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Abstract

Composed Image Retrieval (CIR) facilitates retrieving an image matching a refer-
ence image while incorporating specified textual modifications, which is crucial
for internet searches and e-commerce. Traditional supervised CIR methods rely
on annotated triplets, which are labor-intensive and limit generalizability. Recent
advances in Zero-Shot Composed Image Retrieval (ZS-CIR) address the challenge
of performing this task without annotated triplets. A key challenge in ZS-CIR
is training models on limited intention-relevant datasets to understand human
intention implicitly expressed in textual modifications for accurately retrieving
target images. In this paper, we introduce an image-text dataset incorporated
with pseudo-manipulation intentions to enhance the training of ZS-CIR models
in understanding human manipulation intents. Based on our dataset, we propose
a novel framework, De-MINDS, for capturing the intent humans aim to modify,
thereby enhancing the ZS-CIR model’s ability to understand human manipulation
descriptions. Specifically, a simple mapping network first maps image information
into language space and forms a target description with a manipulation descrip-
tion. Subsequently, De-MINDS captures intention-relevant information from tar-
get descriptions and converts them into several pseudo-word tokens for accurate
ZS-CIR. The De-MINDS model exhibits robust generalization and significant
improvements in performance across four ZS-CIR tasks. It achieves performance
improvements from 2.05% to 4.35% over the best methods and establishes new
state-of-the-art results with comparable inference times. Our code is available at
https://anonymous.4open.science/r/De-MINDS/.

1 Introduction

Composed Image Retrieval (CIR) [55]] aims to retrieve an image that is visually similar to a reference
image while having visual modification according to the manipulation text. Different from traditional
image retrieval [[15], CIR offers more flexibility and accuracy by enabling users to integrate both
visual and textual information into their search intent. This approach has gained emerging attention
in internet searches and e-commerce applications [[12}45]]. Various supervised methods have been
proposed to solve CIR problem [12} 3319} 4], which requires a large amount of annotated triplets,
i.e., a reference image, a manipulated description, and a target image, for training task-specific
retrieval models. However, these supervised methods are labor-intensive for data annotation and tend
to suffer from limited generalization capabilities due to bias in human annotation. To enhance model
generalization and perform CIR tasks without annotated triplets, recent research [45] 13| 152} 25/ 120]
introduce Zero-Shot Composed Image Retrieval (ZS-CIR). Existing solutions for ZS-CIR map an
image to the language space, combining it with text to form a query. This query retrieves target
images from the shared semantic space of a pre-trained vision-language model by calculating semantic
similarity. These methods typically involve a pre-trained mapping network that converts the reference
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image into a pseudo-word token S.. During retrieval, this token S is merged with the manipulation
description to construct a target description, which a pre-trained CLIP model [41] then encodes,
leveraging its comprehensive pre-trained knowledge across image candidates for retrieval.

Despite remarkable advancement, the pre-trained mapping networks are not satisfactory for CIR due
to the following reasons:

(1) There exists a discrepancy between the retrieval and pre-training stages in ZS-CIR models. During
retrieval, the mapping network is tasked with aligning intent-specific visual information (e.g., objects,
scenes, colors, and styles) in language space to form a composed image description query (e.g.,
change to a man playing the accordion joyfully in the street) for calculating semantic similarity with
the target image. However, in the pre-training phase, the mapping network aligns general visual
information with textual descriptions of the image content (e.g., a musician plays the piano). Without
intent-specific mapping, the pseudo-token S, contains heavy information redundancy involving most
objects, background/foreground, color, and style, leading to inaccurate retrieval.

(2) Accurately understanding the intention a user intends to modify in manipulation descriptions
presents substantial challenges. These intentions are implicitly expressed in users’ manipulation
descriptions. For instance, the manipulation intention embedded in the request to “make this photo
feel like early fall” may involve changing colors (e.g., orange and yellow), adjusting the scene (e.g.,
fallen leaves), and adding specific objects (e.g., autumnal trees). However, existing ZS-CIR models
rely on the CLIP language encoder, which challenges capturing fine-grained/long information from
text [51} 58], facing difficulties in accurately understanding these manipulation intentions.

In this work, we introduce the intent-CC3M, an intention-based dataset for training mapping net-
works capable of aligning intention-relevant visual information within the language space, thus
addressing the gap between pre-training and retrieval in ZS-CIR models. We incorporate pseudo-
manipulation descriptions in CC3M [47]], the widely used ZS-CIR training dataset [4552]]. These
pseudo descriptions, reflecting potential user intention to manipulate images, are reasoned through
chain-of-thought prompting using an off-the-shelf Multi-modal Large Language Model (MLLM),
facilitating the learning of intent-specific mapping capabilities. Furthermore, to overcome the chal-
lenge of existing ZS-CIR models in understanding manipulation intention within descriptions, we
propose a novel unDErstanding of Manipulation INtention from target Description before Searching
approach, named De-MINDS. We leverage pseudo-manipulation descriptions to train De-MINDS
to capture manipulation intention from various aspects (e.g., objects, scenes, colors, styles) guided
by multiple learnable queries. This intention information is mapped to several pseudo-word tokens,
which are subsequently input into the CLIP language encoder, enhancing its ability to understand
users’ intention to modify and thereby improving the accuracy of CIR.

The main contributions of this work are summarized as follows: (1) We introduce intent-CC3M, a
novel dataset with pseudo-manipulation descriptions reasoned by an MLLM to bridge the gap between
pre-training and retrieval in ZS-CIR models. Our experiments demonstrate that baseline models
trained with our dataset are capable of aligning intention-relevant visual information, achieving
consistent performance improvements. (2) We propose a novel manipulation intention understanding
network. We extract intentions in manipulation descriptions under the guidance of learnable queries
and map to several pseudo-word tokens for retrieval, enhancing the CLIP’s ability to understand users’
intentions. It sheds new light on intention-based image retrieval. (3) Our De-MINDS are consistently
effective and generalizable across diverse ZS-CIR tasks. It significantly improves CIR performance
from 2.05% to 4.35% across four CIR tasks, establishing new state-of-the-art results with comparable
inference time, further impacting vision and language applications.

