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Abstract

The Schrödinger bridge problem seeks the optimal stochastic process that connects two given
probability distributions with minimal energy modification. While the Sinkhorn algorithm
is widely used to solve the static optimal transport problem, a recent work (Pooladian and
Niles-Weed, 2024) proposed the Sinkhorn bridge, which estimates Schrödinger bridges by
plugging optimal transport into the time-dependent drifts of SDEs, with statistical guarantees
in the one-sample estimation setting where the true source distribution is fully accessible. In
this work, to further justify this method, we study the statistical performance of intermediate
Sinkhorn iterations in the two-sample estimation setting, where only finite samples from both
source and target distributions are available. Specifically, we establish a statistical bound on
the squared total variation error of Sinkhorn bridge iterations: O(1/m+ 1/n+ r4k) (r ∈
(0, 1)), where m and n are the sample sizes from the source and target distributions,
respectively, and k is the number of Sinkhorn iterations. This result provides a theoretical
guarantee for the finite-sample performance of the Schrödinger bridge estimator and offers
practical guidance for selecting sample sizes and the number of Sinkhorn iterations. Notably,
our theoretical results apply to several representative methods such as [SF]2M, DSBM-IMF,
BM2, and lightSB(-M) under specific settings, through the previously unnoticed connection
between these estimators.

1 Introduction

In recent years, there has been increasing interest in Schrödinger bridge problems, with applications
in mathematical biology (Chizat et al., 2022; Lavenant et al., 2024; Yao et al., 2025), Bayesian
posterior sampling (Heng et al., 2024), generative modeling (De Bortoli et al., 2021; Wang et al.,
2021), among others. The Schrödinger bridge problem aims to minimize the Kullback–Leibler (KL)
divergence with respect to the Wiener measure, the distribution of Brownian motion over the path
space, given two fixed marginal distributions µ, ν as source and target distributions.

The Schrödinger Bridge problem is also strongly connected to the entropic optimal transport (EOT)
problem, which offers an efficient and regularized alternative to classical optimal transport, and
is solvable via the Sinkhorn algorithm (Cuturi, 2013). The Sinkhorn algorithm operates in the
dual space, optimizing the Schrödinger potentials between empirical distributions, and enjoys well-
established convergence guarantees (Franklin and Lorenz, 1989; Peyré and Cuturi, 2018). Recently,
Pooladian and Niles-Weed (2024) introduced the Sinkhorn bridge method, which plugs in the optimal
Schrödinger potentials into the time-dependent drifts of stochastic differential equations to estimate
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the Schrödinger bridge between the source and target distributions µ and ν. Their analysis established
statistical bounds, adaptive to the intrinsic dimension of the target distribution ν, in the one-sample
estimation setting, where the true source distribution µ is fully known.

1.1 Contributions

In this work, to better understand the algorithmic and statistical convergence rates of the Sinkhorn
bridge method, we study the statistical performance of intermediate estimators obtained by Sinkhorn
iterations in the two-sample estimation setting, where only empirical distributions µm and νn of m-
and n-finite samples from µ and ν are available.

Statistical guarantee for Sinkhorn bridge iterations. First, we establish the following statis-
tical bound (Theorem 1) for the Sinkhorn bridge estimator by leveraging analytical tools for the
Schrödinger bridge in the one-sample setting (Pooladian and Niles-Weed, 2024) and for entropic
optimal transport (Stromme, 2023b):

E
[
TV2(P ∗,[0,τ ]

∞,∞ , P ∗,[0,τ ]
m,n )

]
= O

(
1

m
+

1

n

)
, (1)

where P ∗
∞,∞ and P ∗

m,n denote the true Schrödinger bridge and its Sinkhorn bridge estimator based on

the optimal EOT solution, and P ∗,[0,τ ]
∞,∞ and P ∗,[0,τ ]

m,n are restrictions of them on the time-interval [0, τ ].
The result improves upon the bound established in (Pooladian and Niles-Weed, 2024) by extending
the analysis to the two-sample setting and sharpening the rate in n from n−1/2 to n−1 at the cost of a
deterioration in the dependence on ε and R, where ε is the strength of entropic regularization and R
is the radius of the data supports.

Next, we analyze the intermediate iterations of the Sinkhorn algorithm and prove a convergence rate
(Theorem 2) for the corresponding path measures:

E[TV2(P ∗,[0,τ ]
m,n , P k,[0,τ ]m,n )] ≲

τ

1− τ
R4

ε

(
tanh

(
R2

ε

))4k

, (2)

where P k,[0,τ ]m,n denotes the Sinkhorn bridge estimator at the k-th Sinkhorn iteration for µm and νn.
Together, these results imply the convergence rate E[TV2(P

∗,[0,τ ]
∞,∞ , P

k,[0,τ ]
m,n )] = O(1/m + 1/n +

r4k) (r ∈ (0, 1)) regarding the number of samples m and n, and the number of Sinkhorn iterations k.

Relationship with the other Schrödinger Bridge estimators. Remarkably, our theoretical results
on the Sinkhorn bridge can be directly applied to the representative Schrödinger Bridge solvers:
[SF]2M (Tong et al., 2023), DSBM–IMF (Shi et al., 2023; Peluchetti, 2023), BM2 (Peluchetti, 2024),
and lightSB(-M) (Korotin et al., 2023; Gushchin et al., 2024). First, the optimal estimator produced
by these methods coincide with the Sinkhorn bridge estimator (Proposition 1). Moreover, when
DSBM-IMF and BM2 are initialized with the reference process, the estimator after k iterations
matches the Sinkhorn bridge obtained after k iterations of the Sinkhorn algorithm (Proposition 2).
Furthermore, Algorithm 1, which learns the Sinkhorn bridge drift via a neural network, is a special
case of the procedure proposed in [SF]2M. Consequently, our generalization-error analysis applies to
all of these methods, endowing the algorithms with theoretical guarantees.

1.2 Related Work

Schrödinger bridge problem. The connection between entropic optimal transport and the
Schrödinger bridge (SB) problem has been extensively studied; for a comprehensive overview,
see the survey by Léonard (2013). More recently, there has been growing interest in computational
approaches to the SB problem, particularly those leveraging deep learning techniques (De Bortoli
et al., 2023; Shi et al., 2022; Bunne et al., 2023; Tong et al., 2023). In parallel, several studies have
explored classical statistical methods for estimating the SB (Bernton et al., 2019; Pavon et al., 2021;
Vargas et al., 2021). For example, Bernton et al. (2019) proposed a sampling framework based on
trajectory refinement via approximate dynamic programming. Pavon et al. (2021) and Vargas et al.
(2021) introduced methods that directly estimate intermediate densities using maximum likelihood
principles. Specifically, Pavon et al. (2021) presented a scheme that explicitly models the target
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density and updates weights accordingly, while Vargas et al. (2021) estimated forward and backward
drifts using Gaussian processes, optimized via a likelihood-based objective. Assuming full access to
the source distribution, the statistical performance of the Schrödinger bridge estimator was analyzed
in the one-sample setting by Pooladian and Niles-Weed (2024). Other estimators, such as those
based on neural approximations or efficient algorithmic variants, have been evaluated in recent works
(Korotin et al., 2023; Stromme, 2023a).

Entropic optimal transport. Entropic Optimal Transport (EOT) introduces an entropy term
to the standard Optimal Transport (OT) problem (Cuturi, 2013), primarily proposed to improve
computational efficiency and smooth the transport plan. This regularization makes the OT problem
strictly convex, enabling the application of the Sinkhorn algorithm, an efficient iterative method for
the dual problem (Cuturi, 2013). The introduction of the Sinkhorn algorithm has allowed the OT
problem, previously computationally very expensive, to obtain approximate solutions in realistic
time even for large-scale datasets, leading to a dramatic expansion of its applications in the field of
machine learning. For example, there are diverse applications such as measuring distances between
distributions in generative modeling (Genevay et al., 2018), and shape matching or color transfer in
computer graphics and computer vision (Solomon et al., 2015). The theoretical aspects of EOT have
also been deeply studied. Analyses regarding the convergence rate of the Sinkhorn algorithm (Franklin
and Lorenz, 1989) and the statistical properties (such as sample complexity) when estimating EOT
from finite samples (Genevay et al., 2019) have been established. Furthermore, EOT is known to
have a close relationship with the Schrödinger Bridge (SB) problem (Léonard, 2013). EOT in a static
setting is equivalent to the problem of matching the marginal distributions of the SB problem, which
deals with dynamic stochastic processes, and both share common mathematical structures in duality
and optimization algorithms. This connection suggests that theoretical and computational advances
in one field can contribute to the other.

1.3 Notations

For a metric space X , let P(X ) be the space of probability distributions over X , and P2(X ) be the
subset of P(X ) with finite second-order moment. Let Rd be the d-dimensional Euclidean space and
B(a,R) = {x | ∥x−a∥2 ≤ R} ⊂ Rd be the Euclidean ball of radius R > 0 centered at a ∈ Rd. For
real numbers a and b, we set a∨ b = max(a, b) and a∧ b = min(a, b). We write a ≲ b to denote that
there exists a constant C > 0, independent to a and b, such that a ≤ C b. We denote by δx the Dirac
measure concentrated at the point x ∈ Rd. We denote by 1d ∈ Rd the d-dimensional vector whose
components are all equal to one. For a measure µ and a function f , we write µ(f) =

∫
f(x)µ(dx).

Let TV(µ, ν) be the total variation distance between two probability distributions µ and ν. For
ε > 0 and any real number or real-valued function h, write expε(h) := exp(h/ε). We denote the
d-dimensional probability simplex by ∆d := {α ∈ Rd≥0 |

∑d
i=1 αi = 1}.

2 Preliminaries

2.1 Entropic Optimal Transport

Let µ, ν ∈ P2(Rd) and ε > 0 be fixed. The entropic optimal transport (EOT) cost between µ and ν is

OTε(µ, ν) := inf
π∈Π(µ,ν)

{∫
Rd×Rd

c(x, y) dπ(x, y) + εH(π ∥µ⊗ ν)
}
, (3)

with the cost function c(x, y) := 1
2 ∥x− y∥

2
2. Here, Π(µ, ν) ⊂ P2(Rd × Rd) denotes the set of

couplings with marginals µ and ν, and

H(π ∥µ⊗ ν) :=
∫
Rd×Rd

log

(
dπ

d(µ⊗ ν)
(x, y)

)
dπ(x, y)

is the Kullback–Leibler divergence between π and µ ⊗ ν. If π is not absolutely continuous with
respect to µ⊗ ν, we set H(π ∥µ⊗ ν) = +∞.
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The optimization problem in Eq. (3) is strictly convex with respect to π, and thus it admits a unique
solution π∗

∞,∞ ∈ Π(µ, ν). Furthermore, the problem has a dual formulation given by

OTε(µ, ν) = sup
f∈L1(µ),g∈L1(ν)

Φµν(f, g), where

Φµν(f, g) :=

∫
f dµ+

∫
g dν − ε

∫ (
expε

(
f(x) + g(y)− 1

2
∥x− y∥22

)
− 1

)
dµ(x) dν(y).

