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Abstract

STOchastic Recursive Momentum (STORM)-
based algorithms have been widely developed to
solve one to K -level (K > 3) stochastic optimiza-
tion problems. Specifically, they use estimators
to mitigate the biased gradient issue and achieve
near-optimal convergence results. However, there
is relatively little work on understanding their gen-
eralization performance, particularly evident dur-
ing the transition from one to K-level optimiza-
tion contexts. This paper provides a comprehen-
sive generalization analysis of three representative
STORM-based algorithms: STORM, COVER,
and SVMR, for one, two, and K -level stochastic
optimizations under both convex and strongly con-
vex settings based on algorithmic stability. Firstly,
we define stability for K -level optimizations and
link it to generalization. Then, we detail the sta-
bility results for three prominent STORM-based
algorithms. Finally, we derive their excess risk
bounds by balancing stability results with opti-
mization errors. Our theoretical results provide
strong evidence to complete STORM-based al-
gorithms: (1) Each estimator may decrease their
stability due to variance with its estimation tar-
get. (2) Every additional level might escalate the
generalization error, influenced by the stability
and the variance between its cumulative stochas-
tic gradient and the true gradient. (3) Increasing
the batch size for the initial computation of esti-
mators presents a favorable trade-off, enhancing
the generalization performance.
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1. Introduction

In stochastic optimization problems, variance reduction tech-
niques (Fang et al., 2018; Zhou et al., 2020; Wen et al., 2018;
Qi et al., 2021; Liu et al., 2019; 2024) can significantly mit-
igate the negative impact of inherent variance due to the
stochastic gradients. In particular, Stochastic Recursive Mo-
mentum (STORM) (Cutkosky & Orabona, 2019) stands out
for its simple implementation and near-optimal convergence
results. STORM carefully designs momentum-based estima-
tors for model updating, which can dynamically adapt to the
optimization challenge without a large batch or checkpoint
gradient computations. Due to these advantages, STORM
has been extensively used in various practical applications:
reinforcement learning (Hu et al., 2019; Mao et al., 2022),
model-agnostic meta-learning (Ji et al., 2022; Qu et al.,
2023a), risk-averse portfolio optimization (Tran Dinh et al.,
2020; Jiang et al., 2022), and deep AUC maximization (Yuan
et al., 2021; Liu et al., 2024).

Subsequently, various STORM-based algorithms (Hu et al.,
2019; Yuan et al., 2021; Chen et al., 2021; Jiang et al., 2022;
Li et al., 2023a) have extended this methodology to address
stochastic two-level and K-level (where K > 3) optimiza-
tion problems. In their definitions, two-level stochastic
optimizations are equivalent to stochastic compositional op-
timizations and similar to K -level stochastic optimizations
(Wang et al., 2017; Ghadimi et al., 2020; Chen et al., 2021),
which pose a challenge in obtaining a biased estimate of the
objective function and gradients (Dann et al., 2014; Wang
et al., 2017). By leveraging the high-precision estimations,
STORM-based algorithms have successfully addressed the
corresponding challenge.

In particular, in two-level optimizations, one of the most
popular STORM-based algorithms COVER (Qi et al., 2021)
employs estimators for both the value of the inner function
and the value of the gradient. When increasing to K-level
optimizations, inherent variances can be magnified, leading
to significant gradient deviations and potential explosions.
To mitigate this, the near-optimal algorithm SVMR (Jiang
et al., 2022) employs estimators for all function values and
gradients, except the outer function value, and applies gradi-
ent projection techniques to the function gradient estimator.
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Although STORM-based algorithms have achieved many
breakthroughs in algorithmic convergence, their effect on
generalization performance is less understood (Hardt et al.,
2016; Yang et al., 2023), i.e., how the model trained by the
training samples would generalize to test samples, especially
for optimizations with higher levels. To clearly understand
the generalization of these algorithms, we consider the fol-
lowing two key questions.

(1) Compared to SGD-based Algorithms, do these
estimators prove weaker or stronger generaliza-
tion performance in STORM-based algorithms?
(2) As escalating to the K -level optimization, how
does this increased complexity impact the gener-
alization performance of the estimators?

Specifically, as the success of STORM lies in leveraging es-
timators to tackle biased gradient issues, exploring the influ-
ence of these estimators on generalization performance en-
riches the study (Yuan et al., 2019; Hu et al., 2019; Ghadimi
et al., 2020; Balasubramanian et al., 2022; Qu et al., 2023b).
Additionally, in K -level optimization, the gradient estimator
at each level is influenced by the function value estimator
at the preceding level, which, in turn, indirectly affects the
function value estimator at the subsequent level (Chen et al.,
2021; Jiang et al., 2022). Therefore, addressing the second
question can offer guidance for designing corresponding
estimators in more complex and general scenarios.

To answer the above two questions, this paper leverages the
algorithmic stability to systematically explore the general-
ization of STORM-based algorithms from one to K-level
stochastic optimizations. We believe that this exploration
is important to gain insights into STORM’s scalability and
effectiveness across different tiers of stochastic optimization.
In particular, our contributions are summarized as follows.

1. To achieve our goal, we first introduce a novel definition
of uniform stability, specifically for K -level optimizations.
Leveraging this definition, we establish a quantitative rela-
tionship between generalization error and stability in the
context of K -level optimization. Then, we analyze the sta-
bility and optimization errors for three distinct algorithms:
STORM, COVER, and SVMR, corresponding to one, two,
and K-level stochastic optimizations in both convex and
strongly convex settings. Finally, by analyzing the interplay
between stability and optimization errors, we ascertain their
excess risks in these settings.

2. Our theoretical results indicate that fewer iterations
and proper step sizes will improve algorithm stability of
stability in the convex setting. For the excess risk, our
results demonstrate that we need about 7' < max(ni/ 2),
Vk € [1, K], iterations to achieve the ideal excess risk rate.
In the strongly convex setting, a proper step size will not

necessarily make the algorithm stable enough, which must
be combined with expanding the batch size to ensure stabil-
ity. Moreover, T =< max(n,z/ %) iterations should be used,

which is fewer than the convex setting.

3. Based on our analysis, we can successfully address the
above questions. Firstly, we find that the stability of the
algorithm can be compromised by each estimator, due to
the variance between the estimator and its estimated target,
which degrades the generalization performance. Moreover,
as the number of levels increases, two main factors impact
the algorithm’s generalization error: the first is the influence
of the new level on the algorithm’s stability, and the second
is the variance between the combined stochastic gradient
and the true gradient across all levels. There is one more
observation in our analysis: employing more samples for the
initial computation of estimators may enhance performance
without significantly increasing computational costs. This
strategy presents a viable approach to improve the efficiency
of STORM-based algorithms.

2. Related Work

Algorithmic stability and Generalization. In learning the-
ory, the stability of an algorithm shows that small changes
in the training data result in only minimal differences in
the predictions made by the model (Kearns & Ron, 1997;
Vapnik & Chapelle, 2000; Cucker & Smale, 2002). The
landmark work (Bousquet & Elisseeff, 2002) introduces the
notion of uniform stability and establishes the generaliza-
tion of ERM based on stability, and it has a deep connec-
tion with (Cesa-Bianchi et al., 2004; Rakhlin et al., 2005;
Kutin & Niyogi, 2012). Furthermore, (Bartlett & Mendel-
son, 2002; Poggio et al., 2004; Shalev-Shwartz et al., 2010)
discuss the relationship between algorithmic stability and
complexity measures, and use it on general conditions for
predictivity. (Hardt et al., 2016) contribute significantly to
the understanding of algorithmic stability in optimization
algorithms, particularly gradient descent. More recently, (Li
et al., 2023b) presents in-context learning, showing its ef-
fectiveness and stability in different data scenarios. (Sakaue
& Oki, 2023) demonstrates that coordinate estimation leads
to tighter generalization bounds.

Stochastic Compositional Optimization. Extensive stud-
ies have mitigated the issue of bias in gradient estimation
due to combination functions. (Wang et al., 2017) uses
stochastic gradients for internal function value computation.
Variance reduction techniques can accelerate the efficiency
of Stochastic Compositional Gradient Descent (SCGD). Al-
gorithms such as SAGA (Zhang & Xiao, 2019), SPIDER
(Fang et al., 2018), and STORM (Cutkosky & Orabona,
2019) have been integrated into SCGD. Later, some stud-
ies (Yuan et al., 2019; Zhang & Xiao, 2021; Tarzanagh
et al., 2022) have successfully linked stochastic two-level or
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K-level optimization challenges. In K-level optimization,
(Yang et al., 2019) leads to the creation of an accelerated
technique (A-TSCGD). Subsequently, (Balasubramanian
et al., 2022) introduces the NLASG method, which expands
the scope of the NASA (Ghadimi et al., 2020) algorithm to
broader applications. In a similar vein, (Chen et al., 2021;
Jiang et al., 2022) extend STORM for estimating function
values to K levels. However, all the above works only focus
on convergence analysis.

3. Preliminaries and Warm Up

In this section, we begin by introducing three optimization
problems that we address, accompanied by three popular
STORM-based algorithms designed for these specific prob-
lems. Then, we will present the concept of stability as
applied in statistical learning theory (James et al., 2013). To
this end, we present the first theorem in this paper.

3.1. One to K-level Stochastic Optimziations

In this paper, we extend algorithmic stability analysis
to the most popular STORM-based algorithms: STORM
(Cutkosky & Orabona, 2019), COVER (Qi et al., 2021),
and SVMR (Jiang et al., 2022) for stochastic optimization
problems with levels 1, 2, and K > 3, respectively. De-
tailed update rules for these algorithms are presented in
Appendix A, Algorithms 1-3. Their optimization formula-
tions are introduced subsequently.

One-level optimization. Typically, the one-level stochas-
tic optimization problem (Hardt et al., 2016; Cutkosky &
Orabona, 2019; Bousquet et al., 2020; Levy et al., 2021) can
be formulated as follows

min{ F(z) = E,[f, )] }, M

TeX

where f : R — R% on a convex domain X € RY, v is
an independent random data sample, and F' is the empirical
risk mingex {Fs(z) = fs(z) = 230, fo,(z)}. Let
S ={v1, -+ ,v,} be a dataset from which the samples are
drawn independently and identically (i.i.d.). To facilitate the
expansion below, we give more symbol definitions: S’ is
the i.i.d copy of S, where " = {v],--- , v/}, and S" is the
i.i.d. copy of S where only i-th data point v; in S in change
to v}. Compared with SGD which directly uses stochastic
gradients for updates, the main part of STORM (Cutkosky
& Orabona, 2019) is to leverage the corrected momentum
variance reduction estimator for updates.

Two-level optimization. We consider the two-level stochastic
optimization problem (Yuan et al., 2019; Yang et al., 2019;
Balasubramanian et al., 2022) as follows

min{ F(z) = f 0 g(x) = By [y (Bulgu ()]}, @)

zeX

where f Rh — R% and ¢ : RY — R% on
a convex domain X € R? v and w are independent
random variables. Let S = S, U S,, where S, =
{v1,--+,vp} and S, = {w1, -+ ,wm}, and the empir-
ical risk is defined as mingex{Fs(z) := fs(gs(x)) =
v i oo > 071 9w, (x))}. In this scenario, altering a
single data point can affect either S, or S,,. For Vi € [1,n]
and Vj € [1,m], S“ denotes the version of S where
only the i-th point in S, is replaced by v, with S, re-
maining unchanged. S’ is defined similarly. The i.i.d.
copied dataset S’ is represented as S = S}, U S/, where
S, ={vy,...,v,}and S/, = {w],...,w,,}. Note that the
two-level optimization problem in (2) can also be consid-
ered as the compositional optimization (Yuan et al., 2019;
Yang et al., 2019; Balasubramanian et al., 2022; Hu et al.,
2023). Among the STORM-based algorithms for two-level
stochastic optimization, we will analyze the stability and
generalization of the most popular algorithms, COVER (Qi
et al., 2021). Specifically, COVER utilizes two estimators
for both the function and gradient values of the inner func-
tion, namely u; and vy.

K-level optimization. The K-level stochastic optimization
problem (Chen et al., 2021; Jiang et al., 2022) can be formu-
lated as follows

iréi;(l{F(x):fKofK—lo"'ofl(x) 3

=E,olfk " (Bl @D},

where fi : R%-1 — R% on a convex domain X € RY,
k € [1,k] and dy = d. v*) are independent random vari-
ables, where k € [1,K]. Similarly, let S = ulesk,
where S;, = {u§’“), e ,V,si)}, the empirical risk is de-

fined as minxex{Fs(J}) = fK,S o} fK—LS"'fLS =
(K)

v v

S f (TR A (AGS))) In the
K -level optimization, where changing one sample data can
occur in any layer of the function, we define: S** be the i.i.d.
copy of S where only the I-th data point 2/} in Sy, is replaced
with v}, where k € [1,k] and [ € [1,n;]. Moreover, we
denote S” = UK | S, where S() = {1/9)/, . ,V,(L?/}. In
this scenario, we consider SVMR (Jiang et al., 2022) with
multiple estimators, which obtains the best convergence re-
sult. In particular, u®) represents the estimate of the k-th
layer function value and v(*) represents the estimate of the
k-th layer function’s gradient value.

3.2. Concept of Excess Risk

As we all know, excess risk is an evaluation for the gener-
alization performance (Bousquet & Elisseeff, 2002; James
et al., 2013; Charles & Papailiopoulos, 2018), which is used
to analyze the three tackled STORM-based algorithms in
this paper. For a randomized algorithm A, denote by A(.S)



Stability and Generalization for Stochastic Recursive Momentum-based One to /K -Level Stochastic Optimizations

its output model based on the training data S. By denot-
ing F(z,) = infyex F(x) and F(z5) = inf,ex Fs(z),
then the excess risk is Eg 4 [F'(A(S) — F(x.)]. According
to the decomposition in (Bousquet & Elisseeff, 2002) and
Fs(x?) < Fg(x,) by the definition of 7, we can obtain
the excess risk as follows

Eg a[F(A(S)) — F(x.)] < Es,a[F(A(S)) — Fs(A(9))]
+ Ega[Fs(A(S)) — Fs(x?)]. 4)

We refer to the term Eg 4 [F'(A(S))— Fs(A(S))] as the gen-
eralization error, as it quantifies the generalization shift from
training to testing behavior. Similarly, Eg 4[Fs(A(S)) —
Fs(z?)] is termed the optimization error, measuring how
effectively the algorithm minimizes empirical risk. The
generalization error in this paper is informed by analyses
from prior studies (Cutkosky & Orabona, 2019; Qi et al.,
2021; Jiang et al., 2022). Unlike these works, which pri-
marily focus on convergence analysis, our main objective is
to estimate the generalization error through the algorithmic
stability approach (Bousquet & Elisseeff, 2002). Next, we
provide the definitions of stability.

Definition 1 (Uniform Stability). The uniform stability of
the three stochastic optimizations is defined as follows

(1) In the one-level optimization, an algorithm A is uni-
formly stable for (1) if Vi € [1,n], there holds
EAll[A(S) — A(S)] < e

(ii) In the two-level optimization, an algorithm A is uni-
formly stable for (2), if Vi € [l,n] and Vj €
[1,m], there holds E4[||A(S) — A(S"")]|] < ¢, and
EallA(S) = A(S7)]]] < €w.

(iii) In the K-level optimization, an algorithm A is uni-
formly stable for (3), if Vk € [1, K] and VI € [1,ng],
there holds E4[||A(S) — A(S5F)||] < e

The expectation E 4 [-] is taken w.r.t. the internal randomness
of A not the data points for the above definition.

We aim to elucidate the connection between uniform stabil-
ity (as outlined in Definition 1) and the generalization error,
a relation applicable across all randomized algorithms. To
achieve this, we state the following assumption.

Assumption 1 (Lipschitz Continuity). The Lipschitz conti-
nuity of our focused problems is proposed as follows

(1) In the one-level optimization problem, there exists a
constant L, such that f, is Lipschitz continuous with
parameters Ly, i.e., sup,, || f, (z) — fu(Z)]| < L¢llx —
2|, forall z, # € R%.

(i) In the two-level optimization problem, there exist two
constants Ly and Lg4, such that f, and g, are Lip-
schitz continuous with parameters Ly and L, re-

spectively, i'e'» sup,, ”fV(y) - fV(g)” S Lny -

7| forall y, 9 € R%, and sup,, ||g.(z) —
Lgy||z — #|| for all z, & € RY.

9o (@) <

(iii) In the K-level optimization problem, there exists a
constant L, such that Vk € [1, K], fg(k) are Lips-
chitz continuous with parameter L, respectively, i.e.,

(k) (k) , A ~ ~
SUD, () I W)= @I < Lelly=19l, Vy,9 €
Rék-1,

3.3. Generalization of the K -level Optimization

Although existing studies have established relationships
between the generalization error and the stability under one-
level (Hardt et al., 2016) and two-level (Yang et al., 2023)
stochastic optimizations, the more complex and general
K-level stochastic optimization remains unexplored. There-
fore, by integrating the stability concept, we specifically
define the following theorem for the K -level optimization,
which aims to show the quantitative relationship between
the generalization error and the stability.

Theorem 1. If Assumption 1 (iii) holds true and the ran-
domized algorithm A is uniformly stable, then for K > 3,
Es a[F(A(S)) — Fs(A(S))] is bounded by

K-—1
Es A[Vark(A(S)]
Lfer + ALK e + L : ,

where Vary(A(S)) = E,o (|| fx © fum10--- 0 f1(A(S) —
7% 0 fumro o0 f(A(S)2)

Remark 1. Theorem 1 establishes the quantitative relation-
ship between the generalization and the uniform stability
for any randomized algorithm applied to K -level stochastic
optimizations. In particular, when K = 1, i.e., the one-
level stochastic optimization, where F'(z) = E,[f,(z)]
and Fg(z) = 23" | f,,(z), we can see the absence
of randomness with respect to €, Vk € [2, K]. Conse-
quently, we derive Eg 4[F(A(S)) — Fs(A(S))] < Lye,
consistent with the findings in (Hardt et al., 2016). For
the two-level scenario, i.e., K = 2, we obtain L?ceg +
4L%e1 + L\/Es a[Vari(A(S))]/n1. Here, the variance
term Eg 4[Var; (A(S))] arises from the estimator used for
the inner function values. We only need to alter the nota-
tions in Assumption 1 (iii) to obtain results consistent with
(Yang et al., 2023).

Remark 2. In Theorem 1, we can find the generalization
error depends not only on stability but also on the variance
term, i.e., \/Eg a[Var,(A(S)]/ni due to the estimators.
An interesting observation is that the variance term is not
only determined by the current layer function but also by
the combined function of the total number of layers, i.e., for
Vary (A(S)), which is determined by f o fr_10---0 fi,
instead of fi. This implies that with an increasing number
of levels, we should enlarge the sample size in order to
achieve a better generalization error.
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After establishing the quantitative relationship between the
generalization error and the stability bound, the next goal is
to establish stability bounds for these corresponding algo-
rithms, i.e., STORM, COVER, and SVMR. In next section,
we will introduce how to approach this in detail.

4. Stability and Generalization

In this section, we present the main results for various op-
timization problems, which include stability bounds and
optimization errors, and ultimately derive the excess risks.
Different results for the convex and strongly convex settings
will be shown in separate subsections. Before giving the
theoretical results, we state the following assumptions to
facilitate our proofs.

Assumption 2 (Empirical Variance). With probability 1
w.r.t. S, there exist constants to bound the following:

(1) In the one-level optimization problem, there
exist two constants oy and oy, such that

suPgex o i I foi () — fs(2)]?] o} and
suPgex 3 2oien IV Fu (@) = Vs (@)|?]

(ii)) In the two-level optimization problem, there

exist three constants oy, J; and oy, such that

SUPyex o7 2oyoalllge, (@) — gs@)IP] < of,

SUPLex 1y 2yt V9w, () = Vgs(2)|?) < o7, and
supycpa = iy IV (y) = VEs@)II?] < 0.

(iii) In the K-level optimization problem, there exist two
constants oy and o7, such that for 1 < k < K, there

ng (@)
holds supyex, = S22 (12 ()~ fus(w) 2] <
n ()
of and  supyeg, oIV () -
Vs @)I?] < o3
Assumption 3 (Smoothness and Lipschitz continuous gra-

dient). With probability 1 w.r.t. S, there exist constants to
make following conditions hold true.

<
2
<oj.

(i) In the one-level optimization, the problem fs(-) is
L-smooth, ie., |Vf,(x) — Vf,(2)|| < L||z — 2|,
Vr,r' € X.

(i) In the two-level optimization, the problem
Fs(gs()) is L-smooth, i.e., | Vgs(2)V fs(gs(x)) —
Vgs(@)V s(gs(@)Il < Lz — 2’|, Vo,z" € X.
Also, fs(-) has Lipschitz continuous gradients,

ie.|V/s(y) — Vsl < Crlly — gl for al
v, 7 € R%.

(iii) In the K-level optimization, the problem Fs(-) is L-
smooth, i.e., |[IIX,VF, ¢(x) — IIX,VF, s(a/)|| <
Lz — &'||, Yz,2’ € X, where VFj,s(x) =
Vfes(fi-1,5(-- (fi,s(x))))) and VF g(z) =

V fi,s(z). Additionally, Yk € [1, K], the k-level
function has Lipschitz continuous gradients, i.e.,

Hka,s(y) — Vies@| < Lylly — gl forall y, 5 €
Rk

Assumptions 2-3 are widely used in convergence and
generalization analysis (Charles & Papailiopoulos, 2018;
Cutkosky & Orabona, 2019; Zhang et al., 2021; Qi et al.,
2021; Jiang et al., 2022; Yang et al., 2023), which ensure
the convergence and stability. It is important to note that
Assumption 2 in generalization analysis shows the differ-
ence between the stochastic gradient and the empirical risk
gradient V fg(z). We also present the following definition
for our focused settings, i.e., convex and strongly convex.

Definition 2. A function F'is p-strongly convex if for all
z, x' € X, wehave F(z) > F(2') + (VF(2'),z — 2') +
Ellx — 2'||?, and if u = 0, we say that F' is convex.

4.1. Convex setting

Stability Results. The following theorems establish the uni-
form stability for the three optimizations under the convex
setting, i.e., convex Fg. All the theoretical results in this
subsection are under Assumptions 1-3.

Theorem 2 (One-level, Stability, Convex). Consider
STORM in Algorithm 1 withn, = n < 3% and B, = B €
(0,1), Yt € [0,T — 1]. Then, the outputs A(S) = zr at
iteration T' are uniformly stable with

T—1 LT
_ ) f
€= O<SLSlp17 Z Var(v;) + " ),
7=0
where Var(v;) = (Ea[llv; — Vs (a)[IP)/2
Remark 3. We can find that in (Hardt et al., 2016), the
uniform stability for SGD with the same setting is of the
order O( Lf:T ). However, using STORM adds another term

Supg 7 Z]T:_Ol Var(v;) caused by the estimator. This new
term is determined by the difference between the estimate
v; and the gradient of the empirical risk V fg(x;). In other
words, STORM may not be as stable as SGD.

Theorem 3 (Two-level, Stability, Convex). Consider
COVER in Algorithm 2 with n, = n < ﬁ and By = B €
(0,1), Yt € [0,T — 1]. Then, the outputs A(S) = zr at
iteration T' are uniformly stable with

T-1
€, + €, =0 (LgC’f supn Z (Var(u;) + Var(v;))
5

Jj=0

+ LyogVT +

LyLynT LgLfnT)
m n ’

where Var(u;) = (IEA[||uj—gS(:Ej)H2])1/2 and Var(v;) =
(Ealllv; — Vgs(a;)[I*])'/?
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Remark 4. When comparing the stability of COVER in
Theorem 3 with STORM, particularly under the condition
where n = m, COVER in the two-level stochastic optimiza-
tion is characterized by two additional terms: L fafn\/T
and Ly,Cysupgn Zf;ol Var(v;). The first term emerges
due to the empirical error of the outer function. The second
term is generated by the provided estimator from COVER
for the inner function values, which accounts for the differ-
ence between the inner function estimator and the empirical
risk of the inner function value.

