner level (e.g., picking a cucumber requires the gripper to be free, and pick-
ing a knife causes the gripper to not be free), then TAMP can find a valid sequence of actions with
classical planning systems such as Fast Downward [7]. However, long-horizon dependencies that
arise from purely geometric constraints are difficult to encode at the task-planner level. One solution
for such cases is to find a sequence of abstract actions, and then use a combination of sampling (to
determine continuous parameters for executing each abstract action) and backtracking (to recursively
resample parameters to resolve all dependencies). While backtracking has succeeded at solving a va-
riety of robot problems [6, 5, 8], its runtime is exponential in the range of the dependencies between
actions and often relies on hand-crafted sampling distributions to handle situations where the set of
valid samples has small measure relative to the unconstrained parameter space. As our experiments
show, this makes seemingly simple problems intractable for bilevel TAMP approaches.

We propose a mechanism that learns to reject unpromising samples (e.g., an incorrect cucumber
grasp) by foreseeing the feasibility of further search. Our approach efficiently collects data of suc-
cessful and failed plans, and trains a transformer to predict whether a state is conducive to a solution,
given a chosen sequence of abstract actions. We show empirically that our method substantially im-
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proves the efficiency of backtracking, resulting in a much higher success rate given a time limit.
Our contributions include: 1) a formalization of long-horizon action dependencies, 2) a transformer
architecture for estimating the likelihood of finding parameters for a task plan, 3) an efficient data
collection scheme for the classifier, and 4) a modified backtracking method guided by the classifier.

2 Related Work
Many recent works have developed learning mechanisms to improve the capabilities of model-based
planning. Some methods learn planning models, in the form of state abstractions, abstract actions,
controllers, or low-level transition functions [6, 8, 4, 9, 10, 11, 12]. The learned models are then used
as part of the planning domain itself, to perform planning. Our approach instead learns mechanisms
to improve the efficiency of planning given a known model. Within this space, existing approaches
have learned parameter samplers for backtracking within bilevel TAMP, using either Gaussian [8,
6] or diffusion-based samplers [5]. Prior work has shown how to combine model learning and
sampler learning into an integrated learning approach [8, 6]. Other works focus on utilizing existing
imperfect domain models for planning by avoiding discrepancies with the real world [13].

Related to our work, which aims to predict motion planning failures before they occur, are the
works on culprit detection problem, focusing on explaining failures of motion planning [14, 15,
16, 17, 18]. Within those, the work most closely related to ours uses a learned culprit detector
to backtrack the motion planning multiple steps at a time (backjump) [18]. Our approach uses this
backjumping procedure as a fallback for cases when the feasibility classifier produces false positives,
using the confidence from our model to determine the most promising number of backtracking steps.
Compared to [18], our approach addresses the challenge of efficiently gathering data by jointly
learning the backtracking optimization heuristic and generating the data.

Non-model-based approaches to construct long-horizon plans have included sampling trajectories
from diffusion models [19] or performing gradient descent [20]. Because these mechanisms lack a
model to predict state changes resulting from the robot’s actions, they struggle with generalization.
Other works explore long-horizon feasibility analysis for task plans, by learning a heuristic to aid
task planners [21, 22] or using a learned model directly as a planner [23]. These methods are
complementary to our work and could be used in combination with it.

3 Problem Formulation
3.1 TAMP Formulation
A deterministic TAMP domain Z = ⟨O, T,Λ, Ω̄, ϕ, S,A, f, α⟩ consists of a set of objects o ∈ O
(e.g., the red mug) of types t ∈ T (e.g., mugs). The low-level elements are a set of object-oriented
continuous states s ∈ S =

∏
o∈O So, a set of continuous actions a ∈ A, and a partial low-level

transition function f : S × A → S ∪ {⊥} (⊥ denotes execution failure). Objects of a type share a
common state set: St ⊃ So (e.g., pose and size of the red mug). The abstract elements are the set of
abstract states λ ∈ Λ (e.g., the mug is red and on the table, the table is on the floor) and the set of
lifted abstract actions ω̄ ∈ Ω̄ : t1 × . . .× tmω̄

→ Ω (e.g., pick⟨object⟩), which can be grounded into
ground abstract actions ω = ω̄(o1 ∈ t1, . . . , omω̄ ∈ tmω̄ ) ∈ Ω (e.g., pick⟨red mug⟩) with specific
typed objects. The partial abstract transition function ϕ : Λ× Ω → Λ ∪ {⊥} specifies how ground
abstract actions change the abstract state (e.g., picking the red mug removes it from the table).

The state abstraction function α : S → Λ relates the continuous and abstract states (e.g., given the
red mug’s pose, it is on the table), while abstract and continuous actions are related by controllers
cω : Θcω × S → S ∪ {⊥} for each ground abstract action ω (e.g., a pick object controller). Each
controller is parameterized by θ ∈ Θcω (e.g., a grasp for the object) and follows the constraints of the
abstract transition function, so ∀s∈S;θ∈Θcω

cω(θ, s) = s′ =⇒ ϕ(α(s), ω) = α(s′). The controller
executes a sequence of actions whose resulting states are governed by the transition function f . If
successful, the controller results in a state s′ that matches the expected abstract state α(s′).

