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Abstract

Sparse basis recovery is a classical and important statistical learning problem when the
number of model dimensions p is much larger than the number of samples n. However,
there has been little work that studies sparse basis recovery in the Federated Learning
(FL) setting, where the client data’s differential privacy (DP) must also be simultaneously
protected. In particular, the performance guarantees of existing DP-FL algorithms (such as
DP-SGD) will degrade significantly when p " n, and thus, they will fail to learn the true
underlying sparse model accurately. In this work, we develop a new differentially private
sparse basis recovery algorithm for the FL setting, called SPriFed-OMP. SPriFed-OMP
converts OMP (Orthogonal Matching Pursuit) to the FL setting. Further, it combines
SMPC (secure multi-party computation) and DP to ensure that only a small amount of noise
needs to be added in order to achieve differential privacy. As a result, SPriFed-OMP can
efficiently recover the true sparse basis for a linear model with only n “ Op

?
pq samples. We

further present an enhanced version of our approach, SPriFed-OMP-GRAD based on gradient
privatization, that improves the performance of SPriFed-OMP. Our theoretical analysis and
empirical results demonstrate that both SPriFed-OMP and SPriFed-OMP-GRAD terminate
in a small number of steps, and they significantly outperform the previous state-of-the-art
DP-FL solutions in terms of the accuracy-privacy trade-off.

1 Introduction

For many statistical learning applications, such as genomics and economics (Liang & Kelemen, 2008; Clarke
et al., 2008; Belloni et al., 2014; Fan et al., 2011), it is essential to deal with situations where the number of
samples (n) is significantly lower than the number of model parameters (p). Without additional constraints,
such problems are ill-determined as there will be many models that can fit the same set of training samples.
To address this issue, a popular approach is to assume some sparsity conditions on the desired model. Along
this line, there have been significant advances in compressed sensing techniques, such as LASSO (Zhao
& Yu, 2006), (Meinshausen, 2007) Orthogonal Matching Pursuit (OMP) (Tropp et al., 2007), (Needell &
Tropp, 2009) Forward-Backward Algorithm (FoBA) (Zhang, 2011) and Least Angles Regression (LARS)
(Efron et al., 2004), which leverage sparsity assumptions on the data to extract the true sparse basis of the
underlying model. Once the sparse basis is identified, the sparse model can be estimated using standard
learning techniques, as the problem is no longer ill-determined.

However, the above methods usually assume that the training datasets are already hosted on a server and
thus neglect the privacy of the users who generate the training data. Recently, Federated Learning (FL)

˚Part of this work was completed when the second author moved to The Chinese University of Hong Kong.
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(McMahan et al., 2017) has been proposed as a standard approach to protect user privacy, which keeps
user data at the clients during training. Specifically, the clients update the models on their data and only
upload the new gradients to the parameter server. The server updates the model parameters based on the
aggregated global gradient and then sends the new model parameters back to the clients, furthering the
training process. Such iterations are repeated until the global model converges, with no need to upload
the user data to the server. However, note that FL is insufficient for privacy protection because the client
gradients transmitted to the server may still leak information (Huang et al., 2021), (Geiping et al., 2020).
Therefore, in the literature, Differential Privacy (DP) (Dwork et al., 2014) has also been introduced into FL.
DP privatizes FL by adding noise to client gradients before uploading them to the parameter server. By
adding appropriate noises, individual client gradients are hidden from the server and any external adversary
while still enabling the learning of the global model. A notable example is DP-SGD, which can be applied
to any SGD-based training algorithms and arbitrary loss functions (e.g., regularized objective functions in
LASSO).

Unfortunately, this DP-FL pipeline is a poor fit for training sparse models when the number of training
samples (n) is significantly below the number of model parameters (p). For ease of discussion, in this paper,
we assume that each client contains a single training sample. Therefore, in our analysis, the number of clients
equals the number of samples. 1 Note that, intuitively, the gradient uploaded by each client has p elements,
one for each model parameter. For DP to achieve the desirable privacy guarantee, we usually need to add
noise to the gradients with variance proportional to the model dimensions (Dwork et al., 2014). Thus, when
p " n, the noise required in the DP-FL setting can completely overwhelm the signal and thus prevent the
recovery of the correct sparse basis. We refer to this problem as the curse-of-dimensionality for DP-FL.

