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Purpose: To increase diagnostic accuracy of breast MRI by increasing temporal resolution and more

accurately sampling the early kinetics of contrast media uptake. We tested the feasibility of accelerat-

ing bilateral breast DCE-MRI by reducing the FOV, allowing aliasing, and unfolding the resulting

images.

Methods: Previous experience with an “ultrafast” protocol for bilateral breast DCE-MRI (6–10 s

temporal resolution) showed that the number of significantly enhancing voxels is very low in the first

30–45 s after contrast media injection. This suggests that overlap of enhancing voxels in aliased

images will be very infrequent. Therefore, aliased images can be acquired during the first 30–45 s

after contrast media injection and unfolded to produce full-FOV images with few errors. In a proof-

of-principle test, aliased images were simulated from the first 30 s of full-FOV acquisitions. Cases

with relatively dense early enhancement were selected to test this method in a worst-case scenario. In

an initial test, an FOV of 60% the size of the full FOV was simulated. To reduce the probability of

errors due to overlapping voxels in aliased images, we then tested a dynamic FOV approach. The

FOV was progressively increased so that enhancing voxels could not overlap at multiple time-points,

and areas where enhancing voxels overlapped at a given time-point could be unfolded by interpolat-

ing between the preceding and subsequent time-points (acquired with different FOVs). The simulated

FOV sizes for each of the time-points were 31%, 44%, and 77% of the full FOV. Subtraction images

(post- minus precontrast) were generated for aliased images and filtered to select significantly

enhancing voxels. Comparison of early, highly aliased images, with later, less aliased images then

helped to identify the true locations of enhancing voxels.

Results: In the initial aliasing simulations, an average of 2.9% of the enhancing voxels above the

chest wall overlapped in the aliased images (range 0.1%–6.7%). The similarity between simulated

unfolded images and the correct full-FOV images, evaluated using CW-SSIM (complex wavelet simi-

larity index), was 0.50 � 0.26, 0.76 � 0.09, and 0.80 � 0.10 for the first, second, and third time-

point, respectively (numbers closer to 1 indicate more similar images). For the dynamic FOV tests,

an average of 11% of the enhancing voxels above the chest wall overlapped (range 0%–40%) due to

greater aliasing at early time-points. Despite more voxels overlapping, the CW-SSIM values for the

data acquired with dynamic FOVs were 0.64 � 0.25, 0.93 � 0.04, and 0.97 � 0.02 for the first,

second, and third time-points, respectively.

Conclusions: Dynamic FOV imaging allows accelerated bilateral breast DCE-MRI during the early

contrast media uptake phase. This method relies on the sparsity of enhancement at the early phases of

DCE-MRI of the breast. The results of simulations suggest that dynamic FOV imaging and unfolding

produces images that are very close to fully sampled images, and allows temporal resolution as high

as 2 s per image. © 2018 American Association of Physicists in Medicine [https://doi.org/10.1002/

mp.12747]
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1. INTRODUCTION

Dynamic contrast-enhanced MRI (DCE-MRI) is a highly

sensitive tool for the detection of breast cancer. A recent

meta-analysis by Zhang et al.1 reported DCE-MRI’s sensitiv-

ity to breast cancer detection as 93.2% and specificity as

71.1%. However, its reported specificity in individual studies

is variable and sometimes low (e.g., an analysis by Turnbull

et al. reported it in the range of 37% to 89%2), suggesting

that improvements in diagnostic accuracy are needed.

Typically, routine clinical breast DCE-MRI protocols have

high spatial resolution, and since relatively large fields-of-

view (FOV) are required for bilateral scans, temporal resolu-

tion is usually low (roughly 60–90 s per scan). 3 The excel-

lent anatomic detail in these scans allows morphological

evaluation of lesions by radiologists, but contrast media

kinetics in lesions cannot be accurately characterized at this

temporal resolution, especially during the time immediately

following the contrast agent injection, when signal intensity

is rapidly changing. The kinetics of contrast media uptake
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may yield important markers for malignancy. In recent years,

interest in high temporal resolution bilateral breast scans has

increased, as studies have shown that lesion conspicuity is

highest shortly after the injection of contrast media and that

parameters that describe the initial uptake kinetics may aid in

lesion classification.4–11 As a result, high temporal resolution

imaging during the initial uptake phase could yield valuable

information and increase diagnostic accuracy, especially

when combined with high spatial resolution images after the

initial postcontrast phase (e.g., after one minute postcontrast

media administration).

