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ABSTRACT

Aligning Large Language Models (LLMs) with human preferences through fine-
tuning is resource-intensive, motivating lightweight alternatives at test time. We
address test-time alignment through the lens of sequential decision making, a
perspective that reveals two fundamental challenges. When actions are defined at
the token level, as in guided decoding, alignment suffers from the curse of hori-
zon. Conversely, when actions are at the response level, as in traditional iterative
refinement, the curse of dimensionality emerges. To resolve this trade-off, we draw
inspiration from Model Predictive Control (MPC) in control theory to propose Tex-
tual Model Predictive Control (TMPC), a novel predictive planning framework
adapted for aligning LLMs at inference time. A key limitation of standard MPC
is its reliance on predefined, hard segment boundaries, which are often absent in
text generation. TMPC overcomes this by introducing two principles inspired by
hierarchical reinforcement learning: (1) Hindsight Subgoal Identification, where
TMPC analyzes generation subgoals to retrospectively identify high-reward inter-
mediate outputs as subgoals. This allows the framework to discover meaningful,
task-specific planning steps (e.g., a sentence in machine translation or a bug fix
in code generation.). (2) Subgoal-Conditioned Re-Generation, where these identi-
fied subgoals are used to guide subsequent planning iterations. By conditioning
on these proven, high-quality subgoals, , TMPC ensures stable improvement by
building upon previously validated successes. TMPC is evaluated on three tasks
with distinct segmentation properties: discourse-level translation, long-form re-
sponse generation, and program synthesis. The results demonstrate that TMPC
consistently improves performance, highlighting the generality.

1 INTRODUCTION

The emergence of Large Language Models (LLMs), such as the GPT series (Achiam et al., 2023;
Brown et al., 2020), LLaMAs (Touvron et al., 2023a;b), and Gemma (Team et al., 2024), has
demonstrated remarkable efficacy in a wide range of NLP tasks (Hendrycks et al., 2021; Srivastava
et al., 2023; Stiennon et al., 2020; Yu et al., 2024; Zhong et al., 2024). While these models exhibit
strong performance out of the box, aligning their outputs to human preferences remains critical,
especially for smaller-scale LLMs. For instance, in machine translation (Alves et al., 2024), smaller
LLMs (e.g., under 10B parameters) frequently suffer from omissions and semantic drift (Wu et al.,
2024). Thus, aligning LLM outputs to preferences remains an essential yet challenging problem.

Training-time approaches such as Reinforcement Learning with Human Feedback (RLHF) (Ouyang
et al., 2022) and Direct Preference Optimization (DPO) (Rafailov et al., 2023) have achieved strong
results in aligning preferences. However, these methods are resource-intensive and require costly
retraining whenever preferences or tasks change. This has spurred interest in test-time alignment,
where outputs are adapted without updating model parameters, using strategies such as prompting (Lin
et al., 2024), guided decoding (Khanov et al., 2024; Kong et al., 2024; Li et al., 2024; Wang et al.,
2024b; Xu et al., 2025), or iterative refinement (Li et al., 2025).

We address test-time alignment through the lens of sequential decision making, where the generation
process is framed as a sequence of actions. This perspective reveals two fundamental challenges,
illustrated in Figure 1 . When actions are defined at the token level (e.g., guided decoding), methods
suffer from the curse of horizon (Park et al., 2025); credit assignment becomes unreliable over long
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Hindsight Subgoal Identification Response-level rewriting operates in a large 
action space, causing unstable improvements.

Token-level control leads to overly 
long horizons, making alignment fragile.
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Generated span
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Iterative rollouts
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reward evaluation

Figure 1: Textual Model Predictive Control (TMPC) balances the curse of horizon in guided decoding
against the curse of dimensionality in naive iterative refinement. It employs Hindsight Subgoal
Identification to dynamically discover promising states from rollouts and Subgoal-Conditioned Re-
Generation to guide the search from these discovered subgoals, ensuring a stable alignment.

trajectories, making alignment brittle. In contrast, when actions are at the response level (e.g., iterative
refinement), they face the curse of dimensionality; each step involves rewriting an entire sequence,
making the search for improvements in a vast action space intractable and unstable.