A TAMP problem ⟨s0, G⟩ consists of an initial low-level state s0 and a set of abstract goal states
G (e.g., the red mug is on the third shelf). One way to solve a TAMP problem is to first find a
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task plan π = ⟨ω1, . . . , ωn⟩ of ground abstract actions that induces a sequence of abstract states
λ0, . . . , λn such that α(s0) = λ0, ∀1≤i≤nϕ(λi−1, ωi) = λi, and λn ∈ G, using search algorithms
such as Fast Downward [7] with A* [24]. TAMP solvers then refine the task plan into a controller
plan p = ⟨θ1, . . . , θn⟩, which induces states σ = ⟨s0, . . . , sn⟩ such that ∀1≤i≤ncωi

(θi, si−1) = si.

3.2 SeSamE Formulation 1: function BT(si, i, π)
2: π : ⟨ω1, . . . , ωn⟩
3: if i = n then return ⟨⟩
4: for 1 . . . riter do
5: θi+1 ∼ ψωi+1

(si)
6: si+1 := cωi+1

(θi+1, si)
7: if si+1 = ⊥ then
8: continue
9: p := BT(si+1, i+ 1, π)

10: if p ̸= ⊥ then
11: return p⊕ ⟨θi+1⟩
12: return ⊥
Algorithm 1: Classic Backtracking.

SeSamE approaches [5, 6] set the controller parameters us-
ing sampling distributions ψω associated with each ground ab-
stract action ω. Samplers then generate controller parameters
θ ∼ ψω(s) using those distributions, conditioned on the contin-
uous state. Parameters are found via backtracking search on an
internal model of the domain (Algorithm 1 [2]), which recur-
sively extends the current refinement ⟨θ1, . . . , θi⟩. The main
loop (Lines 4-11) repeatedly samples new controller parame-
ters for the current ground abstract action ωi+1 (Line 5), checks
if the sampled parameters enable computing the next state that
matches the expected abstract state (Lines 6-8), and continues
the search recursively (Lines 3, 9-11). If there exists a dependency between ground abstract actions
ωi and ωi+d, the algorithm will take exp(O(d)) steps to detect if ωi is sampled incorrectly. Note that
Algorithm 1 is not complete (it can become probabilistically complete if we allow the first action’s
parameters θ1 to be resampled ad infinitum), and the base of the exponent depends on riter.

3.3 Graphical View of Long-Range Dependencies
To see why Algorithm 1 struggles with long-range dependencies, consider the (infinite, layered, and
directed) graph of continuous states reachable from the initial state s0 after any number i of steps,
following a task plan π = ⟨ω1, . . . , ωn⟩. We will characterize the states si that enable reaching
states ⟨si+1, . . . , sn⟩ that match the abstract states ⟨λi+1, . . . λn⟩ associated with π. Our approach
in Section 4 learns to detect states that don’t satisfy this condition and skips them during search.

At a high level, we want to determine whether there exists a further task plan refinement from
each continuous state si and task plan prefix length i. This condition can be defined inductively
as: the state si matches the expected abstract state λi, and some continuous state si+1 reachable
from si by following the next action in the plan ωi+1, permits refining the task plan. Formally, we
consider the graph ⟨V, ↪→⟩. Vi at each layer i is defined inductively. The base case contains only
the initial state: V0 ≜ {⟨s0, 0⟩}. The (i + 1)-th layer contains all the states that can be reached by
following the (i+ 1)-th action, ωi+1, from any state in the previous layer Vi: Vi+1 ≜ {⟨s′, i+ 1⟩ :
∃⟨s,i⟩∈Vi;θ∈Θcωi+1

cωi+1
(θ, s) = s′}. The nodes in the graph are V ≜

⋃
0≤i≤n Vi. The edge relation

↪→ denotes that there is a parameterization of the (i+ 1)-th controller that brings a state s to a next
state s′: ⟨s, i⟩ ↪→ ⟨s′, i + 1⟩ ≜ ∃θ∈Θcωi+1

cωi+1
(θ, s) = s′. The condition for refinability of the

task plan from a given state is defined inductively. In the base case, γ(⟨s, n⟩) ≜ α(s) = λn. The
inductive step is the cause for the computational difficulty of backtracking in SeSamE:

γ(⟨s, i⟩) ≜ α(s) = λi︸ ︷︷ ︸
β(⟨s,i⟩)

∧∃⟨s′,i+1⟩∈V γ(⟨s′, i+ 1⟩) ∧ ⟨s, i⟩ ↪→ ⟨s′, i+ 1⟩︸ ︷︷ ︸
η(⟨s,i⟩)

. (1)

To illustrate, in Figure 2 we show the structure of the Donut domain from Section 5, where a robot
picks a donut, adds toppings using topping machines, and places the donut in a box or on a shelf
(depending on the goal, see Figure 4 for visualization). The donut must be grasped from the top to
place it in the box, and from the side for the shelf; this is the main point of failure. For now, assume
that the goal is to place the donut in the box. For this case, γ holds for all states in the top row (1A–
6A) corresponding to top grasps, and does not hold for states in the bottom row (1B–6B). However,
Algorithm 1 uses only β to decide whether to continue expanding the current refinement. In our
example, β holds for states in the bottom row (1B–6B), which are not conducive to a successful
box placement. However, using backtracking to approximate η takes exponentially long in n− i. If
the donut is grasped from the side, this causes the search to focus on retrying topping actions for a
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Figure 2: The representation of the graph of continuous states of the Donut domain from Section 5.
The robot picks up a donut, either from the side or from the top (which is not encoded in the abstract
state), moves to and uses different topping machines, and then places the donut either in the box
(state 7) or on the shelf (state 8). The donut cannot be placed in the box if it’s grasped from the side
and vice versa. The colored boxes describe the ground abstract actions ω available to the robot, with
the arrows signifying corresponding continuous actions (achievable by the controller for a given
ground abstract action). The circles mark the groups of similar continuous states, while the dashed
rectangles group them into abstract states.

very long time (reaching Line 8 in Algorithm 1 each time the robot fails to execute a box placement
and reach state 7), ignoring that the culprit of failure was the initial grasp.