Theorem 4 (K -level, Stability, Convex). Consider SVMR
in Algorithm 3 with n, = m and By = B € (0,1),
Vt € [0, T — 1]. Then, the outputs A(S) = zr at iteration
T are uniformly stable with

K T-1 K i—1 Koy G
e =0(supy > D DTLETT T Vary(w)
k=1 s=1 i=1 j=1
T-1 K K
(i=3)i L T
+sup77 ZLK+ 2 Var; (v +Z )
s=1 i=1

where Var; s(u) = (IEAHu - fj,s(ugjfl))HQ)l/2 and
Var(v) = (Ballos” =V fis(ui ™) )12,

Remark 5. Compared to the stability of COVER, es-
pecially when ny is equal Vk € [1,K]|, SVMR in-
troduces additional terms due to its estimators. Let
us discuss the term introduced by the function gradi-

ent estimator supg 772 ZZ 1L K+ : Var; +(v), ac-
cumulating an extra factor of K due to the need for
K estimators to estimate the function gradient at each
level. As for the term from the fu(ncgi)on value estimator
SUPSUZ Zz 12 K A Var;s(u), it be-
comes more complex in K level optimization, involving
three cumulative summations. This complexity arises from
interactions between multiple levels, where estimators at
different levels have influence instead of them at the same
level. The derivatives of the function at the each level are
affected by the function value estimator at the previous level
and, in turn, impact the function value estimator at the next
level, indicating their increased importance. The omitted
term relates to the use of the gradient value estimator for
the outer function and is equal to Lo fm/T in Theorem 4.
This omission transforms the empirical variance of the outer
function into a discrepancy between the gradient estimator
and the empirical gradient value of the outer function.

Remark 6. Regardless of any algorithm, i.e., SGD or
STORM-based, or any number of levels, the choice of step
size n will affect the stability bound, which indicates proper
selection of 7. In addition, we can find that using fewer
iterations can make the algorithms more stable, which may
be a potential approach to enhance the generalization of
STORM-based algorithms.

Combining Theorems 1 and 5, we have established gen-
eralization results for the three algorithms. To get excess
risk bounds, we also need the optimization error results, i.e.,
E[Fs(A(S) - Fs(a?)].

Generalization results. Before giving the theorems, we
give some clarification. We use the assumption that the
X domain is bounded in R to give the upper bound, i.e.,
Ea[l|z;—25||?] < Dy, Vt € [0,T—1]. Let ¢ be an arbitrary
constant, the following three theorems hold.

Theorem 5 (Optimization, Convex). Let A(S) =
% Zthl x¢ be the solution produced by STORM, COVER,

and SVMR in Algorithms 1-3, respectively. The following re-
sults bound the optimization error E[Fs(A(S)) — Fs(z%)].

(One-level). For the problem in (1), by selecting n; = n and
By = B, then it holds

D L L2 2
O+ (Dot ab)Bt +Lin+v(T8) o573+ 2I0).

V fs(zo)|? < V.

(Two-level). For the problem in (2), by selecting n: = n and
By = B, then it holds

where E 4||vo —

Dm 1 co—1 @4’[7
O(FT 15 + Qg+ @y(TH) B + )
where ®) = LyCyo; + Loy, + (Lf + LyCy) Dy, @y =
L2132, @5 = LyCyU + LyV, &4 = L3L3C) + LAL3,
Ealluo — gs(@o)||> < U, and Eallvo — Vgs(wo)||* < V.

(K-level). For the problem in (3), by selecting n. = n and

ﬂt = 5 < max (W, 1), then it holds

D, 1 K —cp-—-1 (1)7772
O + @58t + Lifn +@o(18) 675 + 20 ).
m K i
where &5 = L7 (?{’?c + 05 + 07>, L} +£1) +
Dy, @ = LY(S, Ui + Vi), @ = LP3, LY,

(i—3)i

L (i=1)i
Ly = max(Lff A ,L;ﬂ_ ) for any i,j €
1K), Eallut” — fis(ud ™) < Ui and Eallof” —

Vfis(u§ )2 <V, Vi € [1,K].

Remark 7. In Theorem 5, we can see that various factors
affect optimization errors. Note that selecting 5; and 7
should be tailored to the specific requirements of different
problems. In particular, when adjusting 7; to minimize the
optimization err(2)r2in one-level optimizations, n; impacts
UDQE , LK n, and LBQ—Z Unfortunately, the unknown value of
Ly durlng training complicates determining the optimal 7.
In addition, each theorem features a term influenced by the
first estimation error, i.e., V(T'38)~ Cﬂ" O3(T5)~ Cﬁ_%,
and ®g(TB) B2, where V, O3, and ¥ all include the
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discrepancy between the estimators and the empirical risk
at the first iteration. This suggests that employing a larger
batch size to compute the estimators in the first iteration
could effectively reduce the optimization error of the algo-
rithm without significantly increasing computational costs.

By combining Theorems 1-4, we obtain the generalization
error. Further, integrating this with the optimization error
outlined in Theorem 5 allows us to derive the following
excess risk bounds.

Theorem 6 (Excess Risk Bound, Convex). Let A(S) =
% Zle x¢ be the solution produced by STORM, COVER,
and SVMR in Algorithms 1-3, respectively.

(One-level). For the problem in (1), by selecting T =<

n%, n = T_%, and B = T_%, we can obtain that
Es,alF(A(S)) - F(z.)] = 0(%)-

(Two-level). For the problem in (2), by selecting T =<
4 4
max(n5/2, m5/2), n=T75,and § = T~5, we can obtain

that B A[F(A(S)) = F(w.)] = O( & + o).

(K-level). For the problem in (3), by selecting T =<
max(n‘z/z), Vke[1,K],p=T"5 and B = T3, we can

obtain that Es o[F(A(S)) — F(z,)] = o( K J%)

Remark 8. Theorem 6 demonstrates that STORM, by
choosing T' < n? and appropriately selecting iteration num-
ber T" and parameters 7, 5, achieves a generalization error
rate of O( ) in a convex setting. This is in contrast to
SGD, Wthh requires fewer iterations (I' < n) to reach
the same bound (Hardt et al., 2016). This difference may
be caused by the estimator in STORM, potentially lead-
ing to increased generalization error and excess risk due to
reduced algorithm stability. This contrast is further high-
lighted when comparing with Theorem 6, where each addi-
tional level, denoted as K + 1, requires reassessing iterations
and selecting the maximum sample size 7' < max(n i/ %),
Vk € [1, K + 1], which results in an incremental excess risk
increase of O( \/ni(ﬁ) with each level while maintaining

constant settings for 7 and S relative to 7.

Remark 9. It should be noted that in Theorems 2-4, we
discuss the stability of the final iterate A(S) = zp. Con-
versely, in Theorem 5, we address the generalization bound
of A(S) = + Zthl xy, representing the average of the in-
termediate iterates x1, . .., 7. This distinction arises from
the understanding that generalization encompasses both sta-
bility and optimization. In the convex setting, the primary
focus of optimization is often on the average of intermedi-
ate iterates, as exemplified in sources such as (Wang et al.,
2017; Yang et al., 2023).

4.2. The Strongly Convex Setting

Note that we follow a similar process in the convex setting
to analyze the generalization performance in the strongly
convex setting.

Stability Results. The following theorem establishes the
uniform Stability in the strongly convex setting. Before pro-
ceeding, we assume that Assumptions 1-3 and Definition 2
apply to Fg, which is strongly convex at the corresponding
level, as outlined in Section 4.2.

Theorem 7 (One-level, Stability, Strongly Convex). Con-

sider STORM in Algorithm 1 withn, = n < (L2+ ) and

By = B € (0,1), Vt € [0,T — 1]. Then, the outputs
A(S) = xr at iteration T are uniform stable with
— 2nLp Ly(L+ p)
)T Var(vy) + =L
(n7_20 Do) Vare) + =

Theorem 8 (Two-level, Stability, Strongly Convex). Con-
sider COVER in Algorithm 2 with n, = n < ﬁ and
By = p € (0,1), Vt € [0,T —1] and the output A(S) = zr.
Then, the outputs A(S) = x at iteration T are uniform
stable with

T-1
2Lpn \p_j 4
ey—|—6w:O(LC sup 11— ——)" 777" Var(u;
WCrsap 30- ) (1)
T-1
2Lpn p_j_4
+ L¢nsu 1— ——=)" 777" Var(v;
M Sp;o( T+ (v;)
(L+mLoLy  (L+p)LyLys L+p

Loy EEE ).
+ Lym + Lun +heoy Ly Vi

Theorem 9 (K -level, Stability, Strongly Convex). Consider
SVMR in Algorithm 3 with n, = n < m and
By =B €(0,1),Vt € [0, T —1] and the output A(S) = x.
Then, the outputs A(S) = xr at iteration T are uniform
stable with

K
D e
k=1
T-1
2nL T—s (i—3)i
= O( (1 - M) 7]L]If+ 2 Var; 5(v)
s=1 i=1 L+ K ’
T-1 K i-1
277_[/# T—s K- <+(i—21)i
+ Z Z (1 — m) nL; / Var; s(u)
s=1 i=1 j=1
K
N Z LE(L+p) )
o Lo

Remark 10. Many conclusions from the strongly convex
setting align with the convex setting, and we analyze them
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individually. First, in the one-level stochastic optimiza-
tion, the stability of SGD is of the order O( ) in (Hardt
et al., 2016). ComI}ared to SGD, our results 1nclude an ad-
ditional term, n > (1 - 2L’7fl‘:)T 9=1 Var(v;), which is
the same as in the convex setting. This implies that STORM
may also be less stable under the strongly convex setting
than SGD. Second, in the two-level scenario, considering
m = n, COVER introduces two additional terms. The
reasons for these terms are the same as under the convex
setting, stemming from the additional estimator used and the
empirical variance of the outer function. Lastly, in K-level
optimization, SVMR includes only one additional coeffi-

: 2nLu\T—
cient, (1 — L"Tl/j) 9, due to the strongly convex property.

Remark 11. Note that there are some significant differ-
ences in the strongly convex setting compared to the convex
setting. Under the strongly-convex setting, each situation
includes an item, such as Ef_ L (L) that is indepen-

2 =1 Luni °
dent of the step size but depends on the sample size used by
each layer function. Therefore, in strongly convex settings,
achieving satisfactory stability may require more than just
selecting an appropriate step size; it becomes imperative to
increase the sample size simultaneously to improve stability.

Generalization results. Let ¢ be an arbitrary constant, the
following theorems hold, which aim to show the optimiza-
tion errors in the strongly convex setting.

Theorem 10 (Optimization Strongly Convex). Let A(S) =

(Zf (1 lm) )/(Zt (1 Wl) ~t) be the solution
produced by STORM, COVER, and SVMR in Algorithms 1-3,

respectively. The following results bound the optimization
error E[Fs(A(S)) — Fs(x?)].

(One level). For the problem in (1), by selecting n, = n <

(L+#) and By = B € (0,1), then it holds
(M—FLQL + o 5+Lf77)
(nT)e (ﬁT) 7P T8

(Two-level). For the problem in (2), by selecting n, = n,

and B; = f < min (802, ) then it holds
D, +¥qn 272 Uy W3n?
O\—————+ LL; L5+ B8+
( (nT)e sbrt e TP g )

where ¥, = L202U+L2V WUy = LQC]%O'Q —I—Lfa ,, and
WUs = LGCJ% + L‘4L4

(K-level). For the problem in (3), by selecting n, = n and

Bt = /6 < max m, 1), then it holds
Dy +Wan K4 Yon?
~e + 6B+ —).
( (nT)e (6T) B

where Wy = L' S5 HU + V;), Us = L S35 (Ui +
m K

Vi), \If?{: Lf'(of + 0% + Jf(z (L?) ), and U7 =

Ly S (I3

Now, we come to derive the following excess risk bounds
for the strongly convex setting.

Theorem 11 (Excess Risk Bound, Strongly Convex). Let

T _ T Z
A(S) = (i (1= )T ) /(2 (1 = 551)T) be
the solution produced by STORM, COVER, and SVMR in
Algorithms 1-3, respectively.

(One level). For the problem in (1) by selecting T' <
ns, n =T~ 7, and 8 = T~ ?, we can obtain that

Esa[F(A(S)) — F(z.)] = o(ﬁ).

(Two-level). For the problem in (2), by selecting T =<
max(n’/®, m7/%) and n = 8 = T~%, we can obtain that
Es,alF(A(S)) = F(z.)] = O d= + o).

(K -level) For the problem in (3), by selecting T <
maux(n,f ), Vk € [1,K]andn = 8 = T~5, we can obtain
that B A[F(A(S)) - P(2.)] = O( /5, ﬁ)
Remark 12. Theorem 11 demonstrates that, in the case of
strong convexity, the generalization error for STORM can
attain a rate of O( —) by carefully choosing the iteration
number 7', along Wlth constant step sizes 7 and 5. We
can find that under the strongly convex setting, we only
need iteration 7' = ns , however, under the convex setting,
we need more iteration T < n3. Summarizing these three
theorems, we can easily discern the relationship between the
excess risk bound and the number of levels. This conclusion
is very similar to that in the convex setting. Specifically,
for each additional level, denoted as K + 1, it is necessary
to reassess iterations and select the maximum sample size
T =< max(nk %), Vk € [1,K + 1].
incremental excess risk increase of O(

This results in an

\/ni<ﬁ) with each
level, while i and 3 remain constant relative to 7.

To make our paper easy to understand, Table 1 lists all of
our theoretical results in Appendix A.

5. Experiments

In this section, we carried out a series of experiments using
simulated data to validate our theoretical findings, consisting
of four separate tests.

First, we examined the performance of STORM versus SGD
in fitting a univariate quintic polynomial. We generated
2000 data points based on this polynomial and introduced
Gaussian noise with a mean of 0 and variance of 3. The
data was divided into a training and testing split of 60/40.
Throughout 500 iterations, using a step size of 0.001 and
a batch size of 128, we monitored both training and test-
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ing losses using the mean squared error metric. Although
STORM demonstrated poorer generalization, indicated by
a larger discrepancy between training and testing losses, it
outperformed SGD in overall loss metrics.

Second, we investigated how varying the number of lev-
els, k, affects generalization error within a two-level opti-
mization framework. We represented our target function as
F(z) = f(g(-)), creating two sets of data points, Sq and S,
each contaminated with Gaussian noise (mean 0, variance
3). The dataset was split into a 60/40 train-test ratio. The
goal was to optimize ¢(-) to fit S; and f(-) to fit Sy using
SVMR as the optimizer, with a step size of 0.01, a projec-
tion operation Ly set at 50, and a batch size of 128 over
500 iterations. We recorded the average generalization error
during the last 10 iterations while incrementally increasing
the level count from 1 to 50. Our results showed a steady
rise in generalization error as the number of levels increased,
particularly intensifying beyond 35 levels.

5 20 B
Reration Number of Layers

Figure 1. SGD VS STORM. Figure 2. Effect of Level.

Third, we explored the impact of the initial iteration batch
size on generalization. In this experiment, we maintained a
fixed number of levels & = 10, with other parameters con-
sistent with above, and varied only the batch size during the
first five iterations before stabilizing it at 128. We observed
that when the initial batch size is smaller than the standard
value of 128, the generalization error is higher than at 128.
Conversely, setting the initial batch size to 256 and 512
significantly improved the generalization error. This finding
supports our observation that under the same initial condi-
tions, increasing the batch size in the initial few iterations
can enhance the generalization performance of SVMR.

Fourth, we investigated the impact of noise on generaliza-
tion. In this experiment, while keeping the settings con-
sistent with Experiment 2, we set k¥ = 10 and maintained
the batch size at 128. However, we varied the variance of
Gaussian distribution noise. Specifically, we incrementally
increased the Gaussian noise variance from 0.1 to 3 in steps
of 0.1 to observe its effects on generalization. Noise can
improve generalization by 1) aiding the model in escaping
local minima to find lower values, and 2) preventing the
model from overfitting the training data. The drawback
of noise in terms of generalization is that it challenges an

algorithm’s stability; excessive noise can compromise this
stability, thereby diminishing generalization performance.
Our results indicated that when the noise variance does
not exceed 1.5, it positively impacts generalization. How-
ever, beyond a variance of 1.5, the detrimental effects on
algorithm stability outweigh the benefits, leading to poorer
generalization outcomes.

0200
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Figure 3. Effect of batch size. Figure 4. Effect of noise.

6. Conclusion

This paper conducts a thorough generalization analysis of
STORM-based algorithms: STORM, COVER, and SVMR,
for one, two, and K -level stochastic optimizations. Firstly,
for the K -level optimization, we introduce a tailored sta-
bility notion, paving the way for deeply understanding the
relationship between generalization error, stability, and the
number of levels. We further investigate their stability and
excess risk bounds in both convex and strongly convex set-
tings. Based on our analysis, we have found three observa-
tions for STORM-based algorithms: (1) Individual estima-
tors can compromise algorithm stability due to target vari-
ances, harming generalization performance. (2) Increasing
the number of levels also affects the algorithm’s generaliza-
tion error through stability and gradient variances. (3) Using
more initial samples for estimation can boost performance
without significantly raising computational costs.
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A. Results Summary and Corresponding Algorithms

A.1. Summary of Results

Table 1. Summary of our results.

Setting Bound Level Reference Result
1 | (Hardtetal, 2016) Lye
Generation 2 (Yang et al., 2023) L?c €2 + 4L?c61 + Ly\/Es,a[Var1(A(S))]/m
K Theorem 1 LffeK + Zf;ll <4L5f6k + Ly \/ES,A[Vark(A(S)]/nO
1 Theorem 2 o) (n Z]T;(Jl Var(v;) + %)
Stability 2 Theorem 3 O(n Z;:_Ol (Var(u;) + Var(v;)) + nvT + L + %)
C K Theorem 4 0] (i?l E;;ll Ljfj Var” (u,v) + 21{«{:1 T']:L%:T)
1 Theorem 6 O(—=), T = n®/?
Excess Risk 2 Theorem 6 O(% + \/17%>’ T = max(n®/2,m>%/?)
K Theorem 6 O(z,f:l ). T = max(n}?), vk € [1,K]
1 Theorem 7 O(n Z;F:_Ol LTI Var(v;) + Lféﬁ:w)
Stability 2 Theorem 8 O(n Z?:_Ol LT=I=Y(Var(u;) + Var(v;)) + (L+L“;ﬁfo + (L+'L"ijLf>
sC K Theorem 9 O(n Z:{;ll IN/T*Si;(’i Z;;ll L;ﬁj VarT (u,v) + 22{21 Liii;:’”)
1 Theorem 11 O(L), T=n"
Excess Risk 2 Theorem 11 O(ﬁ + ﬁ), T = max(n"/%,m7/6)
K Theorem 11 O(Zszl ﬁ) T = max(n‘z/g), vk € [1, K]

We use the following parameters to simplify the notations: Var” (u,v) = Z?;ll (Varj s(u) + Var; 4(v)), L = (1 — QL"fl’j ),
K. K R0
and Lyt =372 L, " 2

A.2. Description of Algorithms

Algorithm 1 STORM.

Inputs: Training data S = {v; : i = 1,--- ,n}; Number of iterations T'; Parameter 7, 5
1: Initialize zo € X, vg € R?
2: Draw a sample jo € [1, 7], obtain V f,, (o).
3: fort =0toT — 1 do
4 Ti41 = Tt — NVt
5:  Draw a sample j;11 € [1,n], obtain Vv, (@)
6:  Compute estimators vy =z [V fy,  (@e41) + (1 = Bega)(ve = V Sy, (24))]
7: end for
8: Outputs: A(S) = zr or v, ~ Unif({z:}1 ;)

12
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Algorithm 2 COVER.

Inputs: Trainingdata S, = {v;:i=1,--- ,n}, S, ={w; : j =1,--- ,m}; Number of iterations T, Parameter 7, 3,
1: Initialize 2o € X, ug, vy € R?
2: Draw a sample jo € [1,n] and , 4o € [1, m], obtain Vu;, (zp) and Vi, (up).
3: fort =0toT —1 do
4 wepr = a3 — oV, (ug)
Draw a sample ji11 € [1,m], obtain g, | (¥i4+1) and gu;, | (24)
Compute estimators us 1 = Gwrsy s (e41) + (L — Bry1)(ug — Gy (x4))
Draw a sample j; 1 € [1,m], obtain ngjt+1 (z4+1) and ngjt+1 (x¢)
Compute estimators vy 41 = 11z, [ngwrl (Teg1) + (1 — Bea1)(vy — ng].t+1 (24)]
9:  Draw samples iz € [1, n], obtain Vf,,mr1 (uts1)
10: end for
11: Outputs: A(S) = x7 or z, ~ Unif({z;}1 ;)

AR 4

Algorithm 3 SVMR.

Inputs: Training data .S = {llil), RN 1/7(111), RN ny), cee V,(LI;)}.; Number of iterations 7'; Parameter 7, S;

1: Tnitialize 2o € X, ul’, v{” € Re forall i € [0, K]

2: Draw a sample jo € [1,n] and ,ig € [1,m], obtain Vg, (x0) and V f,, (uo)-
3: fort =0toT -1 do

4 Ty =3 — Hfil vgl) and set u§°) =1y

5: for leveli =1to K do - - - .
6: Draw a sample Vt(i)l € [1, n;], obtain fygl (uii‘l )), fyéi)l (ugl_ )), nyéi)l (uﬁr_1 )) and nyt(zl (ugz_ ))
7: Compute estimators ugﬁl = f”fi)l (ugi_ll)) +(1- ﬂtﬂ)(ugi) — f”fi)l (u,(f_l)))

8 Compute estimators vy} = I12, [V, (") + (1= Been) " = V0 (u1"™))

9: end for

10: end for

11: Outputs: A(S) = zr orz, ~ Unif({x}]_;)

13
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B. Useful Lemmas

Before giving the detailed proof, we first give some useful lemmas.

Lemma 12 (Lemma 4 in (Yang et al., 2023)). Let {a,}l 15 {bi }Z ! be two sequences of positive real numbers such that
i aibi < Srb
i T

i=1 i

a; < a1 and b; > by 1 for all i. Then we have

Lemma 13. Consider a sequence {5t}t>0 € (0,1] and define Y, = [[._,(1 — B:), then we can get for any q; <
(1= B)gi—1 +pe q¢ < To( 0+Zl 1)

Proof. We divide both side of ¢; < (1 — ¢)qi—1 + pr by T4, then we have % < % + %, t > 1. Summing up the

above inequalities, we have ¢; < T (go + Zl 1 T L). O

Lemma 14 (Lemma 2 in (Yang et al., 2023)). Assume that the non-negative sequence u, : t € N satisfies the following
recursive inequality for all t € N,

t—1

uf < S + Z Qr .
T7=1

where {S; : T € N} is an increasing sequence, Sy > u? and o, for any T € N. Then, the following inequality holds true:
t—1
u <V/Si+ ) o
T=1

C. One-level Stochastic Optimizations

Lemma 15 (Theorem 3.7 in (Hardt et al., 2016)). If Assumption 1(i), 2 (i) and 3 (i) holds true and the randomized algorithm
A is e-uniformly stable then
Esa[F(A(S)) — Fs(A(5))] < Lye.