To address these challenges, we propose Textual Model Predictive Control (TMPC), a novel test-
time alignment framework inspired by Model Predictive Control (MPC) (Camacho & Bordons,
2007; Kouvaritakis & Cannon, 2016). While powerful, standard MPC assumes the problem can be
decomposed into predefined, hard segments, a condition that rarely holds for complex text generation.
TMPC is uniquely adapted to overcome this limitation through two principles:

• Hindsight Subgoal Identification: This principle allows TMPC to discover meaningful
planning steps. After generating candidate responses, TMPC retrospectively analyzes them
to identify high-quality intermediate points as subgoals. A subgoal can be a concrete unit,
such as a sentence in translation, or an abstract one, such as resolving a single failed test
case in program synthesis. This hindsight-driven discovery effectively shortens the planning
horizon for diverse tasks.

• Subgoal-Conditioned Re-Generation: This principle ensures stable, cumulative progress.
The subgoals identified via hindsight are stored in a buffer and used to guide subsequent
planning iterations. By conditioning the next generation on these subgoals, TMPC ensures
that subsequent generation builds upon these validated waypoints.

We evaluate TMPC on three challenging tasks with different boundary characteristics: WMT’24
discourse-level machine translation, the HH-RLHF long responses subset, and MBPP program syn-
thesis. Experiments with LLaMA-3.1-8B-Instruct show that TMPC consistently improves alignment,
highlighting the generality of our approach.

Our contributions are summarized as follows:

• We propose a novel formulation of test-time alignment as a sequential decision-making
problem. This perspective unifies existing approaches and reveals a fundamental trade-off
that governs their limitations: the curse of horizon in guided decoding methods and the
curse of dimensionality in iterative refinement methods.

• We introduce Textual Model Predictive Control (TMPC), a framework that adapts con-
cepts from control theory to language generation. TMPC is operationalized through two
principles: Hindsight Subgoal Identification to discover subgoals from rollouts, and Subgoal-
Conditioned Re-Generation to iteratively improve generation by building on subgoals.

• We empirically demonstrate the effectiveness of TMPC. TMPC achieves substantial improve-
ments across three distinct domains including long-form response generation, discourse-level
machine translation, and program synthesis, validating its ability to discover and leverage
task-specific subgoals.
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2 RELATED WORK

2.1 PREFERENCE ALIGNMENT THROUGH FINE-TUNING

Aligning large language models (LLMs) with human preferences has traditionally relied on post-
training strategies. Supervised fine-tuning (SFT) (Ziegler et al., 2019) and reinforcement learning
from human feedback (RLHF) (Ouyang et al., 2022) are widely used but computationally expensive.
Direct Preference Optimization (DPO) (Rafailov et al., 2023) simplifies RLHF by converting it into a
supervised learning objective, though it requires managing dual policies. More recent approaches
like SimPO (Meng et al., 2024) and Contrastive Preference Optimization (CPO) (Xu et al., 2024)
reduce memory and resource demands using reference models and contrastive signals. Despite these
improvements, fine-tuning methods remain rigid and slow to adapt to changing data or objectives,
posing challenges in dynamic environments.

2.2 TEST-TIME PREFERENCE ALIGNMENT

Test-time preference alignment offers an efficient way to align frozen language models by guiding
generation at inference, without requiring any parameter updates. Beyond simple prompting or
in-context learning, guided decoding methods harness external signals to control the generation
itself. ARGS (Khanov et al., 2024) is a representative example that incorporates reward model
guidance at the token level, and InferAligner (Wang et al., 2024b) adopts a similar strategy. Among
guided decoding methods, there are also approaches that directly modify internal representations. For
instance, RE-Control (Kong et al., 2024) trains a value function on hidden states using the Bellman
equation, and applies gradient-based optimization to align with preferences. TreeBoN (Qiu et al.,
2024) and RAIN (Li et al., 2024) leverage tree-based structures: TreeBoN combines tree search
with Best-of-N sampling, while RAIN performs self-evaluation without relying on a reward model
to align preferences. GenARM (Xu et al., 2025) enhances test-time alignment by introducing an
autoregressive reward model that predicts next-token reward signals conditioned on prior context,
enabling efficient, token-wise guidance that is theoretically expressive under a KL-regularized RL
framework. Test-Time Preference Optimization (TPO) (Li et al., 2025) takes a distinct approach,
translating reward feedback into textual critiques that serve as language-based rewards. The model
uses these to iteratively refine its output—effectively learning alignment on the fly.