One way to make this process more efficient would be to evaluate η(⟨si+1, i+1⟩) before Line 9. In
other words, we want to assess for each state si+1 and plan suffix ωi+1, . . . ωn, whether there exists
a valid refinement of the suffix. We could then evaluate this condition before Line 9 and, if it doesn’t
hold, return to Line 5 to resample parameters θi+1. This would avoid the expensive backtracking
necessary for Algorithm 1 to discover that the choice of θi+1 was incorrect. In practice, a method
that leverages this should only consider sets of states with non-zero measure of being reached via
refinement under the sampling distribution ψωi+1

, since otherwise the planner would not find them.

4 Learning to Optimize the Backtracking Search
To reduce the backtracking, we propose to learn η to determine whether it is possible to further
refine the controller plan from the current state si and use it as a heuristic for search. We do so using
a feasibility classifier h that, based on a sequence of prior states σ = ⟨s0, . . . , si⟩ and the task plan
π = ⟨ω1, . . . , ωn⟩, classifies whether a given task plan is likely to be refinable from the current state.
See Appendix E for a simplified explanation of this section.

4.1 Backtracking with Feasibility Classifier
1: function BT-h(σ, π, confmin, h)
2: σ : ⟨s0, . . . , si⟩,π : ⟨ω1, . . . , ωn⟩
3: if i = n then return ⟨⟩
4: for 1 . . . riter do
5: θi+1 ∼ ψωi+1

(si)
6: si+1 := cωi+1

(θi+1, si)
7: if si+1 = ⊥ then continue
8: η, conf := h(π, σ ⊕ ⟨si+1⟩)
9: if ¬η then continue

10: p := BT-h(σ ⊕ ⟨si+1⟩, π,
min(confmin, conf), h)

11: if p ̸= ⊥ then
12: return p⊕ ⟨θi+1⟩
13: if conf > confmin then
14: return ⊥
15: return ⊥
Algorithm 2: Backtracking with Feasi-
bility Classifier. The blue parts high-
light changes from Figure 1.

Algorithm 2 uses the classifier to prune controller param-
eter samples that would lead to unrefinable states. With
each of riter search attempts (Lines 4-14), the algorithm
first samples the next controller parameters θi+1 (Line 5)
and tries to run the controller to produce the next state
si+1 (Lines 6-7). Then, it uses the feasibility classifier to
predict whether further search is likely to succeed from
that state (Lines 8-9). The search then continues recur-
sively (Lines 3, 10-12). Inspired by [18], if the current
search step fails, the algorithm backtracks to the previ-
ous step with the lowest feasibility classifier confidence
confmin (Lines 13-14). This backjumping procedure fur-
ther reduces backtracking by resampling parameters that
are least likely to succeed, under the learned classifier.

4.2 Feasibility Classifier Architecture
Per the definition in Equation 1, our classifier requires as input the current state si and the suffix of
the task plan ⟨ωi, . . . , ωn⟩. Notably, both of these inputs vary in length across problems and even
across steps within a problem— the number of steps in the task plan trivially affects its length, and
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assuming that the continuous state set St for each type t is a real-valued vector space Rk, the number
of objects affects the dimensionality of the state. To deal with these variations, we use a transformer
architecture (we could alternatively have used a recurrent neural net) that consumes tokens that
represent state-action pairs, as illustrated in Figure 3. In principle, we could have two sets of tokens:
one representing si as a set of object states, and another representing the sequence of ground abstract
actions in the task plan. However, it is unclear how a transformer would simultaneously handle the
(ordered) sequence of actions and the (unordered) set of states.

Figure 3: Architecture of the feasibil-
ity classifier h, supplied with the se-
quence of ground abstract actions ωj =
ω̄j(oj,1, . . . , oj,mω̄j

), 1 ≤ j ≤ n and re-
fined continuous states s0, . . . , si.

Instead, we let each token be a pair ⟨sj , ωj⟩, 1 ≤ j ≤ n.
Such a token must contain information to identify the ab-
stract lifted action ω̄j , the objects that ground the action
o1, . . . , omω̄j

, and the state sj . Including the entirety of
sj in the input would again require a varying-length rep-
resentation. Since we will have multiple such tokens, we
can restrict the representation of sj to the state of objects
in the action, sj,o1 , . . . , sj,omω̄j

. Once the current token is
sequenced with the remaining tokens, the transformer will
receive information about all objects that parameterize any
action in the plan, which can be thought of as the set of objects relevant to the TAMP problem. To
identify each object ol, we use a one-hot encoding with a fixed maximum size rmaxobj—we random-
ize the one-hot encodings during training to avoid overfitting to the particular object instances in the
training. One remaining challenge is that the number of objects mω̄ varies across actions. To pro-
duce a fixed-length token representation and introduce the identity of the action, we concatenate the
object states and one-hot encodings and pass them through a lifted abstract action-specific featurizer
network with a simple feedforward architecture [25] and ReLU activations [26], trained end-to-end
with the transformer (details in Appendix C). For each ground abstract action that has already been
refined ω1≤j≤i, we use the state sj produced by the controller, while for subsequent actions we use
the latest state si. Because featurizer inputs from such states may be drawn from different distribu-
tions than the ones produced from states generated directly by the controller (e.g., if object positions
are encoded relative to the robot), we train separate featurizer networks for ground abstract actions
ωj>i that have not been refined.

