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Abstract

Composed Image Retrieval (CIR) facilitates retrieving an image matching a refer-1

ence image while incorporating specified textual modifications, which is crucial2

for internet searches and e-commerce. Traditional supervised CIR methods rely3

on annotated triplets, which are labor-intensive and limit generalizability. Recent4

advances in Zero-Shot Composed Image Retrieval (ZS-CIR) address the challenge5

of performing this task without annotated triplets. A key challenge in ZS-CIR6

is training models on limited intention-relevant datasets to understand human7

intention implicitly expressed in textual modifications for accurately retrieving8

target images. In this paper, we introduce an image-text dataset incorporated9

with pseudo-manipulation intentions to enhance the training of ZS-CIR models10

in understanding human manipulation intents. Based on our dataset, we propose11

a novel framework, De-MINDS, for capturing the intent humans aim to modify,12

thereby enhancing the ZS-CIR model’s ability to understand human manipulation13

descriptions. Specifically, a simple mapping network first maps image information14

into language space and forms a target description with a manipulation descrip-15

tion. Subsequently, De-MINDS captures intention-relevant information from tar-16

get descriptions and converts them into several pseudo-word tokens for accurate17

ZS-CIR. The De-MINDS model exhibits robust generalization and significant18

improvements in performance across four ZS-CIR tasks. It achieves performance19

improvements from 2.05% to 4.35% over the best methods and establishes new20

state-of-the-art results with comparable inference times. Our code is available at21

https://anonymous.4open.science/r/De-MINDS/.22

1 Introduction23

Composed Image Retrieval (CIR) [55] aims to retrieve an image that is visually similar to a reference24

image while having visual modification according to the manipulation text. Different from traditional25

image retrieval [15], CIR offers more flexibility and accuracy by enabling users to integrate both26

visual and textual information into their search intent. This approach has gained emerging attention27

in internet searches and e-commerce applications [12, 45]. Various supervised methods have been28

proposed to solve CIR problem [12, 33, 19, 4], which requires a large amount of annotated triplets,29

i.e., a reference image, a manipulated description, and a target image, for training task-specific30

retrieval models. However, these supervised methods are labor-intensive for data annotation and tend31

to suffer from limited generalization capabilities due to bias in human annotation. To enhance model32

generalization and perform CIR tasks without annotated triplets, recent research [45, 3, 52, 25, 20]33

introduce Zero-Shot Composed Image Retrieval (ZS-CIR). Existing solutions for ZS-CIR map an34

image to the language space, combining it with text to form a query. This query retrieves target35

images from the shared semantic space of a pre-trained vision-language model by calculating semantic36

similarity. These methods typically involve a pre-trained mapping network that converts the reference37
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image into a pseudo-word token S∗. During retrieval, this token S∗ is merged with the manipulation38

description to construct a target description, which a pre-trained CLIP model [41] then encodes,39

leveraging its comprehensive pre-trained knowledge across image candidates for retrieval.40

Despite remarkable advancement, the pre-trained mapping networks are not satisfactory for CIR due41

to the following reasons:42

(1) There exists a discrepancy between the retrieval and pre-training stages in ZS-CIR models. During43

retrieval, the mapping network is tasked with aligning intent-specific visual information (e.g., objects,44

scenes, colors, and styles) in language space to form a composed image description query (e.g.,45

change to a man playing the accordion joyfully in the street) for calculating semantic similarity with46

the target image. However, in the pre-training phase, the mapping network aligns general visual47

information with textual descriptions of the image content (e.g., a musician plays the piano). Without48

intent-specific mapping, the pseudo-token S∗ contains heavy information redundancy involving most49

objects, background/foreground, color, and style, leading to inaccurate retrieval.50

(2) Accurately understanding the intention a user intends to modify in manipulation descriptions51

presents substantial challenges. These intentions are implicitly expressed in users’ manipulation52

descriptions. For instance, the manipulation intention embedded in the request to “make this photo53

feel like early fall” may involve changing colors (e.g., orange and yellow), adjusting the scene (e.g.,54

fallen leaves), and adding specific objects (e.g., autumnal trees). However, existing ZS-CIR models55

rely on the CLIP language encoder, which challenges capturing fine-grained/long information from56

text [51, 58], facing difficulties in accurately understanding these manipulation intentions.57

In this work, we introduce the intent-CC3M, an intention-based dataset for training mapping net-58

works capable of aligning intention-relevant visual information within the language space, thus59

addressing the gap between pre-training and retrieval in ZS-CIR models. We incorporate pseudo-60

manipulation descriptions in CC3M [47], the widely used ZS-CIR training dataset [45, 52]. These61

pseudo descriptions, reflecting potential user intention to manipulate images, are reasoned through62

chain-of-thought prompting using an off-the-shelf Multi-modal Large Language Model (MLLM),63

facilitating the learning of intent-specific mapping capabilities. Furthermore, to overcome the chal-64

lenge of existing ZS-CIR models in understanding manipulation intention within descriptions, we65

propose a novel unDErstanding of Manipulation INtention from target Description before Searching66

approach, named De-MINDS. We leverage pseudo-manipulation descriptions to train De-MINDS67

to capture manipulation intention from various aspects (e.g., objects, scenes, colors, styles) guided68

by multiple learnable queries. This intention information is mapped to several pseudo-word tokens,69

which are subsequently input into the CLIP language encoder, enhancing its ability to understand70

users’ intention to modify and thereby improving the accuracy of CIR.71

The main contributions of this work are summarized as follows: (1) We introduce intent-CC3M, a72

novel dataset with pseudo-manipulation descriptions reasoned by an MLLM to bridge the gap between73

pre-training and retrieval in ZS-CIR models. Our experiments demonstrate that baseline models74

trained with our dataset are capable of aligning intention-relevant visual information, achieving75

consistent performance improvements. (2) We propose a novel manipulation intention understanding76

network. We extract intentions in manipulation descriptions under the guidance of learnable queries77

and map to several pseudo-word tokens for retrieval, enhancing the CLIP’s ability to understand users’78

intentions. It sheds new light on intention-based image retrieval. (3) Our De-MINDS are consistently79

effective and generalizable across diverse ZS-CIR tasks. It significantly improves CIR performance80

from 2.05% to 4.35% across four CIR tasks, establishing new state-of-the-art results with comparable81

inference time, further impacting vision and language applications.82

2 Related Works83

Composed Image Retrieval. Composed Image Retrieval (CIR) integrates image and text for retrieval84

[54]. Current models typically employ late fusion for integrating visual and language features85

separately [4, 33, 4]. In contrast, zero-shot CIR models like Pic2Word [45], SEARLE [3], and86

Context-I2W [52] train on image-text pairs, bypassing the need for costly CIR datasets. Pic2Word87

aligns entire images into text features, SEARLE adds a pseudo-word token to GPT-based captions,88

and Context-I2W employs context-dependent word mapping for accurate retrieval. However, these89

methods rely on the pre-trained CLIP language encoder, which struggles to understand intentions90

within manipulation descriptions. To tackle this issue, we propose a novel model that effectively91
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A rugby player passes the 
ball with his teammate.
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Original Caption

A rugby player in a purple and orange jersey is in the 
foreground running with the ball, while three other 
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materials. 4. Identify the domain of the image.

Manipulation Intention Reasoning
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Figure 1: Illustration of using LLaVA to create our intent-CC3M dataset. We first use a prompt to
guide the LLaVA model in generating rewritten captions with multi-view visual descriptions. Then,
we leverage another prompt to reason pseudo-manipulation descriptions with potential intentions.

understands these intentions, thereby improving the ZS-CIR model’s ability to retrieve images based92

on human manipulation intents accurately. Unlike CIReVL [25], which employs LLMs during93

inference for composed retrieval, introducing non-negligible computational overhead, our model is94

lightweight and achieves comparable inference time to recent approaches.95

Vision and Language Pre-training Models. Vision and Language Pre-training (VLP) models, like96

CLIP [41], leverage extensive image-text pair training to achieve implicit alignment. Recent VLP97

advancements [60, 49] utilize static models to integrate encoded image and text features, enabling98

various zero-shot tasks [29, 49, 48]. However, current CLIP-based zero-shot learning struggles with99

manipulation description in CIR tasks, motivating our approach, which enhances CLIP’s capabilities100

of understanding user intentions to modify from fine-grained/long descriptions. Moreover, recent101

studies [1, 28, 38, 37], inspired by DETR [7], employ learnable queries to select image and text102

information. In our work, we utilize multiple learnable queries to guide the extraction of manipulation103

intentions from target descriptions, providing explanatory cues for more accurate ZS-CIR.104

Image-text Dataset Enhancement. In the field of vision-language learning, various endeavors105

[17, 27, 18, 39, 10] aim to enhance caption quality within existing image-text datasets. LaCLIP [17]106

utilizes LLMs to refine raw captions. VeCLIP [27] integrates insights from raw and synthetic sources107

using LLMs. The latest approach, ShareGPT4V [10], leverages MLLMs to generate descriptive108

captions from deliberate prompts and corresponding image inputs. However, these methods ignore109

human manipulation intentions, which are crucial for CIR tasks. To bridge this gap, we introduce a110

novel dataset infused with pseudo-manipulation intentions reasoned by MLLMs.111

3 Methodology112

3.1 Preliminary113

Given a reference image space I and a text description space T , Composed Image Retrieval (CIR)114

involves a user manipulation text T ∈ T describing hypothetical semantic changes to a reference115

image Ir ∈ I, aiming to retrieve a target image with its closest context from an image database116

D = {Ii, . . . , In}. Zero-Shot CIR (ZS-CIR) approaches [45, 3, 52] sidestep this requirement117

by training a mapping network to map the reference image into an associated text representation.118

Specifically, these methods learn a mapping function fθ : I → Z , where Z is a pre-defined text-119

token embedding space. fθ is trained using intermediate image representations from a specific image120

encoder ΨI , often part of a pre-trained vision-language representation system. Template filling121

around the manipulation text over the pseudo token embedding S∗ = fθ(ΨI(Ir)) is then employed122

to aggregate information into a target description P (e.g., “a photo of S∗, {T}).” This target123

description serves as input for target image retrieval, encoding it using the associated pre-trained text124

encoder ΨT . The respective matching score is cos_sim(ΨI(Ir),ΨT (P )) using cosine similarity.125

3.2 Creating Intention-based Image-text Aliagment Dataset126

To address the discrepancy between pre-training and retrieval in existing ZS-CIR models, we aim127

to develop an intention-based image-text dataset for training mapping networks capable of aligning128
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intent-relevant visual information within the language space. To make a fair comparison and mitigate129

the bias in human annotation, we propose to augment the widely used ZS-CIR training image-text130

dataset, CC3M, through LLaVA [32], an open-source, state-of-the-art Multi-modal Large Language131