2 Related Works

Composed Image Retrieval. Composed Image Retrieval (CIR) integrates image and text for retrieval
[54]]. Current models typically employ late fusion for integrating visual and language features
separately [4} 33} 4]. In contrast, zero-shot CIR models like Pic2Word [45], SEARLE [3]], and
Context-12W [52] train on image-text pairs, bypassing the need for costly CIR datasets. Pic2Word
aligns entire images into text features, SEARLE adds a pseudo-word token to GPT-based captions,
and Context-I2W employs context-dependent word mapping for accurate retrieval. However, these
methods rely on the pre-trained CLIP language encoder, which struggles to understand intentions
within manipulation descriptions. To tackle this issue, we propose a novel model that effectively
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A Describe what is in the background and - players in similar jerseys are in the background running
foreground. 3. Focusing on colors, styles, and towards him, indicating a game in progress. The field is
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Figure 1: Illustration of using LLaVA to create our intent-CC3M dataset. We first use a prompt to
guide the LLaVA model in generating rewritten captions with multi-view visual descriptions. Then,
we leverage another prompt to reason pseudo-manipulation descriptions with potential intentions.

understands these intentions, thereby improving the ZS-CIR model’s ability to retrieve images based
on human manipulation intents accurately. Unlike CIReVL [25]], which employs LLMs during
inference for composed retrieval, introducing non-negligible computational overhead, our model is
lightweight and achieves comparable inference time to recent approaches.

Vision and Language Pre-training Models. Vision and Language Pre-training (VLP) models, like
CLIP [41]], leverage extensive image-text pair training to achieve implicit alignment. Recent VLP
advancements [60, 49] utilize static models to integrate encoded image and text features, enabling
various zero-shot tasks [29} 49, 48]]. However, current CLIP-based zero-shot learning struggles with
manipulation description in CIR tasks, motivating our approach, which enhances CLIP’s capabilities
of understanding user intentions to modify from fine-grained/long descriptions. Moreover, recent
studies [ 28] 138 137]], inspired by DETR [7]], employ learnable queries to select image and text
information. In our work, we utilize multiple learnable queries to guide the extraction of manipulation
intentions from target descriptions, providing explanatory cues for more accurate ZS-CIR.

Image-text Dataset Enhancement. In the field of vision-language learning, various endeavors
[17,127, 1181 39, [10]] aim to enhance caption quality within existing image-text datasets. LaCLIP [17]
utilizes LLMs to refine raw captions. VeCLIP [27] integrates insights from raw and synthetic sources
using LLMs. The latest approach, ShareGPT4V [10], leverages MLLMs to generate descriptive
captions from deliberate prompts and corresponding image inputs. However, these methods ignore
human manipulation intentions, which are crucial for CIR tasks. To bridge this gap, we introduce a
novel dataset infused with pseudo-manipulation intentions reasoned by MLLM:s.

3 Methodology

3.1 Preliminary

Given a reference image space Z and a text description space 7, Composed Image Retrieval (CIR)
involves a user manipulation text 7" € 7 describing hypothetical semantic changes to a reference
image I € Z, aiming to retrieve a target image with its closest context from an image database
D = {I;,...,I,}. Zero-Shot CIR (ZS-CIR) approaches [43] [3| 52] sidestep this requirement
by training a mapping network to map the reference image into an associated text representation.
Specifically, these methods learn a mapping function fy : Z — Z, where Z is a pre-defined text-
token embedding space. fy is trained using intermediate image representations from a specific image
encoder W, often part of a pre-trained vision-language representation system. Template filling
around the manipulation text over the pseudo token embedding S = fy(¥(I,)) is then employed
to aggregate information into a target description P (e.g., “a photo of S,., {T'}).” This target
description serves as input for target image retrieval, encoding it using the associated pre-trained text
encoder ¥r. The respective matching score is cos_sim(V;(1,.), Uy (P)) using cosine similarity.

3.2 Creating Intention-based Image-text Aliagment Dataset

To address the discrepancy between pre-training and retrieval in existing ZS-CIR models, we aim
to develop an intention-based image-text dataset for training mapping networks capable of aligning
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intent-relevant visual information within the language space. To make a fair comparison and mitigate
the bias in human annotation, we propose to augment the widely used ZS-CIR training image-text
dataset, CC3M, through LLaVA [32], an open-source, state-of-the-art Multi-modal Large Language
Model (MLLM) known for its robust performance in vision-language tasks. However, reasoning
potential manipulation intentions from image-text pairs remains a challenging task for LLaVA.

Recent advancements in MLLMs include the development of Chain-of-Thought (CoT) prompting
[56], which enables MLLMs to produce a sequence of reasoning steps, breaking down multi-step
problems into intermediate stages and enhancing performance in complex tasks [24]. Inspired by the
CoT prompting mechanism, we explore a novel multimodal CoT prompting strategy using LLaVA to
reason pseudo-manipulation descriptions with potential intentions from image-text pairs effectively.

As illustrated in Figure [T we divide the process of reasoning pseudo-manipulation descriptions
into two stages: the Caption Rewriting stage rewrites the original caption with multi-view visual
information for CIR tasks. The Intention Reasoning stage further understands the manipulation
intentions from rewritten captions to reason pseudo-manipulation descriptions. Specifically, in the
caption rewriting stage, we utilize the i-th image I; and its original caption T, ; from the CC3M,
denoted as D = {(I%,T%,.), ..., (I*, T,)}. We guide the LLaVA model with a prompt to generate
a rewritten caption 77, for each image. These rewritten captions, averaging 65 tokens, include
various aspects of visual information (e.g., object, foreground/background, color, and domain style).
In the intention reasoning stage, we apply an additional prompt to reason manipulation intention for
rewritten captions. This results in a more effective pseudo-manipulation description 77 ,, averaging 27

int?
tokens. The result dataset is represented as D = {(I2, T7.;, Trewss Tine)s - - (L2, T T T

ori) T rew? znt)}'

3.3 Manipulation Intention Understanding From Descriptions Before Searching

Since ZS-CIR models leverage the CLIP language encoder, there is a challenge in understanding
manipulation intentions that are implicitly expressed in user descriptions. To address this challenge,
we propose a method to understand the manipulation intention before feeding into the CLIP language
encoder for accurate ZS-CIR in two modules: the Manipulation Intention Understanding captures
manipulation intentions and maps them into several pseudo tokens. The Reasoning Distillation
further aligns the context of desired pseudo-word tokens closely with human intention by leveraging
pseudo-manipulation description to enhance the models’ ability to understand human intention.