High temporal resolution is also important for accurate

quantitative analysis. Knowledge of the arterial input function

(AIF) is necessary to perform pharmacokinetic analysis of

lesions, and high temporal resolution is necessary to measure

individual AIFs. For example, Parker et al. calculated an AIF

with 5 s temporal resolution,12 while Henderson et al.

reported that a temporal resolution of 1 s is necessary to mea-

sure the AIF.13 In preclinical models Yankeelov et al. imaged

with 0.9 s temporal resolution to obtain the AIF in rats,14

while Kershaw et al. used 0.44 s temporal resolution in rab-

bits.15 Even if a population AIF were to be used for pharma-

cokinetic analysis, Kershaw et al. showed that a temporal

resolution of 1.5 s or higher should be used with the adia-

batic approximation of tissue homogeneity (AATH) model.16

While Henderson et al. recommended using 4 s temporal res-

olution or faster to accurately recover uptake parameters,13

and an anthropomorphic phantom study by Knight et al. rec-

ommended using an 8.1 s temporal resolution for quantitative

analysis.17 These previous studies show that high temporal

resolution could be useful for both clinical interpretation and

quantitative analysis of breast DCE images.

There are several approaches to increasing temporal reso-

lution in breast DCE-MRI. Many groups have focused on

view-sharing or sliding window reconstruction techniques,

which sample the center of k-space more frequently than the

periphery, and combine k-space data from a few different

acquisitions (e.g., DISCO, TWIST, TRICKS, TRAK). 10,18–20

These approaches capture the initial rate of signal enhance-

ment in lesions, sometimes without significant sacrifices in

spatial resolution or coverage. However, the strategy of sam-

pling the outer portions of k-space less frequently than the

center makes it difficult to interpret the kinetics of enhance-

ment, especially for small features with high spatial fre-

quency components. In addition, methods that sample

different spatial frequencies with different temporal resolu-

tions may produce errors in quantitative analysis.21 Com-

pressed sensing approaches have also been developed for

breast DCE-MRI, employing nonuniform k-space sampling

(e.g., RICS, GRASP). 22–25 However, these approaches are

susceptible to artifacts, particularly when enhancement pat-

terns are changing very rapidly. To avoid problems with

nonuniform k-space sampling, some laboratories, including

this group, have used conventional Fourier sampling methods

to image contrast media uptake with high temporal resolu-

tion.4,5 Improvements in temporal resolution in these studies

came at the expense of either greatly reduced coverage or

significantly lower spatial resolution than standard clinical

scans. Nevertheless, these studies showed advantages in con-

spicuity of preinvasive lesions and estimation of pharmacoki-

netic parameters compared to standard, low-temporal

resolution, clinical scans.

Prior experience with high temporal resolution standard

Fourier sampling showed that significant image enhancement

in the breast is very sparse during the first 30–45 s after con-

trast media injection.4 Less than 6% of pixels in the breast

enhance significantly during this early phase. Here we pro-

pose to take advantage of this sparse early enhancement to

increase temporal and/or spatial resolution while maintaining

uniform k-space sampling. To do this we propose to image

with a reduced field-of-view (rFOV) and allow aliasing at

early times after injection. Due to the sparse enhancement,

there is a low probability that two enhancing areas will over-

lap, and the few overlaps that do occur can be addressed as

demonstrated below. Because we are not limited by signal-to-

noise ratio, enhancement can be detected at a higher temporal

resolution. Aliased images can be “unfolded” to estimate

images acquired with a full FOV, using images acquired with

a full FOV after the initial phase of contrast media uptake as

a reference. In the research reported here, reduced field-of-

view images are simulated from real breast MRI data

acquired with high temporal resolution, and the effectiveness

of unfolding is evaluated in two scenarios: one where a single

reduced FOV is used for the first 30 s postcontrast adminis-

tration and another where the FOV is progressively enlarged

(dynamic FOV).