Model (MLLM) known for its robust performance in vision-language tasks. However, reasoning132

potential manipulation intentions from image-text pairs remains a challenging task for LLaVA.133

Recent advancements in MLLMs include the development of Chain-of-Thought (CoT) prompting134

[56], which enables MLLMs to produce a sequence of reasoning steps, breaking down multi-step135

problems into intermediate stages and enhancing performance in complex tasks [24]. Inspired by the136

CoT prompting mechanism, we explore a novel multimodal CoT prompting strategy using LLaVA to137

reason pseudo-manipulation descriptions with potential intentions from image-text pairs effectively.138

As illustrated in Figure 1, we divide the process of reasoning pseudo-manipulation descriptions139

into two stages: the Caption Rewriting stage rewrites the original caption with multi-view visual140

information for CIR tasks. The Intention Reasoning stage further understands the manipulation141

intentions from rewritten captions to reason pseudo-manipulation descriptions. Specifically, in the142

caption rewriting stage, we utilize the i-th image Ii and its original caption T i
ori from the CC3M,143

denoted as D = {(Iir, T i
ori), . . . , (I

n
r , T

n
ori)}. We guide the LLaVA model with a prompt to generate144

a rewritten caption T i
rew for each image. These rewritten captions, averaging 65 tokens, include145

various aspects of visual information (e.g., object, foreground/background, color, and domain style).146

In the intention reasoning stage, we apply an additional prompt to reason manipulation intention for147

rewritten captions. This results in a more effective pseudo-manipulation description T i
int, averaging 27148

tokens. The result dataset is represented as D̃ = {(Iir, T i
ori, T

i
rew, T

i
int), . . . , (I

n
r , T

n
ori, T

n
rew, T

n
int)}.149

3.3 Manipulation Intention Understanding From Descriptions Before Searching150

Since ZS-CIR models leverage the CLIP language encoder, there is a challenge in understanding151

manipulation intentions that are implicitly expressed in user descriptions. To address this challenge,152

we propose a method to understand the manipulation intention before feeding into the CLIP language153

encoder for accurate ZS-CIR in two modules: the Manipulation Intention Understanding captures154

manipulation intentions and maps them into several pseudo tokens. The Reasoning Distillation155

further aligns the context of desired pseudo-word tokens closely with human intention by leveraging156

pseudo-manipulation description to enhance the models’ ability to understand human intention.157

Image and Context Encoding. For a given sample (Ir, Tori, Trew, Tint) from intent-CC3M. Since158

the pre-trained vision-language models are strong at modeling the cross-modal implicit alignment.159

Initially, we employ the frozen image encoder ΨI from the CLIP model to encode the global image160

feature of the reference image Ir as v = ΨI(Ir) = {vi}di=1 ∈ Rd×1. Subsequently, we apply a161

simple mapping network fθ with parameters θ to extract a pseudo token embedding S∗ = fθ(v).162

Considering our focus on manipulation intention understanding for ZS-CIR, fθ is structured as a163

simple three-layer fully-connected network. We then construct a target description P formatted164

as “a photo of S∗, {T}”. We consider two scenarios for manipulation intention understanding:165

deducing intention information from concise texts (e.g., original caption) or integrating it from166

lengthy texts(e.g., rewritten caption). Accordingly, the text T is composed randomly within a batch167

according to the following distribution: 50% original caption Trew and 30% rewritten caption Tori to168

learn manipulation intention understanding, 20% pseudo-manipulation description Tint to ensure169

training stability (details are in Appendix C). We feed the target description to the language encoder170

ΨT of frozen CLIP to represent the target description P by a set of language feature vectors T171

={ti}mi=1 ⊆ Rd×m. t1 represents the [CLS] embedding tcls with global information of image and172

caption, while other ones denote word embeddings T̃ ={ti}mi=2.173

Manipulation Intentions Understanding. Given the word embeddings of the target descriptions,174

this module aims to capture different manipulation intentions, thereby enhancing the CLIP lan-175

guage encoder’s capability to understand users’ intents for manipulation. To capture different176

manipulation intentions, we introduce a set of learnable query embeddings for guidance, denoted177

as X = {xk}nk=1 ∈ Rd×n, where d is the embedding dimension and n is the number of queries.178

Each query xk represents a kind of manipulation intention. As depicted in Figure 2(left), we im-179

plement cross-attention mechanisms to extract intention-relevant contextual information from the180

word embeddings T̃ = {ti}mi=2 using the learnable queries X . The cross-attention operation in-181

volves three primary steps. First, we compute the query, key and value through linear projections,182
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Figure 2: An overview of our De-MINDS. Pre-training (left): Map the image to a pseudo token S∗,
and understand the intention from the target description. Inference (right): Map the inference image
to S∗ to construct the target description and understand manipulation intention for ZS-CIR.

i.e., Q = XWQ, K = [X, T̃ ]WK , V = [X, T̃ ]W V . [X, T̃ ] denotes concatenating the two183

matrices, which enhances the interaction between learnable queries and word embeddings with better184

performance. Then, the learnable queries from the current cross-attention block Xi is calculated as:185

Xi
att = Att(Q,K,V ) = softmax

(
QK⊤
√
d

)
V ,Xi = FFW(Xi

att +Xi−1) +Xi
att (1)

where Xi−1 are learnable queries from the previous block and FFW(·) denotes 2-layer feed-forward186

networks. the refined query embeddings X are then fed into the frozen language encoder ΨT of187

CLIP to extract the intention embedding as t∗ = ΨT (X
n) = {ti∗}di=1 ∈ Rd×1 (d = 768).188

Reasoning Distillation. Given the intention embedding t∗, the AI agent needs to further align with189

human manipulation intention. Specifically, we aim to reduce the distance between the intention190

embedding and the corresponding pseudo-manipulation description’s [CLS] word embedding, which191

represents the MLLM’s intention embedding while ensuring that each embedding remains distinct192

and discriminative. Given the intention embeddings Tint = {ti∗}Ni=1, where N is the number of193

images in D̃, and the corresponding MLLM’s intention embeddings t̃∗ = ΨT (Tint) ∈ T̃int we194

employ a symmetric contrastive loss inspired by SimCLR [11, 13, 45] as follows:195

Ldistil = Ls2t(t∗, t̃∗) + Lt2s(t̃∗, t∗) (2)

The two contrastive loss terms are defined as:196

Ls2t(t∗, t̃∗) = − 1

|B|
∑
i∈B

log
eτ(t

i
∗)

T t̃
i
∗∑

j∈B eτ(t
i
∗)

T t̃
j
∗
,Lt2s(t̂∗, t̃∗) = − 1

|B|
∑
i∈B

log
eτ(t̃

i
∗)

T ti∗∑
j∈B eτ(t̃

i
∗)

T tj∗
(3)

where B is the number of images in a batch and τ is a temperature hyper-parameter that controls the197

strength of penalties on hard negative samples.198

Cross-Modal Alignment. Given the embedding of user manipulation intention, this module aims199

to form a target embedding optimized for retrieval. Since the nature of CIR, both the reference200

image and the manipulation intention form a comprehensive context that defines the target image. To201

dynamically control the influence of manipulation intentions on the retrieval process, we introduce a202

learnable scalar gate that decides the contribution of the manipulation intention information t∗ and203

integrates the global information tcls to form the final target embedding t̂ as follows:204

t̂ = tcls + gate · t∗
Then, we aim to match a target image to its paired target embedding while separating unpaired205

ones. We minimize the symmetric contrastive loss between the image embedding v and the target206

embedding t̂ as follows:207

Lalign = Ls2t(t̂,v) + Lt2s(v, t̂) (4)
where Ls2t and Lt2s are two contrastive loss terms as Eq.3. The final loss used to optimize is:208

L = Ldistill + Lalign (5)
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Inference with De-MINDS. In the inference stage, we compose the reference image with the paired209

manipulation description and compare the composed query with candidate images for retrieval. As210

shown in Figure 2 (right), we compose the pseudo token embedding S∗ of the image from the211

mapping network with the text description and feed it to the pre-trained language encoder of CLIP.212

The result is embedded by the text encoder and compared to the visual features of candidate images.213

Since we focus on studying the manipulation intention understanding searching for ZS-CIR, we utilize214

the same prompt in the most recent works [45, 52] for a fair comparison. We show prompt examples215

for different ZS-CIR tasks. In all examples, [*] indicates the pseudo token from the mapping216

network: (a) Domain conversion aims to modify the domain of the reference image. The prompt217

is defined as a [domain tag] of [*]; (b) Object composition retrieves an image that contains218

an object in the reference image and other object tags. The prompt is in the format of a photo219

of [*], [obj1 tag] and [obj2 tag], . . . , and [objn tag]; (c) Sentence manipulation220

modifies the reference image based on a sentence. We simply append the sentence with the special221

token as a photo of [*], [sentence]. More details are in Appendix D.3.222

4 Experiments223

Datasets. We evaluate our model on four ZS-CIR datasets, i.e., COCO [31] for object composition,224

ImageNet [16, 21] for domain conversion, CIRR [33] for object/scene manipulation, and Fashion-IQ225

[57] for attribute manipulation. All the dataset settings and evaluation metrics (Recall@K) follow the226

recent works [45, 52] for a fair comparison.227

(1) Domain conversion. This dataset comprises 16,983 images of 200 classes from four domains,228

i.e., cartoon, origami, toy, and sculpture. We use the prompt (a) in inference. (2) Object composition.229

The dataset contains images with corresponding lists of object labels and instance masks of query230

images. We randomly crop one object and mask its background using its instance mask to create a231

reference image. We use the prompt (b) in inference. (3) Object/scene manipulation. A reference232

image is an instruction for manipulating an object or the background scene. We apply the prompt233

(c) in inference. (4) Attribute manipulation. This dataset includes various description sentences for234

manipulating image attributes. We utilize the prompt (c) in inference. More details in Appendix D.2.235

Implementation Details. Generating one pseudo-manipulation description through LLaVA-1.6-13B236

[32] for the entire Conceptual Caption dataset [47], which comprises 3M images (CC3M), requires237

approximately 625 hours on 5 A100 (80G) GPUs. For training De-MINDS, We utilize the CC3M and238

adopt ViT-L/14 CLIP [41] pre-trained on 400M image-text paired data. We employ AdamW [34] with239

a learning rate of 1× 10−6, weight decay of 0.1, and a linear warmup of 10000 steps. The number240

of cross-attention blocks is 6. The number of learnable queries is 4. The batch size for contrastive241

learning is 1024. To improve training stability, we initialize the learnable scalar of tanh-gating to 0242