Lemma 16 (Lemma 2 in (Cutkosky & Orabona, 2019)). Let Assumption 1(i), 2 (i) and 3 (i) holds hold for the empirical
risk Fis , and x4, vy is generated by Algorithm 1, then we have

Ealllor = V fs(z) 1?1 F) < (1= B)lve-r — Vs(me—1)|?| + 28707 + 2L} [|ar — m4 |,
Lemma 17. Let Assumption 1(i), 2 (i) and 3 (i) holds hold for the empirical risk Fs , and x, v, is generated by Algorithm
1, then for any ¢ > 0, we have
Lfn

Ealllve = Vs(@)]?] < (g)“(tﬁ)*cEA[Hvo = V/s(zo)lI’] + 2807 + 3

proof of lemma 17. According to Lemma 16, and note that E 4[|z — z¢_1||?] < L%n? #1i—1 we have

Ealllve — Vfs(@e)?] < (1 = B)Ealllvie1 — Vfs(x—1)|*] + 28707 + Lin;_,.
Telescoping the above inequality from 1 to ¢, according to Lemma 13, we have

t

t t "
Eallor — Vs(xo)]?) H (1= B;)Ealllvo — V(o) + [ (1 - 8;)( ij#)
J=1 Jj=1 j=1 Hi:l(l - Bi)

t

i L277]2;1
(1-5; N Y B
1] B;) ZH )

j=1 (1_51‘)

Setting 5; = B and n; = 7, we have

t

t
Ealllve = Vs(ze)ll?] H (1= Bj)Ealllvo = V fs(@o)|I’] Z B) (28207 + Lin®).

14
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Note that for all X < N and 5; > 0, we have

N N
[T =58) <exp(=>" B, )
i=K i=K
then we have
¢
Ealllve = V fs(@o)[*] < exp(=B)Ea[l[vo — Vs (wo)lIP] + > (1 = 8)' 77 (28%07 + Lin?).
j=1
According to the fact that for any ¢ > 0, we have
e < (5)ere, ©)
e
then we can get for any ¢ > 0
t
c
Ealloe = Vfs(@)?] < (2)°(t8) " “Ealllvo — Vfs(zo)|] +) (1=5)77 (2525 + L),
j=1
Moreover, according to the fact that
t
1
D (1-p < g, @)
j=1
L2
we have Ealllv — V fs(a)[2] < (£)°(t8)~Ealllvo — V fs(wo) 2] + 2803 + 227 O

We first give some notations used in the one-level optimization to simplify our proof.
Forany k € [1,n], let S* = {v1,...,Vk_1,V},, Vkt1, .., Vn} be formed from S by replacing the k-th element.

Let {z¢41}, and {v;11} be generated by Algorithm 1 based on S. Similarly, {z, ;} and {v,;} be generated by Algorithm
1 based on S¥. Set zq = zk as starting points in X

Next, we give the detailed proof of Theorem 2.

proof of Theorem 2 . We will consider two cases, i.e., iy # k and iy = k.

Case 1 (i; # k). We have

Iz — 2f 1P = o0 — move — 2f + neof || (8)
< lwe — 2f |1 = 2me(vor — of e — xf) + 17 |lve — of ||
For the second term on the RHS of (8), we have
— 20y (vy — vF, xy — zF)
= =2 (v — Vfs(@e), x — af) — 20V fs (1) — V fs(af), xp — af) — 20V fs(a}) — vf ,z¢ — ).

Smoothness generally suggests that the gradient update of F' is constrained from being excessively large. Additionally, the
convexity and L-smoothness of F' indicate co-coercivity in the gradients, leading to the following conclusion

(VE(2) = VF(@'), 2 ~a') > 1| VF(x) - VF(&')|
Then using Assumption 3 (i), i.e., the smoothness of fg(-), we can get

— 2n{vy — vf7xt — xf)

27775

< 2flvy — Vs (@)l - llze — ]| - 7 IVfs(@e) = Vis(@)? + 2mellvi — fs(@i)ll - lze —2f]-

15
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For the third term on the RHS of (8), we have

¢ |lve = vf 1> < 307 |ve = Vfs(@)|® + 307 [V fs(we) = V fs (@) |* + 30 o — fs ()],

Putting above two inequalities into (8), we have

e — i ||+ 2nellof = fs(ap)l] - |z — |
Mt

+ (3n} — T)IIst(xt) — Vis@)|? + 307l — fs (=)

o1 — 2f 4|1 < |l — ) H2 + 2n¢llve — V fs ()]

By setting 1, < we have

3L’

|2t41 — $t+1||2
<l — ¥l + 2ne||ve — V fs(2e)

| - th—xtH +27]t”vt fS(xf)” : ||37t—37t ||+377t||71t fS(xt)||2
Case 2 (i; = k). We have
441 — l”f+1|\ = ||¢ — mevr — @7 + nevy ||
< e — af |+ mellve — of || < [z — 2|l + ne Ly

Then we can get
|zer1 — 2t | < o — 212 + 200 Lyl — ]| + 07 L.
Combining Case 1 and Case 2 we have

21 — @i lI® < o — 2f 1P + 2nellve — Vs (@)l - o — 2fll + 2mllof — Fs@P) - o — 27|
+ 377t ”'Ut - fS(xt )”2 +2neLg |z — ||1it:k + Lflit:k‘
Note that
1

1
Ealllze — o 1, =k)] = Balllee — 27 |[1;,—)] = ;]EA[H% —zf|] < E(EA[llxt — zf |2 ©))

Then using Cauchy-Schwarz inequality, we can get
Eallzer — 24117 < Eallze — 2f %] + 200 (Ballloe = Vs (@) P2 Balllze — 2F )2
+ 20 (Ealllof = V@)D Ealllze — 2F )2 + 307Ealllof — fs(zh)]%]
2Lyn 7 L
+ = ®allle - of )2+

Telescoping the above inequality from O to ¢, and combining with 2y = xf, we have

t

Ealleis — 2% <230 (Eallo; = Vis(@)IP)?Ealle; — 25172

j=1
t t
+2> i (Balllvf = Vis@)I) 2 Balllz; — 25122 + 3 niBalllvf — fs(@h)]]
j=1 j=1

t
2L ;LG
+ § fnﬂ (Ea ||$J _mk” 1/2_,_2 : e
7=0 7=0

Denote u; = (E[||2z; — 2F||?])'/2, then we can get

t—1 t—1
up <23 ni(Ballloy = Vis@) )2y + 2 0 Ballof = Vis@h)I*)"
j—l j=1

2L2
+3Z772EA [oF — fs ()7 +22Lf77] J—i—zn
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Define .
t— _
i <3 mEallvf - fs( Z
j=1 7=0
and

2L ¢n;
0 = 25 (Eallloy — V) D2 + 205 (Balllof — ¥ fs(ah) )12 4+ =222,

using Lemma 13 we can get

t—1
up < \/E‘FZOU

t—1 2 t—1
. Uy
ZUQ]EA lvf = Vs@9IIPDY2 + O - IVU2 423 0 (Ealllv; — Vis(ay)lIP)Y?
7=0 Jj=1
t—1

t—1
2L n;
+2 3w Ealllvf - Vis(@h)|2)2 + Y =L,

=1 j=1

Furthermore, setting ; = 7, we can get 3 0; (Ea[l|lv; — V fs(a;)[|2)"/? < supgn 3521 (Ballv; — Vs (z;)]%])1/2
and Z;;ll i (Ealllvk =V fs (k) [2])1/2 < supgn 22;11 (Ealllv; — Vfs(x;)]|?])}/2. Consequently, with T iterations, we
obtain that

T—1
LT 2LT
<6 Ealllv; — V fs(x;)|[2)"? + T4 ALy 10
v <0y S Balle ~ VstV AT 4 2L (10
Because often we have 7 > n, and E4[||zr — 2%||] < ur = (Ea[||lzr — 25||2])'/2, then we can get
T—1
1 L 77T
Eallor = 25]) < O(supn 3 (Ballloy = Vis(ag) IPD* + =22).
=0
This completes the proof. O

Corollary 1. Consider STORM in Algorithm 1 withn; = n <
output A(S) = xr, € satisfies

=, and ; = p € (0,1), forany t € [0,T — 1. With the

c ].
0 (nT((ﬁT)2 +B812 s + nTn> :
Next, we give the proof of Corollary 1.

proof of Corollary 1. Combining (10) and Lemma 17, we can get

Lin? LT 20T
e<6supnz “(8)“Ealllvo — Vfs(@o)|?] + 2805 + —L)4 4 TIXZ 4 2200

g Vi
1 3LnT
< 6sup77(( )Balllvo — V fs(x0)|1?]8 Zt #+205/BT + Lynp T) ;77 '
Then according to
- T
St =0T ), ¥z € (-1,0)U ), > t7'=0(ogT), (an
P t=1

we have
= O(T}(BT)*%T + nﬁl/QT + 7726*1/2T + nTn*l)
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Before giving the proof of Theorem 5, we first introduce a useful lemma.

Lemma 18. Suppose Assumption 1(i), 2 (i) and 3 (i) holds for the empirical risk Fs. By running Algorithm 1, we have for
any v > 0

Ealllzir1 — 22|11 7]

< (L4 my)Ealllze — a3 |*1F] — 2ne(Fs(ae) — Fs(a2)) +n7 L7 + %]EA[HVfS(l't) —uel?| 7,
where Fy is the o-field generated by {v;,,- -+ ,v;,_, }-

proof of Lemma 18. According to the update rule of Algorithm 1, we have
|21 — $f||2 = [|@e — neve — $f||2
= [lzs — @ [1* = 20 (vr, w0 — &) + 0 [|ve]®
= Itfl'* — ’I]t SZEt,IEt*ZE* ’I]t UVt ﬁt S(T¢ *Ut,xt*ft* .
| 1P = 20i(V fs(w0) 2+ o) + 200V fo (1) 2)
Let F; be the o-field generated by {v;,, - ,v;,_, }, we have
Eallzir — 27 |?|F]
=Eallze — 22?1 F] — 20 (Fs (1) — Fs (@) + 07 L} + Ea20(V fs (1) — v, 24 — 22) | F]
1
< Ealllzy — 7 [1P|Fi] = 20¢(Fs () — Fs(a7)) + nf L} + 2mEA[§IIst(xt) —o]|* + %let — 2} |I*| 7]
t

= (1+my)Ealllze — a2 |P1F] = 20e(Fs(we) — Fs(a2)) +m7 L7 + %EA[HVJ”S(J%) — vl *[ 7).

This complete the proof. O
Then we give the proof of Theorem 5.

proof of Theorem 5. Setting ; = 1, 8; = 3 and 7; = /B, putting Lemma 17 into 18 we have

Eall|lzisr — 7)12) < Ealllze — 22)%] + nv/BEa[||lze — z°|1?] — 20Ea[Fs(2:) — Fs(x)] + n*L3
L (EuB)Eallon — Vo) ] + 2605 + )
\/B e A 0 s(Zo 7 ﬁ .

Re-arranging above inequality and telescoping from 1 to ¢ we have

T
20y BalFs(w:) — Fs(a?)]
=t . (12)
<D, + DmnﬁlmT + Lfsz + (S)CVB_%_Cn Z T+ 203n61/2T + L?n?’ﬁ_?’/QT.
t=1
Then From the choice of A(S), according to (11), as long as ¢ > 2, we have
Ea[Fs(A(S)) = Fs(a3)] = O(Do(nT) " + DoM? + Lin+ VT =B~/ 4 05812 + Lin?B75/2).

This complete the proof. O

Next we give the proof of Theorem 6.
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proof of Theorem 6. Combining Lemma 17 and (10), we have

Eallloe — 5[] < 6772

)" “Ealllvo — V fs(@o)l’] + 2807 +

)1/2 nLsVi I 2Lgnt
,6’ vn n
t—1
< 6(= )C/2V BN 42 4 120 mBM P+ 6L B2t + nliVt | 2Lt
j=0 f "
Then according to Theorem 15, we have
t—1
L 2L ¢nt
EsalF(xt) — Fs(xe)] < Lg(6(= ) VB2 4o 4 120 mBY Pt + 6Ly B2t + n\ff\[ 7,277 ).
7=0
Combining above inequality with (12), and according to Fis(z5) < Fs(z.) we have
T
> EsalF(z:) — Fz.)]
t=1
(Dy + DanBY2T + L30T + (- )°V B >t 420582 T + Lin? 8721 21
t=1
L t
+sz ) VB~ C”Zt o2 + 120Jn51/22t+ 6Lyn*B~ WZH Z 3Lt
§=0 t=1 t=1  t=1
According to (11), we have
T T . T .
DD 0iTE=0() 13 (logt)' =) = O(T* 3 (log T)"=) (13)
t=1 j=1 t=1
Combining above two inequalities, we have
T
> EsalF(z:) = Fx.)]
t=1

= 00+ YT+ + (BT) " B~Y/T + BT + 1P 675/°T + 0 ~c/>T* 5 (log T) =
T 7731/2T2 I nzﬂq/sz T? )
Settingn =T

and 3 = T~°, dividing both sides of above inequality with 7T, then from the choice of A(S) we get

Esa[F(A(S)) — F(z.)]

< O(T“il " be/z LTy Tl/b c(1—b)4T /271 b/2 + st/z 2a + T17a+c/2(b 1)(10g T) =2
4 pla=b/2 | pl-2a+b/2 | pl-a —1)

As long as ¢ > 4, the dominating terms are O(717%72)
Setting a = b = 4/5, then we have

O(T1+%72a)

O(n=1T'=), O(T*1), and O(T'30—2).
1 T3
E[F(A(S)) - Fa.)] = 0T + )
Choosing T' = O(n*"°), we have the following bound
1
E[F(A — F(z,)] = O0(—=).
[F(A(S)) = F(z.)] O(\/ﬁ)
This completes the proof

19



Stability and Generalization for Stochastic Recursive Momentum-based One to /K -Level Stochastic Optimizations

C.1. Strongly-convex-setting
proof of Theorem 7. Similar to the proof for convex setting, we use the same notations.
We will consider two cases, i.e., i; # k and i; = k.

Case 1 (i; # k). We have

lwess = 2f 017 = e = meve — of +meof | (14)

<o — 2f ||* = 2neve — vf 2 — @F) + 07 ||ve — of ||
For the second term on the RHS of (14), we have

— 2n (v — vf,xt — xf)

= =2, (v; — V fs(x1), 20 — &f) — 20(V fs (1) — V fs(ap), @ — xf) — 20 (V fs(af) — vf 21 — 27).

Note that if F is  strongly convex, then (z) = F(z) — ||z is convex with (L — p)-smooth. Then, applying above to
 yields the following inequality

(VF () = VF(a),z — ') > lz = a’|* + —— IV F(z) = VF(2")|]*.

L+pu L+

Then using Assumption 3 (i), i.e., the smoothness, and combining with the strong convexity of fs(-) we can get

— 2n (v — vf,xt - xf)

< 2nefloe = Vs (@)l - llve — x|l = 2m(5

IISE e —at]?)

MHst(xt) — Vis(@P)II® +
+2nml|vf — fs (@)l - o — 2]
For the third term on the RHS of (14), we have

i oe = vf |12 < 307 lve — V fs (@) |? + 307V fs (2e) = Vs (@f)|* + 30 |y — fs (o).

Putting above two inequalities into (14), we have

|zt41 — $f+1||2

2ny L

<(-7 ; M)th — af|I* + 2mellor — V fs (o)l - o — 2 || + 2mellof — fs ()| - o — ]|
2n4
@ = 7 DIV s(ae) = Vs @I + 30 lof — fs (]l
By setting 1, < ﬁ, we have
20 Ly ko2 2 L 2

1— . <(1- _ 2 v s —
( L+M)||33t+1 rill” < ( L+M)” ¢ — 2f 1P+ 2mllve — Vis(a)| - [loe — 2|

: HfEt—th+3mHvt fs(xt)||2

+ 2 lof — fs(@p)]
Case 2 (i; = k). We have

Z441 — xfﬂ” = ||z — neve — af + neof||

< lwe = 2f [+ melloe = v | < llwe = 27|+ meLy-

Then we can get
|21 — @i l® < o — 2fI° + 20 Lyllwe — 2f || + 07 LG
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Combining Case 1 and Case 2 we have

2n:Lp
o1 — 2gp | < (1= ﬁ)” ¢ = 2t P+ 2mellos = Vs (@)l - lloe — il + 2mellof — fs(@p)l| - [l — ]|

+ 377t2||vt fS(xt)HQ + 277th“3% — Ty let kT Lflu k-

According to (9), we have

2L
Ealllzess — et ) < (1 - Ljru)]EA[H o =2t 1P+ 20 Balloe = Vs (@) )2 (Balllz, — 2f]%])'2

+ 2t (EalJof
2L s i L
IR @alllee — D+ =L

= Vis(@) I’V Ballee — af IP)2 + 307Ealllof — fs(zf)]’]
+

According to Lemma 13, setting ; = n and 8; = 3, we can get

2nLp
Ballen —ehalfl < 20300 - L) Ealley = Vs@)IP)' Eallle; - o) 2

. Z 2B o ¥ s() )2 Eallcs - o172

t 212 t
2Ly, ;2Lgn Y 0Ly,
1— 2By Ealllz; — «f2)Y2 + =L = 2128y
+j§:1( i) (Ealllzy — 251°)"* + — JEO( i)
t
2nLu
2 t— k ky\ (12
+31 ;:0(1— i, TEalllvf — fs(=)]%]-

Denote u; = (Ea[||z: — 2F||?])'/2, then we can get

ut<2n2 2O s B alles — Vs

t—1
2nLp
+2n2(1—m)t T Ealllv] = Vfs@)P) ?u; L+u U
j=1
t—1 2 2 t—1
2nLp i 2nLp 4 i
307 (1= T T T BT — s+ D m)f a
j=1 7=0
. L _ .
Define S; = 3n? Et 1(1 - %)“J*EA[H%? — fs(@)?] + anZj:B(l - %)t—ﬂ—l and o; = 2n(1 —
i 2L i
LN T (R g [|[vg — V fs ()22 + 2n(1 — 2T YE »[[loh — V fo(ah)|2]) /2 + 222(1 — 22k yemiL,
using Lemma 14, we can get
t—1
u < /Sy +ZO‘J
t=1
— 2nLp 5y k 1/2 4 (L+N)77Lfc
<2 (1- I+ —) Ealllvf — fs(@)[?) ol
j=1 H H
t—1
2nLp g
F2Y (1= T T Ealles = V()
j=1
t—1
2nLp i ) Li(L+p)
) (1= ) T Ballloy = V@D + =
Jj=1
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where the last inequality holds by (7). Consequently, with T iterations, because of the inequality E 4[|z — z%[]] < ur, we

have
T—-1 2
2Ly (L + pnL
Ealllor =%l < 203 (1= 200" T Eallef = ST + =0 0=
j=1
T-1
2nLp p_j_
+2n) (1- m)T I"YBalllv; — Vs(ay)|*)?
j=1
T—1
2nLp iy k ez Lr(L+p)
+20)) (1= =) T Balof - Vs + ==,
= L+u Lun

Then we analyze which one of (Z (
Vfs (x?) |2])*/2 is the dominant term.

2L T [[[of — fs(2t)[2])1/2 and 377 (1 — 20T =51 (B 4[| of —

For the first term, according to Lemma 17 we have

2nLp p_j_4 Kk ky\(127\1/2
- m) I B[l — fs(=b) 1P

L3y,
< (0 25 y() Bl — Vo)) + 2805 + E )

j=1
T—1
Clen e 2Ly pj1—eyd (L+p)p n(L + p)
< (=-)2p72vV 1- — J 2 A AR A S Vs
<(7)h (;:1( L+u) i) +oy A | T

where the last inequality holds by (7), as for Z}:ll (1- %)T*j —1j7¢, according to Lemma 12, we have

_ T-1 L T 1 % T—1 ._,
ST TN (S b /s B 201}

J
< =1
= L+p - T - 2TnLu ’ (15
then according to (11) we can get
217L,u -

Z YT E A0 — fs (k)|

coe [V(IL+p), \o_e (L+p)B n(L + p)
< (- —(T ———— + Ly | ——=

For the second term, according to Lemma 17 we have

T—1
(1= 251 ok~ fs () |2])?
= L+/J/ J J
T—1 2,.2
onLp . Lin~ .
< (1= RN (2)(tB) " Ealllvo — V(o) 7] + 2807 + —L=)b.
= L+p B
Similar to the first term, we can get
= 2nLu c L+u L+u L+p
1 — ZZPNT=i-1(R k_ /2 « (S5 TB8)-% .
;( T Eallef = Vis@)IP)Y? < (VY IERTE) ™2 4 oa/BI R + Lygmrn. (16)

22



Stability and Generalization for Stochastic Recursive Momentum-based One to /K -Level Stochastic Optimizations

It’s easily to get the dominating term is the second term Zz:ll (1= 22 T=I=1(E 4[|k — V fs(2%)||?])"/2. Therefore

L+
— 27]Lu . , (L + p)nL3
Ealllor — 2] < 21( Z )T Al — fs (DI [
f 2nLu
+2n Z(l )T Ballloy — Vs ()P
= L+p
T—1
2nLp p_j_a k kvizni/2 . Lr(L+p)
2 1—- —)' 77 (E - ; /2 L 2R TR
+ n;( Trn) | Ballley = Ves@pIP)'” + = (17)
T-1 2
20Lp 1 ey ALy Ly (L+p)
<6 1— ITHEa[||v; — /
T—1
2nLp 12 2Lp(L+p)
<6 1- EOT=i-4(R \Y% /2y -
<r X 0= 2R Balley = Vsl T
where the last inequality holds since often we have n < % Then we get the final result
<0 > (1 - 21 5 o, — 9 a2 2+ L
j=1 L+l‘ A S Lyn
This completes the proof. O

Corollary 2 (One-level Optimization). Consider STORM in Algorithm I withny = n < 3Tt L e and Bt = B € (0,1) for
any t € [0, T — 1] and the output A(S) = xr. Then, we have the following results

e <O((TB)™% + B2 +nf~% +nh).
Next, we give the proof of Corollary 2.

proof of Corollary 2. Combining Theorem 10 and (16), we have

€< O((TB)"% + 57 +nf~% +n7 "),

This complete the proof. O

Before give the detailed proof of Theorem 10, we first give a useful lemma.
Lemma 19. Let Assumption 1(i), 2 (i) and 3 (i) holds, as Fs is u-strongly convex. By running Algorithm 1, we have
272

Ln; L
;f+mmW—v&@mR

E[Fs(@e1) i) < Fs(w0) — | VFs(a0)|? +
where Fy is the o-field generated by {v;,, -+ ,v;,_, }-

proof of Lemma 19. According to the smoothness of Fg(-), then we have

L
Fs(x41) < Fs(wy) + (VFs(24), o1 — o) + §||$t+1 — zy)?

o InLy
< Fs(@) = nel|VFs(z4)||” + —5 ne(VFs(xt),ve — VEs(xy))
Ln?L?
< Fs(m) — mel|[VEs () ||” + ; L4 %HVFS(%)Hz + 2mel|vy — VFs(z) %,
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where the last inequality holds by Cauchy-Schwartz. Then we can get

L772L2

1
TIVEs@)|? + ==L + 2mpllon = VFs ()|

Ea[Fs(zi41)|F] < Fs(w) —
This complete the proof. O
Now we move on the proof of Theorem 10.
proof of Theorem 10. Satisfying strong convexity also satisfies Polyak-t.ojasiewicz (PL) inequality, then we can get for all =
1 2 s
FIVEs@)I” 2 p(Fs(z) = Fs(,)).

According to Lemma 19, we have

Ln?L?

Ea[Fs(w41) = Fs(a2)] < (1= pne)Ea[Fs(wr) — Fs(22)] + Tf +2mlve = VFs ().