In particular, for DP-SGD (Abadi et al., 2016), even when it is applied to Lipschitz loss functions, the
empirical risk is of the order Op

p
n q (Theorem 2.4 in Bassily et al. (2014)). When p " n, even though one can

apply DP-SGD to a sparse-solution-seeking objective, such as LASSO, it will not produce accurate answers.
Other DP-FL algorithms, such as objective perturbation (Kifer et al., 2012), have similar issues. For example,
the empirical loss of the objective perturbation mechanism in Kifer et al. (2012) is of the order Op

p2

n q (see
Theorems 4.1-4.2 and 5 in Kifer et al. (2012)), which will also fail to produce accurate sparse models when
p " n. Thus, developing DP-FL algorithms that can attain provable sparse recovery under high-dimensional
settings remains an open question. We note that if we do not consider the FL setting, there are DP solutions
in the literature for sparse recovery under high dimension (Thakurta & Smith, 2013; Talwar et al., 2015).
However, these algorithms assume full data access at the server and thus fail to work in the FL setting (where
data are kept at the client for privacy).

In this work, we develop a new sparse-recovery algorithm specifically for the DP-FL setting, which, under
suitable conditions, can ensure DP for data at the clients and recover the true sparse basis even when p " n.
Specifically, our new algorithm called SPriFed-OMP (Sparse Private Federated OMP), is based on Orthogonal
Matching Pursuit (OMP) (Tropp et al., 2007). At each iteration, OMP picks one basis with the highest
correlation with the target, subtracts the contribution of this basis from the target, and continues to search
for the next basis with the highest correlation with the residual until a given number s of sparse basis is
identified. However, the standard OMP (Tropp et al., 2007) is not designed for the FL setting, nor does it
ensure DP. We augment OMP with a noisy SMPC (secure multi-party computation) algorithm (Bonawitz
et al., 2017; Kairouz et al., 2021) so that only a smaller amount of noise is added to the aggregate correlation,
which ensures DP. In some steps, e.g., to compare the correlation with the target across all bases, this noise
is still in order Op

?
pq. However, we only need to perform such steps s times, which is usually much smaller

than the number of iterations for DP-SGD to converge. As a result, the overall amount of noise will be much
smaller. Our careful analysis shows that, as long as n “ Op

?
pq, our algorithm will be able to recover the true

sparse basis with high probability under the similar assumption of Restricted Isometry Property (RIP) as in
standard OMP. While this general idea is quite intuitive, the detailed design of SPriFed-OMP also matters
a lot. Indeed, we present two versions of SPriFed-OMP. In the first version, we privatize the individual
correlations (feature and feature-residual correlations) to compute the total feature-residual correlation in
each step. This version introduces our first enhancement that specifically adds lower order noise to the
selected basis elements. Lower order noise enables lower sample size requirement for sparse basis recovery

1Our analysis can be easily extended to multiple samples per client by the group privacy notion discussed in Section 2.
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while also incurring lower test error as we will see in Section 7. Next, we identify a simplified second version
of SPriFed-OMP that introduces our second enhancement based on gradient privatization. We will see in
the experimental section (Section 7) that adding noise to the gradient is much more advantageous under
clipping than adding noise to correlations. Furthermore, for both methods, we can quantify the estimation
error (Theorem 9) and the empirical risk (Theorem 10) to be on the order of O

´

b

s logpsq

n

¯

and O
´

s logpsq

n

¯

,
respectively which are in the same order as the traditional non-private Ordinary Least Squares (OLS) estimate
that already assumes knowledge of the correct sparse basis.

1.1 Related Work

In the literature, we have two major categories for private sparse learning: (1) The sparse learning methods
that only work in the central DP setting (i.e., where the data can be sent to the server non-privately and only
the server privatizes the output) and, (2) the learning methods that are either directly DP-FL compatible or
can be adapted to be suitable for the DP-FL setting. We note that not all of these methods can provide
basis recovery guarantees (some of them only guarantees empirical risks). Below, we discuss the related work
in each category.

Central DP compatible sparse learning methods: The recent sparse methods in Asi et al. (2021);
Bassily et al. (2021) have empirical risk that holds for n “ Op

?
pq samples under the RSC constraint. However,

both of these methods require centralized data access due to their unique sampling requirements and certain
non-private mechanisms, and thus, they are not suitable for the DP-FL domain.