[2]. For training Context-I2W and SEARLE, we keep the same setting reported in their paper, only243

replacing the original captions with our pseudo-manipulation descriptions. All models are trained on244

4 NVIDIA A100 (80G) GPUs. To ensure reliable results, we report the performance averaged over245

three trials. More details are in Appendix D.1.246

4.1 Quantitative and Qualitative Results247

We compare De-MINDS with several ZS-CIR methods, including: 1) Pic2Word [45]: Maps the248

visual features of a reference image into a pseudo-word token within the CLIP token embedding249

space; 2) SEARLE-XL [3]: Similar to Pic2Word, further integrating the pseudo-word token with the250

caption generated by GPT [6] and distilled for efficiency; 3) Context-I2W [52]: Selectively extracts251

text-relevant visual information from the reference image before mapping it into a pseudo-word252

token; 4) CIReVL [25]: Uses LLMs to enhance the manipulation description during inference; and253

5) LinCIR [20]: Masks subjects in captions from various image-text datasets for training. For a fair254

comparison, we present the reported results of methods relying on the ViT-L/14 CLIP model.255

Moreover, we compare De-MINDS with 6) SEARLE-XL* and Context-I2W*: Replace the original256

captions with our pseudo-manipulation description, and standard ZS-CIR methods, including 7)257

Text-only: Computes similarity based on the CLIP features of descriptions and candidate images; 8)258

Image-only: Retrieves the most similar images to the reference image; and 9) Image + Text: Sums259

the CLIP features of the reference image and the description.260
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Table 1: Results on Fashion-IQ for attribute manipulation.
Dress Shrit TopTee Average

Methods Conferences R10 R50 R10 R50 R10 R50 R10 R50

Image-only – 5.4 13.9 9.9 20.8 8.3 17.7 7.9 17.5
Text-only – 13.6 29.7 18.9 31.8 19.3 37.0 17.3 32.9

Image+Text – 16.3 33.6 21.0 34.5 22.2 39.0 19.8 35.7
Pic2Word [45] CVPR 2023 20.0 40.2 26.2 43.6 27.9 47.4 24.7 43.7
CIReVL [25] ICLR 2024 24.6 44.8 29.5 47.4 31.4 53.7 28.6 48.6
LinCIR [20] CVPR 2024 20.9 42.4 29.1 46.8 28.8 50.2 26.3 46.5

SEARLE-XL [3] ICCV 2023 20.3 43.2 27.4 45.7 29.3 50.2 25.7 46.3
SEARLE-XL* – 22.7 45.0 29.4 47.9 30.2 51.4 27.4 48.1

Context-I2W [52] AAAI 2024 23.1 45.3 29.7 48.6 30.6 52.9 27.8 48.9
Context-I2W* – 23.9 46.9 30.4 49.7 31.1 53.8 28.5 50.1

De-MINDS – 25.2 48.7 31.0 51.2 32.9 55.7 29.7 51.9
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Context-I2W

Figure 3: Results on the attribute manipulation task
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Figure 4: Results on the domain conversion task.

Tables 1 to 4 present the quantitative results, while Figures 3 to 6 display the corresponding qualitative261

results of our model and the most recent works, CIReVL and Context-I2W. The attribute manipulation262

task requires accurately localizing specific attributes within the entire image. As demonstrated in Table263

1, De-MINDS outperforms existing ZS-CIR models significantly, achieving an average improvement264

of 2.20% over the State-of-the-Art (SoTA) model, CIReVL. CIReVL’s dependency on an LLM at265

inference introduces substantial computational overhead during retrieval. De-MINDS tackles this266

challenge by extracting fashion-relevant intention within manipulation descriptions into a series of267

implicit pseudo-tokens for CLIP retrieval. This approach is more efficient and suitable for models than268

relying on explicit, often noisy, LLM analysis results. Figure 3 further illustrates how De-MINDS269

effectively understand complex fashion-relevant attributes in manipulation descriptions, such as a270

sexier style with a waistband (row 1), black color with a special design in the center (row 2), and271

longer sleeves with two pockets in blue (row 3), facilitating more accurate searching.272

We further assess De-MINDS’ capability in foreground/background differentiation and fine-grained273

image editing through the object/scene manipulation task (Table 2). De-MINDS consistently surpasses274

existing ZS-CIR models, achieving an average performance improvement of 2.05% over the best275

model. This enhancement is attributed to De-MINDS’ approach of extracting human intention from276

manipulation descriptions before searching, enhancing the ability of the CLIP language encoder277

to understand the user’s intention to modify. In Figure 5, De-MINDS accurately understands278

manipulation intention to change the number of an object and modify the background (row 1), alter279

the stage and remove an overlapping object (row 2), adjust the camera focus, age of a dog, and280

remove a specific object (row 3), and modify the style of an image with a specific design (row 4).281

In the object composition experiments (Table 3), De-MINDS significantly outperforms the current282

SoTA model by an average of 4.30%. These results prove the effectiveness of De-MINDS in283

accurately mapping visual information to the language token space via bridges the gap between284

pre-training and retrieval, which facilitates the combination of multiple objects, as shown in Figure 6.285

Moreover, in the domain conversion results (Table 4), De-MINDS consistently outperforms existing286

approaches and notably surpasses the SoTA Context-I2W by an average of 4.35%. As illustrated in287

Figure 4, De-MINDS accurately maps objects within complex scenes (e.g., a saxophonist in the street,288

a bald eagle on wood, a monkey in the forest, and a sea lion in the water). In contrast, Context-I2W289

struggles to select the intention-relevant local visual features due to its reliance on image caption290

without intention, whereas our pseudo-manipulation descriptions are effectively addressed.291
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Table 2: Results on CIRR for object
manipulation task.

Methods R1 R5 R10 R50

Image-only 7.4 23.6 34.0 57.4
Text-only 20.9 44.8 55.5 79.1

Image+Text 12.4 36.2 49.1 78.2
Pic2Word [45] 23.9 51.7 65.3 87.8
CIReVL [25] 24.6 52.3 64.9 86.3
LinCIR [20] 25.0 53.3 66.7 –

SEARLE-XL [3] 24.2 52.4 66.3 88.6
SEARLE-XL* 25.4 54.1 66.9 89.3

Context-I2W [52] 25.6 55.1 68.5 89.8
Context-I2W* 26.3 55.7 69.0 90.2

De-MINDS 27.3 57.0 71.3 91.6

Table 3: Results on COCO for object
composition task.

Methods R1 R5 R10

Image-only 8.6 15.4 18.9
Text-only 6.1 15.7 23.5

Image+Text 10.2 20.2 26.6
Pic2Word [45] 11.5 24.8 33.4

Context-I2W [52] 13.5 28.5 38.1
Context-I2W* 14.3 29.7 40.5

De-MINDS 15.7 33.2 44.1

Ours Context-I2WQuery
Target two animals 

resting on white 
towel rather showing 

one black

Take the picture 
closer, make the dog 
younger, and remove 

the person

dev-224-2-img1.png

Make dog sleep in 
couch or ground 

and remove objects 
from its mouth

make it a poster of 
the dog, and have 

text above and 
below the animal

Figure 5: Retrieved results on the object manipulation task

Ours
train, light, 

people, railway,
package, sky

Query

man, woman, table,
bottle, food, knife, 

fork, wine

leaves, person, food, 
chair, table, plate,

fork, bread

Context-I2W

Figure 6: Retrieved results on the object composition task.
Table 4: Results on ImageNet for domain conversion.

Cartoon Origami Toy Sculpture Average

Methods Conferences R10 R50 R10 R50 R10 R50 R10 R50 R10 R50

Image-only – 0.3 4.5 0.2 1.8 0.6 5.7 0.3 4.0 0.4 4.0
Text-only – 0.2 1.1 0.8 3.7 0.8 2.4 0.4 2.0 0.5 2.3

Image+Text – 2.2 13.3 2.0 10.3 1.2 9.7 1.6 11.6 1.7 11.2
Pic2Word [45] CVPR 2023 8.0 21.9 13.5 25.6 8.7 21.6 10.0 23.8 10.1 23.2

Context-I2W [52] AAAI 2024 10.2 26.1 17.5 28.7 11.6 27.4 12.1 28.2 12.9 27.6
Context-I2W* – 11.2 27.4 18.7 30.4 12.5 29.8 13.7 31.4 14.0 29.8

De-MINDS – 13.3 31.2 20.3 34.5 14.7 31.7 16.5 34.7 16.2 33.0

4.2 Ablation Study292

In Table 5, we evaluate the contributions of De-MINDS components on the CIRR and FashionIQ293

datasets. (1) In models ‘2-3’, we assess the significance of the intent-CC3M dataset. Replacing the294

pseudo-manipulation description with original captions (model ‘2’) results in an average performance295

drop of 3.80%, demonstrating training with intent-CC3M benefit for aligning intention-relevant296

visual information. Using a single prompt for pseudo-manipulation descriptions (model ‘3’) causes a297

3.14% performance decline, indicating that CoT prompting enhances MLLM in reasoning potential298

manipulation intention. (2) In models ‘4-6’, we evaluate key modules in the manipulation intention299

understanding process. Without intention embeddings from De-MINDS (model ‘4’), performance300

drops by 4.02% on average, proving De-MINDS’s importance in CIR. Removing the global feature301

tcls (model ‘5’) leads to a 2.38% performance decline, highlighting the necessity of comprehensive302

both global and intention information. Summing global and intention features directly (model303

‘6’) causes a 1.64% performance drop, indicating the need for adaptive capture of complementary304

information. (3) In models ‘7-9’, we assess De-MINDS’s training strategies. Using only original305

captions as T (model ‘7’) reduces training stability, resulting in a 1.62% performance drop. Without306

the distillation loss (model ‘8’) or replacing it with a cosine loss (model ‘9’) leads to performance307

drops of 3.58% and 1.54%, respectively, indicating the necessity of symmetric contrastive loss for308

distilling MLLM’s reasoning ability. In models ‘10-12’, we evaluate alternative solutions. Not309

utilizing T for image-to-text mapping (model ‘10’) results in a 2.30% performance drop, confirming310

the effectiveness of our pseudo-manipulation descriptions. Applying MiniGPT-4 [61] to generate the311

intent-CC3M dataset (model ‘11’) results in a 1.18% performance drop, suggesting that a superior312

MLLM model benefits pseudo-manipulation description quality. Leveraging the LLaMA [53] rewrite313
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Table 5: Ablation study of main components
on CIRR and FashionIQ.