3 BACKGROUND

In the general setup of RL for LLMs, text generation can be formally modeled as a finite-horizon
Markov Decision Process (MDP). We adopt a general notion of a step as the basic unit of temporal
progression, which can represent a token, a segment at various granularities (e.g., phrase, sentence, or
paragraph), or other linguistically or structurally meaningful units. Then, an MDP can be defined
asM = (S,A,P, R, µ, T ), where (i) the state space S consists of all possible text prefixes, (ii) the
action space A corresponds to the set of all possible generation units, (iii) P denotes the transition
function, (iv) R : S × A → R is the reward function that assigns scalar feedback to step-level or
trajectory-level outcomes (e.g., measuring fluency, factuality, or alignment with user preferences), (v)
µ denotes the initial state distribution, and (vi) T ∈ N is the episode length.

We define the initial state s0 as the initial prompt and let at denote the partial response generated
at step t. At each step t, the current state is the set of tokens from the initial prompt and the
partial responses generated up to step t, i.e., st = (s0, a1, · · · , at−1). Based on this construction,
we know that the transition function is deterministic with P(st+1|st, at) = 1. A policy πθ(a|s),
parameterized by the language model, defines a probability distribution over actions given the prefix
s ∈ S. The generation of a full text sequence of length T can therefore be viewed as a trajectory
τ = (s0, a0, · · · , sT−1, aT−1, sT ) with the cumulative reward given by J (τ) :=

∑T−1
t=0 R(st, at).

This perspective enables the application of RL methods to text generation in LLMs. Rather than
relying solely on maximum likelihood estimation, which optimizes local token-level likelihoods, the
MDP formulation allows optimization with respect to long-horizon objectives such as coherence and
alignment with human preferences. This provides the foundation for recent advances in preference-
based fine-tuning and test-time alignment.
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4 METHODOLOGY

4.1 TEST-TIME ALIGNMENT VIA TRAJECTORY OPTIMIZATION

Our key idea is to take a model-based RL viewpoint to achieve test-time alignment for LLMs.
Specifically, we propose to recast preference alignment as trajectory optimization and thereby employ
receding-horizon control for iterative text generation.

Text Generation Optimization as Trajectory Optimization. Usually adopted by the model-based
RL literature (Chua et al., 2018; Lowrey et al., 2019), the goal of trajectory optimization is to find
an optimal sequence of actions a∗ = (a∗0, · · · , a∗T−1) such that the total trajectory-wise reward
is maximized. This matches the objective of LLM text generation in that the output response is
generated to best align with the underlying preference. Recall from Section 3 that we adopt a
general notion of a step as the basic unit of temporal progression, which can be a segment at various
granularities or other linguistically meaningful units. Again, we let s0 denote the initial prompt
and let τ = (s0, a0, · · · , sT−1, aT−1, sT ) denote a trajectory generated under an action sequence
a0:T−1 := (a0, a1, . . . , aT−1). Given an initial prompt s0, the search for an optimal sequence a∗(s0)
can be formulated by the following optimization problem

a∗(s0) := arg max
a0:T−1

T−1∑
t=0

R(st, at). (1)

Note that there is no need to take expectation in (1) as the state transitions are deterministic given
a0:T−1 in MDPs for text generation, as described in Section 3.

Textual Model Predictive Control for Text Generation. In general, direct optimization of (1)
requires searching over all possible action sequences of length T and is computationally intractable.
As a predictive planning method, MPC planner approximately solves (1) by iteratively solving local
optimization problems (Hansen et al., 2022), instead of globally optimizing the total reward in one
pass. Specifically, MPC planner determines the action of each step t by estimating the optimal
subsequence a∗

t:t+H on a moving horizon H (usually H is smaller than T ), given the state st, i.e.,

aMPC(st) := arg max
at:t+H−1

t+H−1∑
i=t

R(st, at), (2)

and then select a subset of aMPC(st), denoted by ãMPC(st), for execution. In practice, ãMPC(st) can be
selected as the first j contiguous actions (1 ≤ j ≤ H) or as a set of non-contiguous actions (Cagienard
et al., 2007). As a model-based approach, MPC solves (2) by employing (i) a learned predictive
dynamics model and (ii) a proposal action distribution to jointly generate multiple H-step predictive
rollouts {τ (i)t ≡ (s