Image and Context Encoding. For a given sample (I, Tori, Trew, Tint) from intent-CC3M. Since
the pre-trained vision-language models are strong at modeling the cross-modal implicit alignment.
Initially, we employ the frozen image encoder ¥ from the CLIP model to encode the global image
feature of the reference image I, as v = V(1) = {v;}&; € R¥*!. Subsequently, we apply a
simple mapping network fy with parameters 6 to extract a pseudo token embedding S, = fy(v).
Considering our focus on manipulation intention understanding for ZS-CIR, fj is structured as a
simple three-layer fully-connected network. We then construct a target description P formatted
as “a photo of S., {T}”. We consider two scenarios for manipulation intention understanding:
deducing intention information from concise texts (e.g., original caption) or integrating it from
lengthy texts(e.g., rewritten caption). Accordingly, the text 7" is composed randomly within a batch
according to the following distribution: 50% original caption T'..,, and 30% rewritten caption 7},; to
learn manipulation intention understanding, 20% pseudo-manipulation description T;,,; to ensure
training stability (details are in Appendix [C)). We feed the target description to the language encoder
U of frozen CLIP to represent the target description P by a set of language feature vectors T’
={t;}7r, C RIxm ¢, represents the [CLS] embedding t.;s with global information of image and

caption, while other ones denote word embeddings T' ={t;}7",.

Manipulation Intentions Understanding. Given the word embeddings of the target descriptions,
this module aims to capture different manipulation intentions, thereby enhancing the CLIP lan-
guage encoder’s capability to understand users’ intents for manipulation. To capture different
manipulation intentions, we introduce a set of learnable query embeddings for guidance, denoted
as X = {z}7_, € R¥" where d is the embedding dimension and n is the number of queries.
Each query x, represents a kind of manipulation intention. As depicted in Figure 2[left), we im-
plement cross-attention mechanisms to extract intention-relevant contextual information from the
word embeddings T' = {¢;}", using the learnable queries X. The cross-attention operation in-
volves three primary steps. First, we compute the query, key and value through linear projections,
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Figure 2: An overview of our De-MINDS. Pre-training (left): Map the image to a pseudo token S,
and understand the intention from the target description. Inference (right): Map the inference image
to S to construct the target description and understand manipulation intention for ZS-CIR.

183 Qe, Q=XWC K = [X TIWX, V = [X,T|WV. [X,T] denotes concatenating the two

184 matrices, which enhances the interaction between learnable queries and word embeddings with better

185 performance. Then, the learnable queries from the current cross-attention block X is calculated as:
A QK i A i i—1

X, = Att(Q, K, V) = softmax i V,X'=FFW (XL, + X" H+ XL, (1)

186 where X" are learnable queries from the previous block and FFW(-) denotes 2-layer feed-forward
187 networks. the refined query embeddings X are then fed into the frozen language encoder U7 of
188 CLIP to extract the intention embedding as t, = U (X") = {t1}¢ | € R (d = 768).

189 Reasoning Distillation. Given the intention embedding t,, the Al agent needs to further align with
190 human manipulation intention. Specifically, we aim to reduce the distance between the intention
191 embedding and the corresponding pseudo-manipulation description’s [CLS] word embedding, which
192 represents the MLLM’s intention embedding while ensuring that each embedding remains distinct
193 and discriminative. Given the intention embeddings 7;,; = {t.}Y,, where N is the number of
194 images in D, and the corresponding MLLM'’s intention embeddings t, = Ur(Tint) € Tint We
195 employ a symmetric contrastive loss inspired by SimCLR [11] as follows:

Laistit = Lot (te, ta) + Loos(Es,ts) )
196 The two contrastive loss terms are defined as:
e () TE . 1 eT(E)TE
Lot (t, t) = |B|zEZBI g T(tl)TtJ,Etzs(t*,t*):*EieZB gw (€)

197 where B is the number of images in a batch and 7 is a temperature hyper-parameter that controls the
198 strength of penalties on hard negative samples.

199 Cross-Modal Alignment. Given the embedding of user manipulation intention, this module aims
200 to form a target embedding optimized for retrieval. Since the nature of CIR, both the reference
201 image and the manipulation intention form a comprehensive context that defines the target image. To
202 dynamically control the influence of manipulation intentions on the retrieval process, we introduce a
203 learnable scalar gate that decides the contribution of the manipulation intention information ¢, and
204  integrates the global information £, to form the final target embedding ¢ as follows:

t= tos + gate - L,

205 Then, we aim to match a target image to its paired target embedding while separating unpaired
206 ones. We minimize the symmetric contrastive loss between the image embedding v and the target
207 embedding t as follows:

Ealign = £SQt (ia ’U) + ﬁt?s (Ua i) (4)
208 where L9, and L2, are two contrastive loss terms as Eq[3] The final loss used to optimize is:
L= »Cdistill + ﬁalign (5)
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Inference with De-MINDS. In the inference stage, we compose the reference image with the paired
manipulation description and compare the composed query with candidate images for retrieval. As
shown in Figure [2] (right), we compose the pseudo token embedding S, of the image from the
mapping network with the text description and feed it to the pre-trained language encoder of CLIP.
The result is embedded by the text encoder and compared to the visual features of candidate images.

Since we focus on studying the manipulation intention understanding searching for ZS-CIR, we utilize
the same prompt in the most recent works [45, |52]] for a fair comparison. We show prompt examples
for different ZS-CIR tasks. In all examples, [*] indicates the pseudo token from the mapping
network: (a) Domain conversion aims to modify the domain of the reference image. The prompt
is defined as a [domain tag] of [*];(b) Object composition retrieves an image that contains
an object in the reference image and other object tags. The prompt is in the format of a photo
of [*], [obj; tagl and [objs tagl, ..., and [obj, tagl;(c) Sentence manipulation
modifies the reference image based on a sentence. We simply append the sentence with the special
token as a photo of [*], [sentence].More details are in Appendix[D.3]

4 Experiments

Datasets. We evaluate our model on four ZS-CIR datasets, i.e., COCO [31] for object composition,
ImageNet [16l 21] for domain conversion, CIRR [33]] for object/scene manipulation, and Fashion-1Q
[57] for attribute manipulation. All the dataset settings and evaluation metrics (Recall @K) follow the
recent works [45] |52]] for a fair comparison.