CIRR Fashion-IQ

Methods R1 R5 R10 R10 R50

1. full model 27.3 57.0 71.3 29.7 51.9
Significant of inetent-CC3M
2. w/o intent-CC3M 24.6 53.7 67.1 26.0 46.8
3. w/o CoT 25.2 54.3 67.8 26.7 47.5
Key modules of De-MINDS process
4. w/o De-MINDS 24.0 53.5 67.2 25.8 46.6
5. w/o global feature 25.5 55.2 68.0 27.3 49.6
6. w/o gate 25.9 55.3 69.5 27.9 50.4
Training Strategies
7. w/o construct T 26.2 55.6 69.3 27.8 50.2
8. w/o distil 24.8 53.9 67.3 26.3 47.0
9. cos distll 26.2 55.5 69.7 27.9 50.2
Alternative solutions
10. a photo of S∗ 25.5 55.2 67.9 27.5 49.6
11. MiniGPT4’s caption 26.4 55.7 70.2 28.2 50.8
12. LLM’s caption 25.2 53.7 67.2 26.9 47.2

Shows another room with a 
side table and chair, except 

they are each in front of two 
windows in a corner and the 

chairs have cushions.

Manipulation Description

Remove all dogs and basket, 
Add adult dog standing and 
alert, Place dog on cement 

pavement with handler 
seated behind dog's head.

Learnable Queries

Standing guinea pig on the 
background of toys instead of 

a white-red puppy sleeping
on a boot on the ground.

Reference Image Retrieved Image

Place dog standing on hind 
legs, Add another dog, and 
Place dogs in a commercial, 

industrial setting with orange
background.

Figure 7: Visualization of the top two attention
words for each learnable query, different colors
denoting the results corresponding to each query.

CC3M dataset [17] (model ‘12’) causes a 3.40% performance drop, indicating the necessity of MLLM314

for generating pseudo-manipulation description with multi-view supplementary image detail.315

4.3 Analysis316

Interpretability of Learnable Query. In Figure 7, we visualize the top two attention words of each317

learnable query from the last block, demonstrating the distinct focus of the four queries. Specifically,318

the first two queries mainly focus on object and attribute information, while the last two queries319

mostly consider foreground/background and relation information. These attention maps substantiate320

De-MINDS’s interpretability in extracting specific intention across various descriptions, supporting321

the understanding of intention from manipulation descriptions.322

Effectiveness and Efficiency Analysis. Our approach achieves significant improvements on four323

widely compared ZR-CIR tasks from 2.05% to 4.35% over the SoTA models. Designed for under-324

standing manipulation intention, the model size of De-MINDS(58.5M) is larger than the simple325

3-layer MLP mapping (0.9M) of Pic2Word. Consequently, our training time (20 hours) is 6 hours326

longer than Pic2Word under the same settings. Notably, our inference time (0.017s) is ×58 faster327

than CIReVL (∼ 1s), which uses LLM for inference, and only 0.005s slower than Pic2Word. It’s328

worth noting that our model using just 50% of the pre-training data achieves comparable performance329

to SoTA models (details are in Appendix A.2).330

Limitation. While the training process for De-MINDS does not introduce significant additional331

memory or computational overhead, generating pseudo-manipulation descriptions using MLLMs332

can be computationally intensive. Moreover, these pseudo descriptions are not filtered, potentially333

introducing irrelevant details that do not align with actual human manipulation intention. Our paper334

aims to bridge the gap between pre-training and retrieval in ZS-CIR models and introduce a novel335

framework to enhance the model’s capability to understand user intention. Future work could explore336

more efficient methods to generate pseudo-manipulation descriptions while maintaining performance.337

5 Conclusion338

In this paper, we introduce intent-CC3M, an intention-based dataset featuring pseudo-manipulation339

descriptions reasoned through chain-of-thought prompting by an MLLM for training mapping340

networks to align intention-relevant visual information. Leveraging intent-CC3M, we propose a341

novel manipulation intention understanding network that employs learnable queries to enhance the342

models’ capability to understand user intention from manipulation descriptions for accurate CIR.343

De-MINDS shows strong generalization ability and remarkably improves the best performance of344

existing approaches on four diverse ZS-CIR tasks with comparable inference times. Our work inspires345

intention-based image retrieval and impacts diverse vision and language applications.346
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A Extended Analysis527

A.1 Analysis of the number of learnable queries.528

We conduct analysis on the number of learnable query embedding X = {xk}nk=1 ∈ Rd×n as shown529

in Figure 8. We find that n = 2 results in not learning sufficient intentions for manipulation, but530
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Figure 8: Analysis of the number of learnable queries.

when n is added to 32, it is redundant and unhelpful for the CLIP model to understand manipulation531

intentions. We finally choose n = 4, which gives the best result among different settings.532

Table 6: Results on ImageNet for domain conversion.
Cartoon Origami Toy Sculpture Average

Methods Conferences R10 R50 R10 R50 R10 R50 R10 R50 R10 R50

Pic2Word [45] CVPR 2023 8.0 21.9 13.5 25.6 8.7 21.6 10.0 23.8 10.1 23.2

Context-I2W [52] AAAI 2024 10.2 26.1 17.5 28.7 11.6 27.4 12.1 28.2 12.9 27.6
Context-I2W* – 11.2 27.4 18.7 30.4 12.5 29.8 13.7 31.4 14.0 29.8

Context-I2W(50 %) AAAI 2024 9.0 23.0 14.3 25.6 10.7 25.0 11.0 25.5 11.3 24.8
De-MINDS(50 %) – 11.7 28.3 19.2 30.9 12.8 30.2 14.2 32.0 14.5 30.4

De-MINDS(100 %) – 13.3 31.2 20.3 34.5 14.7 31.7 16.5 34.7 16.2 33.0

Table 7: Results on CIRR for object manipu-
lation task.

Methods R1 R5 R10 R50

Pic2Word [45] 23.9 51.7 65.3 87.8
CIReVL [25] 24.6 52.3 64.9 86.3
LinCIR [20] 25.0 53.3 66.7 –

SEARLE-XL [3] 24.2 52.4 66.3 88.6
SEARLE-XL* 25.4 54.1 66.9 89.3

Context-I2W [52] 25.6 55.1 68.5 89.8
Context-I2W* 26.3 55.7 69.0 90.2

Context-I2W(50%) 24.8 53.6 67.1 88.9
De-MINDS (50%) 26.5 56.0 69.3 90.5

De-MINDS 27.3 57.0 71.3 91.6

Table 8: Results on COCO for object composition
task.

Methods R1 R5 R10

Pic2Word [45] 11.5 24.8 33.4

Context-I2W [52] 13.5 28.5 38.1
Context-I2W* 14.3 29.7 40.5

Context-I2W(50%) 12.1 25.6 34.4
De-MINDS (50%) 14.6 30.4 40.8

De-MINDS (100%) 15.7 33.2 44.1

A.2 More Effectiveness and Efficiency Analysis533

In Table 6 to 9, we present more evidence supporting the efficacy and efficiency of our De-MINDS.534

With only 50% of the training data, De-MINDS matches and exceeds the performance of the state-535

of-the-art (SoTA) Context-I2W model by 0.83% to 2.20%. Remarkably, De-MINDS outperforms536

reported results of the SoTA model by 1.98% to 4.57% under the same 50% training data, underscoring537

our method’s superiority.538
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Table 9: Results on Fashion-IQ for attribute manipulation.
Dress Shrit TopTee Average

Methods Conferences R10 R50 R10 R50 R10 R50 R10 R50

Pic2Word [45] CVPR 2023 20.0 40.2 26.2 43.6 27.9 47.4 24.7 43.7
CIReVL [25] ICLR 2024 24.6 44.8 29.5 47.4 31.4 53.7 28.6 48.6
LinCIR [20] CVPR 2024 20.9 42.4 29.1 46.8 28.8 50.2 26.3 46.5

SEARLE-XL [3] ICCV 2023 20.3 43.2 27.4 45.7 29.3 50.2 25.7 46.3
SEARLE-XL* – 22.7 45.0 29.4 47.9 30.2 51.4 27.4 48.1

Context-I2W [52] AAAI 2024 23.1 45.3 29.7 48.6 30.6 52.9 27.8 48.9
Context-I2W* – 23.9 46.9 30.4 49.7 31.1 53.8 28.5 50.1

Context-I2W(50%) AAAI 2024 21.4 43.7 28.1 46.9 29.7 51.4 26.4 47.3
De-MINDS (50%) – 24.3 47.5 30.6 50.0 31.3 54.0 28.7 50.5

De-MINDS (100%) – 25.2 48.7 31.0 51.2 32.9 55.7 29.7 51.9

Algorithm 1 Manipulation Intention Understanding’s process.

Input: batch of word embeddings of target descriptions T̃ = {ti}mi=1, where t1 is the global feature
tcls, Nlayer, the frozen CLIP language encoder ΨT

Parameter: a set of learnable embeddings X ∈ Rd×n , 8-heads attention layer Attn, 3-layers FC
layers fM , gateα.
Output: target embedding t̂

1: Initialize X ∈ Rd×n, Attn, fM randomly.
2: Let Xi

att = {ti}mi=2, t = 1
3: while t ≤ Nlayer do
4: Xi+1

att = Xi
att +Attnt(q=q, k=concat([Xi

att, q]), v=concat([Xi
att, q]))

5: Xi+1
att = Xi+1

att + fMt
(Xi+1

att )
6: t = t+ 1
7: end while

t∗ = ΨT (Xoutput)

t̂ = tcls + tanh(gateα) · t∗
8: return t̂

A.3 Broader Impact539

We propose a novel image-text dataset augmentation strategy that generates diverse rewrites for540

any given image-text pair. This approach not only bolsters the performance of vision-language541

models but also enhances capabilities in textual inversion [44], including text-to-image generation542

via diffusion models and personalized image retrieval. However, it is crucial to note that MLLMs are543

trained on extensive web data, which may incorporate factual inaccuracies and hallucinatory content.544

Consequently, the intention-infused versions of texts could inherit these flaws. We advocate for545

the implementation of rigorous data filtering methods before these models’ deployment in practical546

settings. Furthermore, while the MLLM-based rewriting strategy demands substantial GPU/TPU547

computational resources, potentially increasing the carbon footprint.548

A.4 Qualitative Results of intent-CC3M549

Figure 9 to 10 we leverage DALL-E [42] to generate images of each caption for qualitative experiment.550

We compare intent-CC3M with the CC3M dataset and GPT4’s rewritten captions. We found that551

the captions of Intent-CC3M, which contain potential manipulation intentions, provide better visual552

information compared to the original captions and those rewritten by a large language model. This553

improvement is due to incorporating diverse visual perspectives (e.g., colors, scenes, and objects)554

using a multi-model language model, which enhances the training of text-to-image generation tasks.555

Notably, our pseudo-manipulation descriptions are shorter than the rewritten captions. The results556

show that pseudo-manipulation descriptions serve as more effective prompts, enabling DALL-E to557

generate results that are closer to the original images. This demonstrates the high quality of our558

pseudo-manipulation descriptions.559

14



O
rig

in
al

 C
ap

tio
n

a 
st

re
et

 m
us

ic
ia

n 
pl

ay
s a

n 
ac

co
rd

io
n.