(4)

The dual problem (4) admits the Schrödinger potentials f∗∞,∞ and g∗∞,∞ as optimal solutions, and
the first-order optimality condition implies

f∗∞,∞(x) = −ε log
∫
Rd

expε

(
g∗∞,∞(y)− 1

2
∥x− y∥22

)
dν(y), (5a)

g∗∞,∞(y) = −ε log
∫
Rd

expε

(
f∗∞,∞(x)− 1

2
∥x− y∥22

)
dµ(x), (5b)

which is known as Schrödinger system. Note that the solution is constant-shift invariant, i.e. for any
a ∈ R, (f∗∞,∞ + a, g∗∞,∞ − a) is also a solution to the Schrödinger system (5). It can be shown
that with a constraint ν(g∗∞,∞) = 0, the solution to (5) is unique. The optimal solution π∗

∞,∞ of the
primal problem (3) can be expressed using the dual solution via

p∗∞,∞(x, y) :=
dπ∗

∞,∞

d(µ⊗ ν)
(x, y) = expε

(
f∗∞,∞(x) + g∗∞,∞(y)− 1

2
∥x− y∥22

)
. (6)

We refer to (Nutz, 2021) for more details of entropic optimal transport problems.

2.2 Schrödinger Bridge

Let Ω = C([0, 1];Rd) be the path space consisting of all continuous maps from the time interval [0, 1]
to Rd. Let W ε be the law of a reversible Brownian motion on Rd with volatility ε. The Schrödinger
Bridge problem is then defined through the following entropy minimization problem:

inf
P∈P(Ω)

εH(P |W ε) subject to P0 = µ, P1 = ν, (7)

where Pt ∈ P(Rd) is the marginal distribution at time t ∈ [0, 1] of the path-space distribution P ,
i.e. Xt ∼ Pt if X is a stochastic process with distribution P . Though W ε is an unbounded positive
measure over Ω, the above optimization problem is still well defined as illustrated by Léonard (2013).

The Schrödinger Bridge problem is closely connected with the EOT problem. Precisely, the optimal
solution P ∗

∞,∞ ∈ P(Ω) of Eq. (7) can be derived by first solving the EOT problem (3) and then
connect the optimal coupling with the Brownian bridge W ε

|x0,x1
=W ε(· |X0 = x0, X1 = x1), i.e.,

P ∗
∞,∞ =

∫
W ε

|x0,x1
dπ∗

∞,∞(x0, x1). (8)

The optimal solution P ∗
∞,∞ can also be characterized as the path measure of the SDE defined by

dXt = b∗∞,∞(Xt, t) dt+
√
εdBt, X0 ∼ µ,

where Bt is the standard Brownian motion, and the drift coefficient is given by

b∗∞,∞(z, t) =
1

1− t

(
− z +

EY∼ν [γ
∗,t
∞,∞(Y, z)Y ]

EY∼ν [γ
∗,t
∞,∞(Y, z)]

)
(9)

with γ∗,t∞,∞(y, z) = expε(g
∗
∞,∞(y) − 1

2(1−t)∥y − z∥
2
2). We refer to Chen et al. (2021); Léonard

(2012, 2013) for more details of the Schrödinger Bridge.
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2.3 Sinkhorn Algorithm

Given the empirical distributions µm = 1
m

∑m
i=1 δXi

and νn = 1
n

∑n
j=1 δYj

, we consider the
empirical EOT problem OTε(µm, νn). Let f∗m,n and g∗m,n be the optimal Schrödinger potentials. The
Sinkhorn algorithm is an iterative method for approximating these optimal potentials by alternately
updating the dual potentials f (k)m,n and g(k)m,n as follows.

f (k+1)
m,n = argmax

f∈L1(µm)

Φµmνn(f, g(k)m,n), g(k+1)
m,n = argmax

g∈L1(νn)

Φµmνn(f (k+1)
m,n , g). (10)

We note that f (k)m,n, g(k)m,n can be interpreted as m- and n-dimensional vectors, respectively. For
efficient computation, it is common to rewrite these updates in an alternative form. Let the kernel
matrix K ∈ Rm×n be defined as Kij = expε(− 1

2∥Xi − Yj∥22), and denote the vectors u(k) ∈ Rm

and v(k) ∈ Rn by u(k)i = expε(f
(k)(Xi)) and v(k)(Yj) = expε(g

(k)(Yj)). Then the update rule (10)
becomes

u(k+1) = m1m ⊘ (K v(k)), v(k+1) = n1n ⊘ (KT u(k+1)),

where ⊘ denotes element-wise division 1. This reformulation greatly improves computational
efficiency and enables large-scale applications.

Let dHilb be the Hilbert (pseudo-)metric on Rd+ defined by

dHilb(u, u
′) = log

(
max
i

ui
u′i
·max

i

u′i
ui

)
, ∀u, v ∈ Rd+.

It is obvious that dHilb(x, y) = 0 if and only if there exists λ ∈ R+ such that x = λy. Let the initial
values be (u(0), v(0)) = (1m,1n). Denote by (u(k), v(k)) the solution obtained after k iterations of
the Sinkhorn algorithm (10), and by (u∗, v∗) = (exp(f∗m,n/ε), exp(g

∗
m,n/ε)) the optimal solution.

Then, it is shown that (Franklin and Lorenz, 1989; Peyré and Cuturi, 2018),

dHilb(u
(k), u∗) ≤ λ(K)2k−1 dHilb(v

(0), v∗), dHilb(v
(k), v∗) ≤ λ(K)2k dHilb(v

(0), v∗).

Here, λ(K) < 1 is defined as λ(K) :=

√
γ(K)−1√
γ(K)+1

where γ(K) := maxi,j,k,l
KikKjl

KjkKil
. This result

implies the exponential convergence of the Sinkhorn iterates u(k) and v(k).

2.4 Convergence Rate of One-Sample Estimation

Pooladian and Niles-Weed (2024) analyzed the one-sample estimation task for the Schrödinger Bridge.
In this setting, full access to the source distribution µ is assumed, while the target distribution ν is
observed only through the empirical distribution νn = 1

n

∑n
j=1 δYj based on i.i.d. samples Y1, . . . , Yn.

Let (f∗∞,n, g
∗
∞,n) denote the optimal dual potentials solving OTε(µ, νn), and let P ∗

∞,n ∈ P(Ω) be
the corresponding Schrödinger Bridge. Under Assumptions 1, 2 and 3 stated below, Pooladian and
Niles-Weed (2024, Theorem 4.1) proved that there exists a constant Cν , depending only on ν and
geometric constants of its support supp(ν), such that for any τ ∈ [0, 1) the following holds:

E
[
TV2

(
P ∗,[0,τ ]
∞,n , P ∗,[0,τ ]

∞,∞

)]
≤ Cν

{
ε−dν−1

√
n

+
R2 ε−dν

(1− τ)dν+2
n

}
, (11)

where dν is the intrinsic dimensionality of supp(ν).

3 Main Results

In this section, we provide statistical and algorithmic convergence rates of Sinkhorn bridge (Pooladian
and Niles-Weed, 2024) in two-sample estimation setting.

1The standard Sinkhorn algorithm updates as u(k+1) = 1m ⊘ (mKv(k)), v(k+1) = 1n ⊘ (nKTu(k+1)).
This update is derived from the formulation of the primal problem 3 that incorporates the regularization term
H(π), and there is no substantive difference.
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3.1 Sinkhorn Bridge in Two-sample Case

Given empirical distributions µm and νn, the Sinkhorn bridge constructs the estimator P km,n ∈ P(Ω)
for the Schrödinger bridge between true distributions µ and ν as follows. First, the Sinkhorn algorithm
runs for k iterations to solve OTε(µm, νn), yielding the dual potentials f (k)m,n and g(k)m,n. Then, the
estimator P km,n is defined as the path measure of the following SDE starting from µ:

dXt = b(k)m,n(Xt, t) dt+
√
εdBt, X0 ∼ µ, (12)

where the drift function b(k)m,n is

b(k)m,n(z, t) =
1

1− t

−z + ∑n
j=1 Yj expε

(
g
(k)
m,n(Yj)− 1

2(1−t)∥Yj − z∥
2
2

)
∑n
j=1 expε

(
g
(k)
m,n(Yj)− 1

2(1−t)∥Yj − z∥
2
2

)
 . (13)

3.2 Convergence Rates of Sinkhorn Bridge

First, we analyze the statistical convergence rate of the path measure P ∗
m,n ∈ P(Ω) using the optimal

Schrödinger potentials f∗m,n and g∗m,n. Specifically, P ∗
m,n is defined analogously to P km,n by replacing

the potential g(k)m,n with its optimal counterpart g∗m,n. For details of the definition, see Appendix A.1.
The analysis will be carried out under the following assumptions.
Assumption 1. The potentials g∗∞,∞, g

∗
∞,n, g

∗
m,n satisfy∫

g∗∞,∞(y)ν(dy) =

∫
g∗∞,n(y)νn(dy) =

∫
g∗m,n(y)νn(dy) = 0.

Assumption 2. The supports of µ and ν are subsets of a ball with radius R centered at the origin.
Assumption 3. The measure ν is supported on a compact, smooth, connected Riemannian manifold
(N,h) without boundary, embedded in Rd and equipped with the submanifold geometry induced by
its inclusion into Rd; furthermore, dimN = dν ≥ 3. Moreover, ν admits a Lipschitz continuous and
strictly positive density with respect to the Riemannian volume measure on N .

The manifold hypothesis suggests that data distributions often lie on lower-dimensional manifolds,
and statistical learning methods can exploit this structure. In the EOT literature, Stromme (2023b)
established the Minimum Intrinsic Dimension (MID) scaling, where the minimum of the intrinsic
dimensions governs the convergence rate. For the Sinkhorn bridge under one-sample setting, Poola-
dian and Niles-Weed (2024) demonstrated that the convergence rate is independent of the ambient
dimension d and depends only on the intrinsic dimension of the target distribution ν. Following these
works, we also impose data-manifold assumptions solely on the target distribution ν.

The following theorem provides the squared total variation error between P ∗
∞,∞ and P ∗

m,n.
Theorem 1 (Statistical convergence rate). Suppose Assumptions 1, 2 and 3 hold. Let P ∗

∞,∞ be
the path measure of the true Schrödinger bridge for marginals µ, ν. Then, it follows that for any
τ ∈ [0, 1),

E[TV2(P ∗,[0,τ ]
∞,∞ , P ∗,[0,τ ]

m,n )]

≲
R2

n(1− τ)dν+2εdν
+

τ

1− τ

(
ε2 +

dR8

ε2

)
·
(
R

ε

)9dν+4

·
(

1

m
+

1

n

)
. (14)

where P ∗,[0,τ ]
∞,∞ and P ∗,[0,τ ]

m,n are restrictions of P ∗
∞,∞ and P ∗

m,n on the time-interval [0, τ ].
Remark 1. In this section and related proofs, we suppress non-dominant terms such as polynomial
factors of dν , geometric characteristics of supp(ν), and exponential terms of order O(dν) in uniform
constants, in the notation ≲.

We make the following observations: (1) Regarding the data dimensions, the intrinsic dimension
dν governs the growth of the convergence rate, as in Stromme (2023b); Pooladian and Niles-Weed
(2024). Although our bound, unlike theirs, involves the ambient dimension d, the dependence is
merely linear. Moreover, we note that the term d arises from the covering number of the data space
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and can also be replaced by the intrinsic dimension of the source distribution µ by additionally
imposing a manifold assumption on µ. (2) The degeneration of the estimated SDE toward a specific
sample point Yj arises as τ → 1 because the estimated drift b(k)m,n points toward a particular sample Yj
near t = 1, causing the deviation from the target distribution ν at the terminal time t = 1. Therefore,
it is common practice to restrict the time interval to [0, τ ] (τ < 1) to ensure generalization. (3) Our
result extends and sharpens the result of Pooladian and Niles-Weed (2024) to the two-sample setting,
improving the convergence rate in n from n−1/2 to n−1 at the cost of a slight deterioration regarding,
ε, R, and d.