Setting 1; = n and B; = (5, using Lemma 17, we have

s sy, DLy
EalFs(ze41) = Fs(@)] < (1= pn)Ea[Fs(ze) — Fs(2,)] + ——
Creryay—c Lin®
+ 271((;) (tB8)“Ealllvo — V£s(xo)||’] + 2807 + 7)~
Telescoping the above inequality from 1 to 7', according to Lemma 13, we can get
Ea[Fs(zr) — Fs(z?)]
772L2 T-1
< (1= )" BalFs(x1) = Fs(@)] + —5 (1 —pm) "
t=1
T—t—1 21273 Tt!
+ 2nV )eBe Zt (1= )" + 20508 (1= pnp)" 71+ 7/; > (=)
t=1 t=1
For t = 0, we have
LT}2 2
EalFs(a1) = Fs(a?)] < (1= pm)EalFs(xo) = Fs(af)] + =5 +29V.
Combining the above two inequalities, we have
EalFs(ar) — Fs(z?)]
2L2 T
< (1= ) Ea[Fs(xo) — Fs(z)] + ——L Z — )" 2V (1 — )"
T—t—1 L2 3 T—t—1
- 277V Z (L — )" 4 20708 Z — )" 4 —L— 5 > (=)™
— t=1
According to (5), (6) and (7), we have
BalFs(or) - Fs(e)] £ () (T) s+ 0k 1 oq( ST e
Al s\ZT S*_e#n 2% 776#77
2 2 2L2 2
+277V Zt‘l—unTtl—FiUJﬂ-i- BJZ?.
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Then according to (15) we have

S InL _
EA[Fs(ar) — Fs(25)] < (—)°(nT) Dy +W+2U(Q)C(HT) v

Then we can get
Ea[Fs(zr) — Fs(a?)] = O(Do(T) = + LiLn + Vo(yT) = + V(BT) = + 058 + L}’ ).

This completes the proof.
Next, we move on to the proof of Theorem 11

proof of Theorem 11. Combining (17) and Theorem 15, we have

2nLy o 2L (L + p
EoalF(or)  Fa(on)] < Ly(6n 3 (1~ 22733 Ealloy - Vistapl)2 + 2L 2E0),
j=1
Then according to (16), we have
c L+u +N L+p, 2L3(L+p)
Es.alF(zr) — Fs(er)] < 6Lsn((7)* BV —- L Uff Ly 26Lu) L

Combining with Theorem 10, and using the fact that Fs(z?) < Fg(x,) we have

c\e mLltp e L+u L+pu 2L5(L + p)
Es a[F(A(S)) — F(z.)] < 6Lf77((g) WW(Tﬁ) +a5\/B WL +Lf2\/BLu)+ Lim
C \c —c LnL? C \c —c
+(£) (nT) VJFWﬁLQ??(a) (nT)~V
V(efey (5T) | 2035 2
1 Iz B

Setting ) = T~ % and 8 = T~ with a, b € (0, 1], we have

Es,alF(A(S)) — F(x.)]
_O(Tz(b 1)+T—§ _"_Tf—a_i_T—C(l—a)+T—a+T—C(1—a)—a+T—C(1—b)+T—b+Tb—2a).

a

Setting ¢ = 3, the dominating terms are O(T2~%), O(T~2), O(T2®-V), O(T~%), O(T3(~D),
Settinga = b = g, we have
Es.a [F(A(S)) = F (2.)] = O (T7%)

Setting T' = O(ns ), we have the following
1
B [FAS) ~ F ()] =0 (72

The proof is completed.
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D. Two-level Stochastic Optimizations

Lemma 20 (Theorem 1 in (Yang et al., 2023)). If Assumption I (ii) holds true and the randomized algorithm A is e-uniformly
stable then

Es a[F(A(S)) = Fs(A(S)] < LyLge, +4LjLyéw + Ly \/m‘lEs,A[Varw (9., (A(S)))],

where the variance term Var, (g, (A(S))) = E,[|| 9. (A(S)) — g(A(S))]?].

Lemma 21 (Lemma 7 in (Qi et al., 2021)). Let Assumption 1(ii), 2 (ii) and 3 (ii) hold for the empirical risk, and x;, u; are
generated by Algorithm 2 2, then we have

Efllus — gs(@e)|”] < (1 = Bo)E[llus—1 — gs(we—1)|I”] + 26707 +2L7 |z, — o [|*.
Lemma 22 (Lemma 7 in (Qi et al., 2021)). Let Assumption 1(ii), 2 (ii) and 3 (ii) hold for the empirical risk, and x,v; are
generated by Algorithm 2, then we have
Elllvs — Vgs(@)]1?] < (1 = B)E[|lvi—1 — Vgs(me—1)|*] + 26702 + 2L2 |w¢ — x4,

Lemma 23. Let Assumption 1(ii), 2 (ii) and 3 (ii) hold and ¢, u; are generated by Algorithm 2, let 0 < ny = n < 1 and let
0< By =0 <1, foranyc> 0, we have

.. » 2L4L2’I’]2

Ellus — gs(x4)]1%] < ()°(B) " Ellluo — 9s(x0)|”] + 2078 + ng

Proof. According to the rule of update we have E|||z; — z;_1||?] < L? LGt 1> then using Lemma 21 and 13, we have

2

t 2

Mi—
Efl|lus — gs(@e)]|’] I | (1 = B)Ellluo — gs(o)|I”] + 2057 E T +2L4L2Tt T_l-
=1 =1 v

For the term T ZZ:I 3%/ ;, according to the setting that 3; = 3, we have

2
ﬂE:ﬂ n}j?)—mnf£+n§}i— L)) =BT = 5.

i=2 ¢ 1=2

Then according to the setting that 7, = 7, we have

t 9LAL2?
E[l|lus — gs (o) I”] < T (1 = Bi)E[luo — gs(xo)l|?] + 2028 + ng
i=1
Then using (5) and (11), we can get
2L4L2 2
Ellu — gs () |2) < (£)°(¢8) Elluo — gs(ao) 7] + 2036 + —2T%

And the proof of E[||v; — Vgs(z)||?] is similarly to Lemma 23, we won’t repeat it.
Lemma 24. Let Assumption 1(ii), 2 (ii) and 3 (ii) hold and x, v, are generated by Algorithm 2, let 0 < n, < n < 1 and let
0< B < B <1, foranyc> 0, we have
c ~ 2L4L2 772
E[[lvr = Vgs(@)I*] < (2)°(t8) " Elllvo — Vs (z0) "] + 2038 + ng

We first give some notations used in the two-level optimization to simplify our proof.

Forany k € [n],let S*¥ = {v1,...,vp_1, V}os Vk41s - -+ s Un, W1, . . ., W, } be formed from S, by replacing the k-th element.
Similarly, for any [ € [m], define S = {vy,...,vp, w1, ... W1, W], W41, - .., W | as formed from S, by replacing
the I-th element. Let {z;41}, {us+1} and {Ut+1} be generated by COVER based on S, {xffl} {ufjryl} and {vfj’l} be
generated by COVER based on S**, {21}, {ul**,} and {v}*, } be generated by COVER based on S". Set zy = 24"
and zg = J;f) as starting points in X’
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D.1. Convex-setting

Proof of Theorem 3. Since a change in one sample data can occur in either S, or S,,, we estimate E 4 [||z;41 — xffl ] and
Eall|zer1 — x4 ||] as follows.

Estimation of E 4 [th+1 — xffl ||]

We first give the estimation of E 4 [||z;41 — :z:ffl |I]. For this purpose, we will consider two cases, i.e., iy # k and i; = k.

Case 1 (i; # k). We have

k,v

lzer1 — xt+1”2

<l =m0V fo, () = 28+ mo "V fo, (ug™)|? (18)
k,v s kv kv kv k,v

< o — 2|1 = 200 V o, (™) = vV foy, (ue), 23" — @) + 02 eV fo, () — vV £, () ||

We begin to estimate the second term in (18).

= 2m <”f7uvfl’it (ug™) = Utvfm (ue), 2" — 1‘t>

= =2 (v} fo,, () — Vfu” (g5 (=), 2" — x4)
— 2 (v 'V £y, (g (ap” )) — 0¥V fs(gs(zy )) mf V=)
— 2 ()" V fs(gs (") — Vas(ay )V fs(gs (@), o — a) (19)

(
(
— 2 (Vgs(2F)V fs(gs(a)) — Vgs(2)V fs(gs (@), 25" — 24
— 20(Vgs(x0)V f5(gs(22)) — vV fs(gs (x0)), 25" = w0) — 2000V fs (g (x0)) = 00V fs(ue), 2y — as)
— 20 (veV fis(ut) — veV fo,, (u), P — ).

Now we estimate the terms on the right hand side of (19) one by one.

For the first term of the RHS, we have

— 20 Lo, () — 0P 1 (g5 (@) 2 — )

14 174 17 14 v v SV 174 (20)
< 2mllof "V fu, () = iV fo, (gs (@) - log” = @]l < 2L Cpmellu™ — gs ()| - g™ — a4l].
For the second term of the RHS, according to E;, [vf’”Vfl,it (95(zF"))] = vF "V f5(gs(xF")), we have
— 2, (v fu, (g5 (2)) = vV fs(gs (@), 28 — 24)] = 0. 21
For the third term of the RHS, we have
~ 20T fslas(ot ) = Fastat O Sslos(al ). ot — ) )
< 2|V £s(gs(z)) (v = Vas(@f DI -zt =zl < 2 Lyllof” — Vgs(@i )| - 25" — 24|
Then according to Assumption 3, for the fourth term of the RHS, we have
2nt<V93(xt IV s(gs(@p™)) — Vgs(@)Vfs(gs(ze), 2" — )
(23)
vas( IV fs(gs(x")) = Vgs(z:)V fs(gs (@)
Analogous to the above four terms, we can easily get
— 201(Vgs(2:)V fs(gs(xe)) — vV fs(gs (@), 2" — 21) < 2Lpmel|ve — Vs ()| - 2 — 2], (24)
— 2 (v V f5(gs (1)) — vV s (ue), 2" — 24) < 2LgCrngllue — gs (o) - log™” — ), (25)
— 2n.E;, [<Utvfuit (gs(w¢)) —v:V fs(gs(we)), ﬂff’y —x4)] = 0. (26)
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Putting (20) - (26) into (19) we have

— 25, [<Ut Vf(u,’f ") =0V f(ug), z" — a¢)]
< 2L Cpmlluy” — gs(at™)|| - |laf™ — $t|| +2Lpnllog” — Vgs(ap”)| - e — a
2 27

||Vgs( IV fs(gs (@) — Vs () V fs(gs (@)
+ 2Lng77tHUt —gs(@o)| - 5" = @el| + 2L pellus — gs (o)l - ot — ]|
Now we begin to bound the third term of the RHS in (18).
[ fu, (™) = 00V fo, (wr) |

< 0¥V fo,, (u) — vV fs(u ‘“’”)||+||v’“”ws< 7Yy - st(gs< ))H

+lvEV fs(gs(x)) = Vs @)V fs(gs (@) + HVQS( )V fs(gs (@) = Vas(x:)V fs(gs (@) |
+IVgs(@e)V fs(gs(@i) — vV fs(gs(@e)) | + |0V fs(gs(xe)) — veV fs(ue) | + [[veV fs(ue) — 0V £, (ue) |-

Now because of the fact that (Zl a;))? <k Z __, a?, we have

n oV (™) = 0V f(ug) |
<7m2L2||Vfu1t( ) = Vis(u)P + T L CF lug™ — gs(@y™)|P + T L |log™” = Vgs(ap™)|?

(28)
+ Tz |1V gs (2 )V fs (95 (25™) = Vs (@) V fs(gs (@) |
+ L7 Vas(xe) = vel|* + T LCF llue — gs(zo)|” + T L[V fu,, (ue) = V s (ue) .
Putting (27) and (28) into (18), we have
Ej [llze1 — $t+1|| ]
<oy — g | + 2L Cmellug™ — gs ()| - 1" — ]| + 2L gm0 = Vgs (™) - [l — |
+2LgCymellur — gs (o)l - lo7" — @]l + 2L pmellue — gs (@) - o — a4
+ TR LRIV fon, (uf™) = V s (™) > + T LECFl|ug™ = gs (™)1 + Tnf Lo = Vgs (a;™)|)”
+ 7n?Lf||Vgs(xt) — vl + T LgCHlur — gs (@) |* + T LGV fu, (ue) = V fs(ue)]|.
where we use 7, < =5 in the inequality.
Case 2 (i; = k). We have
lzer1 — 2l = e — ntvtvfmt(m) — 2" + oV fo, ()| 29)

< e — 27 + el fo, (up”) = 0V fon, (ue)|| < llwe — 27| + 20¢ Ly Ly,
where the first inequality holds by Assumption 1, then we have

2L2L2

lzess =25 17 < e — 2 |P + deLg Lyl|lwve — a5

Combining above Case 1 and Case 2, we can get

kv
lze41 — xt+1H2
kv kv kv k,v k,v kv
< e — 2V |? + 2LgComellug™ — gs (@) - o — el + 2Lgmellvf” — Vgs(@f™)| - lag — 24|
, k,v
+ 2L Comellue — gs (@) - e — 2ol + 2L pmllur — gs(@o)l| - 125" — a2
272 kv k,vy 2 2722, kv 2 2 2
+ 777tL vawt (") = Vfs(ug )" + Ty Lgcf”ut - gs(mt )H + 777th||“ - VQS(xt )”
+ L3IV gs(me) — vel|> + T L2CT ue — gs (o) |* + T LoV £, (ue) — V fs () ||
+dmLoLylay” =zl - Li—p, + A7 L2L% - 15,y
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According to Cauchy-Schwarz inequality, we can get

Eall|lzes — 27117 < Balllwe — 2 |12] + 2L Cpne (Balluy™” — gs (@ ™)|IP)Y? - (Ballzy — %)/
+ 2Ly (Balllvy” — Vgs (@) P2 - (Ballaf” — 2.)%)"/?
+ 2L Cymy(Balllue — gs(xo)[IP])? - B[z — %))/
+ 2Ly (Balllve — Vs (x| - (Balllzf” — 2?2
+ L CFRAl|uy™ = gs ()] + T L3EAllvf” — Vs (27)]|°]
+ TP L3EA[IVgs(ze) — vel|*] + TP L2CFE alllue — gs (o) |°] + 1407 L 07
+ A Ly LyEalllxy” — a¢]| - imp) + 492 L2L% - Ea[1;, ).

Besides, according to

Eallar” —z*)"?,

S|

1
kv kv k,v
Eallz:™ = aelllji=n] = Eallzy™ = wel|Bs, i =n]] = ~Eallley™ —2¢ll] <
we can get

Eallztta —wt 417

< 2L,Cy an((EA[Iluf’” = 9s(@5)IPDY? + Ealllug — gs(@)IIPDY?) - (Ballz; — 57 |PDH?
§=0

+2Lg Y0 (Eallo]” = Vos(@ ")) + Ealllv; — Vs (@) I*)'?) - Ballzy — 25 |%)'
7=0

+7Z772L2C Ealllu; — gs(z;)||’] +7Z772L20 Ealllus” — gs(z))]1?

+7Z77 LiEA[[v}" = Vgs ()] +7Z77 LiEa[llv; — Vgs(x;)|%] + 14L U?Zm

AL, L kv L2L i
=t an Ea[llz; — T 1)) 1/2 Z
j=0 j=0

For notational convenience, we denote by us = (E[||lz: — z3"[|2])2/2, define

aj = 2LyCynj (Ealllu” — g5 (@) 1)/ + 2Ly Cpnj (Eallluy — gs(ay) )"/
AL,Ly

k,v k,v
+ 2L (Ealllv; = Vgs (@) IP)Y? + 2L sn; (Ealllo]” — Vs (] )Iﬁ)”“*fl Njs
and
Sy = 7Zn2LQCfIEA s — gs (=) + 7Zn2L20]%EA lu; — gs(x;)]|?] + 14L afznf
. QL? t—1
+7Z77 fEA ||’Uj, — Vs (z;")|1%] +7Z77 f]EA \Vgs(mj)—UjH ZWJ-
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Using Lemma 14, we can get

t—1
Ut < \/»STt + Z Qi
j=1

t—1 t—1
v 5,V 1
< (TLCT D mBallluy” = g5 (@ )IPDY? + (TLECT Y miBalllu; — g5 () [*])'/? + (14Lo] Zm )?
j*O §=0
. t—1 4L2L2 t—1
ZnZEA oy = Vgs(@y")IPDY? + (123 niEalllVgs(a;) — vI’D'? + Z )2
§=0
t—1 t—1
k,v k,v
+2L,Cp Y i (Balluy” — gs(@5™)PDY? +2LgCr Y ny(Eallluy — gs(a)|*DH?
Jj=1 j=1
t—1 t—1
2L (F R v/ VIZNY/2 Lo, (K kv g 2 4L Lf
+2Ly Y i (Balllo; = Vs @) IIP)V? + 2Ly Yy (Balllof” — Vgs(ay™)?) Z 1)
j=1 j=1 Jj=1
Then according to the inequality that (Zz Lai)t/? < Z L(a;)/? we can get
t t—1
k,v k,v
ur <5LyCp Y i (Balluy” — gs(@f)NPDY? +5LeCr Y ni(Eallluy — gs(ap)|*DY?
§=0 j=0
t t—1
k,v
+5Ls i (Eallloj” = Vgs(@i™) P2 + 5L Y n;(Eallo; - Vos ()|’
Jj=0 Jj=0
4L2L2 — AL,L
2 34 1/2 4 g f
(14L ame : Z / S
j=1
By setting 1, = 1, with T iterations, we have
T-1 T-1
ur 10L,Cysupn 3 (Ballus = gs(a;) [2)'/2 + 10Ls supn Y (Balllo; - Vs (a;) )2
j=0 =0
2L,LynVT ~ AL,LynT
AL T4 2292 g
+ fO'fn\F-f— Jn + o
T-1 T-1
<10L,Cysupn 3 (Eallus - gs(a;) 1)/ + 10L g supy 3 (Balle; — Vas(a) )2
j=0 =0
6L,L¢nT
+4Lf0'f’l7\/T—|— 7‘(]”]077 R

where the first inequality holds by 3~ n;(Ea[[luf"” — gs(’)[1?])!/? < supgn Y5 (Ealllu; — gs(z;)[?))"/? and
23:1 n; (Ealllu; — gs(z;)I?])'/? < supg n(Eallu; — gg(xj)H 2])1/2. The other terms to the RHS are treated similarly.

And the second inequality follows by the fact that we often have n < T, therefore \/g < % We further get

Ealler — 25 |] < ur

T-1 T—1
< 10LyCy supn > (Ealluy — gs(;)|*)'/? + 10Ly Sup1) > Ealllv; = Vgs(z)|*)'? 31)
=0 j=0
6L,L¢nT
+ 4Lf0’f7]ﬁ + ngn
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Then we can get the following result

T-1
, LoLmT
Ealller =2}l = O( =L + Lyo VT + LyCysupn 3 (Ballu; - gs(a)|2)'?
j=0

+ (Ealllo; - Vas(@)[2)2).

Estimation of E 4 [th+1 - ﬂfiﬁ ||]

Next we give the estimation of E 4[||z¢41 — xifl] Similarly, we consider two cases, j; # [ and j; = [.

Case 1 (j; # ). We have

lw
”zt-&-l - ‘Tt+1||2
< lwe = meveV fo,, () — 27 + V£, (up®)|1? (32)

< e = 2y 17 = 200y V i, (™) = 00V oy, (ue), 2y = o) + 0|0y “V fo,, () =00V fo, (ue) |-

Similarly to the process of (18), we have

L
Ej, (lzer1 — 231 1%]
l, 1, I I, I l L,
<y — 2yl + 2L Cpmellug™ — gs(xy )| - log™ — el + 2L gmellog™ — Vs (a7 )| - lap® — 24|
1, L
+ 2L, Crmelluy — gs(@e)|| - |2y — ol + 2L pnelfue — gs ()] - (|27 — 2|

272 lw Lwy |2 2722, Lw Lwy 2 272,,Lw Lwy 12
+777tLgvaVz‘t(ut ) = Vis(u )|l +777tLng||“t —gs(zy )|l +777th”% — Vgs(z")||
+ T L3IV s (2e) — vill® + Tf L CF llur — gs (o) || + T L2V fu, (ue) — V s (ur) ||

where we use 17; < 7% in the inequality.

Case 2 (j; = ). We have

1, 1, 1, I,
|lze41 — xtf1|| = ||lz¢ — thtvfwt (ug) — xtw + NtV wvfwt (“tw)H (33)
< e — 2|+ mellop®V fo, (ue®) = 0V fo, ()| < Nl — 27| + 20 Ly Ly,

where the first inequality holds by Assumption 1, then we have
l l L
[@e41 — xtf1”2 <l — 2|1 + dmpLgLyllze — 2%l + 477t2L§L?”'
Combining Case 1 and Case 2 we have
Ly
e — fftf1\|2
L L l L l L L
< lwe = 2y I* + 2L Cpmellug™ — gs (@)l |2y — well + 2L ymeloy — Vgs (@) - flay® — |
l L,
+2LgCpnellue — gs (@) - o™ — mell + 2Lgmellur — gs (o)l - [l — 2]
7 2L2C2 Lw _ Lwy2 7 2L2 lw v Lwy2 7 2L2 \v4 o 2
+ T LCllug™ = gs (@ )" + g L [|vy 95 (@ )"+ T Ly[[Vgs (1) — vl
+ TP LCF s — gs () |I” + 1407 LyoF + dme Lo Ly llay® — well - L= + 407 Ly LG - 1.

Besides, according to the fact that

l,w l,w 1 l,w lw
Ealllzy® = welll,=y] = Eallly” — 2el|Es jo=y]] = —Ealloy” = aill] < — (Eallag” — )"/,

3|~

Then similarly to the estimation of E4[||z¢41 — 55?4:1 ], we have
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Ealllzr — 253°|] < ur

T—1 T-—1
< 10L,Cy sup > (Eallluj — gs(z)II°])/? + 10L; supy > (Ealllv; — Vgs(a;)|*)'? (34)
j=0 7=0
6L, LT
+ 4Lf0’f’f]\/f + ngn

Then we can get the following result

T-1
w L,LmT
Ealller — 1] = O( 52 4 Lyoyny/T + LyCysupn 3 (Balllu; — gs(z;)|?)?
j=0

+ (Eallv; — Vgs(w))I)M2).

Now we combine the above two estimations, we can conclude that

T—1
&+ €w =0(Lyo VT + LyCy sup7) D (Ealllug = gs @) P2 + (Ealllo; = Vas(a)[*])?
j=0
L,LinT  L,LnT
] M 4+ Lo il )
m n
This completes the proof. O

Corollary 3 (Two-level Optimization). Consider Algorithm 2 withn, = n < ﬁ and B; = B < min {1/ 8C’J20, 1}, for any
t € [0, T — 1]. With the output A(S) = x, then €, + €,, satisfies

O(nT((BT)"% + 82 4 95~ ) 4 T( + 1)),

Proof of Corollary 3. Considering the upadte rule of Algorithm 2, according to Lemma 23 and 24 we have

T-1
e + e =OnTm™ +0Tn~t + VT +0 ) ((18) + /B + \/”Z)

7=0
= O(nTm™" +0Tn™" + VT +nT =T =2 4 yTEY> 4?3712,

This complete the proof. O

Before giving the detailed proof of Theorem 5, we first give a useful lemma.