LL
M

’s 
Re

w
rit

te
n 

Ca
pt

io
n

A 
st

re
et

 p
er

fo
rm

er
 

se
re

na
de

s 
pa

ss
er

sb
y 

w
ith

 th
e 

m
el

od
ie

s o
f a

n 
ac

co
rd

io
n.

G
en

er
at

ed
 Im

ag
e

Ps
eu

do
-M

an
ip

ul
at

io
n 

De
sc

rip
tio

n
M

an
 p

la
ys

 a
cc

or
di

on
 

jo
yf

ul
ly

 in
 th

e 
st

re
et

, 
w

ith
 c

af
e 

ba
ck

gr
ou

nd
 

su
gg

es
tin

g 
a 

liv
el

y, 
pu

bl
ic

 m
us

ic
al

 
pe

rf
or

m
an

ce
.

G
en

er
at

ed
 Im

ag
e

A 
m

an
 is

 p
la

yi
ng

 a
n 

ac
co

rd
io

n 
on

 a
 

st
re

et
. H

e 
is 

st
an

di
ng

 in
 th

e 
fo

re
gr

ou
nd

, 
ho

ld
in

g 
th

e 
ac

co
rd

io
n 

in
 h

is 
ha

nd
s.

 
Th

er
e 

ar
e 

se
ve

ra
l c

ha
irs

 a
nd

 ta
bl

es
 in

 th
e 

ba
ck

gr
ou

nd
, s

ug
ge

st
in

g 
a 

ca
fe

 o
r 

ou
td

oo
r s

ea
tin

g 
ar

ea
. T

he
 m

an
 is

 sm
ili

ng
, 

in
di

ca
tin

g 
he

 is
 e

nj
oy

in
g 

hi
s 

pe
rfo

rm
an

ce
. T

he
 a

cc
or

di
on

 is
 b

la
ck

 a
nd

 
ha

s a
 m

et
al

lic
 fi

ni
sh

. T
he

 st
re

et
 is

 li
ne

d 
w

ith
 b

ui
ld

in
gs

, a
nd

 th
er

e 
ar

e 
a 

fe
w

 o
th

er
 

pe
op

le
 in

 th
e 

ba
ck

gr
ou

nd
.  

   
 

O
ur

 R
ew

rit
te

n 
Ca

pt
io

n
G

en
er

at
ed

 Im
ag

e

Au
to

m
ot

iv
e 

in
du

st
ry

 
bu

sin
es

s n
ow

 o
ffe

rs
 

a 
ne

w
 tu

ni
ng

 
pa

ck
ag

e 
fo

r 
au

to
m

ob
ile

 m
od

el
.

Th
e 

au
to

m
ot

iv
e 

in
du

st
ry

 n
ow

 
in

tr
od

uc
es

 a
 fr

es
h 

tu
ni

ng
 p

ac
ka

ge
 fo

r a
 

sp
ec

ifi
c 

ca
r m

od
el

.

Hi
gh

lig
ht

s B
la

ck
 V

W
 

Be
et

le
 w

ith
 tu

ni
ng

 
pa

ck
ag

e,
 sl

ee
k 

de
sig

n,
 

an
d 

gl
os

sy
 fi

ni
sh

, 
em

ph
as

izi
ng

 d
riv

in
g 

on
 

ru
ra

l r
oa

d.

A 
bl

ac
k 

Vo
lk

sw
ag

en
 B

ee
tle

 in
 m

ot
io

n 
on

 
a 

ro
ad

. T
he

 c
ar

 is
 e

qu
ip

pe
d 

w
ith

 a
 n

ew
 

tu
ni

ng
 p

ac
ka

ge
, f

ea
tu

rin
g 

a 
bo

dy
 k

it 
w

ith
 

a 
fr

on
t b

um
pe

r, 
sid

e 
sk

irt
s,

 a
nd

 a
 re

ar
 

bu
m

pe
r, 

al
l i

n 
th

e 
sa

m
e 

bl
ac

k 
co

lo
r. 

Th
e 

ca
r's

 sl
ee

k 
an

d 
m

od
er

n 
de

sig
n 

ha
s a

 
gl

os
sy

 fi
ni

sh
 th

at
 re

fle
ct

s t
he

 
su

rr
ou

nd
in

g 
en

vi
ro

nm
en

t. 
Th

e 
ba

ck
gr

ou
nd

 is
 a

 b
lu

r o
f g

re
en

er
y,,

 w
hi

ch
 

co
nt

ra
st

s w
ith

 th
e 

ca
r's

 u
rb

an
 a

es
th

et
ic

. 
he

 d
om

ai
n 

of
 th

e 
im

ag
e 

is 
ph

ot
og

ra
ph

y, 
ca

pt
ur

in
g 

a 
re

al
-li

fe
 sc

en
e.

 

on
 a

 su
nn

y 
w

in
te

r d
ay

.
U

nd
er

ne
at

h 
th

e 
cr

isp
 

w
in

te
r s

un
.

A 
la

rg
e,

 ro
un

d,
 st

on
e 

ca
st

le
 w

ith
 m

ul
tip

le
 

to
w

er
s,

 h
ig

hl
ig

ht
ed

 b
y 

st
an

ds
 in

 th
e 

m
id

dl
e 

of
 

a 
lu

sh
 g

re
en

 fi
el

d,
 

su
rr

ou
nd

ed
 b

y 
a 

m
oa

t, 
un

de
r a

 c
le

ar
 b

lu
e 

sk
y.

A 
la

rg
e,

 ro
un

d,
 st

on
e 

ca
st

le
 w

ith
 

m
ul

tip
le

 to
w

er
s s

ta
nd

s i
n 

th
e 

m
id

dl
e 

of
 

a 
lu

sh
 g

re
en

 fi
el

d.
 T

he
 c

as
tle

 is
 

su
rr

ou
nd

ed
 b

y 
a 

m
oa

t, 
an

d 
th

e 
sk

y 
is 

cl
ea

r a
nd

 b
lu

e.
 T

he
 su

n 
is 

sh
in

in
g 

br
ig

ht
ly,

 c
as

tin
g 

lo
ng

 sh
ad

ow
s a

nd
 

hi
gh

lig
ht

in
g 

th
e 

te
xt

ur
es

 o
f t

he
 st

on
e.

 
Th

e 
ca

st
le

 is
 th

e 
ce

nt
ra

l f
oc

us
 o

f t
he

 
im

ag
e,

 w
ith

 th
e 

op
en

 fi
el

d 
st

re
tc

hi
ng

 o
ut

 
ar

ou
nd

 it
. 

I s
ta

rt
 th

e 
se

as
on

 
w

ith
 a

 b
ig

 tr
ee

.

I k
ic

k 
of

f t
he

 se
as

on
 

w
ith

 a
 to

w
er

in
g 

tr
ee

.

A 
la

rg
e 

tr
ee

 in
 th

e 
ce

nt
er

 o
f 

a 
to

w
n 

sq
ua

re
, s

ur
ro

un
de

d 
by

 w
hi

te
 b

ui
ld

in
gs

 w
ith

 
bl

ue
 a

cc
en

ts
, u

nd
er

 a
 b

lu
e 

sk
y.

 T
he

 sq
ua

re
 is

 b
us

tli
ng

 
w

ith
 p

eo
pl

e,
 sh

ow
ca

sin
g 

a 
Eu

ro
pe

an
-in

flu
en

ce
d 

ar
ch

ite
ct

ur
e.

A 
la

rg
e,

 le
af

y 
tr

ee
 st

an
ds

 p
ro

m
in

en
tly

 in
 

th
e 

ce
nt

er
 o

f a
 to

w
n 

sq
ua

re
, s

ur
ro

un
de

d 
by

 w
hi

te
 b

ui
ld

in
gs

 w
ith

 b
lu

e 
ac

ce
nt

s.
 T

he
 

tr
ee

 is
 th

e 
fo

ca
l p

oi
nt

, w
ith

 it
s v

ib
ra

nt
 

gr
ee

n 
le

av
es

 c
on

tr
as

tin
g 

ag
ai

ns
t t

he
 c

le
ar

 
bl

ue
 sk

y.
 T

he
 to

w
n 

sq
ua

re
 is

 b
us

tli
ng

 w
ith

 
pe

op
le

, a
dd

in
g 

lif
e 

to
 th

e 
sc

en
e.

 T
he

 
ar

ch
ite

ct
ur

e 
of

 th
e 

bu
ild

in
gs

 su
gg

es
ts

 a
 

Eu
ro

pe
an

 in
flu

en
ce

, a
nd

 th
e 

ov
er

al
l 

at
m

os
ph

er
e 

is 
se

re
ne

 a
nd

 p
ic

tu
re

sq
ue

.

O
rig

in
al

 Im
ag

e

Figure 9: Qualitative results of our intent-CC3M dataset. We leverage DALL-E to generate images of
the captions. We compare intent-CC3M with the CC3M dataset and LLM’s rewritten captions.

15



O
rig

in
al

 C
ap

tio
n

A 
to

dd
le

r l
au

gh
s i

n 
en

jo
ym

en
t o

n 
th

e 
pl

ay
gr

ou
nd

.

A 
yo

un
g 

ch
ild

 
gi

gg
le

s w
ith

 d
el

ig
ht

 
w

hi
le

 p
la

yi
ng

 o
n 

th
e 

pl
ay

gr
ou

nd
.

G
en

er
at

ed
 Im

ag
e

A 
yo

un
g 

gi
rl 

is 
la

ug
hi

ng
 

on
 a

 sw
in

g,
 w

ea
rin

g 
a 

co
lo

rf
ul

 d
re

ss
, w

ith
 tw

o 
ad

ul
ts

 w
at

ch
in

g 
he

r. 
Th

e 
sw

in
g 

is 
ye

llo
w

 a
nd

 
w

oo
de

n.
 T

he
y 

ar
e 

in
 a

 
pa

rk
-li

ke
 se

tt
in

g.