In the next theorem, we give the algorithmic convergence rate of P km,n → P ∗
m,n attained by running

the Sinkhorn iterations k →∞.
Theorem 2 (Algorithmic convergence rate). Under Assumptions 1 and 2, we get for any τ ∈ [0, 1),

E[TV2(P ∗,[0,τ ]
m,n , P k,[0,τ ]m,n )] ≲

τ

1− τ
R6

ε2

(
tanh

(
R2

ε

))4k

,

where P k,[0,τ ]m,n are restrictions of P km,n on the time-interval [0, τ ].

These results immediately imply the convergence rate E[TV2(P
k,[0,τ ]
m,n , P

∗,[0,τ ]
∞,∞ )] = O(1/m+ 1/n+

r4k) for some r ∈ (0, 1) regarding the sample size m and n, and the number of Sinkhorn iterations k.

3.3 Drift Estimation using Neural Networks in the Schrödinger Bridge Problem

The drift estimator (13) of the Sinkhorn bridge between µm and νn is defined as an empirical
average regarding νn. As a result, simulating the SDE (12) using a time discretization scheme (e.g.,
Euler–Maruyama approximation) incurs an O(n)-computational cost at every discretization step. To
improve computational efficiency, we consider a neural network-based drift approximation.

Recall that W ε
|x0,x1

is the Brownian bridge connecting x0 and x1, so its marginal distribution at
time t ∈ [0, 1] is a Gaussian distribution W ε

t|x0,x1
= N

(
(1 − t)x0 + tx1, εt(1 − t)Id

)
. For dual

potentials f (k)m,n ∈ L1(µm) and g(k)m,n ∈ L1(νn) obtained by the Sinkhorn algorithm, we define the
joint distribution π(k)

m,n analogously to Eq. (6) by replacing the optimal potentials and µ, ν with
f
(k)
m,n, g

(k)
m,n, and µm, νn. Using π(k)

m,n, we define the mixture of Brownian bridge (a.k.a. reciprocal
process): Π(k) =

∫
W ε

|x0,x1
dπ

(k)
m,n(x0, x1) ∈ P(Ω). The drift function b(k)m,n in Eq. (13) is known to

have the following expression (Markovian projection (Shi et al., 2023)) (see Appendix B.2):

b(k)m,n(xt, t) = EX∼Π(k)

[
X1 − xt
1− t

∣∣∣∣Xt = xt

]
.

Therefore, we see that the function b(k)m,n minimizes the following functional L:

L(b) =
∫ 1

0

∫
Rd×Rd

∥∥∥∥b(xt, t)− x1 − xt
1− t

∥∥∥∥2
2

dΠ
(k)
t1 (xt, x1) dt,

where Π(k)
t1 is the marginal distribution of Π(k) on time points t and 1. This suggests training a neural

network bθ with parameter θ to minimize the above functional. We note that samples from Π
(k)
t1

can be obtained by sampling (x0, x1) ∼ π
(k)
m,n, t ∼ U [0, τ ], and xt ∼ W ε

t|x0,x1
and discarding x0.

Therefore, with this sampling scheme, SGD can be efficiently applied to minimize L(bθ). The detail
of the procedure is described in Algorithm 1. This procedure yields a neural network approximation
of the drift function defined by the Sinkhorn bridge.

3.4 Other Estimators of Schrödinger Bridge

Our theoretical results on Sinkhorn bridge (Pooladian and Niles-Weed, 2024) can be directly applied
to the representative Schrödinger Bridge solvers such as [SF]2M (Tong et al., 2023), lightSB(-
M) (Korotin et al., 2023; Gushchin et al., 2024), DSBM-IMF (Shi et al., 2023; Peluchetti, 2023), and
BM2 (Peluchetti, 2024). First, we show that the optimal estimator produced by each of these methods
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Algorithm 1 Drift Approximation via Neural Network

input Joint distribution πm,n defined by potentials f ∈ L1(µm), g ∈ L1(νn); neural network bθ
output Trained neural network bθ that approximates the drift function

repeat
Sample batch of pairs {xi0, xi1}Ni=1 ∼ πm,n
Sample batch ti ∼ U [0, τ ]
For each triplet (xi0, x

i
1, ti), sample xit ∼W ε

ti|xi
0,x

i
1

(Brownian bridge)
Compute the loss:

L(θ)← 1

N

N∑
i=1

∥∥∥∥bθ(xit, ti)− xi1 − xit
1− t

∥∥∥∥2
2

Update θ using ∇L(θ)
until converged;

coincides with P ∗
m,n attained by Sinkhorn bridge with k → ∞ (Proposition 1). Moreover, when

DSBM-IMF and BM2 are initialized based on the reference process, the estimator after k iterations
matches P km,n obtained after k iterations of the Sinkhorn bridge (Proposition 2). Furthermore, it
follows from the proof of Proposition 1 that Algorithm 1, which learns the Sinkhorn bridge drift via a
neural network, is a special case of the algorithm proposed in [SF]2M. The proofs of these results
are postponed to the Appendix. Consequently, our statistical and algorithmic convergence analysis
applies to these methods, endowing the theoretical guarantees.
Proposition 1. The optimal estimators produced by [SF]2M, lightSB(-M), DSBM-IMF and BM2
coincide with P ∗

m,n attained by Sinkhorn bridge with k →∞.

Proposition 2. With initialization based on the reference process, both DSBM-IMF and BM2 produce
the same estimator as P km,n of the Sinkhorn bridge for all iterations k.

4 Experiments

In this section, we verify our theoretical findings through numerical experiments. In Section 4.1,
we verify the dependence of the statistical error on the sample size presented in Theorem 1, and
the algorithmic convergence rate presented in Theorem 2. Next, in Section 4.2, we evaluate the
neural network approximation of drift coefficient as illustrated in Section 3.3. All experimental
implementations are conducted with PyTorch 2.6.0 (Paszke et al., 2019).

4.1 Experimental Verification of Theorems 1 and 2

We use 3-dimensional normal distributions µ = N (0, I3) and ν = N (0, B) as source and target
distributions, where B ∈ R3×3 is a random positive definite matrix. Under this setting, Bunne
et al. (2023, Eq. (25)-(29)) provided explicit expressions for the drift coefficient b∗∞,∞ and the
marginal distribution P ∗,t

∞,∞. We use these expressions to evaluate the errors of the drift b∗m,n and the
corresponding Schrödinger Bridge estimators P ∗

m,n in the finite-sample settings. These estimators are
approximated by running the Sinkhorn bridge with a sufficiently large number of iterations (k →∞).

Statistical convergence. To verify that the estimator b∗m,n converges to the true drift b∗∞,∞ when
the sample sizes m and n increase, we draw m samples from µ and n samples from ν, respectively,
and compute the estimator b∗m,n(·, t) for an arbitrary time t ∈ [0, 1). Subsequently, we evaluate the
mean squared error (MSE) against the true drift b∗∞,∞(·, t).

MSEsample(m,n, t) = EX1,...Xm∼µ
Y1,...,Yn∼ν

∥b∗m,n(z, t)− b∗∞,∞(z, t)∥2
L2(P∗,t

∞,∞(z))
.

To compute this, the norm ∥ · ∥L2(P∗,t
∞,∞) is approximated using Monte Carlo with 10,000 samples

drawn from P ∗,t
∞,∞. The expectation over the samples is computed by averaging over 10 independent

sampling trials. With a fixed parameter ε = 0.1, we generated heatmaps for several t ∈ [0, 1) while
varying the sample sizes m,n used in the estimator definition (Figure 1).
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Figure 1: Heatmaps illustrating MSEsample(m,n, t) as a function of sample sizes m and n for various
time points t. The error decreases roughly proportionally to (m−1 + n−1).

As evident from the figure, the mean squared error deteriorates as t→ 1, but the overall convergence
rate remains unchanged. For all t shown in the figure, the convergence rate is observed to be
approximately proportional to (m−1 + n−1). This aligns with the result predicted by Theorem 1.

Algorithmic convergence. To verify that the estimator P (k),[0,τ ]
m,n exponentially approaches P ∗,[0,τ ]

m,n

as the iteration count k increases, we obtain m and n independent samples from distributions µ and
ν, respectively. We then consider the integral of the difference between estimators b(k)m,n(·, t) and
b∗m,n(·, t) over the interval [0, τ ]. Specifically, we evaluate the mean squared error integrated over
t ∈ [0, τ ]:∫ τ

0

MSEsinkhorn(k, t) dt =

∫ τ

0

EX1,...,Xm∼µ
Y1,...,Yn∼ν

∥∥∥b(k)m,n(z, t)− b∗m,n(z, t)
∥∥∥2
L2(P∗,t

m,n)
dt.

Figure 2: Integrated mean squared error
as a function of Sinkhorn iterations k for
multiple integration intervals [0, τ ].

Time integrals over the interval [0, τ ] are approximated
via Monte Carlo integration by uniformly sampling 1, 000
time-points. The norm ∥ · ∥L2(P∗,t

m,n)
is also estimated

via Monte Carlo integration, using 1, 000 samples drawn
from P ∗,t

m,n. We set m = n = 1, 000 and compute the
expectation by averaging over 10 independent samplings.
With the regularization parameter fixed at ε = 0.005,
we generate graphs of the integral values over [0, τ ] for
varying k and multiple τ values (Figure 2). For all τ
values shown in the figure, the convergence rate exhibits
exponential decay with respect to k. This observation
corroborates the theoretical prediction in Theorem 2.

Moreover, under the experimental setup of Section 4.2, we
illustrate in Figure 3 the evolution of the drift when the
number of Sinkhorn iterations is set to 1, 5, and 10. In
the figure, it is observed that as the number of iterations k
increases, the drift b(k)m,n rapidly converges to the optimal drift b∗m,n.

4.2 Experimental Verification of Neural Network-Based Drift Estimation

Next, we evaluate the effectiveness of the drift approximation by a neural network using Algorithm 1.
In this experiment, we set ε = 0.1, defined µ as the eight-Gaussians distribution and ν as the moons
distribution, and drew 1, 000 independent samples from each. Using these samples, the Sinkhorn
algorithm is employed to approximate the optimal EOT coupling π∗

m,n between µm and νn, and, via
Algorithm 1, a neural network approximation bθ of the drift b∗m,n is obtained. We employ an 4-layer
neural network with 512-512-512 hidden neurons for bθ, and train it using the AdamW optimizer with
a learning rate of 1×10−3, weight decay of 1×10−5, and a mini-batch size of 4, 096. Finally, starting
from each sample of µm, we simulate trajectories using either b(k)m,n or the neural network drift bθ,
and present the results in Figure 3. Trajectory simulations are performed using the Euler–Maruyama
approximation with 1, 000 discretization steps.
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Figure 3: From left to right, the simulation results of the Schrödinger bridge using the estimated drifts
b
(1)
m,n, b(5)m,n, and b(10)m,n obtained by terminating the Sinkhorn iteration after 1, 5, and 10 iterations,

respectively, the optimal drift b∗m,n, and the neural network–approximated drift bθ.