4.3 Data Gathering
1: function DATA-GATHERING(D)
2: h := Constant(1)
3: D+,D− := {}, {}
4: for l = max{n− 2 : ⟨π, σ⟩ ∈ D} . . . 0 do
5: D′ := {⟨π, σ⟩ ∈ D : n− 1 ≥ l + 1}
6: for random rdp ⟨π, σ⟩ ∈ D′ do
7: σ : ⟨s0, . . . , sn⟩, π : ⟨ω1, . . . , ωn⟩
8: σpref := ⟨s0, . . . , sl⟩
9: T := BT-h-CaptureSearchTree(σpref, π, 1.0, h)

10: D+ ∪= {⟨π, σpref⊕⟨ŝ⟩⟩ : ŝ ∈ SuccessfulTries(T)}
11: D− ∪= {⟨π, σpref ⊕ ⟨ŝ⟩⟩ : ŝ ∈ StuckTries(T)}
12: h := TrainNeuralClassifier(D+,D−, l)
13: return h

Algorithm 3: Generating data for the Feasibility Classifier.

We assume access to a dataset D
of demonstrations in the form of
task plans, controller plans, and
state sequences: ⟨π, p, σ⟩. Demon-
strations can trivially be used as
positive training data for the clas-
sifier: all parameters in the con-
troller plan were sampled correctly,
so any prefix of the controller plan
⟨θ1, . . . , θi⟩ and its associated se-
quence of states σ = ⟨s0, . . . , si⟩
should be accepted by our classi-
fier. One (naïve) way to obtain neg-
ative data is to run the backtracking search from Algorithm 1 on the same TAMP problems that we
obtained demonstrations for. In the resulting search tree, from each node s0, . . . , sn−1 on the suc-
cessful path (except for the last one), there is a single branch that corresponds to a successful plan.
All remaining branches failed to be refined, and because we want to find prefixes that are likely to
be refined by backtracking with a fixed riter, these can be treated as unrefinable states. Concretely,
we can take any prefix of the successful state sequence σ = ⟨s0, . . . , si⟩ and follow any application
in the search tree of the subsequent controller cωi+1

with parameters θ̂ ̸= θi+1 that differ from the
successful controller plan. The resulting state ŝ = cωi

(θ̂, si) can be combined with σ to produce
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a negative data point for the given task plan π. This process is illustrated in Figure B.1. Note that
it is imperative that the negative data point shares all but the last state ŝ with a successful plan;
otherwise, any state outside of the successful plan could have caused the failure. This implies that,
to generate negative data points, backtracking must also find a successful motion plan. As explained
in Section 3.2, this process takes exponentially long.

To alleviate this cost, we will use the fact that the backtracking search can also be started from any
state sl on the successful sequence of states σ = ⟨s0, . . . , sn⟩. We then alternate running classifier-
aided backtracking (Algorithm 2) to generate negative data starting from sl and training a classifier
using the obtained data to use for the next round of backtracking for data collection for a decreased
value of l. The process is summarized in Algorithm 3. Initially, the feasibility classifier always
outputs a confidence of 1 (Line 2). We then iterate over descending state prefix lengths, starting
from n − 2 (Lines 4–12). For each task plan prefix length l, we select rdp viable data points (i.e.,
task plans of length ≥ l + 2; Lines 5–6). For each data point, we run backtracking and return
the entire search tree traversed by the algorithm (Line 9) and generate the feasibility classifier data
(Lines 10–11). Note that we also generate positive data points in this step, because the samplers
used for backtracking may generate a distribution shift from the initial demonstrations D. We then
train the new classifier (Line 12) and decrease the prefix length. In practice, we stop the search from
a given prefix upon finding the first positive or negative data point.

5 Experiments

Our experimental evaluation aims to address (Q1) whether using backtracking with a feasibility
classifier can meaningfully improve the speed of plan refinement, (Q2) whether the method general-
izes to unseen plan lengths, (Q3) how well the method handles reduced initial demonstration dataset
D, and (Q4) whether the data collection, the backjumping, and the architecture of the classifier are
necessary for the method to work. We run all our experiments with 8 different datasets of task plans
and state sequences and test them on 50 test problems for each dataset. The evaluation metric is
whether a method was able to find a solution motion plan within a timeout of 120s. See Appendix D
complete success rate and timing data across all the domains. See Appendix A for additional details
on the runtime, domains, baselines, and ablations.