(1) Domain conversion. This dataset comprises 16,983 images of 200 classes from four domains,
i.e., cartoon, origami, toy, and sculpture. We use the prompt (a) in inference. (2) Object composition.
The dataset contains images with corresponding lists of object labels and instance masks of query
images. We randomly crop one object and mask its background using its instance mask to create a
reference image. We use the prompt (b) in inference. (3) Object/scene manipulation. A reference
image is an instruction for manipulating an object or the background scene. We apply the prompt
(c) in inference. (4) Attribute manipulation. This dataset includes various description sentences for
manipulating image attributes. We utilize the prompt (c) in inference. More details in Appendix [D.2]

Implementation Details. Generating one pseudo-manipulation description through LLaVA-1.6-13B
[32] for the entire Conceptual Caption dataset [47], which comprises 3M images (CC3M), requires
approximately 625 hours on 5 A100 (80G) GPUs. For training De-MINDS, We utilize the CC3M and
adopt ViT-L/14 CLIP [41] pre-trained on 400M image-text paired data. We employ AdamW [34] with
a learning rate of 1 x 1075, weight decay of 0.1, and a linear warmup of 10000 steps. The number
of cross-attention blocks is 6. The number of learnable queries is 4. The batch size for contrastive
learning is 1024. To improve training stability, we initialize the learnable scalar of tanh-gating to 0
[2]]. For training Context-I2W and SEARLE, we keep the same setting reported in their paper, only
replacing the original captions with our pseudo-manipulation descriptions. All models are trained on
4 NVIDIA A100 (80G) GPUs. To ensure reliable results, we report the performance averaged over
three trials. More details are in Appendix

4.1 Quantitative and Qualitative Results

We compare De-MINDS with several ZS-CIR methods, including: 1) Pic2Word [45]: Maps the
visual features of a reference image into a pseudo-word token within the CLIP token embedding
space; 2) SEARLE-XL [3]: Similar to Pic2Word, further integrating the pseudo-word token with the
caption generated by GPT [6] and distilled for efficiency; 3) Context-I2W [52]]: Selectively extracts
text-relevant visual information from the reference image before mapping it into a pseudo-word
token; 4) CIReVL [25]: Uses LLMs to enhance the manipulation description during inference; and
5) LinCIR [20]: Masks subjects in captions from various image-text datasets for training. For a fair
comparison, we present the reported results of methods relying on the ViT-L/14 CLIP model.

Moreover, we compare De-MINDS with 6) SEARLE-XL* and Context-I2W#*: Replace the original
captions with our pseudo-manipulation description, and standard ZS-CIR methods, including 7)
Text-only: Computes similarity based on the CLIP features of descriptions and candidate images; 8)
Image-only: Retrieves the most similar images to the reference image; and 9) Image + Text: Sums
the CLIP features of the reference image and the description.
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Table 1: Results on Fashion-1Q for attribute manipulation.

Dress Shrit TopTee Average
Methods Conferences R10 R50 R10 R50 R10 R50 R10 R50
Image-only - 54 13.9 9.9 20.8 8.3 17.7 79 17.5
Text-only - 13.6 29.7 18.9 31.8 19.3 37.0 17.3 329
Image+Text - 16.3 33.6 21.0 34.5 222 39.0 19.8 35.7
Pic2Word [45] CVPR 2023 20.0 40.2 26.2 43.6 279 474 24.7 43.7
CIReVL [25] ICLR 2024 24.6 44.8 29.5 474 31.4 53.7 28.6 48.6
LinCIR [20] CVPR 2024 20.9 424 29.1 46.8 28.8 50.2 26.3 46.5
SEARLE-XL [3] ICCV 2023 20.3 43.2 27.4 45.7 29.3 50.2 25.7 46.3
SEARLE-XL* - 22.7 45.0 29.4 479 30.2 514 274 48.1
Context-12W [52] AAAI 2024 23.1 453 29.7 48.6 30.6 52.9 27.8 48.9
Context-I2W* - 23.9 46.9 30.4 49.7 31.1 53.8 28.5 50.1
De-MINDS - 25.2 48.7 \ 31.0 51.2 \ 329 55.7 \ 29.7 51.9
Query Ours Context-12W Query Context-12W
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Figure 3: Results on the attribute manipulation task ~ Figure 4: Results on the domain conversion task.

Tables|I|to[d] present the quantitative results, while Figures[3]to[6]display the corresponding qualitative
results of our model and the most recent works, CIReVL and Context-I2W. The attribute manipulation
task requires accurately localizing specific attributes within the entire image. As demonstrated in Table
[T} De-MINDS outperforms existing ZS-CIR models significantly, achieving an average improvement
of 2.20% over the State-of-the-Art (SoTA) model, CIReVL. CIReVL’s dependency on an LLM at
inference introduces substantial computational overhead during retrieval. De-MINDS tackles this
challenge by extracting fashion-relevant intention within manipulation descriptions into a series of
implicit pseudo-tokens for CLIP retrieval. This approach is more efficient and suitable for models than
relying on explicit, often noisy, LLM analysis results. Figure 3] further illustrates how De-MINDS
effectively understand complex fashion-relevant attributes in manipulation descriptions, such as a
sexier style with a waistband (row 1), black color with a special design in the center (row 2), and
longer sleeves with two pockets in blue (row 3), facilitating more accurate searching.

We further assess De-MINDS’ capability in foreground/background differentiation and fine-grained
image editing through the object/scene manipulation task (Table[Z). De-MINDS consistently surpasses
existing ZS-CIR models, achieving an average performance improvement of 2.05% over the best
model. This enhancement is attributed to De-MINDS’ approach of extracting human intention from
manipulation descriptions before searching, enhancing the ability of the CLIP language encoder
to understand the user’s intention to modify. In Figure 5] De-MINDS accurately understands
manipulation intention to change the number of an object and modify the background (row 1), alter
the stage and remove an overlapping object (row 2), adjust the camera focus, age of a dog, and
remove a specific object (row 3), and modify the style of an image with a specific design (row 4).