2. METHODS

Five cases were selected from an Institutional Review

Board approved study testing an ultrafast DCE-MRI protocol,

where the first minute postcontrast media administration was

imaged with a temporal resolution of 6–10 s. Images were

acquired on a 3.0 T scanner (Philips Achieva-TX, Philips,

The Netherlands) with a 16-channel bilateral breast coil. The

ultrafast DCE protocol consisted of a series of axial, fat-sup-

pressed 3D spoiled gradient echo sequences, before and after

administration of gadobenate dimeglumine (0.1 mM/kg,

MultiHance, Bracco, Princeton, NJ, USA) with the following

acquisition parameters: TR/TE = 3.2/1.6 ms, acquisition

voxel size 1.5 9 1.5 9 3.0 mm3, flip angle 10⁰. The five

cases selected for this proof-of-principle study were read by

radiologists as having moderate or marked background

parenchymal enhancement and enhancing lesions. We

selected cases with relatively dense enhancement to test how

this method would work in a worst-case scenario.

Because few voxels enhanced significantly in the first 30–

45 s, two rapidly enhancing areas were relatively unlikely to

overlap when the FOV was reduced in the phase-encode

direction and the image aliased. Fully sampled images were

approximated from the rFOV images based on the known

position of enhancing areas in the full-FOV images acquired

at longer times after injection. Images acquired for the first

30 s after contrast media administration were simulated with
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an rFOV, and following this period the simulated FOV was

expanded to provide full coverage with no aliasing. The una-

liased full-FOV images were then used as a reference to

inform the “unfolding” of the rFOV images. While the

acquired DCE images were not sparse, subtraction images

(postcontrast minus precontrast) were sparse during the early

postinjection period when enhancement was sparse.

In an initial test of this method, we simulated DCE-MRI

images acquired with an rFOV equivalent to 60% of the full

FOV from the precontrast images and the first three time-

points of the original series. Subtraction images were created

for the three rFOV time-points by subtracting the precontrast

aliased images from the postcontrast images. We also created

subtraction images for the 4th time-point, leaving the FOV

intact (fully sampled). These images were used as a reference

to guide the following unfolding process (Fig. 1):

• Significantly enhancing voxels in the rFOV subtraction

images and full FOV reference images were identified.

As defined in this study, these were voxels with greater

than 25% relative enhancement, and a post- minus pre-

contrast signal value greater than 3.5 times the standard

deviation in the precontrast signal (measured over five

precontrast acquisitions).

• The possible locations of each significantly enhancing

rFOV voxel in the full FOV were determined. In this

case there were two possible locations for voxels in the

area where aliasing could occur (toward the edges of

the FOV), or only one possible location if the enhancing

voxel was near the center of the rFOV.

• Enhancing rFOV voxels that were not in an area where

aliasing could occur were copied to the corresponding

location in the unfolded (full-FOV) image.

• Enhancing voxels that could have been aliased in the

rFOV image were copied to the unfolded image using

the reference image as a guide (e.g., the image acquired

at 30 s postinjection). If only one possible location

enhanced in the reference image, the voxel was copied

to that location. If both locations were enhanced in the

reference image (i.e., if two significantly enhancing

voxels could have overlapped in the rFOV), the voxel

was copied to both locations.

This process led to unfolded images that approximated

fully sampled subtraction images. However, if enhancing

voxels aliased onto one another in a particular rFOV, then the

signal measured in each of these “overlapping” voxels was

the sum of the “true” signal in each voxel and its aliases.

These voxels were artificially brighter in the reconstructed

images. We recorded the number of overlapping voxels in the

full-FOV reconstruction.