(i)
t:t+H−1,a

(i)
t:t+H−1)}Ki=1 and obtain an approximate maximizer based on these K

rollouts. As a widely-used variant of MPC for continuous control, Model Predictive Path Integral
(MPPI) (Williams et al., 2015) determines an approximate maximizer by performing a soft, utility-
weighted aggregated selection as at =

(∑K
i=1 exp(

1
λJ (τ

(i)
t ))a

(i)
t

)
/
∑K

i=1 exp(
1
λJ (τ

(i)
t )), where

J (τ) denotes the cumulative reward of a rollout τ and λ > 0 controls the exploration–exploitation
trade-off. Compared to deterministic MPC that selects a single maximizer, MPPI yields smoother
updates by aggregating multiple high-reward rollouts while still biasing toward higher J .

Inspired by MPPI for continuous control, to better leverage MPC in text generation (inherently with
discrete actions), we propose to define an aggregation function that determines the action sequence
by aggregating multiple textual rollouts based on the corresponding cumulative rewards, i.e.,

aTMPC(s)← G
(
{τ (i)}Ki=1, {J (τ (i))}Ki=1; s

)
, (3)

where {τ (i)}Ki=1 are rollouts starting from s. Then, TMPC can leverage a sequence of non-contiguous
actions, denoted by ãTMPC(s), to be selected for actual use in subgoal generation. The detailed
construction of G will be specified in Section 4.2.

Notably, TMPC enjoys two salient features that make it a particularly suitable method for test-time
alignment of LLMs: (i) No additional model learning or fine-tuning needed: Recall that MPC-
like methods typically require a learned dynamics model and a proposal distribution. In TMPC, a

4
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Figure 2: TMPC adapts the MPPI framework for test-time alignment by introducing two core
principles. Hindsight Subgoal Identification: After generating multiple rollouts, the planner’s
aggregation function G selects a subset of locally-optimal actions ãTMPC. This executed plan is
retrospectively identified as a high-quality subgoal and stored in a buffer B if its utility meets a
threshold α. Subgoal-Conditioned Re-Generation: New rollouts are generated by sampling from
and composing subgoals in the buffer B. This allows the planner to iteratively refine the full-horizon
plan by building upon the best strategies discovered in previous iterations.

dynamics model is already available since in text-generation MDPs, the transition from st to st+1 is
known and deterministic under an action at. Moreover, a pre-trained frozen LLM can naturally play
the role of a good proposal distribution for generating candidate texts. Hence, TMPC does not require
any fine-tuning or model learning. (ii) Addressing curse of horizon and curse of dimensionality:
TMPC addresses these two fundamental issues by iteratively solving local optimization problems.
Compared to guided decoding and full-response iterative refinement, the design of TMPC can achieve
a better balance between accurate credit assignment and the size of search space.

4.2 TEXTUAL MODEL PREDICTIVE CONTROL FOR GENERAL TEMPORAL PROGRESSION

In this section, we extend the TMPC framework to text generation tasks with general temporal
progression. Inherited from the classic MPC, TMPC described in Section 4.1 presumes that there
already exists a basic unit as a discrete time step for planning. This requirement indeed holds
for various tasks, such as viewing one output sentence as a step in machine translation and text
summarization. However, there also exist text generation tasks without natural boundaries, such
as code generation. Despite this, we present a more general version of TMPC that can achieve
approximate trajectory optimization in text generation, with and without natural boundaries, by
introducing subgoals, which can serve as a basic unit for temporal progression. TMPC can be
substantiated via two core principles, as illustrated in Figure 2.

Principle 1: Hindsight Subgoal Identification. To achieve higher-quality generation, we construct
meaningful subgoals from continuous text by aggregating prior high-reward actions into a buffer B.
This identification occurs after rollouts are evaluated, hence hindsight, the planner discovers what
constitutes a successful step based on empirical outcomes. The update rule of the buffer is as follows:

B ←

{
B ∪ ãTMPC

t (s), if |B| < capacity,

B \ {a ∈ B | R(s, a) < R(s, a′)} ∪ {a′}, otherwise, for each a′ ∈ ãTMPC
t (s).