5 Conclusion and Discussion

In this study, we provide a comprehensive analysis of statistical guarantees for the Schrödinger Bridge
problem. Specifically, we establish theoretical guarantees in two key settings: (i) the two-sample
estimation task and (ii) intermediate estimators during the learning process.

Our main contributions are as follows. First, we establish a statistical convergence analysis in the
two-sample estimation setting for the Schrödinger bridge estimator with k →∞, which demonstrates
a statistical convergence rate of O

(
1
n + 1

m

)
. Second, we establish new convergence guarantees

for the dual potentials obtained during intermediate iterations of the Sinkhorn algorithm, proving
exponential convergence in the finite-sample setting. These results allow for a clear estimation
of the number of samples m,n and Sinkhorn iterations k required to achieve a desired precision.
Experimental results align with our theoretical analysis, confirming that the error decreases at a
rate of approximately (m−1 + n−1) with respect to the sample size, and that the error decreases
exponentially with respect to the number of Sinkhorn iterations k. These findings strengthen the
statistical guarantees for existing methods proposed in works such as Korotin et al. (2023); Peluchetti
(2023); Gushchin et al. (2024); Shi et al. (2023); Peluchetti (2024) through the connections among
these methods. The theoretical framework of this study deepens the understanding of generalization
error in the Schrödinger Bridge problem and offers new insights into the convergence properties and
stability of the Sinkhorn algorithm during intermediate iterations.

Future research directions include extending the analysis to more complex distributional settings
and more general reference processes, and removing linear dependence on the ambient dimension
d. Another interesting research direction is to explore alternative optimization methods for EOT
problems and analyze their performance using our theoretical framework beyond the Sinkhorn
algorithm.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction accurately reflect the theoretical
claims in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in the section "Conclusion and Discus-
sion".
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We list all assumptions in the main text and include complete proofs in the
Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: To support reproducibility, we provide information on the experimental setup
and hyperparameter configurations in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submit the source code and data through OpenReview.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide information on the experimental setup and hyperparameter config-
urations in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the average accuracies over 10 independent runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We use a single A100 GPU card for our experiments. All examples are
reproducible within one hour.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research is a theoretical study on the Schrödinger bridge and does not raise
any ethical concerns. Therefore, the paper does not violate the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our research conducts a statistical analysis of existing methods for the
Schrödinger bridge problem. As such, the paper does not present any direct positive
or negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our research focuses on theoretical studies of the Schrödinger bridge problem,
and all experiments are designed to validate the theoretical findings. As such, the paper does
not pose any risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original papers for the assets used in our experiments.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our research focuses on theoretical studies of the Schrödinger bridge problem,
and all experiments are designed to validate the theoretical findings. As such, the paper does
not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our research does not rely on LLMs for any important, original, or non-
standard components of the core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Omitted Proofs

A.1 Proof of Theorem 1

We here provide the complete definitions of path measures P km,n, P
∗
m,n ∈ P(Ω). Using the Sinkhorn

iterations (f (k)m,n, g
(k)
m,n) with respect to µm and νn, we define the drift function b(k)m,n as follows:

b(k)m,n(z, t) =
1

1− t

−z + ∑n
j=1 Yj expε

(
(g

(k)
m,n(Yj)− 1

2(1−t)∥Yj − z∥
2
2)
)

∑n
j=1 expε

(
(g

(k)
m,n(Yj)− 1

2(1−t)∥Yj − z∥
2
2)
)


=
1

1− t

(
−z +

∑n
j=1 γ

(k),t
m,n (Yj , z)Yj∑n

j=1 γ
(k),t
m,n (Yj , z)

)
,

where

γ(k),tm,n (Yj , z) = expε

(
g(k)m,n(Yj)−

1

2(1− t)
∥Yj − z∥22

)
.

Then, P (k)
m,n is defined as the path measure of the following SDE:

dXt = b(k)m,n(Xt) dt+
√
ε dBt, X0 ∼ µ.

P ∗
m,n ∈ P(Ω) is also defined in the similar way by replacing the Sinkhorn iterations to the correspond-

ing optimal Schrödinger potentials. That is, using the optimal Schrödinger potentials (f∗m,n, g
∗
m,n)

with respect to µm and νn, we define the drift function b∗m,n as follows:

b∗m,n(z) =
1

1− t

(
−z +

∑n
j=1 Yj expε(g

∗
m,n(Yj)− 1

2(1−t)∥Yj − z∥
2
2)∑n

j=1 expε(g
∗
m,n(Yj)− 1

2(1−t)∥Yj − z∥
2
2)

)

=
1

1− t

(
−z +

∑n
j=1 γ

∗,t
m,n(Yj , z)Yj∑n

j=1 γ
∗,t
m,n(Yj , z)

)
, (15)

where

γ∗,tm,n(Yj , z) = expε

(
g∗m,n(Yj)−

1

2(1− t)
∥Yj − z∥22

)
.

Then, P ∗
m,n is defined as the path measure of the following SDE:

dXt = b∗m,n(Xt) dt+
√
ε dBt, X0 ∼ µ. (16)

Theorem 1 (Statistical convergence rate). Suppose Assumptions 1, 2 and 3 hold. Let P ∗
∞,∞ be

the path measure of the true Schrödinger bridge for marginals µ, ν. Then, it follows that for any
τ ∈ [0, 1),

E[TV2(P ∗,[0,τ ]
∞,∞ , P ∗,[0,τ ]

m,n )]

≲
R2

n(1− τ)dν+2εdν
+

τ

1− τ

(
ε2 +

dR8

ε2

)
·
(
R

ε

)9dν+4

·
(

1

m
+

1

n

)
. (14)

where P ∗,[0,τ ]
∞,∞ and P ∗,[0,τ ]

m,n are restrictions of P ∗
∞,∞ and P ∗

m,n on the time-interval [0, τ ].

Proof of Theorem 1. The proof of Theorem 1 is based on the main idea presented in Pooladian and
Niles-Weed (2024); Stromme (2023b): we introduce the following entropic plan.

dπ̄∞,n(x, y) := expε(f̄∞,n(x) + g∗∞,∞(y)− 1

2
∥x− y∥22) dµ(x) dνn(y). (17)
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Here, the function f̄∞,n : Rd → R is defined as follows:

f̄∞,n(x) = −ε log

 1

n

n∑
j=1

expε

(
g∗∞,∞(Yj)−

1

2
∥x− Yj∥22

) .

Denoting by P̄∞,n the measure obtained by substituting the coupling (17) into (8), Proposition 3.1 in
Pooladian and Niles-Weed (2024) implies that the drift b̄∞,n with law P̄∞,n is expressed as follows:

b̄∞,n(z) =
1

1− t

(
−z +

∑n
j=1 γ

∗,t
∞,∞(Yj , z)Yj∑n

j=1 γ
∗,t
∞,∞(Yj , z)

)
.

By incorporating the path measure P̄∞,n into the bound via the triangle inequality and subsequently
applying Pinsker’s inequality, we obtain:

E[TV2(P ∗,[0,τ ]
∞,∞ , P ∗,[0,τ ]

m,n )] ≲ E[TV2(P ∗,[0,τ ]
∞,∞ , P̄ [0,τ ]

∞,n )] + E[TV2(P̄ [0,τ ]
∞,n , P

∗,[0,τ ]
m,n )]

≲ E[H(P ∗,[0,τ ]
∞,∞ |P̄ [0,τ ]

∞,n )] + E[H(P̄ [0,τ ]
∞,n |P ∗,[0,τ ]

m,n )].

We analyze these two terms separately. For the first term, we apply Proposition 4.3 of Pooladian and
Niles-Weed (2024)

E[H(P ∗,[0,τ ]
∞,∞ |P̄ [0,τ ]

∞,n )] ≲
R2

n(1− τ)dν+2εdν
.

For the second term, we apply Girsanov’s theorem to derive the difference between the drifts.

E[H(P̄ [0,τ ]
∞,n |P ∗,[0,τ ]

m,n )]

≤
∫ τ

0

E
∥∥b̄∞,n − b∗m,n

∥∥2
L2(P̄ t

∞,n)
dt

=

∫ τ

0

1

(1− t)2
E

∥∥∥∥∥
∑n
j=1 γ

∗,t
∞,∞(Yj , z)Yj∑n

j=1 γ
∗,t
∞,∞(Yj , z)

−
∑n
j=1 γ

∗,t
m,n(Yj , z)Yj∑n

j=1 γ
∗,t
m,n(Yj , z)

∥∥∥∥∥
2

L2(P̄ t
∞,n)

dt

≲
∫ τ

0

1

(1− t)2

(
ε2 +

dR8

ε2

)
·
(
R

ε

)9dν+4

·
(

1

m
+

1

n

)
dt

=
τ

1− τ

(
ε2 +

dR8

ε2

)
·
(
R

ε

)9dν+4

·
(

1

m
+

1

n

)
,

where for the second inequality, we used Lemma 1.

Lemma 1. Under assumptions of Theorem 1, we have

E

∥∥∥∥∥
∑n
j=1 γ

∗,t
∞,∞(Yj , ·)Yj∑n

j=1 γ
∗,t
∞,∞(Yj , ·)

−
∑n
j=1 γ

∗,t
m,n(Yj , ·)Yj∑n

j=1 γ
∗,t
m,n(Yj , ·)

∥∥∥∥∥
2

L2(pt∞,∞)

≲

(
ε2 +

dR8

ε2

)
·
(
R

ε

)9dν+4

·
(

1

m
+

1

n

)
.

Proof of Lemma 1. We perform the expansion while keeping Yj and z fixed∥∥∥∥∥
∑n
j=1 γ

∗,t
∞,∞(Yj , z)Yj∑n

j=1 γ
∗,t
∞,∞(Yj , z)

−
∑n
j=1 γ

∗,t
m,n(Yj , z)Yj∑n

j=1 γ
∗,t
m,n(Yj , z)

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
i=1

(
γ∗,t∞,∞(Yj , z)∑n
j=1 γ

∗,t
∞,∞(Yj , z)

−
γ∗,tm,n(Yj , z)∑n
j=1 γ

∗,t
m,n(Yj , z)

)
Yj

∥∥∥∥∥
2

≤ R
n∑
i=1

∣∣∣∣∣ γ∗,t∞,∞(Yj , z)∑n
j=1 γ

∗,t
∞,∞(Yj , z)

−
γ∗,tm,n(Yj , z)∑n
j=1 γ

∗,t
m,n(Yj , z)

∣∣∣∣∣ .
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From the case (p, q) = (1,∞) of Lemma 12, we have∥∥∥∥∥
∑n
j=1 γ

∗,t
∞,∞(Yj , z)Yj∑n

j=1 γ
∗,t
∞,∞(Yj , z)

−
∑n
j=1 γ

∗,t
m,n(Yj , z)Yj∑n

j=1 γ
∗,t
m,n(Yj , z)

∥∥∥∥∥
2

≤ R

ε
max
j∈[n]

∣∣∣∣(g∗∞,∞(Yj)−
1

2(1− t)
∥Yj − z∥22

)
−
(
g∗m,n(Yj)−

1

2(1− t)
∥Yj − z∥22

)∣∣∣∣
≤ R

ε

∥∥g∗∞,∞ − g∗m,n
∥∥
L∞(ν)

.