In the object composition experiments (Table[3), De-MINDS significantly outperforms the current
SoTA model by an average of 4.30%. These results prove the effectiveness of De-MINDS in
accurately mapping visual information to the language token space via bridges the gap between
pre-training and retrieval, which facilitates the combination of multiple objects, as shown in Figure [f]

Moreover, in the domain conversion results (Table @), De-MINDS consistently outperforms existing
approaches and notably surpasses the SOTA Context-I2W by an average of 4.35%. As illustrated in
Figure[d De-MINDS accurately maps objects within complex scenes (e.g., a saxophonist in the street,
a bald eagle on wood, a monkey in the forest, and a sea lion in the water). In contrast, Context-I2W
struggles to select the intention-relevant local visual features due to its reliance on image caption
without intention, whereas our pseudo-manipulation descriptions are effectively addressed.
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Table 2: Results on CIRR for object
manipulation task.

w /7 Target two animals
Methods Rl R5 RI0 R50 % resting on white
towel rather showing
Image-only | 7.4 23.6 34.0 57.4 one black
Text-only 20.9 44.8 555 79.1 Make dog sleep in
Image+Text 12.4 362 49.1 78.2 ,a:g‘:gr‘nzzs':';zts
Pic2Word [45] [23.9 51.7 65.3 87.8 | " from its mouth

CIReVL [25] |24.6 52.3 64.9 86.3

Query

Take the picture

LinCIR [IE] 25.0 53.3 66.7 - Eclosen make the dog
younger, and remove
SEARLE-XL [3] | 24.2 52.4 66.3 88.6 N the person

SEARLE-XL* |254 54.1 66.9 89.3

Context-12W [52] | 25.6 55.1 68.5 89.8
Context-I2ZW#* 26.3 55.7 69.0 90.2

make it a poster of
the dog, and have
text above and

below the animal

De-MINDS  |27.3 57.0 71.3 91.6 Flgure 5. Retrieved results on the object manipulation task
Table 3: Results on COCO for object Query Ours Context-I2W
composition task. P tralin, Iigrt, s 1 : o o

o people, railway,
Methods R1 R5 RI0 package, sky
Image-only 86 154 189
Text-only 61 157 235 o e
Image+Text 10.2  20.2 26.6 fork, wine
Pic2Word [45] 115 248 334
Context-2W [52] | 135 285 38.1 e, 2 persom food,
f chair, table, plate,
ContextI2W* | 143 297 405 £ b
De-MINDS | 157 332 441 Figure 6: Retrieved results on the object composition task.
Table 4: Results on ImageNet for domain conversion.
Cartoon Origami Toy Sculpture Average
Methods Conferences R10 R50 R10 R50 RI0O R50 RI10 R50 RI10 RS0
Image-only - 0.3 4.5 0.2 1.8 0.6 5.7 0.3 4.0 0.4 4.0
Text-only - 0.2 1.1 0.8 3.7 0.8 2.4 0.4 2.0 0.5 23
Image+Text - 2.2 13.3 2.0 10.3 1.2 9.7 1.6 11.6 1.7 11.2

Pic2Word [43] CVPR 2023 80 219 | 135 256 87 216 | 100 238 | 10.1 232

Context-12W [52]  AAAI2024 102 261 | 175 287 | 11.6 274 | 121 282 | 129 276
Context-I2ZW* - 1.2 274 | 187 304 | 125 298 | 137 314 | 140 298
De-MINDS - 133 312 | 203 345 | 147 317 | 165 347 | 162 33.0

4.2 Ablation Study

In Table[5] we evaluate the contributions of De-MINDS components on the CIRR and FashionIQ
datasets. (1) In models ‘2-3’, we assess the significance of the intent-CC3M dataset. Replacing the
pseudo-manipulation description with original captions (model ‘2’) results in an average performance
drop of 3.80%, demonstrating training with intent-CC3M benefit for aligning intention-relevant
visual information. Using a single prompt for pseudo-manipulation descriptions (model ‘3’) causes a
3.14% performance decline, indicating that CoT prompting enhances MLLM in reasoning potential
manipulation intention. (2) In models ‘4-6’, we evaluate key modules in the manipulation intention
understanding process. Without intention embeddings from De-MINDS (model ‘4’), performance
drops by 4.02% on average, proving De-MINDS’s importance in CIR. Removing the global feature
t.s (model ‘5°) leads to a 2.38% performance decline, highlighting the necessity of comprehensive
both global and intention information. Summing global and intention features directly (model
‘6’) causes a 1.64% performance drop, indicating the need for adaptive capture of complementary
information. (3) In models ‘7-9’, we assess De-MINDS’s training strategies. Using only original
captions as 7' (model “7’) reduces training stability, resulting in a 1.62% performance drop. Without
the distillation loss (model ‘8’) or replacing it with a cosine loss (model ‘9’) leads to performance
drops of 3.58% and 1.54%, respectively, indicating the necessity of symmetric contrastive loss for
distilling MLLM’s reasoning ability. In models ‘10-12’, we evaluate alternative solutions. Not
utilizing 7" for image-to-text mapping (model ‘10’) results in a 2.30% performance drop, confirming
the effectiveness of our pseudo-manipulation descriptions. Applying MiniGPT-4 [61]] to generate the
intent-CC3M dataset (model ‘11°) results in a 1.18% performance drop, suggesting that a superior
MLLM model benefits pseudo-manipulation description quality. Leveraging the LLaMA [53]] rewrite
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chairs have cushions.
Methods Rl R5 RI10 R10 R50
Remove all dogs and basket,
1. full model 27.3 57.0 713 \ 29.7 519 Add adult dog standing and

alert, Place dog on cement
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seated behind dog's head.

Significant of inetent-CC3M

2. w/ointent-CC3M  24.6 53.7 67.1|26.0 46.8
3. w/oCoT 252 543 67.8]26.7 475
Key modules of De-MINDS process

4. w/o De-MINDS 24.0 53.5 67.2]258 46.6
5. wl/o global feature  25.5 55.2 68.0|27.3 49.6

Standing guinea pig on the
background of toys instead of
a white-red puppy sleeping
on a boot on the ground.

6. w/o gate 259 553 69.5]279 504 B ot i
P . ace dog standing on hin

Tralnmg Strategles legs, Add another dog, and

7. wlo construct T' 26.2 55.6 69.3]27.8 50.2 Place dogs in = [ ETHNEREEL

8. w/o distil 24.8 539 673263 47.0 industrial setting with orange

9. cosdistll 26.2 555 69.7]279 50.2 R T background.