Lemma 25. Let Assumption 1(ii), 2 (ii) and 3 (ii) hold for the empirical risk Fg, for Algorithm 2 and any ~y; > 0, we have

ne(Ly + LyC
EBalllzer: — =32 F] < (1 + W
t

My —2f |2+ L2L3n? — 2ny(Fs(2¢) — Fs(a?))
+ neveLsEalllve — Vgs (@) IPFo] + mveLgCrEalllue — gs(a)|>Fel.

where Fy is the o-field generated by {wj,, -+ ,wj, |, Vi, * ,Vi,_; }-

Proof. According to the update rule of Algorithm 2, we have
[2e1 = 2P| < o = meoeV o, (ue) — 27
= [lay — 21 + 07 lloeV £, (ue)l® = 2ne(me — 23, 0V fo,, (ue))

= |lar — 221 + 07 lloeV £, (e[| = 20e (e — 23, Vs () V fo,, (95(24))) + 64,
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where
0 = 2ni(x — 25, Vs () V o, (9s(21)) = vV fo,, (w)).

Let F; be the o-field generated by {wj,, -+ ,wj, ,,Viy," - , Vi, , ;. Taking expectation to the above inequality and using
Assumption 1, we have

Ealllzers — 23 1P| F) < llwe — 22| + L2L3n} — 2nBal{ze — 27, Vs (o) V fu,, (g5 (2e))) Fi) + Ealb:] F]
< lwe — 231 + LILIn} — 2ne(wy — 22, VFs(24)) + Eal6:| 7]
< lwe — 23 1P + LELGn; — 2m(Fs (1) — Fs(a7)) + Eal6:] Fo),

where the last inequality holds by the convexity of Fg. As for the term [ 4 [0;| F;], we have

0 = 2ni(my — 22, Vgs(2:)V fo,, (95(21)) — 0V £, (ur))
= 2w — a3, Vgs(@)V fu,, (95(21)) — vV fo,, (95 (20))) + 20w — 22, 0V fo,, (95 (20)) — vV [, ()
2l lloe = Vs (o)l + 2m Ly Crllze — a2 - ue — gs ()|
< MLy + LyCy)
Mt
where the last inequality holds by Cauchy-Schwartz inequality.

<2mLyllzy —

2 — 2 1° + neveLgllve — Vgs(@e)l1? + meveLeCollue — gs ()|,

Combining above two inequalities, we have

ne(Ly + LyCy)
Tt

Eallleer — 27?7 < (1+ Mae — 2 (|? + LiLin? — 2ne(Fs(:) — Fs(27))

+ neve LsEa[llve — Vgs () IPFe] + mveLgCrEalllue — gs(ae)|> Fel.

This complete the proof. O

Proof of Theorem 5. Now we begin to proof the Theorem 5. According to Lemma 25, setting 7 = 7, 8; = [ and let
by rearranging and adding up, we get

\/7’
T T
2 EalFs(ar) - Fs(a$)] < Eallay — 2812+ 1v/B S Ly + L,Cp)llae — 25| + L2L20°T
t=1 t=1
- T
+ 5 2 (Lyllve = Vs (@)l + LoCr 3 llu = go()]|?).
\/B t=1 t=1
Then according to the definition that E[||z; — x7||?] is bounded by D,, and Lemma 23 and Lemma 24, we have
T
21 ) EalFs(x) — Fs(a?)]
t=1

< Dy +nv/B( Lf+L Cy)D.T + L Lin*T

3 (35)
\nFL Cr( Z ~Ealluo — gs(x0)|*] + 202n8"/>L, CfT+2L5L20f—BZ/2T
t=1
T 3
Lfﬁ:’)/QT

+ —Lf )¢ Z tB) °Eal|lvo — Vgs(20)||*] + 20 /n,ﬁl/QLfT + 212
t=1

According to (11), without losing generality, let ¢ # 1, we have
Ea[Fs(A(S)) = Fs(a?)]
< o(sz(nT)*1 + (LyCyU + LyV)(BT) "B~ % + (LyCyo2 + Lyo2 + (Ly + LyCy)Dy) Y2
+ L2L3n+ (LyL3Cy + LiLY6 ),
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where E[||ug — gs(70)]|?] < U and E[||vg — Vgs(z0)||?] <V
This complete the proof. O

proof of Theorem 6. Putting Lemma 23 and 24 into (31) and (34), for any ¢ > 0, we have

k,v
Ealllee — 2]

/7 t . 204 L3n?
<10L,Cy supn Up=s \/ ¢+ 10LyCyny[ 20268 + ——— 5

i 2040302 6L, Lt
+10Ls sup 7 (Z)CVB_2Z\/j_c+10Lfn\/2ﬂU§,+ gﬁf t+ gnf” +4Lso V.
S X

Similarly, we can get

Ealla: —

]
4L2

< 10L Cfsupm/ cUB~3 Z\/ c4+10L cfn\/za2ﬂ+ 3

2L4L50  6LyLsnt
—l—lOLfst;pn CVB Z\/ —|—10Lfn\/2ﬂa + gﬂf t+ gmf77 +4Lfaf77\/i.

Combining above two inequalities, we have

Eallee — 2] + 4Bl — 2;

“l

_ 24LyLynt | 6LyLynt 2L3L3n?
f” 4+ 8 f” +50chsupn,/ cUB$ Z\/ +50LCf77\/2025+ ;

L?n

2L4
+ 50L s sup7 CVﬁ Z\/ +50Lfn\/250— + 3 —2 It 4 20Lso Vi,
S

Putting above inequality into Lemma 20, we have

2L3 L2

Es a[F(x¢) — Fs(zy)] < 50L oLrCr bupm [(=)eUB™ 2 Z Vite+ 50L2Lfo77\/2026 + —— 3

t—1 L4L2 2
+50L Lfsupm/ V35S G+ 50L, L \/250 4 e, (6
Jj= O

B

272
| ALGLjnt

m

6L2L%nt
+ gnf + Lf\/mflEs,A[Vafw(gw(A(S)))]~

Due to

— Fg(z)] ZESA — Fs(xy) + Fs(xy) — FS(mf)L

nMﬂ

T
Z ES,A [F(.%‘t)
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then combining (36) and (35), we have

T
> EsalF(z) - F(x.)]

T
< 2\fL gCr (= C; (t8)“E[lJuo — gs(x0)||*] + 0582 Ly CfT+L5L2Cf63/2
T
L IS8 Bl Vas(an)P + 038 Ly LT + L L3O 53/2
+%+\/L Ly + LyCy + Ly)D,T/2 + L2L? nT/2+24L§;1Lfn;t+6L§L?n§;t
) T t—1 2LAL2n2 T
+50LgLfosgpn CUB ;]ZOF+5OL2Lfon\/203ﬁ+ ng;t

T t—1 L 2 T
+50LgL§sgpn ( )UB72 > Y V¢ +50L,L3 \/2503, f Z

t=1 =0

+ LfT\/milES,A[Varw (9w (A(9)))]-

Using (13) we have, for any ¢ > 0,

2

T
S EsalF(w) - F(z.)] < O(874 T (log )= a4 )

¢ 2— lecs | 2 T T
+nB72T (IOgT) +T 77\/>+ /B +ﬁ)

Dividing both sides of the above inequality, setting n = 7% and 3 = T~°, and from the choice of A(S), we have

ES,A[F(A(S)) — F(l’*)]
1 1

SO(T_(l_b)c+%(10gT)lc=l _'_T—g +T%b_2a+Ta_1+T_a+T1_a(ﬁ+E)

1—a—§(b-1) e pleact L migboza, L
+ T 7750 D (log T)'e=2 + T 4TS +\/ﬁ)

Since a,b € (0,1], as long as we have ¢ > 4, the dominating terms are the following O(T'o=3), O(T'*t32%),
O(n='T'=%), O(m~'T'=%), O(T*'),and O(T2>=2%). Setting a = b = 4/5, then we have

. Tt T% 1
+

Es alF(A(S) ~ F(a.)] = O(™F 4 S L0t ),
Choosing T' = O(max{n?®,m?:5}), we have the following bound
Es.AF(A(S)) = F(.)] = O(—= + —=)
— F(z,)]=0(— + —).
oA Vi Vm
This complete the proof. ]

D.2. Strongly-convex-setting

proof of Theorem 8. Similar to the proof for convex setting, we use the same notations. Since changing one sample data can
happen in either S, or S,,, we estimate E[||z11 — :cfjr'jl ] and B[|| w41 — :ci_fl Il
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Estimation of E 4 [||z1 — 274 ]
we will consider two cases: i; # k and i; = k.

Case 1 (i; # k). We have

k,
lzs41 — $t+l/1||2
< lwe = mveV fo,, (we) — 2" + ntvt N fo, ()P

<l = 2y |1* = 2ne v} Vfu”( ) = 0V for, ()2t = xe) 07 [0V f, () = 0V o ()|

We begin to estimate the second term in (37).

= 2000}V fu, (™) — vtVfV, (ur), ™ — xt>
— o (F IV () = BV (g5 (@), 2 — )

= 201"V I, (95 (2t »—w T olos b)) —

— 2, (0} V fs(gs(x")) — Vs (x5 )V fs(gs (b)), x5 — x4)

(
(
— 20(Vgs(z;" )V fs(gs(@r™) — Vgs(z)V fs(gs(ze)), 20" — 24)
(
(

= 20(Vgs () V fs(gs(21) = vV fs(gs (@) 2™ — ) = 200(0,V f5 (g5 (20)) = 00V s (ur), 2™ — )

— 2 (Ve V s (ue) — eV Sy, (ue), 2y — @),

37

(38)

Changing the setting from convex to strongly convex will only affect the fourth item on the RHS of (19), and the other items

will remain the same as before. Now we estimate the fourth term on the RHS of (38).

(Vgs(af" )V fs(gs(a )—v%@th@d%»mV—x»

> L Vg5 (@) fs (g5 (25)) — Vgs(@)V fs(gs (@)

k,v 2
xr,” —x + —
S il

L-I—

Then substituting above inequality into (37) we have

lzers — xt+1||

2Ly, kv
< (1-— — )

+2LgCpnellue — gs ()| - ||;z;’“’” — ||+ 2L llue — gs ()| - a5 — |
+TRLG|N four, (ug™) = V fs ()P + TR L5 CFlluy™ — gs (™) + Tnf L3l — Vgs (™)
+ T L3IV gs(xe) = vell* + T LCllue — gs (@) |* + T LIV fu, (ue) = V fis (ue) |-

where the inequality holds by 7, < ﬁ
Case 2 (i; = k). We have

lw
lzer1 — xt+1|| = ||@; — ntvtvfwt (ue) — xt + nt”t val ( )”
lw s
< lwe — 2| + mellop“V fo, (ue®) = 0V fo,, ()|l < |z — 27| + 2m Ly Ly,

where the first inequality holds by Assumption 1, then we have
lzeen — 2y 17 <l — 2| + dne Ly Ly e — || + 4nf L L.
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(39)



Stability and Generalization for Stochastic Recursive Momentum-based One to /K -Level Stochastic Optimizations

Combining above two cases, we have

2L
k,v une k,v k,v
Ealllzer — a5 17 < (1 - L—I—M)]EA[H =2 7]+ 2L CmBallug™ — gs ()| - g™ — all]

+ 2L Bl — Vs (2| - 12§ — @]

+ 2Ly CrmEalllue — gs (@)l - |5 — @il + 2L gneEallue — gs(@)ll - [l — ]
+ T0p LyCTEAllus™ — gs () IP] + T L3Balllop™ — Vgs (z3)I1%]

+ 77lt2LfCEA[HVgS($t) — v + 777152L30?EA[||U75 — gs(@0)|1%] + 1477:‘,2[’5270)2“

+ 4 Ly LyBall|lwe — 2|1, =] + 402 L3L2E (155, —y)-
By setting 1, = 7, we have

[||9Ut+1 _xt || ]
L%H«EAM’” = g5 (@) IPDY2 + Ballluy — gs(@)P)Y?) Balla; — 25 [2)"2

2L S (1= 2y (B ob - T )21 + Ballv; — Vas(a) |2V Ealla; — 25 2)172

2Lpm v —j
+7n2L20f21—TM> Al = gs (™) ]+7n2L2cf21—Tu>t TEalllu; — g5 ()|

j=1
t t
2L , 2L
FTPLE Y (1= 2Rk~ Vgs (b)) + TP 31— IR | Vs () ~ vl
Jj=1 j=1

477LL i Qle . An?L2L2 2 ., t—1
P2 ) Rl - ||1+%Z<1fm>t T Mt Lie} Y (1= D
j=1 j=1 =

where the inequality holds by Lemma 13, Cauchy-Schwarz inequality, and the fact that xg = 950 . Define uy = (Eall|x: —

2F7|12])Y/2, we have

t—1
2Lpm . kv kv
up <2LyCyny (1~ m)t H(Eallluj” = gs@)PDY? + Ealllug — gs(a) 1P ?)u;
j=0
t—1 2L
k,v
+2Lsny (1 L+M)t H(Eallvg™” = Vas(ay”)I?)V? + (Ballv; — Vas(@)l*)?)u
7=0
t—1 t—1
47 2L202 ( 2L}U'77)t7jE ” kv ( k,u)”Q 47 2L2C2 ( 2L/“7)t7j]E ” . ( )”2
U P> T ILtu allu;™ = gs (@) 1P+ TP LECT Y Ltu Alllug = gs(x)I°]
j=1 j=1
t—1 QLMW _ t—1 QLW]
+TPLE Y (1 ) B A0} = Vs (")) + L3 Z ) IEA[IVgs(z5) — v]%]
j=1
t— 1 n2L2L2 1 t—1
477L L 2L,u7] . v L Ly 2L,u77 . 2Lpm
St ) Bally W+ T 0 - ) ki 3 )
Jj= 1 j=1
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Furthermore, define

t—1
2Lp’77 —7 ,V v
aj < 2L,Cpn Z(l - m)t j((EA[IIUf' - gs(fﬂf’ PNV + Ealllug — gs(a)P)?)
7=0
t—1
2Lpn 4 v v
+2Lyn Z(l - m)t I(Eallvy - Vgs(xf AV + (Ballv; — Vgs(z,)l*)?)
7=0
+ 477L9Lf (1 2Ll”7 )tfj 1’
n L+ pu
and
t—1 2L t—1 2L A
Si < TPLYCHY (1= T ) Bl = gs (@I + TPLICF D (1 = o) Ealllyy — gs(a) )
j=1 j=1
t—1

2Lpn v v - 2Lw7 ;
+ TP (1 - L+ ) IRA(lloy = Vs (@) 1] + TP LG Z ) IEAlIVgs(z;) — v5]%]

j=1
4772L2L2 i 2Lun - = 2L
=1 L 142202 1— un
Z + 1dn gaf - ( L+M) ’
Jj=1
using Lemma 14, we have
= 2L/m < G 2L,u77 , 1
up < 3nLeCr(D (1 - ) IR AUl — gs (25?7 + 3nLeCr(Y (1 - ) Eallluy — gs(z;)[?)?
j=1 j=1
t—1 2L t—1 2le
3L (3 (1= T Bl — Vas(a)IDE 48031~ ) VBl Vas(a;) — vyl
Jj=1 j=1
t—1
2Lpn v v
+2L,Cpn p (1 - T+ ) I (Ballef” = gs (@) P + Ealllwy — gs(z)]7)?)
§=0
t—1
2Lun v v
+2Lsn (1—m)t H(Ballv]” = Vs (@) I*)? + (Eallv; — Vas(a;)]*)'/?)
§=0
L 2LyLy(L+p) | 2L3L20(L + p) N 14L20%n0(L + p)
n Lun Lu ’

where we use the inequality that (Y25, a;)'/2 < "% (a;)'/? and (7). Then, with T iterations, we have

v 2L/m i
Ealllor — 23"|l] < GLngnsup Z )T Eallluy — gs(a;)lIP)?

<.
(e}

T—

_

2Lpm i
+6Lpnsup(Y (1 — —=—)"T " "Balllo; — Vgs(z;)]*])"/*
s = L+p
T-1 2L
+4L, Cfnsup 1-7 )T Balluy — gs(a;)|P)?
j=0 tH

T-1

2L 7
+4Lfnsupz “ )TN Ealllv; — Vgs(z;)|2])}2
=0

L 2LoLp(Ltp) 2L5L2n(L + p) . 14L20%n(L + p)
n Lun Lu '
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Estimation of E 4 [th+1 - xfsf1 ||]

Similarly, we will consider two cases: j; # [ and j; = [

Case 1 (j; # ).

Similarly, we have

lw
zt41 — $t+1||
2L pm; b Lo Lw Lo L
== )|| o — 20| + 2L, Cpnellu® — gs(ap)[| - |25 — 2ol + 2L gmelop® — Vs (g - oy — x|
+2L Cf77t||ut — gs(@o)ll - |25 — 2]l + 2Lgmellu — gs (@) - |2 — a4
lw
+7ntL2||Vfu%( ) = Vis(uy®)|]? + mEL2CH up® — gs(ap)|* + L3y — Vgs(zy®)|)?
+ ML} Vgs(ze) — vl + TP L2CF Jur — gs(xe) |* 4+ Tnf LIV fu,, (ue) — V fs(ug)|1%.
. . 2
where the inequality holds by 7; < L
Case 2 (j; =1). We have
i1 — 25|17 < llwe — 2| + dmp Lo Ly |l — 2| + 407 L3 L3,
Combining the above two cases, we have
l,w _ xt”

l L ;
— x|+ 2Lpmellvy” — Vs ()| - ||z

allzesr — l”iiﬁ” ]
2LW]t 2 lw
<(1- )II — 2| + 2L Cmllug® — g ()|l - |14
+2L Cfﬁt”“t —gs(@)| - lor* = x4l + 2L pmllug — gs(@o)[| - |27 — w2
+7ntL2||Vfu,t( ) = Vis(up®)|? + i L2CHup® — gs(ap)|* + T L3{lvy® — Vgs(zy®)|?
V fs(ur)|?

+ i L3IV gs(me) — vl + T L2CF luy — gs(ze)|* + T L2V fo,, (ue) —

+ A Lo LyBal||lwe — 2y |1yj,—] + 402 L3 L2E A [,y )-

Setting 1y = 0, telescoping above inequality from 1 to ¢ we have

allzers — 245317
9s(@)IPD)/2) (Ealllz; — 25|2))"/?

t—1
2L/“7 —7 w ,w
) I (Ballluy® = gs(@)IPDY? + (Ballluy -

=0
t—1
2Lp w w
fm _L+M 'U gs\x l AllVj; — Vgs Ty AlllT; —;[;é
+2L (1 - 220y (B gl — v (@)Y + (Balloy — Vgs(@)I*) ) (Eall [NIEE
j=0
t t
2Lpn 4 w w 2Lpn 4
+ TP LiCF Z(l - m)t TEA[[uf® — gs(a“)I*] + T’ LICT Z( - m)t TEalllu; — gs(z;)|]
j=1 j=1
t
2Lun w 2Lw7
+ TP (1 - m)t TBalll0j* — Vas ()17 + T° L3 > (1 - EallVgs(z;) —v;[*]
j=1 Jj=1
t 2 2712 t t—1
2Lun Lo dn"LyLy 2Lw7 Ji-i 272 2 2Lun
+ 14n“L 1——

4nL,L
et Y (U= ) Bl 2l
1
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Then with T iterations, we have

-1

QLWI T i-1g 1/2

T
lw
Ealller —277[] < 6Ly Cyn sup( Eallluj — gs(x;)|°])
j=
T-1
+6Lsmsup(y (1-—
S =0

2Lpm

jn H)T_j_lEA[HUj — Vgs(x;)|I°’)"?

<.

T-1

2Lpm

FALCpnsup > (1= 770" Balllyy — gs(a) )2 (40)
j=0

T-1

2Lpn p_iq 21y1/2

+4Lgmsup Y (1 — FENT=I1E oy — Vgs(a)|2)Y
fnbgpjzo( L+M) (Ealllvy gs(x;)[I71)

L 2LgLy(Ltp) \/2L2 FL20(L + p) N \/14L§0}%77(L + M).

m Lym Ly
Now we combine the above results for estimating E 4[|z — 5:"[|] and Ea[||z7 — 25 |], we have
T—-1 YLy
€ + €w < 20LyCpnsup Y (1= 7=—) I (Ea([lu; — gs(a))|*)"?
s = L+pu
T-1 272
2Lpn \p_j 4 12 4 L L r](L—i—u)
20L 1— 2B T=i-1(R - / - g 7 41
+20 fnsgp;o( T Eallloy = Vs (@)IP) Lo (41)

2(L L,L 2L2102n(L + 2(L L,L L202n(L +
_|_(+U)gf+ #Lan( ﬂ)+(+u)gf+8 3o F‘).

Lyum Lun Lun Ly
Now we will illustrate why the second inequality of above holds true. According to Lemma 23, we have
T—1
2Lpm 4 21\1/2
1 - 22 INT—j-1g o ) /
(0= ) Ball —as(e) )
T—1 4
2L 2L L5n
< (Y (= BTN 6B) B luo - gs(@o) ] + 20738 + 2=/
= L+p B
T-1 4r1r2,.2 T-1
2Lpm 16 o 2L Ln” 1 2Lpm oy 21\
< 1———)" 77732 + ———))2 + 1— = — 2
< (j:O( LJW) (20458 5 ) ((jgo( L+u) = 2)e(G8) ) Ellluo — gs(zo)[|*])
2L2L VL VU
vV Lpm \/le e Ly
Likewise,
T—1
2L i
> (1= FED T Bl — gs ()P
j=0 T
T—1 4722
2Lpm LyLin™ 1
< (1= TN G8) O E o — gs(zo)|Y + 2038 + 573
]:o W (42)
T—1 T—1
2Lpn jr-i1 LyLgnv2, e . 2Ly \p_j_1 o —s
< J= B+ )+ (=)2v U, l———)" 7/ 2
< X0 ) e B )+ (VI - 69
o L+ pogyIB | (L+p)V2LyLy + (68 M(L+M)T_gﬁ—g
- 2Lun 2Lpv/B e Lpn
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According to the above two inequalities, we can get the dominating term is 23:01 (1— QLLT“S)T*J'*1 (Ea[lluj—gs(z;)]2])"2,

then the inequality (41) holds true. The treatment of the other items is similar, so we won’t go into details. Since often we

have < min(2, 1), then we have

T-—1
2Lpm i
€+ 6w < O(Lgcfnsgp 2= T3 T Ballles — gs(@)IP)?
j=0

L+
T-1 2Lun
+L 1 - =20 T YEy(|v; — V NEIRE 43
msgpj}zo( L+u) (Ealllv; — Vs (z;)[I7]) (43)

+ (L+p)LyLy + (L + N)LgLf
Lym Lyun

L+pu
+ Lgoy Tu\/ﬁ)
This completes the proof. O

Corollary 4 (Two-level Optimization). Consider Algorithm 2 withn, =n < 1/(4L +4p), and B; = < min {1/8C%,1}
foranyt € [0, T — 1] and the output A(S) = xp. Then, we have the following results

€+ e <O(TB) 5 +B24+n2+087 2 +n" " +m™).

proof of Corollary 4. Next, we move on to the Corollary 4. Combining (42) and (43) we have
ete, <Om™ +m 4242y ppT 2y TS,

The proof is completed. O

Before giving the detailed proof, we first give a useful lemma.