By applying Lemma 11, we obtain

E

∥∥∥∥∥
∑n
j=1 γ

∗,t
∞,∞(Yj , z)Yj∑n

j=1 γ
∗,t
∞,∞(Yj , z)

−
∑n
j=1 γ

∗,t
m,n(Yj , z)Yj∑n

j=1 γ
∗,t
m,n(Yj , z)

∥∥∥∥∥
2

L2(P̄ t
∞,n)

≲
R2

ε2
E
∥∥g∗m,n − g∗∞,∞

∥∥2
L∞(ν)

≲

(
ε2 +

dR8

ε2

)
·
(
R

ε

)9dν+4

·
(

1

m
+

1

n

)
.

A.2 Proof of Theorem 2

Theorem 2 (Algorithmic convergence rate). Under Assumptions 1 and 2, we get for any τ ∈ [0, 1),

E[TV2(P ∗,[0,τ ]
m,n , P k,[0,τ ]m,n )] ≲

τ

1− τ
R6

ε2

(
tanh

(
R2

ε

))4k

,

where P k,[0,τ ]m,n are restrictions of P km,n on the time-interval [0, τ ].

Proof of Theorem 2. We start by applying Girsanov’s theorem to obtain a difference in the drifts

E[H(P ∗,[0,τ ]
m,n |P k,[0,τ ]m,n )]

≤
∫ τ

0

E
∥∥b∗m,n − bkm,n∥∥2L2(P∗,t

m,n)
dt

=

∫ τ

0

E

∥∥∥∥∥ 1

1− t

(∑n
j=1 γ

∗,t
m,n(Yj , ·)Yj∑n

j=1 γ
∗,t
m,n(Yj , ·)

−
∑n
j=1 γ

k,t
m,n(Yj , ·)Yj∑n

j=1 γ
k,t
m,n(Yj , ·)

)∥∥∥∥∥
2

L2(P∗,t
m,n)

dt

≲
∫ τ

0

1

(1− t)2
R6

ε2

(
tanh

(
R2

ε

))4k

dt

=
τ

1− τ
R6

ε2

(
tanh

(
R2

ε

))4k

,

where we applied Lemma 2.

Lemma 2. Under assumptions of Theorem 1, we have

E

∥∥∥∥∥
∑n
j=1 γ

∗,t
m,n(Yj , z)Yj∑n

j=1 γ
∗,t
m,n(Yj , z)

−
∑n
j=1 γ

k,t
m,n(Yj , z)Yj∑n

j=1 γ
k,t
m,n(Yj , z)

∥∥∥∥∥
2

L2(P∗,t
m,n)

≲
R6

ε2

(
tanh

(
R2

ε

))4k

.

Proof of Lemma 2. We perform the expansion while keeping Yj and z fixed∥∥∥∥∥
∑n
j=1 γ

∗,t
m,n(Yj , z)Yj∑n

j=1 γ
∗,t
m,n(Yj , z)

−
∑n
j=1 γ

k,t
m,n(Yj , z)Yj∑n

j=1 γ
k,t
m,n(Yj , z)

∥∥∥∥∥
2

22



=

∥∥∥∥∥∥
n∑
j=1

(
γ∗,tm,n(Yj , z)∑n
j=1 γ

∗,t
m,n(Yj , z)

−
γk,tm,n(Yj , z)∑n
j=1 γ

k,t
m,n(Yj , z)

)
Yj

∥∥∥∥∥∥
2

≤
n∑
j=1

∣∣∣∣∣ γ∗,tm,n(Yj , z)∑n
j=1 γ

∗,t
m,n(Yj , z)

−
γk,tm,n(Yj , z)∑n
j=1 γ

k,t
m,n(Yj , z)

∣∣∣∣∣ ∥Yj∥2
≤ R

n∑
j=1

∣∣∣∣∣ γ∗,tm,n(Yj , z)∑n
j=1 γ

∗,t
m,n(Yj , z)

−
γk,tm,n(Yj , z)∑n
j=1 γ

k,t
m,n(Yj , z)

∣∣∣∣∣ .
We define w∗,wk,v∗,vk ∈ Rn as follows:

w∗
j :=

γ∗,tm,n(Yj , z)∑n
j=1 γ

∗,t
m,n(Yj , z)

, wk
j :=

γk,tm,n(Yj , z)∑n
j=1 γ

k,t
m,n(Yj , z)

,

v∗
j := exp

(
g∗m,n(Yj)

ε

)
, vkj := exp

(
g
(k)
m,n(Yj)

ε

)
.

where both w∗ and wk satisfy the conditions of a probability vector, i.e., w∗
j ,w

k
j > 0,

∑n
j=1 w

∗
j =∑n

j=1 w
k
j = 1 .∥∥∥∥∥
∑n
j=1 γ

∗,t
m,n(Yj , z)Yj∑n

j=1 γ
∗,t
m,n(Yj , z)

−
∑n
j=1 γ

k,t
m,n(Yj , z)Yj∑n

j=1 γ
k,t
m,n(Yj , z)

∥∥∥∥∥
2

2

≤

R n∑
j=1

∣∣∣∣∣ γ∗,tm,n(Yj , z)∑n
j=1 γ

∗,t
m,n(Yj , z)

−
γk,tm,n(Yj , z)∑n
j=1 γ

k,t
m,n(Yj , z)

∣∣∣∣∣
2

= R2∥w∗ −wk∥21
≲ R2dHilb(w

∗,wk)2 (using Lemma 13)

= R2dHilb(v
∗,vk)2 (using Lemma 14)

≤ R2λ(K)4kdHilb(v
∗,v0)2

= R2λ(K)4kdHilb(v
∗,1m)2

= R2λ(K)4k
(
log

((
max
j

expε
(
g∗m,n(Yj)

))(
max
j

expε
(
−g∗m,n(Yj)

))))2

≤ R2λ(K)4k
(
log
(
expε

(
4R2

)
expε

(
4R2

)))2
(using Lemma 3)

≲
R6

ε2
λ(K)4k.

Since

γ(K) = max
ijkl

KikKjl

KjkKil
= max

ijkl
exp

(
1

ε
(Xi −Xj)

T (Yk − Yl)
)
≤ expε

(
4R2

)
,

the quantity λ(K) can be upper bounded as follows:

λ(K) =

√
γ(K)− 1√
γ(K) + 1

≤
expε

(
2R2

)
− 1

expε (2R
2) + 1

(
∵
x− 1

x+ 1
(x > 0) is increasing function

)
= tanh

(
R2

ε

)
.

Since the upper bound of λ(K) is independent of Yj and z, the proof is complete.
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A.3 Proof of Proposition 1

Proposition 1. The optimal estimators produced by [SF]2M, lightSB(-M), DSBM-IMF and BM2
coincide with P ∗

m,n attained by Sinkhorn bridge with k →∞.

Proof of Proposition 1. It suffices to show that the drift estimated by each method coincides with
b∗m,n.

Proof of optimal estimator for [SF]2M

The SDE representation of the Brownian bridge W ε
|x0,x1

with endpoints (x0, x1) is given by

dXt =
x1 −Xt

1− t
dt+

√
εdBt, X0 = x0. (18)

The marginal density of the Brownian bridge at time t is pt(xt|x0, x1) = N (xt|(1−t)x0+tx1, εt(1−
t)Id). There exists an ordinary differential equation (ODE) that preserves the same marginal distribu-
tions pt(xt|x0, x1) as the SDE (18). This ODE, referred to as the probability flow ODE, takes the
form

dXt =

(
x1 −Xt

1− t
− ε

2
∇ log pt(Xt|x0, x1)

)
dt

=

(
1− 2t

2 t(1− t)
Xt +

1

2(1− t)
x1 −

1

2t
x0

)
dt

=: u◦t (Xt|x0, x1) dt.

Consequently, the drift term of the Brownian bridge SDE can be decomposed into the sum of the
probability flow ODE drift u◦t (xt|x0, x1) and the score function∇ log pt(xt|x0, x1):

x1 − xt
1− t

= u◦t (xt|x0, x1) +
ε

2
∇ log pt(xt|x0, x1).

In the [SF]2M framework, let π∗
m,n denote the optimal coupling for the entropic optimal transport

(EOT) between µm and νn, and consider the mixture distribution Π∗ = π∗
m,nW

ε
|x0,x1

. Under Π∗,
two neural networks vθ and sφ are trained to minimize the following objectives:

vθ∗ = argmin
vθ

EX∼Π∗

[∫ 1

0

∥vθ(Xt, t)− u◦t (Xt|X0, X1)∥22 dt
]
,

sφ∗ = argmin
sφ

EX∼Π∗

[∫ 1

0

∥sφ(Xt, t)−∇ log pt(Xt|X0, X1)∥22 dt
]
.

The estimator for the Schrödinger bridge drift in [SF]2M is then defined as

vθ∗(xt, t) +
ε

2
sφ∗(xt, t).

When both models are sufficiently expressive, the optimal solutions admit the following conditional
expectation representations:

vθ∗(xt, t) = EX∼Π∗
[
u◦t (xt|X0, X1)

∣∣ Xt = xt
]
,

sφ∗(xt, t) = EX∼Π∗
[
∇ log pt(xt|X0, X1)

∣∣ Xt = xt
]
.

Therefore, the drift estimator in [SF]2M can be written as

vθ∗(xt, t) +
ε

2
sφ∗(xt, t)

= EX∼Π∗ [u◦t (xt|X0, X1) |Xt = xt] +
ε

2
EX∼Π∗ [∇ log pt (xt|X0, X1) |Xt = xt]

= EX∼Π∗

[
u◦t (xt|X0, X1) +

ε

2
∇ log pt (xt|X0, X1) |Xt = xt

]
= EX∼Π∗

[
X1 − xt
1− t

∣∣∣ Xt = xt

]
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= b∗m,n(xt, t).

Proof of optimal estimator for LightSB(-M)

Let S(µ) denote the set of Schrödinger bridges whose source distribution is µ. In lightSB(-M), the
drift estimator gv is defined with a function v : Rd→R as follows:

gv(xt, t) = ε∇xt log

(∫
N (x′ | xt, ε(1− t)Id) exp

(
∥x′∥22
2

)
v(x′) dx′

)
,

and let Sv be the law of the SDE

dXt = gv(Xt, t) dt+
√
ε dBt, X0 ∼ µm.

For any coupling πm,n ∈ Π(µm, νn), consider its Brownian-bridge mixture Π = πm,nW
ε
|x0,x1

. Then,
by (Gushchin et al., 2024, Theorem 3.1),

argmin
S∈S(µm)

H(Π | S) = Π∗.

Restricting S to Sv , one obtains (Gushchin et al., 2024, Theorem 3.2)

H(Π | Sv) = C(πm,n) +
1

2ε

∫ 1

0

∫ ∥∥∥∥ gv(Xt, t)−
X1 −Xt

1− t

∥∥∥∥2
2

dΠt1(Xt, X1) dt,

where Πt1 denotes the marginal law of Π at times t and 1, and C(πm,n) is a constant independent of
Sv . lightSB(-M) trains a parameterised model vθ that minimises

vθ∗ = argmin
vθ

H(Π | Svθ ) = argmin
vθ

∫ 1

0

∫ ∥∥∥∥gvθ (Xt, t)−
X1 −Xt

1− t

∥∥∥∥2
2

dΠt1(Xt, X1) dt.

The drift gvθ∗ obtained from the learned vθ∗ serves as the drift estimator produced by lightSB(-M).

When the model capacity is sufficiently large, gvθ∗ satisfies

gvθ∗ (xt, t) = EX∼Π∗

[
X1 − xt
1− t

∣∣∣∣Xt = xt

]
= b∗m,n(xt, t).