Alternative solutions Learnable Queries (J 0 @ )

10. a photo of S. 255 552 6791275 49.6  Figure 7: Visualization of the top two attention
}é LMIiIIUIqu: caption %gg gg; ;2% ggg 451(7)§ words for each learnable query, different colors
i S caption i i : : : denoting the results corresponding to each query.

CC3M dataset [17]] (model ‘12”) causes a 3.40% performance drop, indicating the necessity of MLLM
for generating pseudo-manipulation description with multi-view supplementary image detail.

4.3 Analysis

Interpretability of Learnable Query. In Figure[/| we visualize the top two attention words of each
learnable query from the last block, demonstrating the distinct focus of the four queries. Specifically,
the first two queries mainly focus on object and attribute information, while the last two queries
mostly consider foreground/background and relation information. These attention maps substantiate
De-MINDS’s interpretability in extracting specific intention across various descriptions, supporting
the understanding of intention from manipulation descriptions.

Effectiveness and Efficiency Analysis. Our approach achieves significant improvements on four
widely compared ZR-CIR tasks from 2.05% to 4.35% over the SOTA models. Designed for under-
standing manipulation intention, the model size of De-MINDS(58.5M) is larger than the simple
3-layer MLP mapping (0.9M) of Pic2Word. Consequently, our training time (20 hours) is 6 hours
longer than Pic2Word under the same settings. Notably, our inference time (0.017s) is x58 faster
than CIReVL (~ 1s), which uses LLM for inference, and only 0.005s slower than Pic2Word. It’s
worth noting that our model using just 50% of the pre-training data achieves comparable performance
to SOTA models (details are in Appendix [A22).

Limitation. While the training process for De-MINDS does not introduce significant additional
memory or computational overhead, generating pseudo-manipulation descriptions using MLLMs
can be computationally intensive. Moreover, these pseudo descriptions are not filtered, potentially
introducing irrelevant details that do not align with actual human manipulation intention. Our paper
aims to bridge the gap between pre-training and retrieval in ZS-CIR models and introduce a novel
framework to enhance the model’s capability to understand user intention. Future work could explore
more efficient methods to generate pseudo-manipulation descriptions while maintaining performance.

5 Conclusion

In this paper, we introduce intent-CC3M, an intention-based dataset featuring pseudo-manipulation
descriptions reasoned through chain-of-thought prompting by an MLLM for training mapping
networks to align intention-relevant visual information. Leveraging intent-CC3M, we propose a
novel manipulation intention understanding network that employs learnable queries to enhance the
models’ capability to understand user intention from manipulation descriptions for accurate CIR.
De-MINDS shows strong generalization ability and remarkably improves the best performance of
existing approaches on four diverse ZS-CIR tasks with comparable inference times. Our work inspires
intention-based image retrieval and impacts diverse vision and language applications.
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Analysis of the number of learnable queries.

We conduct analysis on the number of learnable query embedding X = {xz;}}_, € RIX™ as shown
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Figure 8: Analysis of the number of learnable queries.

531 when n is added to 32, it is redundant and unhelpful for the CLIP model to understand manipulation
532 intentions. We finally choose n = 4, which gives the best result among different settings.

Table 6: Results on ImageNet for domain conversion.

Cartoon Origami Toy Sculpture Average
Methods Conferences R10 R50 R10 R50 RIO R50 RI0 R50 RI10 RS0
Pic2Word [45] CVPR 2023 80 219 | 135 256 | 87 216 | 100 238 | 10.1 232
Context-I2W [52] AAAI2024 102 261 | 175 287 | 1.6 274 | 121 282 | 129 276
Context-I2ZW* - 1.2 274 | 187 304 | 125 298 | 137 314 | 140 298
Context-I2ZW(50 %)  AAAI 2024 9.0 230 | 143 256 | 107 250 | 11.0 255 | 11.3 248
De-MINDS(50 %) - 1.7 283 | 192 309 | 128 302 | 142 320 | 145 304
De-MINDS(100 %) - 133 312 | 203 345 | 147 317 | 165 347 | 162 33.0

Table 7: Results on CIRR for object manipu-

lation task. Table 8: Results on COCO for object composition

Methods R1 R5 RI0 R50 task.
Pic2Word [45] 239 51.7 653 878 Methods R1 RS R10
CIReVL [25] 246 523 649 863 - -
LinCIR [20] 250 533 667 - Pic2Word [45] | 115 248 334

Context-12ZW [52] 135 285 381
Context-I2ZW* 143 297 405

Context-12ZW(50%) 121 256 344

SEARLE-XL* 254 541 669 89.3

Context-I2ZW [52] | 25.6 55.1 68.5 89.8
Context-I2ZW* 263 557 69.0 90.2

Context-12ZW(50%) | 24.8 53.6 67.1 889
De-MINDS (50%) | 26.5 56.0 69.3 90.5
De-MINDS 27.3 57.0 713 91.6

De-MINDS (50%) 146 304 408

SEARLE-XL [3] ‘24.2 524 663 886
‘ De-MINDS (100%) | 157 332 441

533 A.2 More Effectiveness and Efficiency Analysis

s34 In Table[6]to[9} we present more evidence supporting the efficacy and efficiency of our De-MINDS.
535 With only 50% of the training data, De-MINDS matches and exceeds the performance of the state-
536 of-the-art (SoTA) Context-I2W model by 0.83% to 2.20%. Remarkably, De-MINDS outperforms
537 reported results of the SOTA model by 1.98% to 4.57% under the same 50% training data, underscoring
538 our method’s superiority.

13



539

540
541
542
543
544
545
546
547
548

549

550
551
552
553

555
556
557
558
559

Table 9: Results on Fashion-1Q for attribute manipulation.