While the method described above led to approximate

full-FOV images, it did not provide enough information to

accurately distribute the signal of voxels that overlapped in

aliased images. To provide a more robust method of unfold-

ing rFOV images, we simulated a “dynamic FOV” method

(Fig. 2). We began with an rFOV that was 31% of the full

FOV at the first time-point, and enlarged this to 44% at the

second time-point, and 77% at the third. Under these condi-

tions, enhancing voxels aliased to different locations at differ-

ent times. As a result, no pair of voxels overlapped at more

than one time-point. Overlapping voxels within a single rFOV

were approximated by interpolating the signal between the

immediately preceding and following time-points. In this

dynamic FOV method, full-FOV images were reconstructed

using the following procedure:

• Significantly enhancing voxels were identified (as

described above in the static case).

• Initial full-FOV estimates were created by copying sig-

nificantly enhancing voxels from the aliased rFOV

images to all of their possible locations. These first esti-

mates were more densely populated than a fully sam-

pled image.

• Voxels that enhanced in one of the full-FOV estimates

without enhancing at all subsequent time-points (in-

cluding the reference image) were determined to be

aliasing ghosts and were eliminated. After this step, the

only enhanced voxels remaining in the full-FOV recon-

struction were those that did not overlap with any other

enhancing voxels (in their correct position, with the

ghost eliminated) and enhancing voxels that overlapped

in the rFOV image (copied to both locations in the full

FOV). As in the “static” aliasing case, at this stage the

latter set of voxels appeared brighter in the recon-

structed image.

• To estimate the correct distribution of signal between

overlapping voxels, we interpolated between the time-

point immediately before and immediately after the

time-point where overlap occurred. The interpolated

values were constrained so that the sum of the estimated

signals was equal to the signal in the voxel in the origi-

nal rFOV image. The last step ensured that no signal

was erroneously augmented or reduced.

The unfolded images from the simulated rFOV acquisi-

tions were compared to subtraction images (noise filtered as

in step “a” above) from the original, fully sampled data using

the complex wavelet structural similarity index (CW-

SSIM).26 CW-SSIM and SSIM27 are commonly used metrics

in computer vision, designed to approximate the subjective

similarity of images to a human observer. We used CW-SSIM

FIG. 1. Diagram of “unfolding” method. A first approximation is created by

replicating the aliased portions of the image. Each enhancing voxel (P) is

copied to the possible locations it could have originated from (P1 and P2).

The unfolded image is compared to later reference images acquired with a

larger or fully sampled FOV. If only one of the potential locations is enhanced

(“on”) in the later images, the voxel is copied to that location and its alias is

zeroed out; if both locations are “on”, the voxel is copied to both locations.
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over the more commonly used SSIM metric because SSIM

does a poor job differentiating between images with sparse

structure. CW-SSIM sharply punishes small deviations

between images when little structure is present and is there-

fore better-suited to evaluate sparsely enhancing images than

SSIM. Though it is difficult to reliably interpret objective

image quality metrics in subjective terms, SSIM values above

0.5 roughly correspond to a “fair” mean opinion score, values

above 0.75 to “good”, and values above 0.9 to “excellent”.28

This metric was used to analyze the effectiveness of the meth-

ods presented here in preserving information in the recon-

structed images.

In order to determine the accuracy of lesions in the recon-

structed images, signal enhancement curves and lesion tex-

ture parameters were compared with those from the fully

sampled images. Regions-of-interest (ROIs) encompassing

the entire lesion volume were drawn on the original fully

sampled images and propagated to the unfolded images. The

mean signal intensity in the whole ROI was calculated at each

time-point. Lesion texture was evaluated via the gray-level

co-occurrence matrix (GLCM).29 In each case, the lesion was

isolated and its GLCM was calculated for each slice and

time-point. A homogeneity parameter (“h”) was calculated

for each GLCM by measuring the closeness of the GLCM to

a diagonal matrix. A chi-squared (v2) statistic was calculated

between each set of h values in between the unfolded and

original images.

3. RESULTS

Figure 3 shows images of representative slices throughout

the process of unfolding with the “static” aliasing method

(with a 40% reduction in FOV size). The figure shows fully

sampled and aliased images, along with the unfolded images.

Areas of hyperintensity (relative to the original images) cor-

respond to significantly enhancing voxels that overlapped in

the rFOV images — some examples are marked with arrows.