Proof of optimal estimator for DSBM-IMF and BM2

Let F (vf ) and B(vb) denote the laws induced by the following SDEs:

dXt = vf (Xt, t) dt+
√
εdBt, X0 ∼ µm,

dXt = vb(Xt, t)dt+
√
εdB̄t, X1 ∼ νn.

Here, in the second SDE, dt represents an infinitesimal negative time step, and B̄t denotes the
time-reversed Brownian motion.

Given drifts vf ′ and vb′ , define the following loss functions:

Lforward(vf ; vb′) := EX∼B(vb′ )01W
ε
|x0,x1

[∫ 1

0

∥∥∥∥vf (Xt, t)−
X1 −Xt

1− t

∥∥∥∥2
2

dt

]
,

Lbackward(vb; vf ′) := EX∼F (vf′ )01W ε
|x0,x1

[∫ 1

0

∥∥∥∥vb(Xt, t)−
Xt −X0

t

∥∥∥∥2
2

dt

]
.

In DSBM-IMF, starting from initial drifts v(0)f and v(0)b , we perform the following iterative updates:

v
(k+1)
f = argmin

vf

Lforward(vf ; v
(k)
b ), v

(k+1)
b = argmin

vb

Lbackward(vb; v
(k+1)
f ).

In BM2, given initial drifts v(0)f and v(0)b , the iterative procedure is:

v
(k+1)
f = argmin

vf

Lforward(vf ; v
(k)
b ), v

(k+1)
b = argmin

vb

Lbackward(vb; v
(k)
f ).

25



For both methods, F (v(k)f ) and B(v
(k)
b ) converge to Π∗ as k → ∞ (Shi et al., 2023, Theorem

8), (Peluchetti, 2024, Lemma 1).

Therefore, letting v∗f and v∗b denote the limits of v(k)f and v(k)b as k → ∞, we have that v∗f equals
b∗m,n:

v∗f (xt, t) = EX∼B(v∗b )01W
ε
|x0,x1

[
X1 − xt
1− t

∣∣∣∣Xt = xt

]
= EX∼Π∗

[
X1 − xt
1− t

∣∣∣∣Xt = xt

]
= b∗m,n(xt, t).

A.4 Proof of Proposition 2

Proposition 2. With initialization based on the reference process, both DSBM-IMF and BM2 produce
the same estimator as P km,n of the Sinkhorn bridge for all iterations k.

Proof of Proposition 2. We begin by introducing the Iterative Proportional Fitting (IPF) method
(Fortet, 1940; Kullback, 1968; Rüschendorf, 1995). IPF provides one means of solving Eq. (7) and
generates a sequence of path measures

(
P̃ (k)

)
k∈N according to

P̃ (2k+1) = argmin
P̃

{
H
(
P̃ | P̃ (2k)

) ∣∣∣ P̃0 = µm

}
,

P̃ (2k+2) = argmin
P̃

{
H
(
P̃ | P̃ (2k+1)

) ∣∣∣ P̃1 = νn

}
.

We initialize with P̃ (0) =W ε. It is known (Léonard, 2013; Nutz, 2021) that the sequence
(
P̃ (k)

)
k∈N

satisfies
P̃ (2k+1) = πf

(k+1)
m,n , g(k)

m,n W ε
|x0,x1

,

P̃ (2k+2) = πf
(k+1)
m,n , g(k+1)

m,n W ε
|x0,x1

= Π(k+1).

Here the coupling πf,g is defined by
dπf,g(x, y) = expε

(
f(x) + g(y)− 1

2∥x− y∥
2
2

)
dµm(x) dνn(y).

Hence it suffices to show that the drifts estimated by each algorithm coincide with b(k)m,n.

When the initial drift for DSBM is set to v
(0)
b = 0, the sequence

B(v
(0)
b ), F (v

(1)
f ), B(v

(1)
b ), F (v

(2)
f ), B(v

(3)
b ), . . . coincides with the IPF sequence (P̃ (k))k∈N

(Shi et al., 2023, Proposition 10). Consequently, v(k+1)
f coincides with b(k)m,n.

v
(k+1)
f (xt, t) = E

X∼B(v
(k)
b )01W ε

|x0,x1

[
X1 − xt
1− t

∣∣∣∣Xt = xt

]
= E

X∼πf
(k)
m,n, g

(k)
m,nW ε

|x0,x1

[
X1 − xt
1− t

∣∣∣∣Xt = xt

]
= EX∼Π(k)

[
X1 − xt
1− t

∣∣∣∣Xt = xt

]
= b(k)m,n(xt, t).

When the initial drift for BM2 is initialized as v
(0)
f = v

(0)
b = 0, the sequence

B(v
(0)
b ), F (v

(1)
f ), B(v

(2)
b ), . . . coincides with the IPF sequence (P̃ (k))k∈N (Peluchetti, 2024, Theo-

rem 1). Thus, v(2k+1)
f is given by

v
(2k+1)
f (xt, t) = E

X∼B(v
(2k)
b )01W ε

|x0,x1

[
X1 − xt
1− t

∣∣∣∣Xt = xt

]
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= E
X∼πf

(k)
m,n, g

(k)
m,nW ε

|x0,x1

[
X1 − xt
1− t

∣∣∣∣Xt = xt

]
= EX∼Π(k)

[
X1 − xt
1− t

∣∣∣∣Xt = xt

]
= b(k)m,n(xt, t).

Similarly, the sequence F (v(0)f ), B(v
(1)
b ), F (v

(2)
f ), . . . corresponds to IPF with the update order

reversed, and the same conclusion holds for v(2k)f .

B Technical Lemmas

B.1 Lemmas used for Theorems 1 and 2

Lemma 3 (Stromme, 2023b, Proposition 14). Under assumptions of Theorem 1, we have
∥f∗∞,∞∥∞, ∥g∗∞,∞∥∞ ≤ 2R2, ∥f∗m,n∥∞, ∥g∗m,n∥∞ ≤ 4R2.

In the following, p∗∞,∞ denotes the Radon-Nikodym derivative regarding µ⊗ ν, defined in Eq. (6),
and p∗m,n is also defined in a similar manner replacing f∗∞,∞, g∗∞,∞ with f∗m,n, g∗m,n.
Lemma 4 (Stromme, 2023b, Proposition 15). The population dual potentials f∗∞,∞ and g∗∞,∞
are 2R-Lipschitz over supp(µ) and supp(ν), respectively. The extended empirical dual potentials
f∗m,n and g∗m,n are also 2R-Lipschitz over supp(µ) and supp(ν), respectively. In particular, the
population density p∗∞,∞ and the extended empirical density p∗m,n are each 4R

ε -log-Lipschitz in each
of their variables over supp(µ⊗ ν).
Lemma 5 (Stromme, 2023b, Lemma 25). Under assumptions of Theorem 1, with probability at least
1− 1

ne
−20R2/ε

inf
z∈supp(ν)

νn

(
B
(
z,

ε

2R

))
≳
( ε
R

)dν
. (19)

Lemma 6 (Stromme, 2023b, Lemma 26). Under assumptions of Theorem 1, we have

∥p∗∞,∞∥L∞(µ⊗ν) ≲

(
R

ε

)dν
. (20)

And, with probability at least 1− 1
ne

−20R2/ε

∥p∗m,n∥L∞(µ⊗ν) ≲

(
R

ε

)dν
. (21)

Lemma 7 (Stromme, 2023b, Lemma 27 adapted). Under the assumptions of Theorem 1, if ε/R is
sufficiently small, then

E∥g∗m,n − g∗∞,∞∥2L2(νn)
≲

(
ε2 +

R8

ε2

)
·
(
R

ε

)6dν+4

·
(

1

m
+

1

n

)
. (22)

Lemma 7 are the extensions of Stromme (2023b, Lemma 27) that only treats the case of m = n. This
extension can be readily verified by a slight modification of the proof in Stromme (2023b).
Lemma 8. Let Um(y) = (µm − µ)

(
p∗∞,∞(·, y)

)
. Then the following holds:

E sup
y∈supp(ν)

Um(y)2 ≲
R2

m

(
R

ε

)2dν+2

.

Proof. We first note that µ(p∗∞,∞(·, y)) = 1 since the marginal of π∗
∞,∞ on y is ν, and hence

Um(y) = µm(p∗∞,∞(·, y)) − 1. Hoeffding’s lemma, with 0 ≤ p∗∞,∞ ≲
(
R
ε

)dν , implies that there
exists a constant C > 0 such that

E exp {sUm(y)} = E
m∏
i=1

exp
{ s
m
(p∗∞,∞(Xi, y)− 1)

}
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≤
m∏
i=1

exp

(
s2C

8m2

(
R

ε

)2dν
)

≤ exp

(
C

4m

(
R

ε

)2dν

· s
2

2

)
.

Consequently, Um(y) is subgaussian with variance proxy C
4m

(
R
ε

)2dν . Orlicz ψ2-norm is defined for
a random variable ξ by

∥ξ∥ψ2
= inf

{
t > 0 : Ee|ξ|

2/t2 ≤ 2
}
.

Chen et al. (2023, Theorem 3.7 and Theorem 4.1) with φ(x) := x2/2, p = 2 and d(y, y′) :=
∥Um(y)− Um(y′)∥ψ2 imply the following estimates:(

E sup
y∈supp(ν)

Um(y)2

)1/2

≲
∫ ∞

0

√
logN (supp(ν), d, δ) dδ + sup

y,y′∈supp(ν)

d(y, y′). (23)

Let Zi := p∗∞,∞(Xi, y) − p∗∞,∞(Xi, y
′). Since each Zi is an independent, zero-mean random

variable, by Vershynin (2018, Proposition 2.6.1) d(y, y′) is bounded above as follows:

d(y, y′) =
∥∥µm(p∗∞,∞(·, y)− p∗∞,∞(·, y′)

)∥∥
ψ2

=
1

m

∥∥∥∥∥
m∑
i=1

Zi

∥∥∥∥∥
ψ2

≲
1

m

(
m∑
i=1

∥Zi∥2ψ2

)1/2

.

For each Zi we have ∥ · ∥ψ2
≲ ∥ · ∥L∞(µ), hence

∥Zi∥ψ2 =
∥∥p∗∞,∞(Xi, y)− p∗∞,∞(Xi, y

′)
∥∥
ψ2

≲
∥∥p∗∞,∞(·, y)− p∗∞,∞(·, y′)

∥∥
L∞(µ)

.

By |ea − eb| ≤ ea∨b|a− b| and Lemma 4, 6, for any x,∣∣p∗∞,∞(x, y)− p∗∞,∞(x, y′)
∣∣ ≤ ∥∥p∗∞,∞

∥∥
L∞(µ⊗ν)

∣∣log p∗∞,∞(x, y)− log p∗∞,∞(x, y′)
∣∣

≲

(
R

ε

)dν 4R

ε
∥y − y′∥2

≲

(
R

ε

)dν+1

∥y − y′∥2.

Therefore,

d(y, y′) ≲
1

m

(
m∑
i=1

(
R

ε

)2dν+2

∥y − y′∥22

)1/2

=
1

m

(
R

ε

)dν+1

·
√
m ∥y − y′∥2

=
1√
m

(
R

ε

)dν+1

∥y − y′∥2. (24)

This concludes N (supp(ν), d, r) ≤ N
(
supp(ν), ∥ · ∥2, rA

)
(A = C√

m

(
R
ε

)dν+1
where C is a

constant hidden in the above inequality).