Dress Shrit TopTee Average
Methods Conferences R10 R50 R10 R50 R10 R50 R10 R50
Pic2Word [45] CVPR 2023 20.0 40.2 26.2 43.6 279 474 24.7 43.7
CIReVL [25] ICLR 2024 24.6 44.8 29.5 474 31.4 53.7 28.6 48.6
LinCIR [20] CVPR 2024 20.9 42.4 29.1 46.8 28.8 50.2 26.3 46.5
SEARLE-XL [3] ICCV 2023 20.3 43.2 274 45.7 29.3 50.2 25.7 46.3
SEARLE-XL* - 22.7 45.0 29.4 479 30.2 514 274 48.1
Context-12W [52] AAAI2024 23.1 453 29.7 48.6 30.6 52.9 27.8 48.9
Context-I2W* - 23.9 46.9 30.4 49.7 31.1 53.8 28.5 50.1
Context-12W(50%) AAAI2024 214 437 28.1 46.9 29.7 514 26.4 47.3
De-MINDS (50%) - 24.3 47.5 30.6 50.0 31.3 54.0 28.7 50.5
De-MINDS (100%) - 25.2 48.7 31.0 51.2 329 55.7 29.7 51.9

Algorithm 1 Manipulation Intention Understanding’s process.

Input: batch of word embeddings of target descriptions T = {t;}™,, where t; is the global feature
teis, Niayer, the frozen CLIP language encoder W
Parameter: a set of learnable embeddings X € R?*" | 8-heads attention layer Attn, 3-layers FC
layers fas, gateg,.
Output: target embedding ¢
1: Initialize X € R?*", Attn, f; randomly.
2: Let X'y = {ti} o, t =1
3: while ¢ < Nigyer do
4: Xf;tl = sz + Attni(q=q, k=concat([X’,,;, q]), v=concat([X',;, q)))
50 Xot = X + fa(Xol)
6: t=t+1
7: end while
t* - \IIT(Xoutput)
t =t + tanh(gatey) - t,
8: return ¢

A.3 Broader Impact

We propose a novel image-text dataset augmentation strategy that generates diverse rewrites for
any given image-text pair. This approach not only bolsters the performance of vision-language
models but also enhances capabilities in textual inversion [44], including text-to-image generation
via diffusion models and personalized image retrieval. However, it is crucial to note that MLLMs are
trained on extensive web data, which may incorporate factual inaccuracies and hallucinatory content.
Consequently, the intention-infused versions of texts could inherit these flaws. We advocate for
the implementation of rigorous data filtering methods before these models’ deployment in practical
settings. Furthermore, while the MLLM-based rewriting strategy demands substantial GPU/TPU
computational resources, potentially increasing the carbon footprint.

A.4 Qualitative Results of intent-CC3M

Figure[9]to[T0]we leverage DALL-E [42] to generate images of each caption for qualitative experiment.
We compare intent-CC3M with the CC3M dataset and GPT4’s rewritten captions. We found that
the captions of Intent-CC3M, which contain potential manipulation intentions, provide better visual
information compared to the original captions and those rewritten by a large language model. This
improvement is due to incorporating diverse visual perspectives (e.g., colors, scenes, and objects)
using a multi-model language model, which enhances the training of text-to-image generation tasks.
Notably, our pseudo-manipulation descriptions are shorter than the rewritten captions. The results
show that pseudo-manipulation descriptions serve as more effective prompts, enabling DALL-E to
generate results that are closer to the original images. This demonstrates the high quality of our
pseudo-manipulation descriptions.
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B Algorithm of Manipulation Intention Understanding’s Process.

Algorithm [T] outlines the pseudo-code for the manipulation intention understanding process. We
create a fixed number of learnable embeddings as latent queries to capture intentions that the user
aims to modify within manipulation descriptions. These learnable embeddings are then employed in
a Transformer to execute cross-attention with the target descriptions word embedding {¢;}",,. The
number of output tokens produced by the De-MINDS matches the count of learnable embeddings. To
enhance the interaction between learnable embeddings and word embeddings, we concatenate the
learnable embeddings with keys and values during the cross-attention process. Each learned query
interacts with different intentions, as shown in Figure 2] To achieve a dynamic ratio during the fusion
of global and intention embeddings, we utilize a tanh-gating mechanism [23].

Table 10: More ablation study on CIRR and FashionlQ.

CIRR Fashion-1Q

Methods R1 R5 RI10 RI10 RS50

1. 100% original caption 262 555 695 | 268 499
2. 100% rewritten caption 25.8 554 69.0 | 265 49.6
3. 100% pseudo-manipulation description 253 545 68.0 | 269 497
4. 50% original, 50% rewritten 26.5 559 703 | 277 509
5. 50% original, 50% pseudo 255 552 68.6 | 27.0 50.1
6. 50% rewritten, 50% pseudo 259 558 69.7 | 274 505
7. 40% original , 30% rewritten , 30% pseudo  26.1 557 69.2 | 28.1 50.1
8. 50% original , 25% rewritten , 25% pseudo  26.7 56.5 704 | 29.2 514
9. 50% original , 30% rewritten , 20% pseudo  27.3 57.0 713 | 29.7 51.9
10.  w/o align loss 20.6 452 573 | 23.6 428

C Further Ablation Studies on the Training Strategy

Table details additional ablation analyses of the training strategy in De-MINDS. In model
‘1-10°, we evaluate the necessity of constructs 7" for pre-training Our method supports two
scenarios in manipulation intention understanding: integrating intention information from lengthy
texts and deducing it from concise texts. We evaluated the utility of the original caption T'..,,, the
rewritten caption T,,.;, and the pseudo-manipulation description 7}, in fostering an understanding of
manipulation intentions and ensuring training stability. Our experiments led to the optimal ratio of
50% original caption, 30% rewritten caption, and 20% pseudo-manipulation description. Moreover,
in model ‘9-10°, we assess the significance of the alignment loss. The absence of alignment
between the original image embedding and the target embedding in pre-training results in a notable
decrease in average performance by 9.54%. This highlights the crucial role of aligning the original
image during training, as in CIR, both the reference image and the manipulation intention together
create a comprehensive context that defines the target image.