Lemma 26. Let Assumption 1(ii), 2 (ii) and 3 (ii) hold for the empirical risk Fs, and Fg is p-strongly convex, for Algorithm
2, we have

Ea[Fs(@i11)|Fe] < EalFs(w)[Fe] - %HVFS(%)Hz + LimEa[llve — Vs (@) |I?| 7]
LL;L?T}?
—

where E 4 denotes the expectation taken with respect to the randomness of the algorithm, and F; is the o-field generated by

{wjov'--7wjt—1ayioa"~ayit—1}'

+ LyCimEalllus — gs(ao)|*F) +

Proof. According to the smoothness of Fg, we have
Fs(41) < Fs(ae) + (VFs (@), 041 — ) + g”ﬂﬁtﬂ — |
< Fs(x) = ni(VFs(20), Vgs(2:)V fs(gs (1)) + LTn?HUtVfu,-t (u)I” + s,
where 0; = n:(VFs(xt), gs(x4)V fs(gs(x:)) — vV fu;, (ut)). As for the term 6;, we have

Eal0¢|Ft] = mEA[(VFs(2t), Vgs(z:)V f5(gs(wt)) — vtvfujt (ue))| F]
=m(VFs(x1), Vgs(x)V fs(gs(@i)) — vV fs(gs(ae)))|Fe]
+mEa[(VFs(xt),v:V f5(gs(x¢)) — veV fs(ug)) | Fe] + niBa[(VFs(xt), vV fs(ug) — Utvfujt (ue))|Fi]
SmlIVFs (@)l - [IVFs(gs (@)l - lve = Vgs (@)l + 0V Es (@)l - vell - [V £s(gs (1)) = V fis ()|
SmLplVEs(@)ll - lve = Vs (@)l +mLgCrl|V Es ()| - lue — g5 (@)
< LYTFs@) P + L3milloe - Tgs (@) + L2CHmlus — g1,
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where the last inequality holds by Cauchy-Schwarz inequality. Combining above two inequalities, let F; be the o-field
generated by {wjy,...,wj, 1, Vig,---,Vi, , }» We have
Ea[Fs(zi41)|Fi] < EalFs (@) F] — %HVFS(%HF + LinEa(llve — Vs () [I*| 7]
LL2L2?
—
Then we complete the proof. O

+ LyCinEalllus — gs (o) |1?1F] +

proof of Theorem 10. We begin to give the detailed proof of Theorem 10. Note that strong convexity implies the Polyak-
Lojasiewicz (PL) inequality

1
SIVEs@)|* = p(Fs(x) = Fs(a?)),  Va.
Then according to Lemma 26 and PL condition, subtracting both sides with Fg(x?) we have

Ea[Fs(2i41) — Fs(a3)] < (1 — pme)Ea[Fs(x:) — Fs(22)] + LiniBalllve — Vs (1) [|* F]

LL2L2’I72
+ LyCimEalllus — gs ()17 + —25=
Setting 1; = 1 and B; = (3, using Lemma 23 and 24 , we have
Ea[Fs(xi41) — Fs(a?)]
LL2L27’]2 ¢ 2L4L2772
< (L= pm)EalFs () = Fs(e)] + =257 + O U(t8) ™ + 2038 + —*210)
.. . 2L4L2 772
+ Lin((2)°V(t8) ™" + 2056 + ng).
Telescoping the above inequality from 1 to 7' — 1 we have
E[Fs(ar) — Fs(a?)]
LL2L2n?
< (1= )" ElFs(a1) = Fs(a)] + —55= 37 (1= um) ™
t=1
. T—1
+ ()8 (LGCoU + LgnV) Y t=c(1 = pp) T~
t=1
2LC3LAn°  2LiL4n® 2
+(2L2CF02fn + 2L502, By + —* /'; ! gﬂf )Y (1= )T
t=1
For t = 0, we have
LL2L2’I72
Ea[Fs(21) = Fs(2?)] < (1 — pm)Ea[Fs(20) — Fs(22)] + L2CinU + LinV + fo.

Then combining the above two inequality we have

E[Fs(vr) — Fs(a?)]
LI2L2 772 T
Y A )T (LOU + LV (L — )T

t=1

< (1 —un)TEa[Fs(xo) — Fs(x?)] +

T-1

C _ _ i

+ (2)BLGCIU + LjnV) D (1 — p) T
t=1

2L5C3LAn°  2LiL4n
g g f + gﬁf )Z(l—lm)T_t_l-

t=1

+ (2L;Cioypn + 2L} 0, Bn +
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According to the fact that Zthl (1—pun)T—t < ﬁ using Lemma 12, we have

-« T—t-1 A el /) R
1— - t—¢ t=1 t7¢ < t¢.
t:l( p) 1 ; _TWZ
Then we can get
—c LLEL?CH 22 2 C \c —c
E[Fs(ar) — Fs(25)] < (—)°(T) Dy + ——12 4 (L2CHU + L3nV)(—)° (1)
eu 21 el
. T-1
+ (g)cﬂ‘c(L??CJ%nU +LIV)T Y e (44)
t=1
2012 2 2 2 6012722 4742
N 2L, C50,8 N 2Lj0,p N 2L,C5L%n N 2LyLin
7 I Bu Bu

According to Zthl t=* = O(T'~%) for z € (—1,0) U (—o0, —1) and Zthl t=1 = O(logT), as long as ¢ # 1 we have

E[Fs(wr) - Fs(a5)] < O( D, ()~ +LL2Lfn+(L30;U+L}V)(nT)—cn

+ (L2C2U + L2nV)(BT) ¢ + (L2C302 + L30%)B + (LSC3L3 +L‘}L;})n2ﬂ*1>.

The proof is completed. O

proof of Theorem 11. Putting (42) into (41), we have

Ealler — 23" |] + 4Ba[||lzr — 277 ]
(L+mogy/2B | (L+m)V2LLy 555
2Lpn 2Lpv/B Lpn
(L+mogv28 (L+p)V2L3Lg g)%f(Lw)T s 1)
2Lpun 2Lpv/B e Lpn
2L3LIn(L +p)  8(L+ p)LyLy 2L3L20(L+ ) 2(L+ p)LyLy
+ + + .
Lym Lyum Lun Lun

\F(L + 1) o pg

< 50L,Cynsup( SysY T h)
5 e

+50Lsn sup(

+4

From Theorem 20 we have

E[F(zr) — Fs(zr)]
(L+pmoyy2B | (L+p)V2L5L;

C\g \/UT(L + /j‘) —C pc

<50C:L % N XY Zwvr P res 373
fhplgn sup( 2L TN (e) L B2)

L 2B (L4 p)V2L2L  TAL L
+50L?Lg7]sup(( +.u)o-g /B+ ( :U) g™ f (9)5 v( +,LL)T_§B_§)

s 2Lpn 2Luv/B e Lpn
(L +p)  8(L+pLiL] (L +p)  2(L+p)L2L2
ALAL? g 1212 g
+alyly Lum + Lym + LyLy Lun + Tim

+ Ly /mEs a[Var. (g.(A(S))))
Combining (44) and above inequality, using Fis(z5) < Fs(z.) we have
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Es,a [F(A(S)) = F (z.)]
(L +u)ag\ﬁ (L+p)V2L5Ly
2Lun 2Lu~/B
(L+poyv2B (LA wVRLGLy (&5 VUsllt 1)
2Lun 2Lu\/B e Lpn
29(L+p) , 8L+ p)L3LG Lpzpe ) 2L mLyL3
Lum Lum F™g Lun Lun

¢ ) LE3Lgn
+ Ly EsaVaru (g AS))] + () (T) D, + 2 1

VUL + 1) -
L T:2472)

VU, (L + 1)

< 50C’foLgnsup( + (-

[ e

+ SOL?Lgn sgp( T-:57%)

2712
+AL3L2

+ (L2CinU + LinV)( u) (nT)~°

2012 2 2 2 612 4742
2L C50, N 2L50,p N 2LngLf77 N 2LyLin

T—1
C
+ L2CinU + LinV)T~ = =+
(2 B~(L5Cn V)T 2 P B o

t

1

Settingn =T"%,5 = T~° since often we have n < min(g, %), then we have

Es.a [F(A(S)) — F(2,)] SO(T™% + T3 %+ T30 4 =3 g1 g pei=a) L pe(i=h)
LT 4 TP IO L TO20 LT85 T3S,

Setting ¢ = 3, the dominating terms are O(T'2~%), O(T~2), O(T3"=D), O(T~%), andO(T6~ 1),

).

Settinga = b = g, we have

~le

Es 4 [F(A(S)) — F (z.)] = O (T*

Setting T' = O(max{n"/6, m76}), we have the following

Sl-

Es.a [F(A(S)) — F (2.)] = O ( n j,»n) |

The proof is completed. O

E. K-level Stochastic Optimizations
Lemma 27 (lemma 6 in (Jiang et al., 2022)). Let Assumption 1(iii), 2 (iii) and 3 (iii) hold for the empirical risk. x4, ugi) and

vt(i) are generated by Algorithm 3 for any i € [1, K|, then we have

Ellvf” - V fis ()2 < (1 = B)E[[v) — V fis (w32 + 26207 + 2L2E[[luf ™ — w7 V|2] @45)

()

Lemma 28 (lemma 6 in (Jiang et al., 2022)). Let Assumption 1(iii), 2 (iii) and 3 (iii) hold for the empirical risk. x¢,u; ' and
( ) are generated by Algorithm 3 for any i € [1, K], then we have
1—1 7 1—1 i—1 1—1
Ellluy” — fis(ui’ ™ IP) < (1= BOE(lufy - fis(w50)17) + 28707 + 2L3E g™ —f50)7) @6)
Lemma 29 (lemma 7 in (Jiang et al., 2022)). Let Assumption 1(iii), 2 (iii) and 3 (iii) hold for the empirical risk. x, ugi) and
vgz) are generated by Algorithm 3 for any i € [1, K|. Then for any P € [1, K|, we have
P P P
i—1 i—1 i— i i—1
> Ellluin” —uf VP < QO @LY T Elllwess — 2’1+ 2624107 P +287, P Y Elllwy” — fiu ™)) @47
i=1 i=1 i=1
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Lemma 30. Let Assumption 1(iii), 2 (iii) and 3 (iii) hold for the empirical risk. x;, uy) and v,gi) are generated by Algorithm
3foranyi € [1,K], let0<m =n<landlet0< B = <max{l,1/(4K Zfil@L?)l} we have

K

STE[uf? — fis(ud ™))

i=1

=z K K 2\i, 27 K
ZZ B!~ fustwo) ] + 4503 K (L)) + 1) 4 ==L
i=1 i=1

proof of Lemma 30. Now we give the detailed proof of Lemma 30. According to Lemma 28 and 29, we have

K

7 1—1
STEu? - fisut ™))
=1

K
<3 (- BOE[u?, — fis(u{ 37 + 28203 K (48)
=1
K K ]
+ (O @L) Elllr — w1 |?) + 28203 K + 282K > Ellluy”y — fi(uf 5[],
i=1 =1
According to the setting that 3; < max {1,1/(4K ZiK:l(2Lfc)i}, we have
K
7 1—1
STE[u? — fis(ui )2
=1
K B K
t 7 71— 1
< (0= DElw?y — fis(S)P + 26703 K + QL)) Ellae — v ] +2605K)  @49)
=1 =1
K ﬁ K K
t 7 1— 1 7 7
< > (1= DElu?, - s + 28703 K (3L +1) + > (LY n LY.
i=1 =1 =1
Then using Lemma 14, setting 1, = 1 and 3; = /3, similar to the proof of Lemma 23, we have
K
7 —1
S E[fuf? = fis(uf )]
i=1
, (50
K t K K 2\i, 2 17 K
< 2 T10 = Bl = fis(eo)l) + 4807 K (3 (2L3)) + 1) + === F =
i=1 j=1 i=1
Note that H < exp(— Zf\;K B;) forall K < N and j3; > 0, then we have
K
z 1
ST E[luf” — fis(uf )7
=1
K . K K 2V\i 217 K
pi (2) 2 2 221‘:1(217) n-Ly
< ;expe;)lli[lluz Fis(wo)|[*] + 480 K ( ; (2L7) 3 (51)
K K K 2V\i,2 17 K
Coo B e (i) 2 221:1(217) n Lf
< ;(5) () “Ellluy” = fi.s(x0) |*] + 4807 K ( ; (2L%) 5 :

Then we finish the proof.
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Lemma 31. Let Assumption 1(iii), 2 (iii) and 3 (iii) hold for the empirical risk. x;, ug’) and v,gi) are generated by Algorithm
=B <max{1,1/(8K Y/, (2L2)"} we have

3foranyi € [1,K], let0 <n=n<landlet0 < S,

K

STE[lof? — Vfis(ul )]

=1

A(CK (212) L

i=1

K
<2 ()< ®lls”  fis(@o)l?) + Ellof) — Vi sao)?) + ;
- K
+A4BK (05 + 05 + 207> _(2L3)")).
=1

proof of Lemma 31. Now we give the detailed proof of Lemma 31. According to Lemma 28, 29 and 27, we have

K

2 (Eller” =V fus ™))+ Bl — Jus ™))

- K
S+ 28K 31— LI, — Vs + 25203

Z Bi)E ||Ut 1~ Ji,s\Upy
=1

=1

K
2L2))(E[l|z: — we-1]|?] + 26203 K + 262K Y Elllul’y — fi(ul V).
=1

(1
K
=B <max{1,1/(8K Efil(QLfc)l} we have

+20_(

i=1

According to the setting that 0 < 7, =7 < landlet 0 < f3;

K
2 (Eller” = 9 fus ) IP) +Ells”  Fes ™)1
= K K )
<> 1= EDEu?y — fisuf 3P+ D0 = BB, — fis (i)
i=1 =1
K K
+203 QL)LY + 287K (0% + 05 + 205 () _(2L})")).
i=1 i=1
Using Lemma 14, we have
STEllvf” — Vsl + Bl — fis(u)2)
i=1
) 4 Ii 21,2V \n2 [ K
~ st 4 Ellof? — Vi stao) ) + 2= CE T

K t
S
i=1 j=1
K

+4BK (0} + 07 + 207> _(2L3))).

i=1

Then we have
46



Stability and Generalization for Stochastic Recursive Momentum-based One to /K -Level Stochastic Optimizations

K
1—1
S Ellot” = Vis(u ™))
i=1
K K 2Vi\, 2T K
[ 76 i i 4(21‘: (2L3)" )L
< D) Ellu? = fis(oo) ]+ Bllol” = s (o)) + —===—g——
=1
K .
+4BK (0} + 05 + 203> _(2L3)")).
i=1
This complete the proof. O
proof of Theorem 1.
Es a[F(A(S)) — Fs(A(S))]
L) JE—1) LD
=EsalE,o0lfk (Eyw-n[fi_1 1 E,olfi ( (S)HD]
(K) NK—1 (K 1) 1 ny (1)
_ = ”< T v (A(S
231 nK_ ”;1:1 (n1 z1:1f1 (A(5))))]
(K p(E—1) LD
=EgalByoo[fx  EBooen[fi1 T Eum[fi” (AS)]]
SR LK) e
— e 2k B[Sy T B [ (AS)))
ix=1
<K) (K-1) L)
JFIESA Z f E e [fre—1 " By [fi7 (A(S))]) (52)
’LK 1
(K) iy fﬁ D e
—jkzl s 2 I Bl )]
IR o
+Ega[— Z (- Mo T Bt (AS))
K ’iK:1 K-1 lK 1= 1
(K) NK-1 J(E=1 ni Mo
772 Z fu(l“ Zflzl
ix=1 igk—1=1 i1=1
Now we estimate the terms of the RHS. Define S(*) = {1} - .- V,(Lll), . ,ugi),7~-~ m,ﬁ?l, e 71/§K), e um )} where
€1, K].
For the first term, we have
LK) p(E—1) L1
EsaE,oo0lfk Eycn[fi—r 1 Ealfi (A(S))]
1 LSS ui(K) (K—1) (1)
- Y A B[ T B [ A)
ix=1
(K) (K-1) &) K
R S 5 B ) By 177 (A
’LK 1
SRR (K—1) L)
- Y A B[ T B[ AG)
ix=1
— A

< L[ A(S™F)

< L?GK
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For the second term, we have

<K) K-1 1
Es.al— ZfK Ecnlfior 1 Ealf (AS))

1K 1
<K> NK—-1  (K-1) )
- Z S A Bl (AG))]
K ix=1 nK L=t
nNK—1 LE-1)
< LyEsalllfe-1(fx—20---0 fi(A(S) Tk Z fzK " (fr—2 0o fi(AS))II]-
Tk _1=1
Besides,
nK—1 SE-D
a1z 00 A(AS)) = — 3 IS (Frezo -0 fi(A(S)))
tx—1=1
ko Z E, e g ko1 (Frez 00 filA(S)) = fKy " (frema o0 (A(SP D))
TLK . ; E.(K v [Ey - 1)[fK(K1 1)(fK—z0'"Of1(A(Sj’(K*1))))]
(K 1) .
— [y (fr—z20---0 fi(A(SHE=DY))]
nNK-—1 HE—D) . L E=D
nxl 1 Z ]EjK ooy (fr—2o-- o fi(A(STEDN) — f2 1 (fx—2 0o f1(A(S)))].
J=1

Note that S and /(5 —1) differ by a single example. By the assumption on stability and Definition 1, we have

NK—1 (K 1)
Esalllfx-i(fro 0 AlAS)) = o DT fi" (frmao -0 A(AS))]
ik—1=1
i LK1 . (53)

I ZE<K o By [F2 T (fre— 0+ 0 f1(A(SHE=DY))]

SQLff Yer— 1+ESA

oKD

—fq (Fx—20--0 fi(A(SZEINIL

Next step, we need to estimate the second term of above inequality. We denote

H(K=1)

(frx—2 00 fr(ASTEDN) = frl 1 (fr—20-- o0 fi(A(STED)))].

(K—-1)

&(9) :EUJ(_K—W[EU(K v [fk-1

Notice that

NK—1 NK—1

Es,all Z &(S)?] = Es,al Z 316 > Esall&(8),&(9)).

J,iE[an]:j?fi
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Using Cauchy-Schwartz inequality, we have

Esal Y &)
j=1

NK-—1

— Ega Z: 2, o B 5L (a0 0 fu(A(SPH))]
1 (a0 o ASHED )
SES,A[HKz: By [F255 " (fic—z 0+ 0 Fu(ASHEDN)] = F2 (ficz 0+ 0 Fi(ASHE-D)) 2
Z
Bl Y B ol oo AN = Fis (rmao--o AAS)I
e 1Eaa Vot 1(A(S).
.

where Varg_1(A(S) = Eyoc-v [ fr-1(fr—20- -0 fi(A(S)) = fk_y  (fr—20-- 0 fi(A(S))]?].
Next, we will estimate the term (. 1.5 Es,a[(€5(5), &(5))]. We first define

i K — 1 K-1 K-1) (K-1
gk 12{”97"'» r(zll)v aVz'(—l )’Vi( )7 z(+1 )7 R r(g 11)?V£ ) IR S 7(1?}
0.5, K — 1 K-1 K-1) (K-1 K-1 K-1) (K-1
S%K 1:{V£)7"'7 7(111)7 JVz'(—l )7Vz'( )>Vi(+1 )7"'7VJ(—1 )VJ( )7 ]( ) < 7(1115)}
Due to the symmetry between (5 —1) and uj(-Kfl), we have

Ey](,K*l)[gj(S)] = O,V_] € [lanK—l}-

If j # i, then we have

Es (&S5, &(9)] = Es R, o) [(&(SP51),&(9))]
= Es,A[(ﬁj(Si’Kfl),Eung—n (& (S)])] =0,

In a similar way, we can get for any j # ¢

Es4l(6(9), &(57 1)) = Es.aE, e [(6 (), (7))
= Eg al(E, e [§()), &(S7 )] = 0,
and 4 | | |
Es,al(&(S"F7h), &(S7 K1) = ES,AEVJ(‘Kﬂ) [(&(SPR1), &(S7F )]
= ES,AKEVJ(_K—l) [Sj(Si’I(fl)]7 fz(SJ’K71)>] =0,

Combining the above identities, we have for any ¢ £ j

Es,4[(§;(5), &(S)]
=Esa[(&§(S) — &SP, &(S) — &(SPE1)]
< Esalll§(S) — & (S I - [16(S) — &SP Y]]

1 . 1 ,
< SEsalllg; () = &(S™THIPI + SEs alll&i(S) — &(S7 T H]?).
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Then
Es.a[ll¢;(S) — & (S5 1))?]
= s Al oy (froa oo filASFD)) = fr Y (fr_a 0+ o fi(A(SHHE=D)))|2]

(K—1) oKD

+2ESA[HfK1 (fx—2 00 flAS™ D)) = f2 1 (fx—a 00 fi(A(STE=1)))|?]
<ALT e .

In a similar way, we can have _
Es alll&(S) — &(S™H|1°] < 4LF ek
According to the above inequalities, we have
> Esall(9).6(9))] < Alng—1 = D LF ey, Vi £ .
Ji€[nk_1]j#i

Then we have

nK-—1
Es.all Z &SNP < Angx—1 — g1 LE ek _; + nx_1Es a[Varg _1(A(S)].
Therefore
NK-—1
Es alll Z WO < 2nk— 1L Yeg_1+ \/HKA]ES,A[VMKA(A(S)}- 54)

Combining (53) and (54) we have

nK-1 (K-1)

Esalllfr-1(fx—20---0 fi(A(S) Z P (frmz 0+ 0 f(AGS))I]
ik—1=1
<ALE e+ \/ES’A[VTK*(A(S)] .
’ K-1
Then the second term
(K) K—1 1
Es.al— Z £ e [ 51 Eyw [ (A(S)))
zK 1
(K) NK—-1  (K-1)

_ L Z (= X £ Bl (AS))

ZKl ix_1=1

<ALSexy + Ly \/Es,A[VarK_l(A(S)],

NK-1

(K—-1)

where Varg_1(A(S) = By [[|[fx—1(fxk—20--- 0 f1(A(S)) — fi_1 (fx—20---0 f1(A(S))]*].
Similarly, we can get, for any ¢ € [2, K], the ¢-th term of (52) is bounded by

4L?€K—t+1 + Lf\/E&A[VarK_H_l(A(S)]

NK—t+1

(K—t+1)

whereVarK,Hl(A(S’):EU<K7t+1>[||fK,t+1(fK,to—~-0f1(A(S)) fK t+1 (fotO"'Ofl(A(S))HQ]-

Then we can conclude that

K K
Eg a[Varg_i1(A(S
Es,a[F(A(S)) — Fs(A(S))] < L e +4LF > ex—vin + Ly Y sl i‘;{ ”11( ( ”,
t=2 t=2 —t+
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where Vare¢41(A(S) = Eyix—on || fre 41 (Fre—e 0+ 0 il A(S) = 5T (Frev o0 iAW)
This completes the proof.

E.1. Convex setting
proof of Theorem 4. Since changing one sample data can happen in any layer of the function, we define

1 k k k K
PV b, R ’Vl(f)l’l/l( ) Vz(+)1"" VG B iy,
Let {z¢41}, {util} and {vtil} be produced by SVMR based on S, where ¢ € [1, K] and represents an estimator of the
function of layer i. {$t+1} {utJr ! and{th *1 be produced by SVMR based on S"*. For any [ € [1,ng], k € [1, K],
let xp = on * be starting points in X.

We begin with the estimation of the term E4[||z11 — :cifl |l For this purpose, we will consider two cases, i; # [ and
i =1.

Case 1(i; # [ ). We have

K K
i i),0,k
lzeps = apfyll? < Nl —me [] of? — 2t +mHv§” 2
=1 )

K K

i Lk 1,k i i),1,k

< oy — ab* 2mHvt Hv“ cxe—apyy) 0| [Tt = T 12
=1 i=1

(55)

Now we estimate the second term of above inequality.