(4)

Principle 2: Subgoal-Conditioned Aggregation Function for Re-Generation. In TMPC, the
non-contiguous actions are generated from the following aggregation function:

ãTMPC
t (s)← G

(
{τ (i)t }Ki=1, R(·) | s,B

)
:=

{
a | R(s, a) ≥ α and a ∈ {τ (i)t }Ki=1

}
, (5)

where {τ (i)t }Ki=1 are the rollouts generated from subgoal-conditioned LLM π(s,B). ãTMPC
t (s) im-

plicitly favors higher-reward outcomes by exploiting subgoals that serve as local optimizers over
planning iterations, making it a validated and locally optimal action sequence with high utility.

5
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This principle describes how TMPC leverages identified subgoals to refine the entire trajectory over
multiple iterations. A single pass of optimization may yield a suboptimal solution. TMPC overcomes
this by performing planning iteratively. In the subgoal identification step, the planner populates the
subgoal buffer B using the Hindsight Subgoal Identification described above. The re-generation
step constructs new rollouts by explicitly leveraging the high-reward goals accumulated in B as
conditioning signals. Rather than exploring from a generic proposal distribution, the planner is
encouraged to generate new candidate trajectories by composing and extending the high-quality
subgoals from the buffer. The aggregation function G thus plays a crucial role: it not only selects
high-reward action subset ãTMPC

t for the current iteration but also leverages the subgoal buffer B to
inform the generation of rollouts for the next iteration. This iterative process allows TMPC to escape
poor local optima and progressively construct a globally high-utility response by combining the best
building blocks (subgoals) discovered across all iterations.

5 EXPERIMENTS

We evaluate TMPC on three tasks with different structural properties to ensure its generality: (1)
Paragraph-Level Machine Translation represents a a task with natural boundaries. The generated
translation can be precisely aligned with the source text, allowing for sentence-level segments that
are structurally anchored and easy to evaluate. (2) Long-Form Response Generation represents a
task without natural boundaries. Without a source for direct alignment, responses are segmented
by content into coherent chunks (e.g., groups of sentences), each preserving semantic integrity. (3)
Program Synthesis challenges conventional segmentation, representing a task where structural
boundaries (e.g., Abstract Syntax Tree nodes) are semantically too fragmented for effective planning.
Our framework addresses this by defining a segment abstractly through a functional milestone: the
successful resolution of a single unit test.

5.1 PREFERENCE DATASET AND REWARD MODEL

Paragraph-Level MT Dataset. To construct a suitable preference dataset for long-text MT, we
use the WMT’24 Discourse-Level Literary Translation benchmark (Wang et al., 2024a) for our
experiments. The available language pairs include: Chinese → English, Chinese → German, and
Chinese → Russian. To fit within LLM context windows, each instance is segmented into up to 1024
tokens using GPT-4’s tokenizer, ensuring paragraph-level MT remains within model limits.

The preference dataset is derived from the training set of the dataset. Each instance is segmented
into paragraphs of up to 1,024 tokens. From each translation direction, we sample 2,000 paragraphs,
resulting in a total of 6,000 paragraphs for constructing the preference dataset. Translation outputs
are generated using LLaMA-3.1-8B-Instruct, Gemma-2-9B, and GPT-4o. The translations are then
evaluated with MetricX-24-XL (Juraska et al., 2024) under the reference-free evaluation mode, where
no reference translation is supplied as input. Following the procedure in CPO Xu et al. (2024), we
assign the translation with the highest score as the chosen response, the one with the lowest score
as the rejected response, and discard the middle-scoring translation. The resulting reward model
achieves 88.53% validation accuracy. Further details on the formation of preference data can be
found in Appendix D, and detail of training can be found in Appendix G.2.

Long-Form Response Dataset. We use the Dahoas/full-hh-rlhf1 dataset, which is widely
adopted for LLM alignment. This dataset is designed to improve AI assistant behavior in terms of
helpfulness and harmlessness. Each sample consists of a prompt and two responses, with one labeled
as preferred based on human judgments. Since the response lengths in the dataset vary significantly,
we select samples based on the length of the chosen responses. Specifically, we construct the training
set using the top 6K samples with the longest chosen responses from training set, and using the top
1024 longest chosen responses from the testing set to construct test set. We use the 6k size training
set to train a reward model, which achieves a validation accuracy of 83.78%.

Program Synthesis Dataset. We evaluate performance on the official testing set of the Mostly Basic
Python Programming (MBPP) dataset (Austin et al., 2021), which comprises 500 problems (Task IDs
11-510). As discussed, code generation offers a direct reward signal. The resulting pass rate serves as
the direct reward signal, eliminating the need for a separate reward model.