5.1 Domains

We use 2D (Shelves, Donut, Statue) and 3D (Packing, Trays—simulated in PyBullet) quasi-static
domains with collision checking only after each action (Figures 1 and 4). We provide abstract actions
ω and controllers cω for each domain, and the learners must determine the continuous parameters θcω
that enable solving each problem. To simulate expert demonstrations to construct the dataset D, we
run SeSamE backtracking, using Fast Downward [7] as the task planner and ground-truth samplers
to parameterize the controllers. For the 3D domains, we perform planning without simulated motion,

SHELVES

DONUTS

TRAYS

STATUE

Figure 4: Evaluation domains. In Shelves, the blue boxes are placed on the green shelves and the red
cover is placed on top or bottom. In Donut, the robot grasps the donut either from top or side, uses
the topping machines (blue), and places it in the box or shelf (green). In Trays, the blocks should be
placed in the different trays, which is not encoded at the task-plan level. In Statue, the robot should
grasp the statue (horizontally or vertically) and move it to the top right corner; red doors cannot fit
the statue grasped vertically, while narrow green doors cannot fit the statue grasped horizontally.
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and then run bi-directional RRT [27] to validate the generated state sequences. Appendix F describes
the steps necessary to run our method on a real robot.

• Shelves: Contains horizontally stacked shelves (training: 2–5, eval: 5–10) to be filled with boxes
and then covered on the bottom or top (each box placement can cause cover placement failure).

• Donut: See Section 3.3. We use 1–3 topping machines for training and 3–6 for eval.

• Statue: Robot pick-and-place of a statue in a grid of rooms (side length—train: 2–4, eval: 4–8).
Depending on the path from start to end, the statue has to be initially correctly picked up.

• Packing: A pick-and-place of blocks (training: 4–10, eval: 10) by a robot arm from a table to a
box. Blocks are arranged in two rows; the back row has to be filled first due to collision.

• Trays: A pick-and-place of blocks (training: 4–8, eval: 8) by a robot arm from a table into a set
of trays. Each tray should not have more than one block, but this can only be tested at the end.

5.2 Methods Evaluated
We evaluate the following methods.

• Backtracking with Feasibility Classifier (Ours): Our classifier-guided backtracking method from
Section 4, using the diffusion-based samplers from [5]. There is one sampler for each lifted
abstract action, and its input is the concatenation of the states of objects that ground the lifted
action. Each sampler is a feedforward diffusion model trained on the data of the corresponding
lifted action from the demonstrations in D.

• Myopic Diffusion Samplers (B1a): The diffusion-based samplers used by our method, introduced
in [5], used for general backtracking without a feasibility classifier.

• Myopic Gaussian Samplers (B1b): An alternative to B1a with similar parameterization, using the
learned Gaussian-based rejection samplers from [6].

• GNN Policy (B2): A goal-conditioned graph neural net (GNN) [28] trained via behavior cloning.

• Ablations: We ablate the backjumping (A1) and the data-gathering procedure (A2, A3). See
Appendix A for details.

5.3 Experimental Setups
To address Q1–3, we evaluated the baselines on the 2D domains. For Q1 and Q2, we used a dataset
D of 2000 data points, while for Q3 we varied the dataset size between 500 and 2000 data points.
For Q3, we used the minimum size for each test domain. For Q2, on 3D domains we varied the
maximum number of blocks in the training data across the range described in Section 5.1. For Q4,
we evaluated the ablations on the Pybullet domains, with a dataset of 2000 data points. For the
remaining experimental data see Appendix D.

5.4 Results and Analysis
The results of Figure 5 demonstrate that our method is on average superior to all our base-
lines and ablations for all experimental setups. Additionally, it shows 40%+ improvement
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Figure 5: Generalization results on 2D domains across varying domain sizes. Our approach is
the only one that solves nearly all problems in the minimum environment size, and generalizes to
increasing sizes. Avg. across 8 seeds, ranges are min. and max, 0% plots are dropped for clarity.
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Figure 6: Data efficiency results on 2D domains across initial dataset sizes. Our approach solves
most problems given the maximum initial dataset size, and outperforms baselines in smaller data
regimes. Avg. across 8 seeds, ranges are min. and max, 0% plots are dropped for clarity.

in number of problems solved over the baselines on the non-generalization and non-reduced-
data experiments. Thus, Q1 can be answered affirmatively. For Q2, our method shows lim-
ited generalization for some domains. Its accuracy on the Shelves domain reduces with more
shelves. One explanation is that the size of the cover grows with the number shelves, mak-
ing this our only environment where an individual object’s state is out-of-distribution for the
networks. In addition, transformers show limited generalization to out-of-distribution input
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Figure 7: Ablations on the Packing and Trays
domains. Assuming last action to be the wrong
one (A2) reduces success rate. Backjumping (A1)
and assuming all actions to be wrong in case
of planning failure (A3) maintains success rate.
Avg. across 8 seeds, error bars are stddev., ranges
are min. and max.

lengths [29], which may be a contributing factor.

The results in Figure 6 address Q3, showing
superior performance in reduced data regimes.
More initial training data improves performance.

Figure 7 contains results to answer Q4. Com-
pared to our results, the data collection abla-
tion A2 and A3 shows on average 25%-50% re-
duced performance on the Trays domain, which
demonstrates that our bootstrapping approach
for data collection is critical to the method’s
overall success. Simmilarly, ablating the back-
jumping (A1) reduces the method’s performance
by on average 50% reduced solution success rate
on the Packing domain, which highlights the sig-
nificance of that procedure in our method.