Figure 4 shows maximum intensity projections (MIPs) from

some of the simulations, including a color-coded image

where the number of overlaps in each position across all

slices is shown. The average number of overlapping enhanc-

ing voxels in the unfolded images above the chest wall, across

all slices, in the rFOV images (expressed as a percentage of

all enhancing voxels above the chest wall at the same time-

point) were 2.6% (range: 0.1%–6.5%), 2.8% (0.1%–6.7%),

and 3.4% (0.5%–6%), for the first, second, and third time-

points, respectively. These numbers show that even when

using an rFOV equivalent to 60% of the fully sampled FOV

only a relatively small number of enhancing voxels alias onto

each other in the rFOV images. However, enhancing voxels

were copied to both of the possible locations in the recon-

structed full-FOV image if both enhanced in the reference

image, artificially increasing the signal intensity at locations

where significantly enhancing voxels overlapped. The CW-

SSIM numbers for each time-point were 0.50 � 0.26,

0.76 � 0.09, and 0.80 � 0.10, respectively.

Examples from the progressive aliasing and unfolding

(dynamic FOV) simulations can be seen in Fig. 5, and

MIPs with overlap color maps are shown in Fig. 4. There

are more overlapping voxels in these images compared to

the static cases because the first and second time-points

were simulated to have rFOVs smaller than those used in

the static cases. The average number of overlapping

enhancing voxels above the chest wall (and for the entire

acquired slab) in the rFOV images, again expressed as a

percentage of all enhancing voxels above the chest wall at

the same time-point, were 14.3% (range: 7.6%–23.7%),

18.6% (2.9%–39.7%), and 0.2% (0%–0.4%). While some

differences remain between the full-FOV images and the

unfolded images, these differences are less prominent with

dynamic FOV imaging than in the static case, due to the

fact that the signal at each overlapping location was inter-

polated. This is reflected in the CW-SSIM numbers:

0.64 � 0.25, 0.93 � 0.04, and 0.97 � 0.02, for rFOVs

equivalent to 31%, 44%, and 77% of the full FOV, respec-

tively. CW-SSIM numbers were significantly greater for

the dynamic FOV simulations than for the static cases

(P < 0.001). This is to be expected for the third time-point

where the rFOV was larger than the rFOV used for the

static case, but significant improvement was also seen for

the first two time-points where the rFOVs were markedly

smaller.

All lesions present in the cases used in these simulations

were recovered in the reconstructed unfolded images

(Fig. 6). This figure shows noticeable areas of difference

between the static case and the original data; however, the

lesions in the dynamic FOV images closely resemble the

fully sampled data. This is reflected in the plots of mean

signal enhancement versus time (Fig. 7), where mean signal

across the reconstructed lesion closely tracks that of the fully

sampled data. The only lesion for which there was a slight

overestimation of signal in the dynamic FOV unfolded

images was the one represented in Fig. 7(b); this case was

not pictured in Fig. 6 due to its low enhancement during the

first three time-points. The overestimation of signal in this

case is likely due to the overlap of the lesion with enhancing

areas in the contralateral breast. The results also showed that

the dynamic FOV method preserved the texture of signal

enhancement in the lesions. Homogeneity numbers calcu-

lated via the GLCM were consistent between the original

data and the images unfolded with the dynamic FOV

method (P < 0.002).

FIG. 2. Diagram of “unfolding” with a dynamic FOV. An unfolded image is

compared to later reference images acquired with a larger or fully sampled

FOV. Because FOVs differ in subsequent time-points, each enhancing voxel

will be copied to sets of points that agree only on a single location at all sub-

sequent times.
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4. DISCUSSION

The simulations described here show that it is possible to

recover difference images that closely approximate fully sam-

pled images from rFOV acquisitions during the first 30 s

postcontrast administration. The dynamic FOV imaging and

unfolding approach estimates the signal value of overlapping

enhancing voxels. The methods presented here are practical

because difference images (i.e., post- minus precontrast) are

very sparse during the first 30–45 s after contrast media

injection. These methods require a fully sampled set of

images following the period of rFOV acquisitions, which are

used as reference images to inform the “unfolding” process.