DP-FL compatible sparse learning methods: As we discussed earlier, DP-SGD is not designed for the
p " n setting or exploiting sparsity. Amongst the DP-FL sparse learning methods, the work of Kifer et al.
(2012) is most closely related to ours. Although the method proposed in Kifer et al. (2012) is not geared
toward the DP-FL setting, the Samp-Agg algorithm can be adapted to the DP-FL setting. However, support
recovery in Kifer et al. (2012) requires that each client’s data matrix individually satisfies the Restricted
Strong Convexity (RSC) (Zhang, 2011) assumption. In contrast, the RIP assumption in our proposed solution
is considerably weaker, as it only needs to hold over the entire training set across all clients. Thus, our
solution can apply to a larger set of scenarios. There are two other related work that aim at the DP-FL and
p " n setting. Mangold et al. (2023) recently proposed a mechanism that has an empirical risk that holds
for n “ Op

?
pq samples under the RSC constraint. We note that Mangold et al. (2023) is only studied for

the centralized DP setting. Still, the algorithm can be appropriately adjusted for the DP-FL setting with
the Gaussian noise 2. However, their analysis lacks a sparse basis recovery guarantee, and thus it is unclear
whether their methods can find the underlying true basis. Furthermore, their empirical risk values cannot
avoid the polynomial dependency on p. Wang & Xu (2019) also considers the problem of estimating sparse
models under the p " n scenario and where noise is directly added to the client communication to the server
to preserve DP. They provide two algorithmic results. The first result applies to the p " n case, but it studies
the privacy scenarios where only the response vector y must be private. The measurement matrix X has no
privacy protection. When the matrix X must also be protected, their second result still requires n “ Oppq

(ignoring the logarithmic terms). Thus, our proposed algorithms provide better privacy guarantees with fewer
samples. In a similar sense, the private hard-thresholding methods proposed in Wang & Gu (2019); Hu et al.
(2022) either do not recover the sparse models or require n “ Oppq samples for convergence.

Noisy OMP: Finally, our analysis of the noisy version of OMP is also related to (Chen & Caramanis,
2012), which studies how adding noise to the measurement matrix X will impact the accuracy of OMP.
However, their analysis does not apply to the DP or the DP-FL cases as it does not privatize the response
vector y. Furthermore, they directly add noise to the measurement matrix X. As a result, the noise level
needed for ensuring DP for the matrix X would have had to be at least ?

pn, which is higher than our
solution’s. Specifically, our solution adds noise to the correlation between each basis and the target. Further,
by employing Noisy-SMPC (Algorithm 1), the level of noise added is only of the order ?

ps. Thus, a new
analysis is needed to study our improved DP and accuracy guarantees.

2We provide a modified/enhanced DP-FL version of Algorithm 1 in Mangold et al. (2023) for comparison in the form of
Algorithm 5.
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The rest of the paper is structured as follows. Section 2 presents the system model and provides a brief
overview of differential privacy and the goal of compressed sensing. In Section 3, we provide the details of
our proposed algorithm SPriFed-OMP and its other variant SPriFed-OMP-GRAD. Sections 4 and 5 provide
a thorough utility-privacy analysis of our proposed implementation. Section 6 provides an intuitive sketch of
the core result. Section 7 provides empirical results. Then, we conclude. Complete proofs and supporting
results are omitted due to the page limits.

2 System Model

We assume that the ground truth model is y “ xα˚ ` ϵ, where α˚ P Rp is the underlying model parameter
that we wish to recover, x P Rp (a row vector) and y P R are the input-output pair, and ϵ „ N p0, σ2

ϵ q P R
is an additive error. We assume that this ground-truth model is sparse so that α˚ has at most s non-zero
elements, i.e., ||α˚||0 ď s. We now consider n input-output training pairs represented by pxi, yiq, i P t1, ..., nu

where each pair belongs to a single distinct client. 3 We stack the row vectors xi vertically together to form
an n ˆ p matrix X. Similarly, we stack yi into an n ˆ 1 vector y. We emphasize that the server does not
have the entire data, so we need to study a federated learning setting (McMahan et al., 2017).

Any DP-FL algorithm iterates over n distributed clients over steps t “ 1, ..., T . For each step t, the ith client
transmits message mi,t, computed as a function of the client dataset and any information it receives from the
server plus possibly additional randomness. At the end of the T -th iteration, the server aims to recover α˚

(likely with some error). Let us use M to denote such a distributed and randomized mechanism. We aim to
ensure Differential Privacy (DP) for the clients, and hence we present the Differential Privacy (DP) definition
for M below.
Definition 2.1. [Approximate Distributed Differential Privacy] For any two neighboring distributed
datasets X, X 1 P Rnˆp differing in one of their clients and the corresponding data-pairs ( i.e., they only differ
in the data-pair for one client k P t1, ..., nu). Let MpXq and MpX

1

q be the outputs when M operates on X
and X

1 respectively. We say that the randomized and distributed mechanism M is pϵ, δq differentially private
if, for any set F P Rp,

PrrMpXq P Fs ď eϵ ¨ PrrMpX
1

q P Fs ` δ.