6 Conclusion and Limitations
We proposed a solution to learn to account for long-horizon action dependencies in sampling-based
bilevel planning. We showed experimentally that our approach substantially outperforms existing
methods in problems requiring long-horizon reasoning. One limitation of our approach, common
to most learning methods based on neural nets, is that using a small feasibility classifier network,
or a small initial dataset of demonstrations for training, leads to degraded performance. The com-
mon solutions to use bigger networks or collect larger datasets can address this limitation. One
challenge specific to our method is that data is labeled as positive or negative by our own data col-
lection mechanism. If our sampling distributions ψ are low-quality (which can happen in the case
of learned distributions similar reasons of scale) or we attempt too few samples riter at each step of
backtracking, this can lead to noisy labels that complicate the training of the classifier. Increasing
riter can reduce this labeling noise. Our choice to use transformer architectures carries the draw-
back that generalization to longer inputs (in this case, longer plans) is limited (see [29]). Applying
regularization techniques during training can mitigate this challenge. Other directions to improve
our approach include limiting the distance of action dependencies or collecting data only every k-th
prefix length to accelerate data collection, or using classifier-based guidance [30] to more efficiently
sample from diffusion models.
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A Additional Experimental Details
For the purpose of reproducibility, this appendix contains additional details of the runtime, domains,
baselines, and ablations for the experiments in Section 5 in the main paper.

A.1 Runtime
All experiments were run on Ubuntu 22.04.3 using 20 cores of Intel Xeon Gold 6248 and a 32GB
Nvidia Volta V100. We use 30 threads to collect the data for our method and its ablations in parallel.
For the 3D domains, we use PyBullet for collision checking and rendering.

A.2 Detailed Domain Descriptions
This section provides additional details of the domains.

• Shelves Domain: Contains horizontally stacked shelves to be filled with boxes and then covered
on the bottom or top (as specified by the goal). The boxes are always taller than the shelves,
requiring long-horizon reasoning of how to avoid them interfering with the cover. Each box
placement introduces a possible failure. The cover must be placed after the boxes are on the
shelves. The lifted abstract actions are “Move Box”, “Move Cover to Top” and “Move Cover to
Bottom”. All lifted abstract actions share a single controller, whose parameters are some ⟨x, y⟩
absolute position of a point on the moved and on the target object, and the ⟨x, y⟩ offset with
respect to the target destination to place the moved object on. The positions of the objects are in
absolute coordinates, and the objects cannot be rotated.

• Donut Domain: A robot picks a donut, adds toppings using topping machines, and places the
donut in a box or on a shelf (depending on the goal). The donut must be grasped from the top
to place it in the box, and from the side for the shelf; this is the main point of failure. The
lifted abstract actions are “Move Robot”, “Grasp Donut” “Place Donut in Box”, “Place Donut on
Shelf” and “Add Topping to Donut”. The movement, grasp position and placement position in
the abstract action controllers are parameterized by the ⟨x, y⟩ displacement. All other controller
parameters are determined using binary decisions based on a threshold on a real value (e.g., either
a top or side grasp, or which topping to add). The topping machines cannot be used if they’re too
far away from the robot; a similar restriction applies to the grasping and placement actions. The
positions of the objects are relative to the robot, and the objects cannot be rotated. There are 10
varieties of possible toppings in the goals.

• Statue Domain: A robot traverses a grid of rooms connected by doors to pick up a statue from the
bottom-left corner and place it in the top-right corner. The statue can be carried horizontally or
vertically. All possible paths to goal go through one door that can only fit the statue carried one
way. The main point of failure is the statue grasp, but failures are only apparent upon reasoning
about the entire task plan, and not just the goal. The lifted abstract actions are “Go through Door”,
“Go through Door with Statue”, “Grab Statue” and “Place Statue”. The movement controller pa-
rameterization specifies the offset ⟨x, y⟩ that the robot moves by, and the grab controller specifies
a thresholded value for the orientation of the statue (horizontal, vertical) in the 3D axis from the
front of the robot (not perpendicular to the world). The positions of objects are in absolute coordi-
nates, and (other than the horizontal/vertical rotations of the statue) the objects cannot be rotated.
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In training problems, the positions of objects are randomly offset to keep them in distribution for
the larger grids of rooms in test problems.

• Packing Domain: A Franka Panda arm grabs blocks from the table and places them in a box,
open from the front and facing the robot. The blocks only fit if placed in two rows, so the first
blocks must be placed in the back to make room for the subsequent ones in the front. The blocks
initially lie down scattered across the table. The only lifted abstract action is “Place Block”. The
controller is parameterized by where along the block to grasp it and where to place the block
(upright) relative to the center of the box. The positions of objects are in absolute coordinates,
and the rotations are in quaternions.

• Trays Domain: A Franka Panda arm grabs blocks from the table and places them in one of 9 trays.
The goal is to place only one block in each tray, but the relationship between blocks and which
trays they are placed into is not encoded at the task-plan level. The blocks are initially upright
scattered across the table. The lifted abstract actions are “Move Block” and a dummy “Check
Trays” action that confirms (at the end of the plan) if the blocks are in the target configuration—
this is necessary for the task planner to find a goal-reaching plan, but prevents the movement
actions from knowing the precise target placements. The controller is parameterized by where to
place the block (upright) relative to the center of the tray and a one-hot encoding of the tray. The
positions of objects are in absolute coordinates, and the rotations are in quaternions.