1https://huggingface.co/datasets/Dahoas/full-hh-rlhf
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5.2 EVALUATION METRICS

Paragraph-Level MT. We use SEGALE (Wang et al., 2025), a framework that extends existing
metrics to long-text translation. Following CPO (Xu et al., 2024), we apply COMET2 within the
SEGALE framework, thereby extending COMET to the paragraph level. To better capture contextual
quality, rather than feeding only source, translation, and reference sentences into COMET, we follow
Vernikos et al. (2022) and incorporate three concatenated sentences as inputs. We refer to this context-
augmented version as SEGALEcomet. SEGALE further reports the Null Alignment (NA) Ratio, the
proportion of source or translation sentences that fail to align, often due to over- or under-translation.

Long-Form Responses. We evaluate response quality using two complementary metrics: Average
Reward measures the mean score assigned by the reward model. This reflects the degree of alignment
with helpfulness and harmlessness preferences. We introduce this metric to directly test whether
TMPC achieves stronger alignment when the reward model and evaluation are consistent. To avoid
the potential for “cheating” in reward-based scoring, we also report Win Rate, which captures the
proportion of pairwise comparisons in which a model’s response is preferred over a reference response
by GPT-4 (OpenAI et al., 2024). Following the ARGS evaluation protocol (Khanov et al., 2024), GPT-
4 is prompted to assess overall response quality, considering helpfulness, harmlessness, relevance,
accuracy, depth, creativity, and detail. The full evaluation prompt is provided in Appendix F.

Program Synthesis. Following standard practice, we directly report the Pass Rate, defined as the
proportion of problems for which all associated test cases are passed.

5.3 BASELINES

We evaluate all training-time alignment methods on LLaMA-3.1-8B-Instruct and also adopt it as the
backbone for all test-time alignment methods, including TMPC. Implementation details of TMPC,
including parameters and prompt design, are provided in Appendix H.

Test-Time Alignment Methods. We compare TMPC against the following representative approaches.
(1) ARGS (Khanov et al., 2024), a token-level decoding method that incorporates reward model
guidance during inference. (2) RAIN (Li et al., 2024), which leverages tree-structured self-evaluation
without relying on an external reward model. (3) RE-Control (Kong et al., 2024), which modifies
internal representations by training a value function on hidden states with the Bellman equation
and applying gradient-based optimization to align preferences. (4) GenARM (Xu et al., 2025), an
approach that trains an autoregressive reward model to assign token-level rewards conditioned on
past tokens, and combines these reward scores with next-token probabilities during inference. (5)
TPO Li et al. (2025), which translates reward signals into textual critiques and uses an LLM to
provide feedback for iterative refinement. (6) Best-of-N Sampling, a widely adopted baseline that
generates multiple candidates and selects the highest-scoring one.

To ensure fair comparison, ARGS and RE-Control are equipped with the same reward model as
TMPC. RAIN requires neither a reward model nor additional training data. GenARM trains its own
autoregressive reward model using the same training data employed for TMPC’s reward model. For
TPO, we set the number of iterations to 4 to ensure it generates no fewer responses than TMPC,
although this involves more LLM calls for textual losses and gradients. Further implementation
details for all baselines, including a breakdown of TPO’s LLM calls, are provided in Appendix G.1.

Training-Time Alignment Methods. We further compare TMPC with training-time alignment
methods. We include supervised fine-tuning (SFT) on the same preference dataset, which often
serves as a strong baseline in translation. In addition, we evaluate SimPO (Meng et al., 2024) and
DPO (Rafailov et al., 2023), which represent recent and mainstream approaches to preference-based
training-time alignment, respectively. Details of training procedures are reported in Appendix G.2.

Task-Specific Settings. For paragraph-level MT, we include two high-performance models for
additional context: GPT-4o, which serves as a strong upper bound despite not being specialized
for translation (Shahriar et al., 2024), and Qwen-2.5-14B, a competitive open-source alternative
for Chinese language tasks. For program synthesis, our comparison focuses on Best-of-N sampling
and TPO. Token-level guided decoding methods are excluded as functional correctness is a holistic
property of the entire code sequence, making them ill-suited for this task.