G
en

er
at

ed
 Im

ag
e

A 
yo

un
g 

gi
rl 

is 
sit

tin
g 

on
 a

 p
la

yg
ro

un
d 

sw
in

g,
 la

ug
hi

ng
 a

nd
 e

nj
oy

in
g

he
rs

el
f. 

Sh
e 

is 
w

ea
rin

g 
a 

co
lo

rf
ul

 d
re

ss
 a

nd
 h

as
 

bl
on

de
 h

ai
r. 

Tw
o 

ad
ul

ts
 a

re
 st

an
di

ng
 

ne
ar

by
, w

at
ch

in
g 

he
r w

ith
 sm

ile
s.

 T
he

 
sw

in
g 

is 
ye

llo
w

 a
nd

 h
as

 a
 w

oo
de

n 
se

at
. 

In
 th

e 
ba

ck
gr

ou
nd

, t
he

re
 is

 a
 sa

nd
y 

ar
ea

 
an

d 
a 

fe
nc

e.
 T

he
 sc

en
e 

is 
se

t i
n 

a 
pa

rk
-

lik
e 

en
vi

ro
nm

en
t.

O
ur

 R
ew

rit
te

n 
Ca

pt
io

n
G

en
er

at
ed

 Im
ag

e

a 
sh

ep
he

rd
 p

ic
tu

re
d 

w
ith

 h
is 

flo
ck

 o
f 

sh
ee

p 
in

 n
or

th
.

A 
sh

ep
he

rd
 

ca
pt

ur
ed

 a
lo

ng
sid

e 
hi

s f
lo

ck
 o

f s
he

ep
 in

 
th

e 
no

rt
he

rn
 re

gi
on

.

M
an

 in
 p

la
id

 sh
irt

 a
nd

 
fla

t c
ap

 st
an

ds
 in

 fi
el

d 
w

ith
 sh

ee
p,

 sm
ili

ng
, 

lo
ok

in
g 

at
 c

am
er

a,
 o

n 
cl

ea
r, 

bl
ue

 d
ay

.

A 
m

an
 in

 a
 p

la
id

 sh
irt

 a
nd

 a
 fl

at
 c

ap
 

st
an

ds
 in

 a
 fi

el
d 

w
ith

 a
 fl

oc
k 

of
 sh

ee
p.

 H
e 

is 
sm

ili
ng

 a
nd

 lo
ok

in
g 

di
re

ct
ly

 a
t t

he
 

ca
m

er
a.

 T
he

 sh
ee

p 
ar

e 
sc

at
te

re
d 

ar
ou

nd
 

hi
m

, g
ra

zin
g 

on
 th

e 
gr

as
s.

 T
he

 sk
y 

is 
cl

ea
r a

nd
 b

lu
e,

 su
gg

es
tin

g 
a 

su
nn

y 
da

y.
 

Th
e 

m
an

's 
at

tir
e 

an
d 

th
e 

pr
es

en
ce

 o
f t

he
 

sh
ee

p 
su

gg
es

t a
 ru

ra
l o

r p
as

to
ra

l s
et

tin
g.

 
Th

e 
im

ag
e 

ca
pt

ur
es

 a
 m

om
en

t o
f 

pe
ac

ef
ul

 c
oe

xi
st

en
ce

 b
et

w
ee

n 
th

e 
m

an
 

an
d 

hi
s f

lo
ck

.

A 
ch

ild
 to

uc
he

s a
n 

ic
e 

sc
ul

pt
ur

e.

A 
ch

ild
 re

ac
he

s o
ut

 to
 

to
uc

h 
an

 ic
e 

sc
ul

pt
ur

e.

Ch
ild

 re
ac

he
s o

ut
 to

 to
uc

h 
ic

e 
dr

ag
on

 sc
ul

pt
ur

e,
 in

tr
ic

at
el

y 
de

sig
ne

d 
w

ith
 sc

al
es

 a
nd

 
sp

ik
es

, s
ta

nd
in

g 
in

 fr
on

t o
f i

t 
on

 sa
nd

y 
gr

ou
nd

.

A 
ch

ild
 re

ac
he

s o
ut

 to
 to

uc
h 

a 
la

rg
e 

ic
e 

sc
ul

pt
ur

e 
of

 a
 d

ra
go

n,
 w

hi
ch

 is
 

in
tr

ic
at

el
y 

de
sig

ne
d 

w
ith

 sc
al

es
 a

nd
 

sp
ik

es
. T

he
 sc

ul
pt

ur
e 

is 
po

sit
io

ne
d 

on
 a

 
sa

nd
y 

gr
ou

nd
, a

nd
 th

e 
ch

ild
 is

 st
an

di
ng

 
in

 fr
on

t o
f i

t. 
Th

e 
ba

ck
gr

ou
nd

 is
 d

ar
k,

 
hi

gh
lig

ht
in

g 
th

e 
br

ig
ht

ne
ss

 o
f t

he
 ic

e 
sc

ul
pt

ur
e.

 T
he

 d
ra

go
n 

sc
ul

pt
ur

e 
is 

m
ad

e 
of

 ic
e 

an
d 

is 
th

e 
m

ai
n 

fo
cu

s o
f t

he
 im

ag
e.

 
Th

e 
ch

ild
's 

in
te

ra
ct

io
n 

w
ith

 th
e 

sc
ul

pt
ur

e 
su

gg
es

ts
 a

 se
ns

e 
of

 w
on

de
r a

nd
 c

ur
io

sit
y.

of
fic

e 
w

or
ke

r s
itt

in
g 

at
 

th
e 

ta
bl

e 
an

d 
w

or
ki

ng
 

on
 th

e 
co

m
pu

te
r .

An
 o

ffi
ce

 w
or

ke
r s

its
 

at
 th

ei
r d

es
k,

 
di

lig
en

tly
 w

or
ki

ng
 o

n 
th

ei
r c

om
pu

te
r.

A 
m

an
 w

or
ks

 o
n 

hi
s 

co
m

pu
te

r a
t a

 d
es

k 
w

ith
 a

 
m

on
ito

r, 
ke

yb
oa

rd
 , 

an
d 

m
ou

se
. H

e 
is 

dr
es

se
d 

ca
su

al
ly,

 w
ea

rin
g 

gl
as

se
s,

 
an

d 
ha

s a
 sl

ig
ht

 sm
ile

. T
he

 
ba

ck
gr

ou
nd

 is
 m

in
im

al
ist

ic
. 

Th
e 

st
yl

e 
is 

a 
fla

t i
llu

st
ra

tio
n 

w
ith

 a
 li

m
ite

d 
co

lo
r p

al
et

te
.

A 
m

an
 is

 se
at

ed
 a

t a
 d

es
k,

 e
ng

ro
ss

ed
 in

 
w

or
k 

on
 h

is 
co

m
pu

te
r. 

Th
e 

de
sk

 is
 

eq
ui

pp
ed

 w
ith

 a
 m

on
ito

r, 
ke

yb
oa

rd
, a

nd
 

m
ou

se
. T

he
 m

an
 is

 d
re

ss
ed

 in
 a

 c
as

ua
l 

ou
tf

it,
 w

ea
rin

g 
gl

as
se

s a
nd

 h
as

 a
 sl

ig
ht

 
sm

ile
 o

n 
hi

s f
ac

e.
 T

he
 b

ac
kg

ro
un

d 
is 

m
in

im
al

ist
ic

 w
ith

 a
 li

gh
t b

ei
ge

 c
ol

or
, a

nd
 

th
er

e'
s a

 w
in

do
w

 th
at

 le
ts

 in
 n

at
ur

al
 li

gh
t. 

Th
e 

ov
er

al
l s

ty
le

 o
f t

he
 im

ag
e 

is 
a 

fla
t 

ill
us

tr
at

io
n 

w
ith

 a
 li

m
ite

d 
co

lo
r p

al
et

te
, 

gi
vi

ng
 it

 a
 m

od
er

n 
an

d 
cl

ea
n 

lo
ok

.

O
rig

in
al

 Im
ag

e
Ps

eu
do

-M
an

ip
ul

at
io

n 
De

sc
rip

tio
n

LL
M

’s 
Re

w
rit

te
n 

Ca
pt

io
n

Figure 10: Qualitative results of our intent-CC3M dataset. We leverage DALL-E to generate images
of the captions. We compare intent-CC3M with the CC3M dataset and LLM’s rewritten captions.
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B Algorithm of Manipulation Intention Understanding’s Process.560

Algorithm 1 outlines the pseudo-code for the manipulation intention understanding process. We561

create a fixed number of learnable embeddings as latent queries to capture intentions that the user562

aims to modify within manipulation descriptions. These learnable embeddings are then employed in563

a Transformer to execute cross-attention with the target descriptions word embedding {ti}mi=2. The564

number of output tokens produced by the De-MINDS matches the count of learnable embeddings. To565

enhance the interaction between learnable embeddings and word embeddings, we concatenate the566

learnable embeddings with keys and values during the cross-attention process. Each learned query567

interacts with different intentions, as shown in Figure 2. To achieve a dynamic ratio during the fusion568

of global and intention embeddings, we utilize a tanh-gating mechanism [23].569

Table 10: More ablation study on CIRR and FashionIQ.
CIRR Fashion-IQ

Methods R1 R5 R10 R10 R50

1. 100% original caption 26.2 55.5 69.5 26.8 49.9
2. 100% rewritten caption 25.8 55.4 69.0 26.5 49.6
3. 100% pseudo-manipulation description 25.3 54.5 68.0 26.9 49.7
4. 50% original, 50% rewritten 26.5 55.9 70.3 27.7 50.9
5. 50% original, 50% pseudo 25.5 55.2 68.6 27.0 50.1
6. 50% rewritten, 50% pseudo 25.9 55.8 69.7 27.4 50.5
7. 40% original , 30% rewritten , 30% pseudo 26.1 55.7 69.2 28.1 50.1
8. 50% original , 25% rewritten , 25% pseudo 26.7 56.5 70.4 29.2 51.4
9. 50% original , 30% rewritten , 20% pseudo 27.3 57.0 71.3 29.7 51.9
10. w/o align loss 20.6 45.2 57.3 23.6 42.8

C Further Ablation Studies on the Training Strategy570

Table 10 details additional ablation analyses of the training strategy in De-MINDS. In model571

‘1-10’, we evaluate the necessity of constructs T for pre-training Our method supports two572

scenarios in manipulation intention understanding: integrating intention information from lengthy573

texts and deducing it from concise texts. We evaluated the utility of the original caption Trew, the574

rewritten caption Tori, and the pseudo-manipulation description Tint in fostering an understanding of575

manipulation intentions and ensuring training stability. Our experiments led to the optimal ratio of576