We evaluate the first term in (23) by using Proposition 43 in Stromme (2023b) that shows there
exists 0 < cν ≤ R such that, for any 0 < δ ≤ cν , the covering number satisfies δ−dν ≲
N (supp(ν), ∥ · ∥2, δ) ≲ δ−dν .∫ ∞

0

√
logN (supp(ν), d, r) dr
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≲
∫ ∞

0

√
logN

(
supp(ν), ∥ · ∥2,

r

A

)
dr

(
A :=

C√
m

(
R

ε

)dν+1
)

= A

∫ 2R

0

√
logN (supp(ν), ∥ · ∥2, δ) dδ

(
δ :=

r

A

)
= A

∫ cν

0

√
logN (supp(ν), ∥ · ∥2, δ) dδ +A

∫ 2R

cν

√
logN (supp(ν), ∥ · ∥2, δ) dδ

≲ A

∫ cν

0

√
log δ−dν dδ +A(2R− cν)

√
log c−dνν

≲ A
√
dν

∫ ∞

0

u1/2e−u du+AR
√
dν

(
u := log

1

δ

)
≲ AR

≲
R√
m

(
R

ε

)dν+1

, (25)

where ≲ also hides the intrinsic dimensionality dν .

From (24), the second term of (23) is bounded as

sup
y,y′∈supp(ν)

d(y, y′) ≲ sup
y,y′∈supp(ν)

1√
m

(
R

ε

)dν+1

∥y − y′∥2 ≲
R√
m

(
R

ε

)dν+1

. (26)

Combining the results of (26) and (25) completes the proof.

E sup
y∈supp(ν)

Um(y)2 ≲

(
R√
m

(
R

ε

)dν+1

+
R√
m

(
R

ε

)dν+1
)2

≲
R2

m

(
R

ε

)2dν+2

.

Lemma 9. Let Vn(x) = (νn − ν)
(
p∗∞,∞(x, ·)

)
. Then the following holds:

E sup
x∈supp(µ)

Vn(x)
2 ≲

dR2

n

(
R

ε

)2dν+2

.

Proof. Lemma 9 can be established by a minor modification of the proof of Lemma 8. The only
difference is the evaluation of the covering number: the bound over supp(µ) is replaced by that over
B(0, R). This substitution introduces a dependence on the ambient dimension d.

Lemma 10. It follows that

E∥f∗∞,∞ − f∗m,n∥2L∞(µ) ≲

(
ε2 +

dR8

ε2

)
·
(
R

ε

)7dν+4

·
(

1

m
+

1

n

)
.

Proof. Let

f̄∞,n(x) := −ε log

 1

n

n∑
j=1

expε(g
∗
∞,∞(Yj)− c(x, Yj))

 .

Using f̄∞,n, we evaluate ∥f∗∞,∞ − f∗m,n∥2L∞(µ) as follows.

E∥f∗∞,∞ − f∗m,n∥2L∞(µ) ≲ E∥f∗∞,∞ − f̄∞,n∥2L∞(µ) + E∥f̄∞,n − f∗m,n∥2L∞(µ). (27)

For the first term, the Schrödinger system (5) implies

f∗∞,∞(x)− f̄∞,n(x) = ε log

 1

n
expε(f

∗
∞,∞(x))

n∑
j=1

expε(g
∗
∞,∞(Yj)− c(x, Yj))


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= ε log

 1

n

n∑
j=1

p∗∞,∞(x, Yj)


= ε log

(
1 + Vn(x)

)
,

where Vn(x) := (νn − ν)(p∗∞,∞(x, ·)) and we used ν(p∗∞,∞(x, ·)) = 1.

For any η ∈ (0, 1), the following holds:

E∥f∗∞,∞(x)− f̄∞,n(x)∥2L∞(µ) = ε2E sup
x∈supp(µ)

| log(1 + Vn(x))|2

= ε2E

[
1[ sup
x∈supp(µ)

|Vn| < η] sup
x∈supp(µ)

| log(1 + Vn(x))|2
]

+ ε2E

[
1[ sup
x∈supp(µ)

|Vn| ≥ η] sup
x∈supp(µ)

| log(1 + Vn(x))|2
]
.

(28)

For the first term in (28), the mean value theorem implies that for |u| < 1 we have | log(1 + u)| ≤
|u|

1−|u| . Hence,

E

[
1[ sup
x∈supp(µ)

|Vn| < η] sup
x∈supp(µ)

| log(1 + Vn(x))|2
]
≤ E sup

x∈supp(µ)

|Vn(x)|2

(1− η)2
.

For the second term in (28), since expε(−10R2) ≤ p∗∞,∞ ≤ expε(10R
2), an application of Markov’s

inequality yields

E

[
1[ sup
x∈supp(µ)

|Vn| ≥ η] sup
x∈supp(µ)

| log(1 + Vn(x))|2
]
≲
R4

ε2
P( sup
x∈supp(µ)

|Vn(x)| ≥ η)

≤ R4

ε2
E supx∈supp(µ) |Vn(x)|2

η2
.

Setting η = 1/2 and applying Lemma 9 yields

E∥f∗∞,∞(x)− f̄∞,n(x)∥2L∞(µ) ≲

(
1 +

R4

ε2

)
E sup
x∈supp(µ)

|Vn(x)|2

≲
ε2 + dR4

n

(
R

ε

)2dν+4

. (29)

For the second term in (27), Eq. (6.4) in Stromme (2023b) implies

|f̄∞,n(x)− f∗m,n(x)| ≲ ∥g∗∞,∞ − g∗m,n∥L2(νn) sup
z∈supp(ν)

νn

(
B
(
z,

ε

2R

))−1/2

.

Let E denote the event on which Lemma 5 holds. From Lemma 3 and P[EC ] ≤ 1
n , it follows that

E∥f∗∞,∞ − f∗m,n∥2L∞(µ) ≲ E
[
1[E ]∥f∗∞,∞ − f∗m,n∥2L∞(µ)

]
+
R2

n
.

Combining this with Lemma 7 and Lemma 5 yields

E∥f∗∞,∞ − f∗m,n∥2L∞(µ) ≲ E
[
1[E ]∥f∗∞,∞ − f∗m,n∥2L∞(µ)

]
+
R2

n

≲ E
[
1[E ]

(
∥f∗∞,∞ − f̄∞,n∥2L∞(µ) + ∥f̄∞,n − f∗m,n∥2L∞(µ)

)]
+
R2

n

≲
ε2 + dR4

n

(
R

ε

)2dν+4

+

(
R

ε

)dν
E∥g∗∞,∞ − g∗m,n∥2L2(νn)

+
R2

n

≲

(
ε2 +

dR8

ε2

)
·
(
R

ε

)7dν+4

·
(

1

m
+

1

n

)
.
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Lemma 11. It follows that

E∥g∗∞,∞ − g∗m,n∥2L∞(ν) ≲

(
ε2 +

dR8

ε2

)
·
(
R

ε

)7dν+4

·
(

1

m
+

1

n

)
.

Proof. Let

ḡm,∞(y) := −ε log

(
1

m

m∑
i=1

expε(f
∗
∞,∞(Xi)− c(Xi, y))

)
.

Using ḡm,∞, we evaluate ∥g∗∞,∞ − g∗m,n∥2L∞(ν) as follows.

E∥g∗∞,∞ − g∗m,n∥2L∞(ν) ≲ E∥g∗∞,∞ − ḡm,∞∥2L∞(ν) + E∥ḡm,∞ − g∗m,n∥2L∞(ν). (30)

For the first term, the Schrödinger system (5) implies

g∗∞,∞(y)− ḡm,∞(y) = ε log

(
1

m
expε(g

∗
∞,∞(y))

m∑
i=1

expε(f
∗
∞,∞(Xi)− c(Xi, y))

)

= ε log

(
1

m

m∑
i=1

p∗∞,∞(Xi, y)

)
= ε log

(
1 + Um(y)

)
,

where Um(y) := (µm − µ)(p∗∞,∞(·, y)) and used µ(p∗∞,∞(·, y)) = 1.

For any η ∈ (0, 1), the following holds:

E∥g∗∞,∞(y)− ḡm,∞(y)∥2L∞(ν) = ε2E sup
y∈supp(ν)

log(1 + Um(y))2

= ε2E

[
1[ sup
y∈supp(ν)

|Um| < η] sup
y∈supp(ν)

| log(1 + Um(y))|2
]

+ ε2E

[
1[ sup
y∈supp(ν)

|Um| ≥ η] sup
y∈supp(ν)

| log(1 + Um(y))|2
]
.

(31)

For the first term in (31), the mean value theorem implies that for |u| < 1 we have | log(1 + u)| ≤
|u|

1−|u| . Hence,

E

[
1[ sup
y∈supp(ν)

|Um| < η] sup
y∈supp(ν)

| log(1 + Um(y))|2
]
≤ E sup

y∈supp(ν)

|Um(y)|2

(1− η)2

For the second term in (31), since expε(−10R2) ≤ p∗∞,∞ ≤ expε(10R
2), an application of Markov’s

inequality yields

E

[
1[ sup
y∈supp(ν)

|Um| ≥ η] sup
y∈supp(ν)

| log(1 + Um(y))|2
]
≲
R4

ε2
P( sup
y∈supp(ν)

|Um(y)| ≥ η)

≤ R4

ε2
E supy∈supp(ν) |Um(y)|2

η2
.

Setting η = 1/2 and applying Lemma 8 yields

E∥g∗∞,∞(y)− ḡm,∞(y)∥2L∞(ν) ≲

(
1 +

R4

ε2

)
E sup
y∈supp(ν)

|Um(y)|2

≲
ε2 +R4

m

(
R

ε

)2dν+4

. (32)
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For the second term of (30), since the gradient of the log-sum-exp function is the softmax and its
ℓ1-norm equals 1, we obtain

|ḡm,∞(y)− g∗m,n(y)| ≤ ∥f∗∞,∞ − f∗m,n∥L∞(µm). (33)
Therefore, by Lemma 10, we have

E∥ḡm,∞ − g∗m,n∥2L∞(ν) ≤ E∥f∗∞,∞ − f∗m,n∥2L∞(µm)

≲

(
ε2 +

dR8

ε2

)
·
(
R

ε

)7dν+4

·
(

1

m
+

1

n

)
.

Combining the above results, we obtain

E∥g∗∞,∞ − g∗m,n∥2L∞(ν) ≲

(
ε2 +

dR8

ε2

)
·
(
R

ε

)7dν+4

·
(

1

m
+

1

n

)
. (34)

Lemma 12 (Lipschitzness of softmax). For λ > 0 and d ≥ 2, define σλ : Rd → ∆d by(
σλ(x)

)
i
=

(
exp(λxi)∑d
k=1 exp(λxk)

)
i

(i = 1, . . . , d).

Then for any 1 ≤ p, q ≤ ∞,

∥σλ(x)− σλ(y)∥p ≤ Lp,q ∥x− y∥q , Lp,q = λ 2−1+1/p−1/q.

Proof. Let s = σλ(z). The Jacobian of σλ at z is

J(z) = ∇σλ(z) = λ
(
diag(s)− ss⊤

)
. (35)

By the fundamental theorem of calculus along the segment t 7→ y + t(x− y),

σλ(x)− σλ(y) =
∫ 1

0

J(y + t(x− y)) (x− y) dt,

hence, for any 1 ≤ p, q ≤ ∞,

∥σλ(x)− σλ(y)∥p ≤
(
sup
z
∥J(z)∥q→p

)
∥x− y∥q . (36)

It suffices to bound supz ∥J(z)∥q→p.