2Unbabel/wmt22-comet-da
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zh→ en zh→ ru zh→ de
Methods Test-Time

SEGALEcomet ↑ NA Ratio ↓ SEGALEcomet ↑ NA Ratio ↓ SEGALEcomet ↑ NA Ratio ↓

GPT-4o 2024-08-06 - 94.58 0.10 93.74 0.00 94.54 0.00
Qwen-2.5 (14B) - 94.43 0.18 90.47 3.08 92.98 1.24
Llama-3.1 (8B) × 84.36 10.47 86.28 4.19 88.97 4.43

Llama-3.1SFT × 93.54 0.34 89.11 1.92 93.47 0.19
Llama-3.1SimPO × 91.74 1.66 84.56 2.53 93.40 0.00
Llama-3.1DPO × 90.23 1.33 82.15 6.62 93.48 0.00

Llama-3.1ARGS ✓ 63.99 31.53 43.03 32.96 51.97 40.01
Llama-3.1RAIN ✓ 58.52 37.18 66.29 27.79 67.43 27.15
Llama-3.1RE-Control ✓ 86.39 7.06 84.97 5.83 87.16 5.96
Llama-3.1GenARM ✓ 61.18 34.73 55.67 39.52 60.96 34.58
Llama-3.1TPO ✓ 88.81 5.63 92.63 0.67 87.67 6.79
Llama-3.1Best-of-60 ✓ 90.97 3.58 84.86 3.89 82.74 10.78
Llama-3.1TMPC ✓ 94.62 0.00 91.53 1.19 91.73 2.40

Table 1: Results on the WMT’24 literary translation shared task (zh→xx directions). Results are
grouped into SoTA and base models, training-time alignment methods, and test-time alignment
methods. For test-time methods, the best-performing results are bold, and the second-best are
underlined. Proposed methods are highlighted .

5.4 QUANTITATIVE RESULTS

Results on Paragraph-Level MT. As shown in Table 1, TMPC consistently outperforms all test-
time alignment baselines. It notably surpasses a strong Best-of-60 baseline with a fraction of the
computational budget, underscoring the efficiency of predictive planning over naive sampling. For
the zh→en direction, TMPC’s performance even exceeds GPT-4o, highlighting its effectiveness
on complex alignment tasks. TMPC’s success stems from mitigating the failure modes of other
paradigms. For instance, TPO exhibits inconsistent performance; while competitive in zh→ru, it is
prone to factual inconsistencies in zh→en and zh→de, reflected in high NA Ratios. Similarly, while
RE-Control is more stable than myopic methods like ARGS and RAIN, it still underperforms and
lacks a strategic refinement mechanism. TMPC inherits the stability of response-level refinement
while avoiding the compounding errors of token-level guidance, striking a more effective balance.

LLaMA-3.1-8B SFT DPO
SimPO RAIN ARGS

Re-Control
GenARM TPO

Best-of-10
Best-of-20

TMPC
1
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g 
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d 2.95

-0.91

3.95
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1.19

2.24
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1.99

4.19 4.18 4.36 4.60
Average Reward of Methods

Method Type
Base Model
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Test-time

Figure 3: Results on the long-form responses. Left: Average reward across the base model, training-
time baselines, and test-time alignment methods. Right: GPT-4 win rate of TMPC against DPO and
Best-of-20. All methods use LLaMA-3.1-8B-Instruct as the backbone for fair comparison.

Results on Long-Form Responses. We present the results in Figure 3. TMPC outperforms the
strongest training-time (DPO) and test-time (Best-of-20) baselines in head-to-head comparisons
judged by GPT-4. The efficiency of TMPC is particularly notable: TMPC requires only 3 iterations
with 3 rollouts each, in addition to the initial LLM output, totaling 10 generations. In contrast, Best-
of-20 produces twice as many outputs but still underperforms, showing that its advantage stems from
TMPC rather than sheer sampling volume. Furthermore, TMPC provides a more stable alignment
path than other test-time paradigms3. TMPC bypasses fragile textual critiques and mitigates error
accumulation by iteratively planning from a buffer of validated subgoals.

3TPO results are reported at iteration=2 in HH-RLHF dataset, as iteration=4 led to out-of-memory errors.
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Figure 4: The pass rates on MBPP.