50% original caption, 30% rewritten caption, and 20% pseudo-manipulation description. Moreover,577

in model ‘9-10’, we assess the significance of the alignment loss. The absence of alignment578

between the original image embedding and the target embedding in pre-training results in a notable579

decrease in average performance by 9.54%. This highlights the crucial role of aligning the original580

image during training, as in CIR, both the reference image and the manipulation intention together581

create a comprehensive context that defines the target image.582

D More Details of De-MINDS583

D.1 More Implementation Details For Baseline Models And Mapping Network584

Generating one intention caption through LLaVA-1.6-13B [32] for the entire Conceptual Caption585

dataset [47], which comprises 3M images (CC3M) dataset requires approximately 625 hours on 5586

A100 GPUs. By leveraging the capabilities of LLaVA, we ensure that each text sample within the587

dataset is enriched with diverse and contextually intent-relevant text rewrites, significantly enhancing588

the dataset’s utility for composed image retrieval tasks. For training De-MINDS, we utilize the CC3M589

and adopt ViT-L/14 CLIP [41] pre-trained on 400M image-text paired data. We employ AdamW [34]590

with a learning rate of 1× 10−6, weight decay of 0.1, and a linear warmup of 10000 steps. The batch591

size for contrastive learning is 1024. To improve training stability, we initialize the learnable scalar of592

tanh-gating to 0 [2]. For training Context-I2W, we only replace the original captions of CC3M with593

our pseudo-manipulation descriptions. Specifically, we employ AdamW [34] with a learning rate of594

1× 10−5, weight decay of 0.1, and a linear warmup of 10000 steps. The batch size for contrastive595
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learning is 1024. For training SEARLE, we utilize the ImageNet1K [16] test set, which comprises596

100K images, and leverage LLaVA to generate intention captions as detailed in Section 3.2. We597

employ AdamW, with a learning rate of 5 × 10−5 and a batch size of 256. All models are trained598

on 4 NVIDIA A100 (80G) GPUs. Moreover, we conduct ablation studies on CIRR test sets and599

FashionIQ validation sets. For FashionIQ, we consider the average recall. To ensure reliable results,600

we report the performance averaged over three trials.601

Mapping network design. Table 11 summarizes the mapping network fθ architecture we employ.602

Table 11: Pytorch-style[40] model description of the mapping network fθ. The output is fed into the
CLIP language encoder.

Layer Module
Output nn.Linear(512, 768)
ReLU2 nn.ReLU

Dropout2 nn.Dropout(0.1)
FC2 nn.Linear(512, 512)

ReLU1 nn.ReLU
Dropout1 nn.Dropout(0.1)

FC1 nn.Linear(512, 512)

D.2 More Evaluation Datasets Details of Query and Candidate Images.603

We evaluate our model on four ZS-CIR datasets, i.e., COCO [31] for object composition, ImageNet604

[16, 21] for domain conversion, CIRR [33] for object/scene manipulation, and Fashion-IQ [57] for605

attribute manipulation. All the dataset settings and evaluation metrics (Recall@K) follow the recent606

works [45, 52] for a fair comparison. The evaluation datasets are preprocessed, as explained in the607

main paper, we describe the details of the dataset, i.e., number of query images and candidate images608

used for evaluation.609

Table 12: The number of images used for evaluation in each dataset.
Dataset Query images Candidate images

ImageNet 10,000 16,983
COCO 4,766 4,766

CIRR (test) 4,148 2,315
Fashion (Dress) 2,017 3,817
Fashion (Shirt) 2,038 6,346

Fashion (TopTee) 1,961 5,373

D.3 More Inference Details of Prompts for Different Evaluate Tasks610

(1) Domain conversion. This setup evaluates the ability to compose real images and domain infor-611

mation to retrieve corresponding domain-specific images. We utilize ImageNet [16] and ImageNet-R612

[21], which comprises 200 classes with diverse domains and has domain annotations. Following613

Pic2Word, we pick cartoon, origami, toy, and sculpture as the evaluation target to avoid noise in the614

annotations. With this selection, we have 16,983 images as candidates. In the evaluation, given the615

real image from ImageNet and target domain names, we compose the query following the procedure616

in (a) in the Inference section. e.g., a cartoon of [*].617

(2) Object composition. We evaluate the validation split (5000 images) of COCO [31], which618

dataset contains images with corresponding lists of object classes and instance mask of query images.619

Following Pic2Word, we randomly crop one object and mask its background using its instance mask620

to create a query for each image. The list of object classes is used as text specification. Given the621

reference image and class list, we compose a query by following (b) in the Inference section. e.g., a622

photo of [*], [cat] and [dog].623

(3) Object/scene manipulation by text description. In this setup, a reference image is provided624

alongside a text description containing instructions for manipulating either an object or the background625
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scene depicted in the reference image. This composition of the reference image and text description626

enables the retrieval of manipulated images. We evaluate the test split of CIRR [33] using the standard627

evaluation protocol following previous works [45, 3, 52], and query texts are composed following the628

procedure in (c) of the Inference section.629

(4) Attribute manipulation. We employ Fashion-IQ [57], which includes various modification texts630

related to image attributes. These attribute manipulations are given as a sentence. As with CIRR, we631

adopt the standard evaluation protocol and create query texts following the procedure provided in632

(c) of the Inference section. In evaluation, we employ the validation set, following previous works633

[4, 45, 3, 52].634

E Extended Related Works635

Mapping Image as One Word. Several methods [30, 59] represent image regions as word tokens via636

VLP models, which rely on object detector efficacy. However, ZR-CIR tasks extend the alignment637

ability beyond objects to scenes, styles, attributes, ect. Our method addresses this issue by employing638

pseudo triplet data, which maps a pseudo reference image to a pseudo word token and combines it639

with the caption to align with the target image. PALAVRA [14] proposes personalized image retrieval640

via cycle contrastive loss, requiring class-wise and caption annotations. In contrast, our model641

facilitates fine-grained image-to-word mapping without additional annotations. Other approaches642

[26, 36, 62, 50] utilize a single word token to represent multiple images of the same object for643

text-to-image generation. Our model obviates the need for costly image-supervised training.644

Knowledge Distillation. Knowledge distillation is a machine learning technique wherein a simpler645

model, known as the student, learns to mimic the behavior of a more complex model, known as646

the teacher, by learning from its predictions [22]. This approach has demonstrated efficacy across647

various computer vision tasks, including image classification [22, 43, 5], object detection [9, 8],648

and text-to-image synthesis [35, 46], resulting in improved model compression, computational649

efficiency, and accuracy. In our study, we employ knowledge distillation to transfer knowledge from650

a computationally expensive optimization method (teacher) to a more lightweight neural network651

(student). Specifically, we train a manipulation intention understanding network to replicate the652

reasoning ability of an MLLM using a distillation loss. Alternatively, our lightweight network can be653

interpreted as a surrogate model of the more resource-intensive technique.654
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NeurIPS Paper Checklist655

1. Claims656

Question: Do the main claims made in the abstract and introduction accurately reflect the657

paper’s contributions and scope?658

Answer: [Yes]659

Justification: The abstract and introduction are include the claims made in the paper660

Guidelines:661

• The answer NA means that the abstract and introduction do not include the claims662

made in the paper.663

• The abstract and/or introduction should clearly state the claims made, including the664

contributions made in the paper and important assumptions and limitations. A No or665

NA answer to this question will not be perceived well by the reviewers.666

• The claims made should match theoretical and experimental results, and reflect how667

much the results can be expected to generalize to other settings.668

• It is fine to include aspirational goals as motivation as long as it is clear that these goals669

are not attained by the paper.670

2. Limitations671

Question: Does the paper discuss the limitations of the work performed by the authors?672

Answer: [Yes]673

Justification: Our paper has limitation in our main paper.674

Guidelines:675

• The answer NA means that the paper has no limitation while the answer No means that676

the paper has limitations, but those are not discussed in the paper.677

• The authors are encouraged to create a separate "Limitations" section in their paper.678

• The paper should point out any strong assumptions and how robust the results are to679

violations of these assumptions (e.g., independence assumptions, noiseless settings,680

model well-specification, asymptotic approximations only holding locally). The authors681

should reflect on how these assumptions might be violated in practice and what the682

implications would be.683

• The authors should reflect on the scope of the claims made, e.g., if the approach was684

only tested on a few datasets or with a few runs. In general, empirical results often685

depend on implicit assumptions, which should be articulated.686

• The authors should reflect on the factors that influence the performance of the approach.687

For example, a facial recognition algorithm may perform poorly when image resolution688

is low or images are taken in low lighting. Or a speech-to-text system might not be689

used reliably to provide closed captions for online lectures because it fails to handle690

technical jargon.691

• The authors should discuss the computational efficiency of the proposed algorithms692

and how they scale with dataset size.693

• If applicable, the authors should discuss possible limitations of their approach to694

address problems of privacy and fairness.695

• While the authors might fear that complete honesty about limitations might be used by696

reviewers as grounds for rejection, a worse outcome might be that reviewers discover697

limitations that aren’t acknowledged in the paper. The authors should use their best698

judgment and recognize that individual actions in favor of transparency play an impor-699

tant role in developing norms that preserve the integrity of the community. Reviewers700

will be specifically instructed to not penalize honesty concerning limitations.701

3. Theory Assumptions and Proofs702

Question: For each theoretical result, does the paper provide the full set of assumptions and703

a complete (and correct) proof?704

Answer: [Yes]705
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Justification: All the formulas in the paper be numbered and cross-referenced706

Guidelines:707

• The answer NA means that the paper does not include theoretical results.708

• All the theorems, formulas, and proofs in the paper should be numbered and cross-709

referenced.710

• All assumptions should be clearly stated or referenced in the statement of any theorems.711

• The proofs can either appear in the main paper or the supplemental material, but if712

they appear in the supplemental material, the authors are encouraged to provide a short713

proof sketch to provide intuition.714

• Inversely, any informal proof provided in the core of the paper should be complemented715

by formal proofs provided in appendix or supplemental material.716

• Theorems and Lemmas that the proof relies upon should be properly referenced.717

4. Experimental Result Reproducibility718

Question: Does the paper fully disclose all the information needed to reproduce the main ex-719

perimental results of the paper to the extent that it affects the main claims and/or conclusions720

of the paper (regardless of whether the code and data are provided or not)?721

Answer: [Yes]722

Justification: The code and sample dataset are provided in our supplementary. We describe723

the steps taken to make the results reproducible or verifiable.724

Guidelines:725

• The answer NA means that the paper does not include experiments.726

• If the paper includes experiments, a No answer to this question will not be perceived727

well by the reviewers: Making the paper reproducible is important, regardless of728

whether the code and data are provided or not.729

• If the contribution is a dataset and/or model, the authors should describe the steps taken730

to make their results reproducible or verifiable.731

• Depending on the contribution, reproducibility can be accomplished in various ways.732