D More Details of De-MINDS

D.1 More Implementation Details For Baseline Models And Mapping Network

Generating one intention caption through LLaVA-1.6-13B [32] for the entire Conceptual Caption
dataset [47], which comprises 3M images (CC3M) dataset requires approximately 625 hours on 5
A100 GPUs. By leveraging the capabilities of LLaVA, we ensure that each text sample within the
dataset is enriched with diverse and contextually intent-relevant text rewrites, significantly enhancing
the dataset’s utility for composed image retrieval tasks. For training De-MINDS, we utilize the CC3M
and adopt ViT-L/14 CLIP [41]] pre-trained on 400M image-text paired data. We employ AdamW [34]]
with a learning rate of 1 x 1079, weight decay of 0.1, and a linear warmup of 10000 steps. The batch
size for contrastive learning is 1024. To improve training stability, we initialize the learnable scalar of
tanh-gating to 0 [2]. For training Context-I2ZW, we only replace the original captions of CC3M with
our pseudo-manipulation descriptions. Specifically, we employ AdamW [34] with a learning rate of
1 x 1075, weight decay of 0.1, and a linear warmup of 10000 steps. The batch size for contrastive
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learning is 1024. For training SEARLE, we utilize the ImageNet1K [16] test set, which comprises
100K images, and leverage LLaVA to generate intention captions as detailed in Section [3.2] We
employ AdamW, with a learning rate of 5 x 107> and a batch size of 256. All models are trained
on 4 NVIDIA A100 (80G) GPUs. Moreover, we conduct ablation studies on CIRR test sets and
FashionlQ validation sets. For FashionlQ, we consider the average recall. To ensure reliable results,
we report the performance averaged over three trials.

Mapping network design. Table I [|summarizes the mapping network fy architecture we employ.

Table 11: Pytorch-style[40] model description of the mapping network fy. The output is fed into the
CLIP language encoder.

Layer Module
Output nn.Linear(512, 768)
RelLU2 nn.ReLU

Dropout2 nn.Dropout(0.1)
FC2 nn.Linear(512, 512)
ReLU1 nn.ReLLU
Dropoutl nn.Dropout(0.1)
FCl1 nn.Linear(512, 512)

D.2 More Evaluation Datasets Details of Query and Candidate Images.

We evaluate our model on four ZS-CIR datasets, i.e., COCO [31] for object composition, ImageNet
[16, 21] for domain conversion, CIRR [33]] for object/scene manipulation, and Fashion-I1Q [57] for
attribute manipulation. All the dataset settings and evaluation metrics (Recall@K) follow the recent
works [45]|52] for a fair comparison. The evaluation datasets are preprocessed, as explained in the
main paper, we describe the details of the dataset, i.e., number of query images and candidate images
used for evaluation.

Table 12: The number of images used for evaluation in each dataset.

Dataset | Query images | Candidate images
ImageNet 10,000 16,983
COCO 4,766 4,766
CIRR (test) 4,148 2,315
Fashion (Dress) 2,017 3,817
Fashion (Shirt) 2,038 6,346
Fashion (TopTee) 1,961 5,373

D.3 More Inference Details of Prompts for Different Evaluate Tasks

(1) Domain conversion. This setup evaluates the ability to compose real images and domain infor-
mation to retrieve corresponding domain-specific images. We utilize ImageNet [[16] and ImageNet-R
[21], which comprises 200 classes with diverse domains and has domain annotations. Following
Pic2Word, we pick cartoon, origami, toy, and sculpture as the evaluation target to avoid noise in the
annotations. With this selection, we have 16,983 images as candidates. In the evaluation, given the
real image from ImageNet and target domain names, we compose the query following the procedure
in (a) in the Inference section. e.g., a cartoon of [*].

(2) Object composition. We evaluate the validation split (5000 images) of COCO [31]], which
dataset contains images with corresponding lists of object classes and instance mask of query images.
Following Pic2Word, we randomly crop one object and mask its background using its instance mask
to create a query for each image. The list of object classes is used as text specification. Given the
reference image and class list, we compose a query by following (b) in the Inference section. e.g., a
photo of [*], [cat] and [dog].

(3) Object/scene manipulation by text description. In this setup, a reference image is provided
alongside a text description containing instructions for manipulating either an object or the background
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scene depicted in the reference image. This composition of the reference image and text description
enables the retrieval of manipulated images. We evaluate the test split of CIRR [33]] using the standard
evaluation protocol following previous works [45} 3} 52], and query texts are composed following the
procedure in (c) of the Inference section.

(4) Attribute manipulation. We employ Fashion-1Q [57], which includes various modification texts
related to image attributes. These attribute manipulations are given as a sentence. As with CIRR, we
adopt the standard evaluation protocol and create query texts following the procedure provided in
(c) of the Inference section. In evaluation, we employ the validation set, following previous works
(4] 145113} 152].

E Extended Related Works

Mapping Image as One Word. Several methods [30} 59]] represent image regions as word tokens via
VLP models, which rely on object detector efficacy. However, ZR-CIR tasks extend the alignment
ability beyond objects to scenes, styles, attributes, ect. Our method addresses this issue by employing
pseudo triplet data, which maps a pseudo reference image to a pseudo word token and combines it
with the caption to align with the target image. PALAVRA [14] proposes personalized image retrieval
via cycle contrastive loss, requiring class-wise and caption annotations. In contrast, our model
facilitates fine-grained image-to-word mapping without additional annotations. Other approaches
[26, 136l 162} 150] utilize a single word token to represent multiple images of the same object for
text-to-image generation. Our model obviates the need for costly image-supervised training.

Knowledge Distillation. Knowledge distillation is a machine learning technique wherein a simpler
model, known as the student, learns to mimic the behavior of a more complex model, known as
the teacher, by learning from its predictions [22]]. This approach has demonstrated efficacy across
various computer vision tasks, including image classification [22} 43}, |5]], object detection [9. [8]],
and text-to-image synthesis [33} |46], resulting in improved model compression, computational
efficiency, and accuracy. In our study, we employ knowledge distillation to transfer knowledge from
a computationally expensive optimization method (teacher) to a more lightweight neural network
(student). Specifically, we train a manipulation intention understanding network to replicate the
reasoning ability of an MLLM using a distillation loss. Alternatively, our lightweight network can be
interpreted as a surrogate model of the more resource-intensive technique.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction are include the claims made in the paper
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Our paper has limitation in our main paper.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All the formulas in the paper be numbered and cross-referenced

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code and sample dataset are provided in our supplementary. We describe
the steps taken to make the results reproducible or verifiable.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Our paper provides open access to the code for creating the dataset and
reproducing the main experimental results. We will provide the entire dataset after our paper
is accepted.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our paper specifies all the training and test details in the main paper and
appendix. We also provide the pseudo-code for our method in our appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Error bars are not reported because it would be too computationally expensive
for four datasets.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We indicate the type of compute workers and compute time for dataset
generation and training.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts of the work performed in our appendix.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: the creators or original owners of assets are the license and terms of use
explicitly mentioned and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: Our paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: Our paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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