Step 1: Decomposition. With the standard basis {ei}di=1,

diag(s)− ss⊤ =
∑
i<j

sisj (ei − ej)(ei − ej)⊤. (37)

Thus for any u ∈ Rd,
J(z)u = λ

∑
i<j

sisj (ui − uj)(ei − ej),

and by the triangle inequality and ∥ei − ej∥p = 21/p (with the convention 21/∞ = 1),

∥J(z)u∥p ≤ λ 21/p
∑
i<j

sisj |ui − uj | . (38)

Step 2: Maximization over s ∈ ∆d. Let imin = argmini ui, imax = argmaxi ui. Since
|ui − uj | ≤ |uimax − uimin | and

∑
i<j sisj =

1
2

(
1−

∑d
i=1 s

2
i

)
,

∑
i<j

sisj |ui − uj | ≤
|uimax − uimin |

2

(
1−

d∑
i=1

s2i

)
≤ |uimax − uimin |

4
.

The last inequality is tight when simax = simin = 1
2 and all other si = 0. Therefore,

sup
s∈∆d

∑
i<j

sisj |ui − uj | =
|uimax − uimin |

4
. (39)

Because σλ(Rd) is the interior of ∆d and the right-hand side of (38) is continuous in s, the supremum
over z equals the supremum over s ∈ ∆d.
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Step 3: Maximization over ∥u∥q = 1. For any a, b ∈ R and q ≥ 1, |a− b|q ≤ 2 q−1(|a|q + |b|q).
With a = uimax , b = uimin and ∥u∥q = 1,

|uimax
− uimin

| ≤ 2 1−1/q
(
|uimax

|q + |uimin
|q
)1/q

≤ 2 1−1/q, (40)

with equality when u has exactly two nonzero entries uimax = 2−1/q and uimin = −2−1/q .

Step 4: Combine. From (38)–(40),

sup
z

sup
∥u∥q=1

∥J(z)u∥p ≤ λ 21/p · 1
4
· 2 1−1/q = λ 2−1+1/p−1/q.

Plug this into (36) to obtain the claim. The bound is tight by the equality cases noted in (39) and
(40).

Lemma 13. For any probability vectors u, v ∈ ∆d,

∥u− v∥1 ≤
1

2
dHilb(u, v) . (41)

Proof. By Cohen and Fausti (2024)[Theorem 5.1],

∥u− v∥1 ≤ 2 tanh

(
dHilb(u, v)

4

)
. (42)

Since tanh(x) ≤ x for x ≥ 0 and dHilb(u, v) ≥ 0, letting x = dHilb(u,v)
4 gives

∥u− v∥1 ≤ 2 tanh

(
dHilb(u, v)

4

)
(42)

≤ 2

(
dhilb(u, v)

4

)
=

1

2
dhilb(u, v) . (43)

This proves (41).

Lemma 14. For any u,v ∈ Rd+, the following holds:

dHilb(u,v) = dHilb(v,u),

dHilb(u, cv) = dHilb(u,v) ∀c > 0,

dHilb(c⊙ u, c⊙ v) = dHilb(u,v) ∀c ∈ Rd+.
Here, ⊙ denotes the element-wise product.

Proof. The first two properties are established in (Lemmens and Nussbaum, 2013, Lemma 2.1). For
the third property, we have

dHilb(c⊙ u, c⊙ v) = log

(
max
i

ciui
civi
·max

i

civi
ciui

)
= log

(
max
i

ui
vi
·max

i

vi
ui

)
= dHilb(u,v).

B.2 Lemma used for the drift estimation using neural networks

We provide an alternative expression of the Sinkhorn bridge drift estimator as a Markovian projection.

Recall that W ε
|x0,x1

is the Brownian bridge connecting x0 and x1, so its marginal distribution at
time t ∈ [0, 1] is a Gaussian distribution W ε

t|x0,x1
= N

(
(1 − t)x0 + tx1, εt(1 − t)Id

)
. For any

distributions µ′, ν′ ∈ P(Rd), and dual potentials f ∈ L1(µ′), g ∈ L1(ν′), we define

dπ(x0, x1) = exp

(
f(x0) + g(x1)− 1

2∥x0 − x1∥
2
2

ε

)
d(µ′ ⊗ ν′)(x0, x1).
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We here only consider the case where π becomes a joint distribution π ∈ P(Rd × Rd), that is,∫
dπ(x0, x1) = 1. Using π(k)

m,n, we define the mixture of Brownian bridge (reciprocal process):
Π =

∫
W ε

|x0,x1
dπ(x0, x1) ∈ P(Ω).

Lemma 15. Under the above setting, it follows that

b(xt, t) := EX∼Π

[
X1 − xt
1− t

∣∣∣∣Xt = xt

]
=

1

1− t

(
−xt +

EX1∼ν′ [γ(X1, xt)X1]

EX1∼ν′ [γ(X1, xt)]

)
,

where γ(x1, xt) = exp
((
g(x1)− 1

2(1−t)∥x1 − xt∥
2
)
/ε
)

.

Proof. Given xt (t < 1), we denote by Π(x1|Xt = xt) the conditional density of Π with respect to
Lebesgue measure dx1. Note that the marginal density Πt1 of Π on time points t and 1 with respect
to dxtdx1 satisfies that for a measurable A ⊂ Rd∫

A

Πt1(xt, x1) dx1 =

∫
W ε
t|x0,x1

(xt)π(dx0, A).

Therefore, we get

Π(x1|Xt = xt) dx1 ∝

{∫
exp

(
− 1

2εt(1− t)
∥xt − (1− t)x0 − tx1∥2

)

· exp
(
g(x1)− 1

2∥x0 − x1∥
2
2

ε

)
dµ′(x0)

}
· dν′(x1)

∝

{∫
exp

(
− 1

2εt(1− t)
(t2∥x1∥2 − 2tx⊤t x1 + 2t(1− t)x⊤0 x1)

)

· exp
(
g(x1)

ε
− 1

2ε
(∥x1∥2 − 2x⊤0 x1)

)
dµ′(x0)

}
· dν′(x1)

= exp

(
g(x1)

ε
− 1

2ε(1− t)
(∥x1∥2 − 2x⊤t x1)

)
dν′(x1)

∝ exp

(
1

ε

(
g(x1)−

1

2(1− t)
∥x1 − xt∥2

))
dν′(x1).

This means

Π(x1|Xt = xt) dx1 =
γ(x1, xt) dν

′(x1)

EX1∼ν′ [γ(X1, xt)]
.

Therefore,

b(xt, t) =
1

1− t
(−xt + EX∼Π [X1 |Xt = xt])

=
1

1− t

(
−xt +

∫
x1

γ(x1, xt)

EX1∼ν′ [γ(X1, xt)]
dν′(x1)

)
=

1

1− t

(
−xt +

EX1∼ν′ [γ(X1, xt)X1]

EX1∼ν′ [γ(X1, xt)]

)
.

C Omitted Experiments

C.1 Stopping and guidance

Theorems 1 and 2 suggest that beyond a certain point additional Sinkhorn iterations are not beneficial.
The total error decomposes into a “sampling error” and an “optimization error”. The latter decreases
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Table 1: Comparison of
∫ 0.9

0
MSEsample(m,n, t)dt across intrinsic dimensions dν .

dν
∫ 0.9

0
MSEsample(m,n, t)dt

5 0.031
10 0.138
20 0.562
30 1.178

only through iterations, whereas the former does not. By the triangle inequality for the total variation
distance,

E
[
TV2

(
P ∗
∞,∞, P

k
m,n

)]
≲ E

[
TV2

(
P ∗
∞,∞, P

∗
m,n

)]
+ E

[
TV2

(
P ∗
m,n, P

k
m,n

)]
.

Once the second term on the right-hand side (optimization error) becomes no larger than the first
term (estimation error), further iterations no longer yield a meaningful reduction of the total error.
Hence it is reasonable to choose the stopping point as the smallest k such that

E
[
TV2

(
P ∗
∞,∞, P

∗
m,n

)]
≥ E

[
TV2

(
P ∗
m,n, P

k
m,n

)]
.

From Theorems 1 and 2 , a sufficient condition for this is

k ≳
log
(
B
m + A+B

n

)
log
(
tanh

(
R2

ε

)) , A =
1

τ(1− τ)dν+1 ε dν−2R4
, B =

(
ε4

R6
+ dR2

)(
R

ε

)9dν+4

.

Since log
(
tanh

(
R2

ε

))
< 0, iterations are beneficial only when B

m + A+B
n < 1. Equivalently, unless

the sample size is large enough to make the numerator negative—roughly (m ∧ n) ≈ (A ∨B)—the
reduction achievable by iterations is smaller than the estimation error, leading to wasted computational
resources.

In Figure 3, the fact that b(1)m,n already captures the shape of νn to a certain extent is consistent with
this reasoning. Increasing k becomes meaningful only when µm and νn are sufficiently close to the
true distributions µ and ν, namely when m and n are sufficiently large.

C.2 Intrinsic dimension

Theorem 1 shows that the orders of the orders of R and ε depend on the intrinsic dimension dν
rather than the ambient dimension d. In this section, we verify that the error varies with dν under the
following setup.

We fix the ambient dimension at d = 50, the regularization strength at ε = 0.5, the evaluation-interval
endpoint at τ = 0.9, and the sample sizes at m = n = 10000. The distribution µ is sampled
uniformly from the unit hypercube [0, 1]

d, while ν is sampled uniformly from the dν-dimensional
manifold embedded in the unit sphere of radius 1,{

x ∈ Rd
∣∣ ∥x∥2 = 1, ∀ i > dν : xi = 0

}
.

By varying dν , we examine whether the convergence behavior of the estimation error with respect to
the sample size depends on the manifold dimension.

Specifically, for each dν ∈ {5, 10, 20, 30} we compare∫ 0.9

0

MSEsample(m,n, t) dt.

The results are reported in Table 1. An increasing trend of the error with larger manifold dimension
is observed.

C.3 The role of epsilon

We examine the numerical stability of the regularization parameter ε in the Sinkhorn algorithm
and provide selection guidelines in relation to the sample sizes (m,n). Using the same setup as
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Table 2: Representative ε achieving the target error δ = 1.0 for varying m ∧ n (same setup as
Experiments 4.1).

m ∧ n ε
10 2.684× 108

20 7.979× 106

30 3.200× 101

40 6.797× 10−1

50 3.291× 10−1

60 1.299× 10−1

70 2.010× 10−1

80 9.766× 10−4

Experiments 4.1, for each given m,n we search for the smallest ε that achieves the target error
δ = 1.0.

As m ∧ n increases, the ε required to meet the target error exhibits a two-phase behavior: a steep
initial decrease followed by an asymptotically mild decay. Representative values are reported in
Table 2.

By Theorem 1, the ε required to satisfy the target error δ obeys

ε ≳ max

{(
R2

δ(m ∧ n)

)1/dν

, R
3dν+4
3dν+2

(
R2 + 1

δ(m ∧ n)

)1/(9dν+6)
}
.

This indicates a steep improvement in the small-m∧n regime followed by logarithmically slow decay,
which aligns with the empirical results. Since excessively small ε can cause numerical instability,
using the above expression as a lower-bound guideline for selecting ε is effective.
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