For example, if the contribution is a novel architecture, describing the architecture fully733

might suffice, or if the contribution is a specific model and empirical evaluation, it may734

be necessary to either make it possible for others to replicate the model with the same735

dataset, or provide access to the model. In general. releasing code and data is often736

one good way to accomplish this, but reproducibility can also be provided via detailed737

instructions for how to replicate the results, access to a hosted model (e.g., in the case738

of a large language model), releasing of a model checkpoint, or other means that are739

appropriate to the research performed.740

• While NeurIPS does not require releasing code, the conference does require all submis-741

sions to provide some reasonable avenue for reproducibility, which may depend on the742

nature of the contribution. For example743

(a) If the contribution is primarily a new algorithm, the paper should make it clear how744

to reproduce that algorithm.745

(b) If the contribution is primarily a new model architecture, the paper should describe746

the architecture clearly and fully.747

(c) If the contribution is a new model (e.g., a large language model), then there should748

either be a way to access this model for reproducing the results or a way to reproduce749

the model (e.g., with an open-source dataset or instructions for how to construct750

the dataset).751

(d) We recognize that reproducibility may be tricky in some cases, in which case752

authors are welcome to describe the particular way they provide for reproducibility.753

In the case of closed-source models, it may be that access to the model is limited in754

some way (e.g., to registered users), but it should be possible for other researchers755

to have some path to reproducing or verifying the results.756

5. Open access to data and code757

Question: Does the paper provide open access to the data and code, with sufficient instruc-758

tions to faithfully reproduce the main experimental results, as described in supplemental759

material?760
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Answer: [Yes]761

Justification: Our paper provides open access to the code for creating the dataset and762

reproducing the main experimental results. We will provide the entire dataset after our paper763

is accepted.764

Guidelines:765

• The answer NA means that paper does not include experiments requiring code.766

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/767

public/guides/CodeSubmissionPolicy) for more details.768

• While we encourage the release of code and data, we understand that this might not be769

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not770

including code, unless this is central to the contribution (e.g., for a new open-source771

benchmark).772

• The instructions should contain the exact command and environment needed to run to773

reproduce the results. See the NeurIPS code and data submission guidelines (https:774

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.775

• The authors should provide instructions on data access and preparation, including how776

to access the raw data, preprocessed data, intermediate data, and generated data, etc.777

• The authors should provide scripts to reproduce all experimental results for the new778

proposed method and baselines. If only a subset of experiments are reproducible, they779

should state which ones are omitted from the script and why.780

• At submission time, to preserve anonymity, the authors should release anonymized781

versions (if applicable).782

• Providing as much information as possible in supplemental material (appended to the783

paper) is recommended, but including URLs to data and code is permitted.784

6. Experimental Setting/Details785

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-786

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the787

results?788

Answer: [Yes]789

Justification: Our paper specifies all the training and test details in the main paper and790

appendix. We also provide the pseudo-code for our method in our appendix.791

Guidelines:792

• The answer NA means that the paper does not include experiments.793

• The experimental setting should be presented in the core of the paper to a level of detail794

that is necessary to appreciate the results and make sense of them.795

• The full details can be provided either with the code, in appendix, or as supplemental796

material.797

7. Experiment Statistical Significance798

Question: Does the paper report error bars suitably and correctly defined or other appropriate799

information about the statistical significance of the experiments?800

Answer: [No]801

Justification: Error bars are not reported because it would be too computationally expensive802

for four datasets.803

Guidelines:804

• The answer NA means that the paper does not include experiments.805

• The authors should answer "Yes" if the results are accompanied by error bars, confi-806

dence intervals, or statistical significance tests, at least for the experiments that support807

the main claims of the paper.808

• The factors of variability that the error bars are capturing should be clearly stated (for809

example, train/test split, initialization, random drawing of some parameter, or overall810

run with given experimental conditions).811

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,812

call to a library function, bootstrap, etc.)813

• The assumptions made should be given (e.g., Normally distributed errors).814

• It should be clear whether the error bar is the standard deviation or the standard error815

of the mean.816

• It is OK to report 1-sigma error bars, but one should state it. The authors should817

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis818

of Normality of errors is not verified.819

• For asymmetric distributions, the authors should be careful not to show in tables or820

figures symmetric error bars that would yield results that are out of range (e.g. negative821

error rates).822

• If error bars are reported in tables or plots, The authors should explain in the text how823

they were calculated and reference the corresponding figures or tables in the text.824

8. Experiments Compute Resources825

Question: For each experiment, does the paper provide sufficient information on the com-826

puter resources (type of compute workers, memory, time of execution) needed to reproduce827

the experiments?828

Answer: [Yes]829

Justification: We indicate the type of compute workers and compute time for dataset830

generation and training.831

Guidelines:832

• The answer NA means that the paper does not include experiments.833

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,834

or cloud provider, including relevant memory and storage.835

• The paper should provide the amount of compute required for each of the individual836

experimental runs as well as estimate the total compute.837

• The paper should disclose whether the full research project required more compute838

than the experiments reported in the paper (e.g., preliminary or failed experiments that839

didn’t make it into the paper).840

9. Code Of Ethics841

Question: Does the research conducted in the paper conform, in every respect, with the842

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?843

Answer: [Yes]844

Justification: We have reviewed the NeurIPS Code of Ethics.845

Guidelines:846

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.847

• If the authors answer No, they should explain the special circumstances that require a848

deviation from the Code of Ethics.849

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-850

eration due to laws or regulations in their jurisdiction).851

10. Broader Impacts852

Question: Does the paper discuss both potential positive societal impacts and negative853

societal impacts of the work performed?854

Answer: [Yes]855

Justification: We discuss both potential positive societal impacts and negative societal856

impacts of the work performed in our appendix.857

Guidelines:858

• The answer NA means that there is no societal impact of the work performed.859

• If the authors answer NA or No, they should explain why their work has no societal860

impact or why the paper does not address societal impact.861
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• Examples of negative societal impacts include potential malicious or unintended uses862

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations863

(e.g., deployment of technologies that could make decisions that unfairly impact specific864

groups), privacy considerations, and security considerations.865

• The conference expects that many papers will be foundational research and not tied866

to particular applications, let alone deployments. However, if there is a direct path to867

any negative applications, the authors should point it out. For example, it is legitimate868

to point out that an improvement in the quality of generative models could be used to869

generate deepfakes for disinformation. On the other hand, it is not needed to point out870

that a generic algorithm for optimizing neural networks could enable people to train871

models that generate Deepfakes faster.872

• The authors should consider possible harms that could arise when the technology is873

being used as intended and functioning correctly, harms that could arise when the874

technology is being used as intended but gives incorrect results, and harms following875

from (intentional or unintentional) misuse of the technology.876
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strategies (e.g., gated release of models, providing defenses in addition to attacks,878

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from879

feedback over time, improving the efficiency and accessibility of ML).880
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release of data or models that have a high risk for misuse (e.g., pretrained language models,883

image generators, or scraped datasets)?884

Answer: [No]885

Justification: our paper poses no such risks.886
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• The answer NA means that the paper poses no such risks.888
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that users adhere to usage guidelines or restrictions to access the model or implementing891
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• Datasets that have been scraped from the Internet could pose safety risks. The authors893

should describe how they avoided releasing unsafe images.894

• We recognize that providing effective safeguards is challenging, and many papers do895

not require this, but we encourage authors to take this into account and make a best896

faith effort.897

12. Licenses for existing assets898

Question: Are the creators or original owners of assets (e.g., code, data, models), used in899

the paper, properly credited and are the license and terms of use explicitly mentioned and900

properly respected?901

Answer: [Yes]902

Justification: the creators or original owners of assets are the license and terms of use903

explicitly mentioned and properly respected.904

Guidelines:905

• The answer NA means that the paper does not use existing assets.906

• The authors should cite the original paper that produced the code package or dataset.907

• The authors should state which version of the asset is used and, if possible, include a908

URL.909

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.910

• For scraped data from a particular source (e.g., website), the copyright and terms of911

service of that source should be provided.912
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• If assets are released, the license, copyright information, and terms of use in the913

package should be provided. For popular datasets, paperswithcode.com/datasets914

has curated licenses for some datasets. Their licensing guide can help determine the915

license of a dataset.916

• For existing datasets that are re-packaged, both the original license and the license of917

the derived asset (if it has changed) should be provided.918

• If this information is not available online, the authors are encouraged to reach out to919

the asset’s creators.920

13. New Assets921

Question: Are new assets introduced in the paper well documented and is the documentation922

provided alongside the assets?923

Answer: [No]924

Justification: Our paper does not release new assets.925

Guidelines:926

• The answer NA means that the paper does not release new assets.927

• Researchers should communicate the details of the dataset/code/model as part of their928

submissions via structured templates. This includes details about training, license,929

limitations, etc.930

• The paper should discuss whether and how consent was obtained from people whose931

asset is used.932

• At submission time, remember to anonymize your assets (if applicable). You can either933

create an anonymized URL or include an anonymized zip file.934

14. Crowdsourcing and Research with Human Subjects935

Question: For crowdsourcing experiments and research with human subjects, does the paper936

include the full text of instructions given to participants and screenshots, if applicable, as937

well as details about compensation (if any)?938

Answer: [No]939

Justification: Our paper does not involve crowdsourcing nor research with human subjects.940

Guidelines:941

• The answer NA means that the paper does not involve crowdsourcing nor research with942

human subjects.943

• Including this information in the supplemental material is fine, but if the main contribu-944

tion of the paper involves human subjects, then as much detail as possible should be945

included in the main paper.946

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,947

or other labor should be paid at least the minimum wage in the country of the data948

collector.949

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human950

Subjects951

Question: Does the paper describe potential risks incurred by study participants, whether952

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)953

approvals (or an equivalent approval/review based on the requirements of your country or954

institution) were obtained?955

Answer: [No]956

Justification: Our paper does not involve crowdsourcing nor research with human subjects957

Guidelines:958

• The answer NA means that the paper does not involve crowdsourcing nor research with959

human subjects.960

• Depending on the country in which research is conducted, IRB approval (or equivalent)961

may be required for any human subjects research. If you obtained IRB approval, you962

should clearly state this in the paper.963
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• We recognize that the procedures for this may vary significantly between institutions964

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the965

guidelines for their institution.966

• For initial submissions, do not include any information that would break anonymity (if967

applicable), such as the institution conducting the review.968
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