A.3 Backjumping and Data Collection Ablations
This section describes the ablations used to validate the need for each element of our approach.

• No backjumping (A1): To study the impact of backjumping on our method, this ablation disables
backjumping, instead always backtracking only one step. The ablation uses exactly the same
trained networks as our full approach.

• Negative training data from the longest failed trajectory (A2): To assess the importance of our
data collection scheme, we train our method by generating positive training data from the prefixes
of controller plans from the demonstrations dataset D and negative training data from the longest
failed refinements of attempts at running backtracking on the problems from D.

• Negative training data from all prefixes of a failed trajectory (A3): This ablation is similar to A2,
but instead generates negative training data from all prefixes of the longest failed refinement.

A.4 Training the Baselines
Table 1 presents the hyperparameters used when evaluating the baselines and the diffusion-based
samplers used in our method (classifier hyperparameters are included in Appendix C).

The hyperparameters of each method were tuned based on its prediction accuracy on the Shelves do-
main, using a held-out validation dataset of 20% of the data points. We picked the hyperparameters
with the lowest validation loss for each method. The SeSamE-based methods (including our own)
set riter = 20 for all domains. Our data collection method from Section 4.3 collects rdp = 4000 data
points per the iteration of the data collection loop. To ensure a fair comparison, the Gaussian and
diffusion samplers were trained for a comparable amount of time, and the GNN baseline was trained
for a similar amount of time as our method (including the data collection procedure).

B Data Gathering Illustrative Example
Figure B.1 illustrates an example search tree that the backtracking algorithm could produce during
the data collection described in Section 4.3.

C Network Training Setup
In this appendix, for the purposes of reimplementation and reproducibility, we describe the training
setup for our transformer-based classifier. We use an encoder-only transformer.We select the hy-
perparameters for the classifier, summarized in Table 2, based on the accuracy on the final iteration
of training in the data collection algorithm from Section 4.3 on the Shelves environment—runs that
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Table 1: Hyperparameters for the baselines and samplers for our method
Method Hyperparameter Value

Diffusion sampler

number of training iterations 10000
number of diffusion timesteps 100
hidden layer sizes 2× 512
learning rate 1e− 4

Gaussian sampler

regressor hidden sizes 1024× 2
classifier hidden sizes 128× 2
number of training terations 20000
learning rate 1e− 3

GNN

number of epochs 1600
number of message passings 3
hidden sizes (encoders, models, and decoders) 1× 512
learning rate 1e− 4

grasp

move

glaze

move

place in box

Figure B.1: Example data collection search graph. This is the subgraph of the refinability graph
described in Section 3.3 found via backtracking search on the Donut domain, using rdp = 4. Rows
separated by dashed lines represent layers of the graph (as labeled by i), filled nodes represent
continuous states si found during backtracking search, and empty nodes labeled by ⊥ indicate that
the sampled parameters resulted in controller failure. The path highlighted in yellow corresponds to
a successful execution, so all nodes and corresponding prefixes of the plan are positive samples for
h. The two nodes boxed by red dotted lines exemplify the negative samples that lead to refinement
failure, as described in Section 4.3.

caused the data collection to take prohibitively long (e.g., because accuracy in early iterations was
too low) were terminated early and discarded.

We optimize a standard binary cross-entropy loss with the Adam optimizer, over randomly drawn
mini-batches. In addition to the output of the featurizer network, for each token we concatenate
a one-hot encoding of which featurizer network produced it (identifying the lifted abstract action
and whether the state was produced by its controller, as explained in Section 4.1), and a binary
flag to indicate whether the corresponding ground abstract action was the latest one to be refined
(i.e., the action ωj such that j = i). These additional inputs aid the network with locating the key
information in the sequence of tokens. As is standard practice in the literature, we also concatenate
the sinusoidal positional encodingto each token. As described in [29], we offset the positions of the
tokens by a random value to improve out-of-distribution generalization with respect to the length of
the task plan. Before passing the token to the transformer, we pass it through a linear map to ensure
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Table 2: Feasibility classifier training hyperparameters
Hyperparameter Value
Model learning rate (without the transformer) 1e− 4
Transformer learning rate 1e− 5
Number of training iterations 5000
Batch size 4000
Featurizer network hidden layer sizes 2× 256
Feautrizer network output size 256
Sinusoidal embedding dimensionality 128
Sinusoidal embedding base 130
Transformer token width 128
Transformer feedforward block hidden size 512
Number of transformer heads 8
Number of transformer residual blocks 4

matching dimensionality. Our transformer then uses multi-head attention: the token is split into a
number of transformer heads, each processing a chunk of the mapped token.

D Additional Experimental Results

In this appendix, we present the experimental results not included in Section 5.4. The timings only
consider the tasks for which each baseline succeeded, which is why on the 2D domains our method
sometimes exhibits a higher runtime than the baselines. The timings for the GNN baseline (B2)
were not included because the policy is designed to compute a single solution; if the solution works,
it succeeds, and otherwise it immediately fails. In consequence, when it does succeed, it is much
faster (∼ 1000×) than our approach.