In addition, this method is parameterized by FOV size

choices only and is simple to implement, as it does not

require complex parameter tuning. The simulations presented

here demonstrate up to a 69% reduction of acquisition time

or an increase in spatial resolution without sacrificing tempo-

ral resolution. Ideally, a balance can be achieved between

temporal and spatial resolution in order to estimate accurate

perfusion parameters while resolving the heterogeneity of

enhancement within lesions and avoiding partial volume

effects.

Several methods exist for accelerating image acquisition

with reduced FOVs and unfolding aliased acquisitions. Sensi-

tivity encoding (e.g., SENSE30 or GRAPPA31), relies on the

FIG. 3. Example slices from two static aliasing tests, showing enhancing lesions from cases with a simulated FOV of 60% of the original size: (a) original

dynamic image; (b) aliased dynamic image; (c) aliased post- minus precontrast subtraction image; (d) unfolded subtraction at full FOV; (e) original subtraction

image. Arrows indicate areas that appeared brighter in the reconstructed images compared to the original subtractions.

FIG. 4. Examples from two test cases, 2nd time-point is shown (14–20 s postcontrast): (a) Original maximum intensity projections (MIPs) of difference images;

(b) MIPs reconstructed from static aliasing at 60% of the FOV; (c) MIPs reconstructed from dynamic aliasing at 44% of the FOV; (d) & (e) Color maps showing

the number of overlaps (in all slices and time-points) per MIP pixel location in static (d) and progressive (e) aliasing simulations.

FIG. 5. Example slices from two dynamic FOV tests, showing enhancing lesions from cases with a simulated FOV of 44% of the original size: (a) original

dynamic image; (b) aliased dynamic image; (c) aliased post- minus precontrast subtraction image; (d) unfolded subtraction at full FOV; (e) original subtraction

image.
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spatially varying sensitivities of coil elements to inform the

unfolding of rFOV images into approximate fully sampled

images. The method presented here could be combined with

SENSE acceleration by accounting for the shift in the posi-

tion of the ghosts that would result from combining SENSE

with an rFOV acquisition.32 Dynamic FOV imaging could

also be incorporated into the SENSE reconstruction to reduce

the ghosting artifacts that arise from SENSE. Ghosts in initial

unfolded reconstructions from the aliased images acquired

with each coil element could be sparsified with the method

proposed here (by comparison with later fully sampled

images). Coil sensitivity data would then be used to recon-

struct the full-FOV images, as with the standard SENSE algo-

rithm. Unfolding progressive rFOVs before applying SENSE

has potential to reduce the appearance of SENSE artifacts

and will be studied further in future simulations.

The UNFOLD method corrects for aliasing by Fourier-

encoding the overlapping regions of the images in the tem-

poral dimension.33,34 In this method, the phase of aliased

voxels changes in subsequent acquisitions, providing addi-

tional information that can be used in creating full-FOV

images. The UNFOLD method is very effective when the

dynamic process that is being sampled has limited band-

width (e.g., changes in the time domain are gradual or

periodic) and thus is well represented within a limited

temporal bandwidth. In the present work, we are trying to

detect very sharp changes in the time domain because

these changes may be diagnostically important. These

changes occur rapidly on the time scale of the MRI acqui-

sitions. This means that we want to keep the bandwidth of

our temporal sampling as broad as possible and avoid

using some of the bandwidth to encode spatial informa-

tion. Furthermore, not all imaging sequences can support

UNFOLD. The dynamic FOV imaging method and the

UNFOLD method have different goals and different

approaches to sampling. CAIPIRNHA (controlled aliasing

in parallel imaging results in higher acceleration) is

another alternative method for removing aliasing artifacts

and increasing temporal resolution, where multiband RF

pulses are used to produce phase shifts in overlapping

slices that can be used to reconstruct images without alias-

ing artifacts.35 In contrast, the method presented here is, to

our knowledge, the only method that unaliases rFOV

acquisitions based on temporal enhancement patterns,

requiring consistency in image space rather than k-space,

and modifying the sampling density as the density of

enhancement increases. Its applicability outside of the

breast may be limited, as it is the geometry of axial breast

FIG. 6. Example slices containing lesions. (a) Original subtraction images,

(b) progressive unfolding reconstruction, and (c) static unfolding reconstruc-

tion. (1–3) Invasive ductal carcinoma; (4) fibroadenoma.