K K

7 i),l,k Lk

- 277t<vaF ) - Hvﬁ) T —T)
1=1 1=1

K K
= _277t<H vgl) — Vfis(ze) - val )
i=1 i=2
=20 (Vfus(e) - [[ o = Viiste) - [[ o Viesu) o —2)
i=2 i=3
K .
— 20 (V fu5(x2) ]‘[W Vhs(u) = Vs [[of” - Vins(frs(a) o — 2p")
i=3
— 21 HVE s() va s(@b?), @, — 2bby
i=1
K
- 277t<H VFi,S(xf H VE; g(zb%) (1) WR my — bk
i=1
K
—2m( H VF; s(x zbF) (1 H VE; s(x") - vy (Lk Vfg’s(u,(fl)’l’k),xt — b
=2

K-1 K
)Lk K—1),1,k ),k Lk
= o [T o Vi s (00 = T o, 2 — ah).
=1

i=1
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From the above inequality, we decompose it to K (K + 1) + 1 < K(K + 2) terms, where K is the number of layers of the
function. Using Assumption 3 (iii) we can get

K K
- 277t<H v - H B )
=1 =1
< LE YoV — Vs (@)l - e — 2b)
_ 2 1 1
+ @ Lo =V fo,s(ug) | + 20 LK ug? — frs(@o)l) - 1o — 27"

mo . (K K—-1 K—-1+(K-1)K/2, (1
+ @ L7 o) — vma< NI+ 2p Ly THEEDRE D g @) - e — 2b)

277t||Hw1S () HVFZS (zb*

K1+K 1H)K/2 1lklk: K-1)K/2 Kllk K),lk Lk
+ (2 L >HH’ |+ zmw P2\ fre s (ul ) = Vol g — b

(56)

+ @ L Jul M — s (@) + 2 LK oD — Y o, (uf ) ) -l — b
_ Lk
+ 20 L ot =V s ()|l — 2.

Conclude above inequality, we have

K K
i i),k ,
- 2nt(H Ut(l) - Hvt(l) Ty — xé k)
i=1 i=1
K i-1

K—j+1Gi—1) 1 i—1),1,k
<20, 3OS LTV — g s @ a2

i=1 j=1

K
K—it+3(i—1)i i i—1 i),k,l i—1),k,1
o YLy U0l = Vs (u )+ o = Vsl T -l — 2

i=1

K K
2
- I VEs(@) - [T VEsat)l-

=1 i=1
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Now we consider the third term of (55). Similar to the (56), we have

K K
i i),1k
||Hvt)—Hv§> [
LK 1Hv“) Vs (@) - e — ab¥|
2 1 1
+ (LE o = Vo) + LEuf” — frs(@o)ll) - ze — 21|

m K K-—1 K—-1+(K-1)K/2 1 Lk
+ (L2 |of™ =V fre s () 4+ LETFEEDRE 0D s(@)]) -l — 2"
K
+ T VFis(x) vasxt

i=1

K—-1+(K-1)K/2 1,7 Lk
+ @y “||u£ )

K—-1)K/2 K-1),l,k K),lk
\+~--L§c P27 fre ol DEY - o) Lz, — 2l

Ty

1 2),l,k 1),l,k
+ (LE D =y (@) 4 LE o 9 fy o)) -l — 2]
_ 1),k ’
+ LE Yo, T fy s (@) -z — 2.

Taking square on both sides of the above inequality, we have that

K . K ‘
2 Hth) _ Hvt(z),uk 2
i=1 i=1
- 1
<LFPR(K + 2mt of” = Vs
— 2
+ LK (K + 2020 = V fo,s ()2 + LK (K + 2t |luf - s (@)l

+ LPE(K + 2)n? o™ vm( P24 LR (K 4 2)n2 ug — fos ()]
K
+ K(K + 27| [ VFis () HVFzg ol
=1

2K —24+(K—1 1)1,k K-1)K K—1),l,k K),lLk
+ L3 >K<K+2>nt||u< w2 4 LSRR (K + 2002 |V fre s (a0 — w02

1),L,k ok — 2),l,k 1)L,k
+ LK (K + 2)n2 lug™"" = frs (@) + LF2K(K + 2)m2 o) = V fo,s(uf ) |2
_ 1
+ LK (K + 2o = v fr s (b))%,

where we have used the fact that (Zfil a;)? < Zfil Ka?. Then we can conclude that

K K
i i),L,k
n?HHvt()—va) I2

K i—1
2K —2j+(i—1)i i—1 i),k i—1),1,k
<2 SOSTLFETEED D — f ()P g — f s TE)2)
i=1 j=1
K
2K —2i4(i—1)i i i—1 i),k,l i—1),k,l
02 S0 L v sl o - Vsl TR 2)
=1

(K+2Knt”HVFzS$t HVFzsxt

=1
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Putting above inequality into (55), according to 1, < m, we have

Lk
lzers — $t+1||2

K i—1
K—j+1i(i-1)i 1 )1,k 1),0,k
<o Y OSTLE TR ) — sl = fs T - e — 2
i=1 j=1

K
K—i+L(i—1)i i i—1 i),k,l i—1),k,l
t2my Ly T o = Vs () o = Vsl -l — 2t
i=1
K i—1

2K —2j+(i—1)i 1) i),k i—1),1,k
+n2 N LD — f s ()P A = s (u )

=1 j=1

2K —2i4(i—1)i i i— i),k,l i—1),k,l ,
2 > LT T f s(ul )P (o = Vsl TN 2) 4 e — 212

i=1

Case 2 (i; = [ ). We have
K
Lk llc
lwers — 2pfy |l = e —me [T of” — ab® + e Hvt
=1

I,k lk
< e — ) ||+m||Hv§ H RN < |y — 2+ 2m, LK.
=1

(57)

Therefore, we have

Lk Lk
21—z |I” < e — o)

+ 477tL |z — CL’t H + 4ny LQK

Combining above two cases, we have

1k
||xt+1 - ‘rt+1||2
K 1—1

K— J,-l(z—l)l 1 i),k —1),l,k
<o SOST LI g s @) 4 s TR -l - 2

i=1j=1

K
K—it+i(i—1)i i i— i)k, i—1),k,l
+20, 3 LR (o -0 sl o = f s (D) e — 2bE)

=1

K i—1

2K —2j+(i—1)i 1) i),k i—1),0,k

+p SN LD @) P 4 = s (a2

i=1 j=1

K

K—2i+(i— 9 i— % i—1),k,l
Z L ol =V s (™ + ot = Y fis (TP + e — 2P

+dn L e — ap® | - s, + 407 L3 1,2y

According to

1
Eallee — 27" |11, =] = Ealle: — 27" |Es, [15,=n]) = *EAHI% — "] £ —(Ealllee —2r*|?)"?,

ng
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note that ||z — 24" ||> = 0, we have

Lk
Eallzis1 — $t+1||2
K i—1
K—j+Li(i—-1)i
>~ t ! A t gS ! . A t ik
<2 LRI ) — s ()P Bally — al*]2) 2
i=1 j=1
K i—1
K—j+i(i-1)i i),0,k i—1),0,k
+20, 3 ST LF IR D g (TR (g, — 2?2
i=1 j=1

K
K—i+1(i—1) i—
2 DL T B0 — Vs ()R - (Ballze — a2

=1

K
K—i+L(i—1)i i i—
2 Y Ly T Bl = s uf TR 22 (Ballws — a2
=1
K i—1
2K —2j+(i—1)i j i—1 i),0,k i—1),1,k
+p SN DR )~ f s @) 4 Eallul — g s (TR 2)
i=1 j=1
K
2K 2i+(i—1)i i—1 i),k,l i—1),k,l
Z TN E ol = V£ s(ul )P+ Eallof?H = Vsl )2)

4n, LK 4n L2K
2+ =L (Balla — 2 )?) 2 + =

Nk

+E4lz: — gb¥

Telescoping from 0 to ¢ — 1, according to ||zg — z5"||> = 0, we have

Eallz, — ;|

t—1 K i—1

K—j+1iG-1)i i -

<2y Ly THEOTVE L 0l — £ s @DV (B allzy — 2bF2)2
s=11i=1 j=1

t—1 i—

K
+2 Z
s=11i=1 j=
t—1 K
K—it+i(i—1 i—
+23° S LT R o — Vi s (GO 22 - (Bl — 2b()Y

1
—i+Lio1) .
mLy VR — £ sl [ B - 2l 2)2
1

T

+23° 3 p LK TR R O g, (G 2) 2 (g — 2t ]?) 2
Sk

+ OSSR ) — £ (@) 4 BalluF — £ s (D)
s=1i=1 j=1

tz_i
1

S§=

+
+Z4

K

2K —2i+(i—1)i i i i i

2 L3OO, 0D — V£ (w02 + Eallo 5 -V f; g (D HR)12)
=1

t— ?K

E 2hk(12)1/2 s

(Eallzs — 25%)2) +Zj—m
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Similarly, for notational convenience, denote u; = (E 4[|z — 27%[2)1/2, and letting

t—1 K 1—1
2K 2 1—1)1 i 7 i
=N ST RO E ) — fy s (@) 2+ Ealu@ T — £ s (@DER)|2)
s=11i=1 j=1
-1 K
2K —2i+(i—1)1 4 i—
+ZZU L% FODHE L [0l — V£, 5(ulD) | + EalofF — W f; s (@l=Dk0)2)
s=11=1
1 4172L2K

t_
f
+y =1
4 SLK K i—1 i—1)i
BEL o3OS g LTI E 0 O)  f () )12

g =
Mk i=1 j=1
K i-1 K1 4 }
+23°3 p L IR R uD R — g (G DR )
i=1 j=1

K
K—i+1(i—1)i P i—
+23 L TRV R o) - Vs (@l 22

=1

K
K—it+3(i—1)i i i—
+23 L TR R oD v g (DR )12,
=1

According to Lemma 14, we have

t—1
up < \/S>t+ Z Os
s=1

t—1 K 1—1
K—j+(i—1)i/2 j j— j =
<N LT (B ul?) — £GPV 4 BalulE — g s (DR 2)12)

s=1i=1 j=1

t—1 K

K—it(i—1)i i i i i

+ 55 g LETHEDI2 (B 0@ — W (@022 4 B allolD B = Vs (ul DR 2)12)

s=1 =1

t—1 272K t— 1 t—1 K i1—1

Ans Ly 1/2 LK J+3(i-1)i E 4 |[ul) — (G-1)y)12)1/2

+Q_——) +Z S >3 (Eallu) = f;5uP)1%)

s=1 k s=1 s=11i=1 j=1

t-1 K i—1 K ' .
+23° 3 S g LRI E a0 py (a0 212

s=1i=1 j=1

t—1 K Kt k(i1 } }
+2 33 Ly TR E o) — Vs (V)2

s=1 =1

t—1 K
+92 2775 K it+5(i— 1)1(E ||,U(z)kl th ( (i— 1)kl)H )1/2

s=1 i=1

where the inequality holds by (Y27, a;)V/2 < 3K (a;)!/2. Besides, if we let ; = 7, then it’s easy to get

t—1 K i—1
K—j4+(i—1)i/2 ; i
SN n LI E ) — £ 5 (ulD)2)2
s=1i=1 j=1
t—1 K 1—1
<supn Y0303 Ly IR EL ) — fs(wf )P,
s=11i=1 j=1
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and
t—1 K i—1 P + (i1)i
11— K3
SN N nry (Ealluft — fi5(uf=DHF) 212
s=11i=1 j=1
t—1 K i—1
K— 1 2 F_
<supny 3Ly VPR — s (D))
s=1i=1 j=1

This inequality is also true for v(J ) and v(j )Lk . Consequently, with 7' iterations, we obtain that

T-1 K i-1
uT<6suan L;{ IOV ul) = f g (D)%) 2
s=1 i=1 j=1
T-1 K T—1 272K K
K—it+3(i—1)i i i— Ang L Ly T
Fosupn D0 DL RO @) — Vsl (e =
s=1 1=1 s—1
T-1 K i-1
K- i—1)i/2
<6supnd 3D L TV Al — fis (el T2
s=1 i=1 j=1
T-1 K x
' , OnLyT

+68up772
s s=1

=1 i=

K—i+1(i—1)i ; i
LR E L ol — Vs (ul D)) +
1

ng
where the last inequality holds by the fact that we often have T' > ny, for any k € [1, K]. Besides
Ealllzr — X7"|] < ur = Ealller — X2"|1%)"2,

Then we can get the result for the k-th layer

T-1 K i—1

Lk K— i—1)i/2
Ealler - X311 = 0(supn 30 D30 L VB — (a0 )2
s=1 i=1 j=1
T-1 K K
LET
K—it+3(i—1)i G (=Dy2)L/2 4 ey )
Ly E4
+Supn;; (Eallof? = Vfis(u"V)|?) o)
where k € [1, K]. Then we have
K T—-1 K i—1
K 1—1)i/2 .
D Ealllexl) = Otsupy - -3 Lf VP BAul — fi0 (a2
k=1 s=1 i=1 j=1
N K—it (i) K nLK %)
+s1;anZL HDYE |0l — V£, s (ulD)%)2 + Z
s=1 i=1 k=

This completes the proof. O

Corollary 5 (K-level Optimization). Consider SVMR in Algorithm 3 with 0 < n, = n < 2/LK(K + 1) and let
0 < B = < max {1, W}for any t € [0,T — 1]. With the output A(S) = x7, then we have
i=1

K
—-< 1/2 1/2
D e = <77T (BT)~% + Y2 +np~ +nTZ k>

k=1 k=1

Now we give the proof of Corollary 5.
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proof of Corollary 5. According to (58), we have

K T-1 K i—1 . .
D ek =0(upn D 3> (Ballul — fis(uf )2
=1 S m1i=1 =1
T-1 K K K
) ) 6nL;T
Fsupn Y (Eallol? = Vhis @40 =),
s=1 i=1 k=1

According to Lemma 30 and 31, we can get

K ; K T T-1 s /i
kglek-— (;E+n;((sﬂ) +ﬁ+ B))

K
nT —e —c 1
=00>_ 4 [2HLg=e/2 L 2373 4 BT,
k=1
This complete the proof.

Before give the detailed proof of Theorem 5, we first give a useful lemma.

Lemma 32. Let Assumption 1(iii), 2 (iii) and 3 (iii) hold for the empirical risk Fs, for SVMR, we have for any v, > 0 and
At > 0 we have

Ealllzesr — 221 F]

K i—1
K— + i—1)1
<lwe = 2812 + LEn? = 2m(Fs (o) — Fs@) +me Y > Ly 727 g — 252
=1 j=1
K +5(i— 1)1 i—1
Vv VR [ — £ )IPIF
Ve
K ;K—it+i(i-1)i (i) (i—1)y |2 K
Ur Zi:1 Lf : EA[HUt = Vfis(u )H | F¢] K—it+1(i—1)i S12
+ y +)\t77ti:ZILf : e — 2|7
Proof. According to the update rule of SVMR, we have
K .
lzesr = 2|2 = o —m [ [ of” = 27|12
i=1
K
< lwe = 2f|® + L7 — 2mwy — [ VFis (@) + u,

=1

where u; = 2 (z; — a7, H1K:1 VFE; s(xe) — Hfil vt(i)>. Let F; be the o field generated by S. Taking expectation with
respect to the internal randomness of the algorithm and using Assumption 1 (iii), we have

EA[HﬁCtH - 9C§||2H~7:t]

K
< o — 211> + LEnf — 2mBal(z — 2, [ [ VE; (@) Fe] + Ealu| F)
=1
= |lae — 25| + LFn? — 20y (e — 23, VEs (1)) + Ealu| F]

< lwe = a2I* + LEnf — 2me(Fs(xe) = Fs (7)) + Ealue|F],
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where the last inequality comes from the convexity of Fis. Now we handle the term E 4 [u| F3].

K K
w =2y, — a2, [[ VFs(ae) = [T ot
=1 =1
K
=2n HVFZS T4) HVFZS z0) o) 2y — 25)
i=1
+ 2 HVFzs ) HVFls ze) -0 Vi g(ul), 2y — 25)
=2
K
+2n ([ VFis(2e) - v ) Vfas(u H VE;s(ze) vl ol 2y — )
=3

K-1
+ 2 [T of” - Vires(uf™ H“t Jxp —
=1

Conclude above inequality, we have

K K
- 27lt<H v — va@’l’kvxt — ")

=1 1=1
K 1—1
<o SN LETTEEYD @l — ok
= 20 f Uy 3> Tt %
i=1j=1

K
K—it+3(i—1)iy, (i i—
2 YLy o f s () e - ).
=1

Conclude above inequality, for any v, > 0 and A\; > 0 we have

K K
20 (T — z3, H VE; s(xt) — Hvt(l)>
i=1 i=1
K izl A LGD)i -
<2y 3 Ly T ) — s )]l — 2]
i=1 j=1

K
K—i+i(i—1)i i i
ton YL O — Vsl e — 2
=1

K JH3G-1)i G=1)y2 K i—1
77t Zz E || f’,S(U )|| K—j+i(i—1)i
: e ) Ly T -

Tt i=1 j=1

K ;K—it3(Gi—1)i, (3) (i—1) K
M ie1 Lf v = Vfis(ug ) K—it+1(i—1)i Sn2
+ N Ay Ly [ETRE [

=1
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Then we can get

Ealllwir1 — 22|11 7]

K i1
K—j+i(i—1)i
< e — 2|2 + LEn? — 200 (Fs(20) — Fs(aS)) +yme Y > Ly 7720 oy — a5
i=1 j=1
K i—1  K—j+5(i—1)i j i1
LT S Ly T Al — frs( IR
Yt
K pK—it+g(i-1)i (@) (i—=1)yy2 K
Ur Zi:l Lf : Ealllve” = Vi s(u ?F] K—it+i(i—1)i 512
+ " +)‘tnt;[’f : e — 2|7
This completes the proof. O

Then we give the detailed proof of Theorem 5.
proof of Theorem 5. According to Lemma 32, setting ; = 7, 3; = 8 and \; = 7; = /B, we have

Ealll@isr — 23 ||°]
Sk i l(i—1)i
<Eallz: — 28)1°) + L¥n® = 20Ea[Fs(xy) — Fs(@f)] +nv/BY> Y Ly 772 Ealllz, — 7]

i=1 j=1
LIS S LT R — gy
VB
n Zfil Lfiw%(iil)iEA[Hvti) - Vfi,s(ugi_l)
VB
< Ealllze — 25)?) + LFn* — 20Ea[Fs(:) — Fs(a?)]
LKLY S Ealllul — fs(uf )2 L Ly S K Eallo)” — Vi s ™))

+

)HQ} K K—i+1(i—1)i
+VBn Y Ly TR (|2, — o))
1=1

VB VB
+0V/BK LT + KL)Ea(a, — o],
where L} = max{LK7j+%(i71)i} for any 4,j € [1, K] and L} = max{LfiH%(iil)i} for any ¢ € [1, K]. Using

Lemma 30 and 31 we have
Ealllzesr — 22 |?]
< Ealllze — 221?14+ LTn” — 2nEa[Fs(x;) — Fs(?)]

i KEC@_C 0 _ ¢ 2
+ kL (Y (5 Ellut” — fis(zo) |

i=1
= ; 2 _Iil 212)in2 K
+4B0FR((Y_ (L)) +1) + iz (ﬁf) P LY )/ﬂ
7 (¢ e(tBy-e Q) 2 (i) 2
+77Lf2(z(g) (3) E[ul” = fi5(xo) 2] + E[0\” = V fi.5(0)[%])
i=1
4 4K_1 2L2) 2 LK « |

+n/BIPLY + KLP)E ||z, — 2],

60



Stability and Generalization for Stochastic Recursive Momentum-based One to /K -Level Stochastic Optimizations

Rearranging and telescoping the above inequality from 1 to T" we have

Z 2nEA[Fs(z¢) — Fs(x?))]
t=1

T
< D, LT + Y kL (3O (D) Bl ~ sl
t=1 1=1
K _ 25K (2r2)in2LE
+ 402K (Y (2L3)) +1) + Z“(ﬁfm L) /v/B
i=1
e (% C 8 (i) _ (i) 2
+ZnL (X1 Elllut? ~ fus(@o)l’) + Ellley” =V fis(o) )
=1
4K (2L2))n2 LK K )
i Bf) L +ABK (0} + 0% + 2033 (203))) /B
=1
+nV/BK?L" + KL}*)D,T.
Then denote L' = max{L"*, L{"*} we can get

Ea[Fs(zr) — Fs(z2)]

K K
so(m Lfn+ O vy t2er- 12:&— For (O (L) + 12

=1 t=1 i=1

al K . (59)

Z L2 ﬁ 3/2 ZU1+‘/Z Lm/B 1/2 CT 1Zt C+Lm(Z(L?)’L),r]2/673/2
1=1 t=1 =1
K
+ L7 (03 + 03+ 03 (3 (L3)))BY + DL L 6/?).
=1

Noting that 23:1 t=% = O(T*~%) for z € (0,1) U (1, 00) and Zthl t=1 = O(logT), as long as ¢ > 2 we get

EalFs(z7) — Fs(22)]
K

=1
K K
+ (Lo} + 03+ a3 (O(L3)) + D Lf)BY* + Ly (Y (L3))n*87%/2).

i=1 i=1

This complete the proof.

proof of Theorem 6. According to (58), we have
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t—1 K i—1
lext—x““n <6Ksupn 303 LV Ul — £ s (D))
k=1 s=11i=1 j=1
t—1 K K K
6nL;t
K— z+ i—1)¢ (i—
+OKswpn Y L VR0l — V£ (G022 + D
s=11i=1 k=1
t—1 K—1 )
< 6K2L} supnz D Eallul? — fis@f)P)H?
s=1 j=1
t—1 K ‘ K 677LfKt
+6KLY SUPZZ (Eal[v$) — Vi s(ul=D)|?)1/2 +27
s=1i—1 =1 'k
Then using Lemma 30 and 31 we have
Zth—l‘t
ol Koo K A
< KZLY supn (3 () () Ellu” = fiss(wo)l’] + 450K (3 (215)) +1)
s=1 i=1 =1
K i K K K
. 23K (2L3)LE S 6Lt
p =
t—1 K C Sﬂ ) )
KLY sup > (3 () () (Bllt” = fis (o)) + Elot” = Vfis (o))
s=1 i=1
4K (2L2)h)n2LK K .
+ (2 iz 5f)) L v 4BK (03 + 0% +203(Y_(2L3)) V2.
=1
Thus we get
K
Zth_xt |
k=1
K t K
SOKZLTny| D U)o B2y 5™/ + 6K LY 22 2L2)iLK P B~ 1/2t+2

s=1

K

+12K°L7 | (02 +0%) + 20>
i=1

K
, 2
(2L2)1) + 02)K - B2ty + 6K L, | S (Ui + Vi) () —)B” C/2§ 572,
i=1 s=1

According to Theorem 1, we have
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Es alF(zt) — Fs(z4))]

K-1
IES A[Vark(A(S)}
< Lfex +ALF > |loy — apt ||+sz o
k=1 k=1

2K
< UKPLPTH BT2N 5T p UKL 2 E (2L2)iLK P51/ %
< Y § s 4 B t+z

s=1 i=1

+ABK2LPTE | (02 + 02) +2Z )+ 02K - B/ %t
K Eg a[Varg( A(S)]
+ 24Ky ZU+V C/st C/2+sz s.4[Vary .
=1

According to (59), we have

ZESA — Fs(z?))]

T K
— m c C
< Den '+ LT+ Y KLY (Y _(0)(5

t=1 i=1

By —eglu - fi 50|

K : K (or2yin2[ K
+4B0FK((D_(2L)) +1) + 221=1(26f) Ly

i=1

+ L ) E I  fis(eo) 2]+ Ellof” — Vs (@o)l?)