E Simplified Explanation of Our Contribution

SeSamE approaches [5, 6] methods for task and motion planning work by first creating a task plan
of high-level operators (such as grab cup or place the cup on the table) and finding controller param-
eters for the motion controllers associated with those operators (the motion plan). The task plans
are commonly found using common search algorithms such as Fast Downward [7] with A* [24].
The controller parameters are found by their recursive sampling step-by-step for each of the motion
controllers associated with the operators in the task plan using the feasibility classifier. Our con-
tribution centers around preemptively rejecting the controller parameters that are likely to result in
downstream search failures (e.g., when an incorrectly grasped Donut cannot be placed into a box
due to collision of the arm with the box). See Section 4.1 for the details of the recursive controller
parameter discovery process.

We condition the feasibility classifier on states generated after running each controller in sequence.
The states are then passed through featurizer networks, which are a simple feedforward architec-
ture [25] with a ReLU activation [26], to form a sequence of tokens. These tokens are then concate-
nated with sinusoidal positional embeddings and passed through a transformer architecture [32].
The tokens produced by a transformer are then averaged together and passed through a linear layer
with a sigmoid activation [33] to produce the final confidence of whether further controller param-
eter discovery is possible. The featurizer networks, transformer and final linear layer are trained
jointly in a supervised manner. See Section 4.1 for the rationale behind the specific choice of the
feasibility classifier architecture.

To gather the data for training the feasibility classifier we use the fact that, during the controller pa-
rameter search, each controller parameter for which the previous steps of recursive search succeed
but for which subsequent search fails can be used as negative training datapoints. Likewise, each
controller parameter for which the subsequent search succeeds can be used as a positive training
datapoint. We also notice that, given a successful motion plan, the controller parameter search can
be restarted at any point in that plan to produce the aforementioned datapoints. The challenge to
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Figure D.2: Solve times for the generalization experiments on 2D domains across varying domain
sizes. Other than the Statue domain, our approach is faster than the sampler-based baselines (B1a
and B1b) across all environment sizes. We omit the GNN baseline (B2) because it does not do
planning and therefore is trivially faster than planning approaches. Averaged across 8 seeds, ranges
represent mininum and maximum values. Note that 0% plots are dropped for clarity.
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Figure D.3: Solve times for the data efficiency experiments on 2D domains across initial dataset
sizes. Our approach is on average faster than the sampler-based baselines (B1a and B1b) across
all dataset sizes. We omit the GNN baseline (B2) because it does not do planning and therefore is
trivially faster than planning approaches. Averaged across 8 seeds, ranges represent minimum and
maximum values. Note that 0% plots are dropped for clarity.
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Figure D.4: Solve times for generalization (left) and data efficiency (right) results on 3D domains
across varying domain sizes. Our approach is consistently over 3× faster than ablations A1 and A2;
the ablation A3 is comparably fast on the Packing domain, but over 3× slower on the Trays domain.
Avg. across 8 seeds, ranges are min. and max, 0% plots are dropped for clarity.
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Figure D.5: Results on generalization (top) and data efficiency (bottom) of our method and baselines
on 3D domains across varying maximum number of blocks during training and initial dataset sizes.
Our approach shows a higher success rate on almost all experimental setups. Avg. across 8 seeds,
ranges are min. and max, 0% plots are dropped for clarity.
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Figure D.6: Solve times for generalization (top) and data efficiency (bottom) results on 3D domains
across varying domain sizes. Our approach is consistently over 5× faster than baselines B1a and
B1b. Avg. across 8 seeds, ranges are min. and max, 0% plots are dropped for clarity.
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overcome is that, without the use of an already functioning feasibility classifier, this datapoint col-
lection procedure is prohibitively long. Thus, in our data collection algorithm, given a set of already
found motion plans, we step-by-step restart the controller parameter search from progressively ear-
lier points in the motion plans, train our feasibility classifier after each such step, and use it to speed
up the search for subsequent data collection steps. See Appendix B for an illustrated example of this
process and Section 4.3 for a more detailed description of the algorithm.

F Discussion of running the method on a real world setup
While our experiments in Section 5 in the main paper focused on simulated domains, our approach
could feasibly be used on a real robot under certain constraints. In summary, other than a faithful
simulator of the real world scene, we require a source of data to train the feasibility classifier, which
need not be realistic, just representative of what plans will be run on the simulator during evalua-
tion. Specifically, the following components would be crucial to add to our system before running it
on real hardware:

• A simulator synchronized with the real robot. The challenge here is making sure the po-
sitions of objects are well represented in the simulator (since the robot joint positions can
usually be accurately measures). Assuming the objects used in the domain are known,
or can be extracted from somewhere, locating them can be achieved using e.g., Aruco
tags [34], using ICP [35].

• Data of successful trajectories, which can be collected by running the backtracking search
without the heuristic in the simulator (baseline B1a from Section 5.2) in a parallelized
manner. While this method does require some source of controller parameter samplers,
which in our case are learned through Imitation Learning, they require much less trajectory
data to train, as shown in [5]. Alternatively, the data can be collected by having a human
click through a trajectory for the robot to follow.

• Real-world abstract action controllers can be achieved by utilizing the synchronization of
the simulator with the real world and using the controllers used for planning in the simu-
lated environment. Importantly, the plan found during motion planning with the simulator
would have to be executed in an open-loop manner, i.e. under the assumption of no catas-
trophic execution failure (such as the robot dropping an object). Should we want to handle
a case of such a failure, a replanning procedure would have to be introduced into the task
planner and we would have to collect data for such failure recovery during the successful
plan search.
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