FIG. 7. Mean lesion signal enhancement versus time curves for all lesions

present in the cases used in the simulation. Plots for fully sampled and

dynamic FOV unfolded images are shown. This figure does not depict the

entire kinetic curve, only the time-points used in this analysis. Error bars

indicate median absolute deviation in each ROI. Solid lines show mean

lesion signal from full-FOV images; dotted lines show mean lesion signal

from dFOV unfolded images. Plots (a,c,d) invasive ductal carcinoma; (b)

usual ductal hyperplasia; (e) fibroadenoma.
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acquisitions and the properties of early enhancement that

allow recovery of fully sampled images.

Use of novel k-space sampling schemes and reconstruc-

tion methods (such as view-sharing, sliding windows, or

compressed sensing) have definite advantages: in particular,

they produce visually appealing images acquired at high

temporal resolution. Recently, Chen et al.24 proposed a

method for the acceleration of breast DCE-MRI based on

constraining the temporal total variation (TV) in the

dynamic series. In this work they demonstrate the ability

to obtain 6- to 10-fold acceleration factors, while maintain-

ing high image quality. However, due to penalties enforced

on the temporal TV, the reconstruction process may result

in temporal smoothing and the potential loss of sharp,

diagnostically important temporal features (e.g., the arrival

of the contrast media bolus in the lesion). Adluru et al.23

proposed a method using nonlocal means to enforce simi-

larity constraints in neighborhoods of pixels and relax the

sampling requirements for high resolution images in a

dynamic series. They showed improvements over sliding

window and TV-constrained reconstructions while achiev-

ing a 5-fold acceleration factor in breast DCE-MRI. How-

ever, by enforcing similarity in neighborhoods of pixels, a

degree of spatial smoothing may occur. This smoothing

may result in a loss of heterogeneity in lesions. In contrast

to the other methods discussed here, dynamic field-of-view

imaging does not enforce smoothness in the spatial or

temporal domains. Furthermore, the effects of nonuniform

k-space sampling and, particularly, undersampling the

periphery of k-space, in cases with rapid enhancement

have not been adequately characterized (as is the case in

the early phases of breast DCE-MRI). Data acquired in

this laboratory4 suggest that new k-space sampling meth-

ods may not be necessary, given the very sparse enhance-

ment detected in the breast at early times after contrast

media injection. Alternatively, dynamic field-of-view imag-

ing could be used in combination with other methods to

reduce errors and artifacts. The method used here under-

samples k-space, leading to aliased acquisitions, but uses

uniform Cartesian sampling and may better characterize

changes that occur at the periphery of k-space.

Similarity indices were significantly higher for the

dynamic FOV simulations than for those using the same

rFOV for all acquisitions. However, the earliest set of

images had modest CW-SSIM values. This is likely due to

the fact that very few voxels enhanced at very early times

and even small deviations in sparse images are severely

penalized by CW-SSIM. While most of the differences in

the images come from the overlap of significantly enhanc-

ing voxels, differences between the fully sampled images

and the unaliased reconstructions may also come from vox-

els with minimal enhancement overlapping with enhancing

voxels and adding a small amount of signal to the enhanc-

ing voxel in the reconstructed image. There were some arti-

facts present in the reconstructed images, and in some

cases in the enhancing lesions themselves, but we do not

believe that the presence of these artifacts would affect the

detection of these lesions. If this method were to be imple-

mented in a clinical setting, the early high temporal resolu-

tion images could be used to detect areas of abnormal

enhancement, while later images, acquired without aliasing

and/or with higher spatial resolution could be used to

obtain a diagnosis.