Results on Program Synthesis. As shown in Figure 4, TMPC
achieves a 61% pass rate, outperforming all baselines. This
result highlights the limitations of unstructured approaches.
Best-of-N sampling, even with a large budget (N = 35), is
constrained by the model’s initial capabilities and relies on
sampling chance. TPO shows only marginal gains with more
iterations, reaching a pass rate of just 48% after 4 iterations.
In contrast, TMPC systematically explores solution pathways
by building upon partially correctness. Instead of merely hop-
ing for a correct answer, TMPC maximizes the possibility of
constructing one, allowing it to completely solve problems.
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(b) Reward model impact
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Figure 5: Robustness and sensitivity analysis of TMPC. (a) Robustness to hyperparameter choices,
with performance varying by less than 0.1 points across different buffer and segment sizes. (b)
Robustness to imperfections in the reward signal, including both injected noise and lower accuracy. (c)
SEGALEcomet scores across iterations on zh→en translation. The standard TMPC steadily improves
with more iterations, while a degraded version mimicking naive iterative refinement stagnates.

5.5 ROBUSTNESS AND SENSITIVITY ANALYSIS

Figure 5 illustrates TMPC’s robustness and sensitivity on long-form responses (full numerical results
are in Appendix 5.5). As shown in Figure 5a, the framework is insensitive to its core hyperparameter
choices; variations in buffer and segment size alter the average reward by less than 0.1 points,
with performance consistently remaining superior to other test-time alignment methods. Figure 5b
further tests the framework’s robustness to reward model quality. Using a weaker reward model
has a limited negative impact despite disturbing the optimization direction, while injected reward
noise has a much smaller effect. We employ GRM (Yang et al., 2024) as the weaker RM, using
the Ray2333/GRM Llama3.1 8B rewardmodel-ft checkpoint, which achieves 77.54% validation
accuracy. This resilience to noise stems from TMPC’s subgoal buffer, which progressively filters
out low-quality subgoals. For paragraph-level MT, we analyze the zh→en direction to reduce
confounds from the base model’s familiarity with specific languages. Figure 5c reports iteration-
wise performance to illustrate the trend of improvement over time The results show that TMPC
performance steadily improves up to three iteration, after which extra iterations lead to a slight decline.
In contrast, reducing TMPC to naive iterative refinement (buf=1, seg=1) yields no initial gains and
fails to improve with more iterations, highlighting the importance of TMPC’s two principles.

6 CONCLUSION

We introduced TMPC, a test-time predictive planning framework for preference alignment. Under
the sequential decision-making view, existing methods suffer from two fundamental limitations:
guided decoding operates at the token level and faces the curse of horizon, while iterative refinement
operates at the response level and suffers from the curse of dimensionality. TMPC strikes a balance by
identifying locally-optimal trajectory segments as subgoals in hindsight, and then leveraging a buffer
of these subgoals to iteratively refine the full-horizon plan. This design mitigates both challenges and
enables consistent improvements in long-form alignment without modifying the model parameters.
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ETHICS STATEMENT

This work introduces Textual Model Predictive Control (TMPC), a general framework for the test-time
alignment of large language models. Our primary goal is to develop more stable and efficient methods
for aligning models with beneficial human preferences, such as helpfulness and harmlessness. All
experiments were conducted on publicly available and widely used academic benchmarks (HH-RLHF,
WMT’24, and MBPP), and no new data involving human subjects was collected.

The primary ethical consideration of our work is that the alignment outcome is determined by the
provided reward signal. While we have used it for positive alignment, a malicious or biased reward
signal could steer a model toward generating harmful, unfair, or toxic content. TMPC, like other
alignment techniques, could potentially amplify biases present in the preference data used to train the
reward model. We therefore stress the importance of careful design, auditing, and red-teaming of
reward models before deploying systems using this technology in sensitive, real-world applications.
We believe that by providing a more transparent and controllable test-time alignment mechanism, our
work can contribute positively to the development of safer AI systems.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. Our implementation of TMPC,
along with all experimental scripts, will be made publicly available in a permissively licensed
open-source repository upon publication.

The core methodology is described in Section 4, with a detailed, task-agnostic algorithm provided
in Algorithm 1. All datasets used in our experiments—HH-RLHF, WMT’24, and MBPP—are
public benchmarks, with details on their specific versions and preprocessing steps provided in
Section 5 and Appendix G. All hyperparameters, prompt templates, and task-specific implementation
details necessary to replicate our results for long-form response generation, machine translation, and
programmatic synthesis are documented in Appendix H. We believe these resources provide a clear
and sufficient basis for the community to reproduce and build upon our findings.
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