)/VB

K (o72Yi\, 27K K
n A2z, (2L3) )" Ly +4B((02 +02) + Q(Z(ZL?)i) +07)K)/\/B

i=1

B

K t
20 —c —c
+V/BK?LY D, T + 24K* L7+ 21 Ui(;)CB 12N sl

ok 2K
24nL37t
+ AR 23 (2L2) LK 28 WHZ !
=1
K
+ASK2LTE (02 +0%) + 200 (2L3)1) + 03 K - 81/
i=1

ES A [Vark (A(S)] .
N

K
20
+ 24K LT, | (U + Vi)( )" C/QZS—C/2+Lf Z
1=1 k=1

Noting that EtT:l t=% = O(T*~%) for z € (—1,0) U (—o0, —1) and Zthl t=! = O(log T'), we have

T T
D> i E=00 t'E(logt)!=2) = O(T* % (log T)'=2).
t=1j=1 t=1

Setting ) = T~ and 3 = T we can get
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ZESA ~ Fs(a?))

K
<O(T + T 4 T17(17b)c+g (log T)lcz1 + T—b/2 + T1+3b/2—2a + T2 Z ”1:1 + T1-b/2 + T2-a—b/2
k=1

K
+ T2—a—c/2(1—b)(10g T)1°=1 4+ 72=2a41/20 Z n;l/z).
k=1
Dividing both side of above inequality with 7', then from the choice of A(S) we have

Es a[F(A(S)) - F(z.))]

K
S O(Ta71 + T*CL + T*(l*b)chg (log T)1C=1 + T*b/?*l + T3b/272a + Tlfa Z nlzl + T*b/2 + Tl*d*b/?
k=1

K
4 pl-a—c/2(1-0) (log T)lczl 4+ l-2a+1/26 Z n};l/2).

k=1

As long as we have ¢ > 4, the dominating terms are O(T~9=%), O(T'*5-2%), O(T'~* S0 n;t), O(T*" 1), and
O(T3%2%)_ Setting a = b = %, we have

K K
Bo.a[FUA(S) = Fao)] =05 + T8 3t 4 Y nig 7).
k=1 k=1

Letting 7 = O(max{n?®,--- ,n%5}) we have the following

K
Es.a [F(A(S)) - F(x*)} =03 n;'?).
This complete the proof. O

E.2. Strongly Convex setting

Similarly, since changing one sample data can happen in any layer of the function, we keep the same notations as in Section
E.l.

Case 1(i; # [ ). We have

K
i lk
lzeps — by 12 < llze —me [T ot — 2b* +me Hv“
=1
X (60)

K
I,k I,k lk
< ||z — 2}¥)|? - 2n, H Hv; Jxe —apfy) + gl [T ol - H o
=1

i=1 i=1

Now we estimate the second term of above inequality. we decompose it to K (K + 2) terms. According to the strongly
convexity of Fg(-), we have

HVFzS xt) HVFzS a:t xt—xik>

> e =P ||vas ) vas Sl
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Using Assumption 3 (iii) and strong convexity, similar to convex setting we can get

K K
— o ([0 = [T ot 20 = 2"
=1 =1
<o LKoY = V1 sz -l — 27"
_ 1
+ @ LMol = Vo s ()| + 20 LF Y = fus(@ol) - e — 25"

+ @ L2 of™ — Vs (™ 1>>||+ 2 L T EEDER D g s(@)) - e — 2b)

_ 2pLp 1Lk 277t
Tiple—e P =g ||Hv1~zs:ct Hvzﬂsxt )I?

(61)

K—-1+(K-1)K/2 1,1,k 1, K-1)K/2 K—1),l,k
+ (2n L Y /Hui’ xi’“||+---2mL; ) PV fre,s (a9 = o F Y y — ab|
1),Lk 2),l,k 1),L,k
+ @0 L JulF — s (@) + 2 LYo~V o s (a2 — 2
+ 2 L oM — Vs (2P - Il — 2.
Conclude above inequality, we have
K K
i i),l,k Jk
— 2 ([T ot = [T o e — ab®)
=1 =1
K i—1 P ( 1
+1(i— 1 i—1),1,k
<2, 3N LE TR ) g sl P s (TN -l — 2b)|
=1 j=1

K
K—i+iGi—1)i i i— i i—
+ 20,3 LR - g sl o = Vs @B -l - 2]

i=1
277tLM I,k 2my
Tl P - ||HVFzsxt vas I,

i=1

Changing the assumption of convexity to strong convexity does not affect the third term on the right side of (60), so we have

K K
i i),L,k
n?HHvt()—va) I2

K i—1
2K —2j+(i—1)i i—1 i),k i—1),1,k
<2 SOSTLFETEEED D — g ()P O — f s TE)2)
i=1 j=1
K
2K —2i4(i—1)i i i—1 i),k,l i—1),k,l
02 S L0 v s (a2 oM =V fs (T2
=1

(K+2Knt”HVFzS$t HVFzsxt

=1
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By setting n; < m we have

Lk
|@es1 — $t+1||2

2n: Ly Lk
<(1- My — |

L+ Tt
K izl i+1(i—1)i Lk Lk
i li1) 1) i), j—1),1,
+ 2 Y S LR @ g s = g (T - e - 2]
iflj*l

K— 1+ (i—1)3 7 i—1 i),k,l i—1),k,l
+2ntZL (1o = V fis ™+ o5 = fi s (5N e — 25"

K i—1

2K —2j+(i—1)i 1) i),k i—1),1,k
A YOS LTIV — £ sl )P+ [~ f s TE)2)

=1 j=1
K

2K —2i+(i—1)i i i—1 i),k,l i—1),k,l
Z O ol =V fis (TP o =V fs (TR,

Case 2 (i; = [ ). We have

K
Lk lk
lreer — apfy | = llae —ne [[ o — b +nHvt
=1

(62)

I,k lk
< |l — ) ||+nt||Hvt( H RN < |y — 2+ 2m, LK.
=1

Therefore, we have

lers — 2y |1 < o — 2|2 + dn LK |2y — b)) + an?L3K.

Combining above two cases, and taking the expectation w.r.t. A we have

1Lk
Ealllzeyr — xt—HHQ]

277tLU LU
< (0= T = P
K Z_l K—j+3(i—1)i 1 1k 1k
—j+:(i—1)1 j j— )5t j—1),,
+ 2 Y S LR () g s @)+ = g s (T - e — 2]
i=1 j=1

K
K—it+3(i—1)i i i— i)k, i—1),k,
+ 20 S LT oD v sl ol = f s T EN ) - g — 2
=1
K i—1

2K —2j+(i—1)i 1 i),k i—1),0,k
IS LTIV — £ s TP+ T~ f s TE)12)

=1 j=1

K
2K —23 1—1)2 7 7—1 i),k,l i—1),k,l lk
$op SO L0 g @) o -V sl 12) 4y — 22

A L oy — ™| g, —g + 407 L3 - 15,y
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Then setting 1, = 7 and using Lemma 13 we can get

Eallze — zp"|?
t—1 K i—1
2’[’][4,6 K—j+1Gi—1)i . .
<2 D1 F L T B A — s D - Bl — )2
s=11i=1 j=1
t—1 K 1—1
2?7LM K—j+1(i-1)i ; -
+2ZZ L+u Ly (Ealluf = £ g(ui=DERY D)2 (B g ||2g — 2lF)|?)1/2
s=11i=1 j= 1
t—1 K
277Lu K—itl(i—1)i i i
+2ZZ 1*m *nL; (EAIIU( — Vs (Ballws — 2LF)?)1?
s=11=1
t—1 K
27713# K—i+i(i-1)i ; i
+2 Zl_m pLy TR (Eallo =V f; g (iR 22 (B y |2y — 2bF)2)12
s=11=1
t—1 K i—1
2nLy s 2K —2j+(i—1)i i
F D= P T @ ) — ()P Bl — (O )
s=11i=1 j=1
t—1 K
#3031 = P g D 0 — g + Bl W Ss(all D)
n f 7, A 7,5\ Ug
s=11=1
t—1 K t—1 212K
0Ly, AnLy Lky2y1/2 2nLp 40" Ly
+ 1——— Egllzs — 2y 2 4 1—- t
SZ;( L+u) nk(Alls s 1) SZ:;( L+u) -

Similarly, setting u; = (E 4|z — 247(|2)1/2,

t—1 K i—1
=SS S PR B )~ fs(ul )P+ Baluf (O R)
s=11i=1 j=1

N 2Ly 0 2K —2i+(i—1)i i—1)y(|2 i)k, i—1 2
+> > (- T+ L HEavl? = Vis @)+ Ballo@M =V fis(ufH|?)

s=11i=1
;i 0Ly, L ArLEt

L+M ny

K i—-1
2nLp g K—jti(i-1)i ; .
0 =230 (1= PR IO B ) — g () )2

i=1j=1
= 2nLp K—j+3(i-1)i : j
+233 0= LT Al — fs (D )2
i=1j=1
K oL K itd(i-1)i , .
+2Z(1 - m)t_san : (Balof? — V£ g(ul=)]1%)"/?
i=1
K t—1 K
20Lp g - K—it}(i-1)i (i),k,l (i—1),k,0\[|2\1/2 0Ly, AnLy
+2 1———)""°yL 2 Eallv ™" — V fi s(ugd ™" + 1——)"° )
;( L+M) nLy (Eallvg fi,s(ug )7 ;( L+M) -
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Then according to Lemma 14, we have

t—1
Ut < \ St "r‘zas
s=1
t—1 K i—1
oanL Py , . ‘ -
< OS> - A e 2R DR 10G) — f (V)2 4 EalllHE — £ s (DR 2))1/2
— £ L+pu
s=11=1 j=1
t—1 K
(3301 - 2R i 2R ) g, (D)2 4 Ea 0@ — T fy g (D) |2))12
L+ mLy 3,5 (Usg Allvg i,
s=1 =1
t—1 K i1—1
+23° 351 - 2R s KD G D) )12
L+ A S S
s=1i=1 j=1
t—1 K i1—1
+2ZZZ 277L,u —s LK*jJr%(i*l)i(]E ||u(j)’l’k—f' (u(jfl),l,k)||2)1/2
L+/,l, 77 f A s j,S s
s=11i=1 j=1
t—1 K
27]LM K—H— (i—1)3 i—
+2) > (- LﬂL “nlL P (Eallo® — V5 (@liD))2)H2
s=1 =1
t—1 K
£23 301 = 2R i PR G g kg g ) 2)12
L+//4 77 f A i,
s=1 =1
ML (L+p)  2LF(L+ p)
ngLp npLy

where the last inequality holds by

t—1 K K K
S - 2nLu)t,s4an Al Lap  2LY (L +p)
pet L+4pu ng —  ng o 2nLp nglp

Next, we will discuss which one is the dominant one, (32'_] Zf( 1 Zi_l( - %)“5 2L2K_2j+(i_1)iEA||ugj) -

i—1 i— s K— + 11— 1 1 .
Fis@d Y2 or SIS ST (1 - by ROV E ) — g (uf ) 2)12. According to
Lemma 30 we have

: Ly g 9 2K—2j4(i—1)i ; .
Qo= TP T R — frs (a2
s=11i=1 j=1
—1 K—1
< VRILP(L Y (1= P Bl — gl )P
s=1 j=1
m — 277L/U’ t—s = 2C c c
<VEKnL} (2(1* m) (Z(;) (s8)"Elllut” — fi.s(z0) %]
s=1 i=1
K K 2Vi 2T K
; 2y ,—1(2L%)'n"L
+ 4803 K (Y (2L3)) +1) + ! b’f L)1z
L?(Z L (2L3)Y) + 1)(L + p)n g2
2L

m K A
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where the inequality holds by Lemma 12. As for the later,

t—1 K i—1 QULM Kejt b (i)
SO D1 Py O o) g () )2
s=11i=1 j=1 H
t—1 K—1 277LM ' ‘
< KL} ZZ ) (Eallul? — fi.5(uf D)%)
=1 j=1
—1
2nLp i 2c (@) _
<K Lm 5 — ‘E
" Z S <;<e>< B)Elll” — fis(z0)|]
K K 2Yi, 27 K (63)
; 232, LY)' "L
+ABOFK (L)) + 1) + ===
i=1
K K
m [ 2¢,, (L+p) e e 2rm 2V (L+N) 1/2
gKLH/(;) ;U ST T™237% +20;K*L} (;(QLf))+1) =g
S (L + )
+ KLY |2 (2L LF =,
i=1 H
Compar . . t—1 K _ 2nLpNi—s 3(i—1)i () _
paring the above results, we can find the dominant termis 5 ) > ;= >0 ( L+u) L (E [lus
fi S(ugj _1))||2)1/ 2. Take a similar action for several other items and we can get
t—1
Ut S vV St + Zas
s=1
t—1 K i-1 L
—s 7 K—j+(i—1)i/2
S B v B (P R AR el R
s=1i=1 j=1 r
t-1 K (64)
- 20Lpt g K—it(i-1)i/2 (0) (i—1)y(12\1/2
6 1_ S L E 1) i (2
6320 L (Ballof? — ¥ fis(u= ) P)
LA (L+p) 20K (L + p)
ne L nelp
Since often we have n < minnik for any k € [1, K]. Therefore, we have
T-1 K i-1 iy,
—s, 7 K—j+(i—1)i/2 j -
e < O( 30231 = TRy e LI e ) — g (D) )2
s=1 i=1 j=1 H
T-1 K K
2Ly K (i-3)i/2 (@) 1Dy}1241/2 Ly (L+p)
A C) Eallol) — Vi s(ui~ sl
£ 0 -  a (Eallof? = V1, s )2+ S
Moreover, we have
K T-1 K i—1 Ly
—s 7 K—j+(i—1)i/2
S a<0( X3 Py L O By ) s ()]
k=1 s=1 i=1 j=1 r
T-1 K K
2L g o K4(i-3)i/2 (4) (i—1) /2 4 L+'“
+ 1 Z2Byt=sp2p Eallvl) — Vf; s(ul~ )
Q2 -5 s (Eal Jis (@l ™]?) kZ Tone

This completes the proof.
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Corollary 6 (K -level Optimization). Consider Algorithm 2 with0 < n, =n < 2/(L 4+ p)K(K +2) and let 0 < f; =
B <max{l,1/(4K Zilil(QL?)i}for any t € [0, T — 1] and the output A(S) = xp. Then, we have the following results

< K
Zek < O((Tﬁ)_§ +ﬁ% +nﬁ—% + anzl)
= k=1

Next, we give the proof of Corollary 6.

proof of corollary 6. Putting the result (63) into (64), since often we have n < min ﬁ for any k € [1, K]. Therefore, we
have

K K
e <OT 272+ 24 24y T ni ).
k=1

k=1

This complete the proof. U

Before giving the proof of Theorem 10, we first give a useful lemma.

Lemma 33. Let Assumption 1(iii), 2 (iii) and 3 (iii) hold, Fs is u-strongly convex, then for SVMR, we have for any x
ni Lf

ElFs(@e1) 1] < BalFs(ae) i) — TIVFs(@o)]? + =5

K—-1
+4KA L0, > Eallul? — frs(ud )] F)
j=1

K—-1
AL Y Eallof? — Vfis(ul™)12)F.

i=1

where E 4 A denotes the expectation taken with respect to the randomness of the algorithm, and F; is the o-field generated
by S.

proof of Lemma 33. According to the Assumption 3 (iii) we have
1 2
Fs(xt41) < Fs(xy) + (VFs(x4), 2441 — o) + §||5L’t+1 — x|

K
i 1
< Fs(ae) = m(VEs(), [T o™} + 5 e — ol

i=1

K
1
= Fs(x;) = (Vs (), [ [ VF,s(20)) + e = l|* — e,

i=1

where uy = 0 (VFs (), [T, 08 =[5, VFig(x).

Let F; be the o-field generated by S. Taking expectation with respect to the randomness of the algorithm conditioned on F,
we have

27 K
n; L
tif—EA[udft].

Ea[Fs(ze41)|F) < EBalFs(ze)|Fi] — nel[VFs (z)|* + 2
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Now we bound the term E 4 [u] F2].

7EA[Ut|.Ft] ]EA[’I]t<VFS SCt H VF1 .S l’t HU(Z)
1=1
K K

77t HVFzS mt HVFzS mt) (1)7VFS(xt)>|]:t]
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=3
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‘HEA[?%(H v Vf K Dy Hv , VFs(z¢))|Fe].

i=1
Concluding the above inequality, using Assumption 1 (iii) we have
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i=1 j=1
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+ L7 Y Eafllv? = Vst )| [V Es ()| F].

i=1
According to Cauchy-Schwartz inequality, we have
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“Ealud ) < KL 3 (0 4 aiBallll? = fis(u )7
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= IFs ()2
m S\ Tt i i—1
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Therefore we have

ni LY
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Setting v, = 4K?L and At = 4K L?L, we have
;L
2

+4K* fmZEA Nud = fi.5u D)2 F]

Ea[Fs(2i1)|F) < EalFs(ao) 7] = TV Es(x)|” +

m i—1
+4K2 L, Z Ealllv;” = Vfis (™)) 7.
This complete the proof. O
Next, we will give the detailed proof of Theorem 10.

proof of Theorem 10. Note that strong convexity implies the Polyak-t.ojasiewicz (PL) inequality
1
SIVEs@)|* = p(Fs(x) - Fs(a7)),  Va.

Then according to Lemma 33 and PL condition, subtracting both sides with Fg(x?) we have

s S n?Lff
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By setting 1, = 7, 5; = 3, according to Lemma 30 and Lemma 31 we have
E4[Fs(ze41) — Fs(2?)]

7’]2LK
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Telescoping the above inequality from 1 to 7" — 1, we have
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K T—1 47m K 2Vi 3 T—1
o . 8K YR (2L%)in L
+16K LYo (Y (2L5)) + 1)mB > (1 — pm)" " 4 ! ﬁl ! Z(lﬂm)T =
=1 t=1 t=1
K T-1 21m 2 3 7T—
20, i L, 16R2Lm S (213)
+ARPLP () B YU+ V) Y (=) 4 = Z — )"
=1 t=1 t=1

K -1
+16K L (0} + 05 + 203 (> _(2L5) )8 > (1 — )™~
i=1 t=1

S
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For ¢t = 0, we have

Ea[Fs(x1) — FS(xf)]

772LK K-1 K—1
< (1= pun)EalFs(xo) — Fs(ad)] + —L +4K* L'y Y U; +AK*LPn Y (Ui + Vi),
j=1 j=1
Then combining above two cases, we have
Ea[Fs(z7) — Fs(f)]
T
< (1= )" Ea[Fs(wo) — Fs(x Z — )’ f+4K4Lm )N ZU Zt (=)'
K T—-1 417 m 2 3T 1
" ; o SK*L™ Zi:1(2L )in o
+16K Lo (() (2LF)) + 1)nB > (1 —pm)" 1 + ! 5 ! Z(l — )"
i=1 t=1 t=1
K T-1 27m 2 —
26 . L 16 K“L Z 2L
+ARPLP () B (YU + Vi) Yot — )™ + = Z "
i=1 t=1 t=1
K T—
+ 16K L} (0} + 05 + 203> _(2L3)’ Z (1— pp)™ =1
i=1 t=1
+ (4K* UZU +4K2Lmnz N = pn)TL.
Then from Lemma 12, we have
T—1 T—1 1 T—1 T-1
i1, -1 (1 —pm) - 1 -
(1 W?)T t 1t c < t=1 Zt c < ¢
t=1 r-1 t=1 Tun t=1
Therefore,
EalFs(zr) — Fs(xy)]
c _ UL?
< (—)*(nT)"°D,
< () (D)~ De
ARALT(Z)B(N0, Un) "= 16KPLTo3 (L, (2L2)) +1)8
» L S
Tp P 1
| SKALY SIS QLY AKELY () (L5, (Ui 4+ 1) Z -
B Tp
m K i m
N L6K2L7 3700 (20%) N 16K3 LY (0% + 05 +2crf(§j (2L2) NA
B 1%
K-1 K—1 .
+ UKL U+ 4KPDE (U + Vi))(@)cn(nT)“
j=1 j=1

Moreover, note that 3, t=* = O(T"~%) for z € (0,1) U (1,00) and 3,_, t~' = O(log T'). As long as ¢ # 1 we get
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EalFs(er) — Fs(@f)] = O((nT) =Dy +nLf + LY Z CHLPH(Q(LH) + 1B

i=1

K K

LP> (LB~ + LP (O (Ui + Vi)(BT) ™
i=1 i=1
K K

HLPY (L)' B7 + LY (0 + 05 + 07> _(L7)))8

i=1 i=1

K-—1 K-—1
P Y U+ Ly S W+ Vi)n(nT) ™).
j=1 j=1

By rearranging the above inequality, we can obtain

Ea[Fs(zr) — Fs(x )]<O((nT) Dy +nLf + L} ZU + Vi) (BT)~¢
K

+ L7 (07 + 05+ 07> (L3)))B
=1
K K—-1

LYY LR)PA T LYY (Ui + Vin(nT) ).

i=1 j=1

The proof is completed.

proof of Theorem 11. Combining Theorem 1, and Theorem 10 we have

Eg a[F(zr) — Fs(or)]

K-—1
ESA[VarK_t+1(A(S)]
< LEep +4L5 S e+ L ’
f €K f ; t ftZ; K11
K
2¢ (L + ) e Es a[Vark —i+1(A(S)]
< 120K | KL TR (= U, T-3875+L
> f f (e) ; L/J ﬁ ftz; NK—t1
S (L +p) (L +p)
2o, KLE | LK 2L2 V2 p12nf | | KLPR2Y C(2L3)iLE —1/2
+ 240K L§ f<;< P+ 1) A Zl L, 8
K K 2 S (i) L+M ¢ p—g K +K S (L)
+ 120 | L () O (Ui + o) =——T72575 + 4L\ | KLTN Y (2L3)' L} Tnﬁ /
k=1 =1
K 2K K K
, L+u) 2LEE (L + ) 2L (L + )
+ 24L% | (62 + 02 + 202 2L2)i ( B2 4+ L N e
Fallof+o3 f(;( ) k; L kZ:l i
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Then according to Theorem 10, we have

Ea[F(A(S)) — F(z.)]

K
<12L% KL?”K(%)CZUI- (LA 1) g 55 +sz ESA[V?:; :11(14(5)}
i t=2

K
K | rm+K 2N (L+H) 10 K m+K 2
+ 240, KL | LR (3 (212)1) + 1) - LAY L KL § (2L2)i LK

i=1

i (L+p) S W g1/
Lp

+p

—1/2
i —np

K
2 i sas
+12L% L;”+K(§C)C(Z(Uz+v())) T8 4 241K KL’”+KZ (2L2)iLK

x (L +p)
=1 LM

~
Il
-

ML (L+p) S 2L (L + p)

f
npLu * Z

k=1

k=1
K

U)(BT) ™ + LFa((Y_(2L7)") + 1)

i=1

+24LF | (03 + 03 + 20f(

i

ngLu

+ (T) "Dy + L + L (;

‘MN

\,
Il
_

Mw

K
L S (L3874 Ly (3 (U + V(BT
=1 1

K K

+ L7 Y (LB + LY (o] + 05 + 07 (Y _(LH)))B

i=1 i=1

K—-1
’}“ZUH—LJ’Z“Z (U; + Vi))n(nT)~°.

.
I

Setting ) = T3 = T~?, we have

EA[F(A(S)) = F(z.)]
K
<O@EOD 778 4 7370 4 gt om0 e g et by pbm2a g pcliza)—a)
i=1
Setting ¢ = 3, then the dominating terms are O(T3~%), O(T~2), O(T5®=D)  O(T~%), and O(T—<1~),
Then setting a = b = g we have
EA[F(A(S)) — F(z.)] = O(T%).

4 7
Then setting 7' = O(max{nf,--- ,njy}), we have

Ea[F(A(S)) — F(z.)] = O

M=
-

>
Il
—

Then we complete the proof. O
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