The dynamic FOV imaging method proposed here has

some limitations. The optimal FOV reduction factors will

be somewhat case dependent. In this study, the undersam-

pling factors were chosen to be co-prime (to minimize

repeated overlaps) and give sufficiently high temporal reso-

lution at early time-points to capture the rise of the arterial

input function (AIF). The optimal factors to obtain high

temporal resolution with a limited number of artifacts may

not be the same for all cases. In this work the smallest

FOV used was 31% of the full FOV, corresponding to

roughly a 3-fold acceleration factor; this factor is lower

than the acceleration factor obtained by other advanced

methods (e.g., compressed sensing). While previous experi-

ence with high temporal resolution imaging has shown that

early enhancement in the breast is sparse, cases in which

the enhancement is dense could limit the accuracy of the

unfolded images, as the likelihood of voxels overlapping

would be greater, and the accuracy of the reconstruction

would depend on the performance of the interpolation

scheme. Patient motion could also lead to inaccurate

reconstructions, given that later images are used to guide

the unfolding process and the locations of significantly

enhancing voxels may shift in cases with motion in

between acquisitions. Image registration could be used to

limit the effect of motion, though the application of image

registration algorithms to rFOV images could prove chal-

lenging due to fold-over artifacts. Though the analysis pre-

sented here has focused on the breast (above the chest

wall), this method could lead to inaccurate reconstructions

of axillary lymph nodes, given that they may overlap with

the heart in rFOV images, thus obscuring axillary lymph

nodes at early time-points.

The research described here faced some obstacles not

inherent to the method. The data used to simulate rFOV

acquisitions were acquired at a lower temporal resolution

than if actual rFOV images had been acquired. Since less

time would have elapsed between the points being used for

the interpolation, the temporal interpolation used in esti-

mating the signal at each of the locations for overlapping

voxels would perform better with real high temporal reso-

lution data than in these simulations. Additionally, more

detailed analysis of the noise properties of the aliased

images is needed. In the simulations described here, the

standard deviation of several precontrast images was used

to determine a threshold above which signal enhancement

was deemed significant. More work is required to deter-

mine whether different noise thresholds should be used for

different areas of the image depending on the degree of

fold-over, or if a measure other than standard deviation

more adequately determines a noise threshold. The simula-

tions presented here were based on modulus images, which
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amplify the effect of noise when simulating the intensity

in aliased voxels. It is possible that in practice (when deal-

ing with complex data) fewer low-signal voxels will be

misclassified as enhancing, and as a result, reconstructions

will be more similar to fully sampled images.

We plan a number of improvements to “dynamic FOV

imaging”. These include use of information from neighbor-

ing voxels to identify artifacts resulting from the unfolding

process. For example, if a voxel is many times brighter

than most of its neighboring structures, this could be an

indication that its signal was artificially increased in the

unfolding process. We also plan to use additional informa-

tion from fully sampled precontrast images to improve the

accuracy of the unfolding process. It is possible that struc-

tural information in these images could be used to identify

aliased areas in the rFOV acquisitions and reduce artifacts

in the final unfolded images. In this study, we did not use

image registration to remove artifacts in the subtraction

images resulting from motion in between pre- and postcon-

trast acquisitions. While there were not significant motion

artifacts in the cases selected, it is possible that a small

shift in position could lead to errors in the subtraction

images. Image registration would help eliminate these arti-

facts and increase the similarity of the unfolded images to

the original full-FOV acquisitions.

5. CONCLUSIONS

This paper reports that the temporal resolution of breast

DCE-MRI can be increased by reducing the field-of-view

resulting in aliased images acquired during the 30–45 s

after contrast media injection, producing very sparse sub-

traction images, and then approximating fully sampled

images by “unfolding” the aliased subtraction images using

enhancement patterns to inform the unaliasing process. A

novel dynamic field-of-view approach was developed and

shown to closely approximate full-FOV images. As temporal

resolution increases with dynamic FOV imaging, postcontrast

enhancement in early images becomes even sparser than in

the images used in these simulations, increasing reconstruc-

tion accuracy. This method could be used to increase the

temporal resolution of early uptake phase breast DCE-MRI,

and there are potential applications to other areas of the

body. Future studies will further refine this method by

including more information in the unfolding process.
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