Next, we introduce essential assumptions relevant to our system model. Recall that the goal of the server is to
estimate the sparse model parameter α˚ without access to the client data. Even without the DP requirement,
recovering the true sparse model typically requires additional assumptions on the data matrix (Zhang, 2009;
Candes & Tao, 2005). Below, in assumption 1 we describe the Restricted Isometry Property (RIP), which is
usually required for OMP (Candes & Tao, 2005), which our proposed algorithm is based on.
Assumption 1. Restricted Isometry Property (RIP): A measurement matrix X P Rnˆp is said to
satisfy RIP of order-K if there exists a constant ζ P r0, 1s such that,

p1 ´ ζq||v||22 ď ||Xv||22 ď p1 ` ζq||v||22

for all vectors v P Rp, ||v||0 ď K. Note that ζ is referred to as the isometric constant. Furthermore, the
Restricted Isometry Constant (RIC) is defined as the infimum of all possible ζ values that satisfy RIP of
order-K for a given measurement matrix X P Rnˆp. In other words, assuming that the RIP of order K is
satisfied, the corresponding RIC is given by,

ζK “ infζ
!

ζ|p1 ´ ζq||v||22 ď ||Xv||22 ď p1 ` ζq||v||22

for all v P Rp, ||v||0 ď K
)

.

3This assumption can be easily relaxed to allow more than one training pair per client by performing the privacy analysis
with group privacy. As long as the samples of each client are considerably lower than n, the group privacy cost will be small. If
a client holds a large number of samples, we could consider limiting the maximum number of samples per client in each iteration
of our algorithm to upper bound our privacy costs.
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We acknowledge that RIP is a more restrictive condition than other related conditions in the compressed-
sensing literature, such as the Restricted Strong Convexity from Jalali et al. (2011) and Zhang (2009) or the
Positive Cone Condition from Efron et al. (2004). However, even under this RIP assumption, no solution
exists in the literature to attain DP in an FL setting and achieve exact support recovery with the number of
samples much smaller than the model dimension. Thus, our contribution under the RIP assumption4 still
represents a significant contribution. We will leave the study of other assumptions for future work.

We also make the following assumption, typical in the differential privacy literature (Dwork et al., 2014;
Wang & Xu, 2019).
Assumption 2. [Bounded data matrix and response] We assume that the elements in the measurement
matrix X and its response y are bounded by scalars XM and yM respectively.

The boundedness of matrix or vector elements can be easily achieved by clipping the values to particular
bounds. We can also easily maintain the original vector variance by re-scaling after clipping. Alternatively, if
the underlying data distribution is light-tailed, we could leverage concentration bounds combined with the
union bound to obtain a realistic bound on the data values.

As discussed in section 1, the standard DP approaches of adding noise are highly ineffective for recovering
sparse models when p " n. Thus, our paper aims to develop a mechanism that is both DP-FL and can recover
the exact support with several samples much smaller than the total model dimension. Specifically, let α̂
denote the estimated model parameter of our proposed DP-FL algorithm. Recall that α˚ is the ground-truth
model parameter with sparsity s. We wish to (1) Ensure that the support of α̂ matches the true support with
high probability, (2) Quantify the empirical risk ∆R fi 1

n

řn
i“1

´

pxiα̂ ´ yiq
2 ´ pxiα˚ ´ yiq

2
¯

and estimation
error ∆α fi ||α̂ ´ α˚||2 such that both are small and do not blow up with large p.

3 The SPriFed-OMP Algorithm

Our primary goal in this work is to recover a sparse model given a high number of features and a few samples.
Note that if we can guarantee exact sparse basis recovery, we only need to add noise to the output model
with variance proportional to the model sparsity, which is a much easier goal to accomplish. Thus, below,
we will first focus on the goal to identify the true sparse basis. The analysis for recovering α˚ with a small
estimation error will then be presented later (see Theorems 9 and 10).

Non-Private OMP: Our proposed algorithm is based on OMP, a popular algorithm for exact sparse recovery
without DP considerations. Below, we first describe the standard version of OMP. OMP iteratively selects a
single new feature in each step. The feature with the absolute maximum correlation to the current residual is
picked during each step. The residual is set to the model response y in the initial step. At each subsequent
step, the residual is updated by removing the newly picked feature’s contribution from the response. OMP
continues iterating until a model of a predetermined dimension/sparsity s is selected.

Challenge to make OMP differentially private: Below, we explain the challenge to make OMP
differentially private in the FL setting. First, when OMP computes the correlation of each basis with the
residual and picks the basis with the highest correlation, it must be able to do so without direct access to the
data on all clients. Second, when OMP subtracts the contribution of a new basis from the current residual, it
needs the covariance of the existing basis. This must also be done without direct access to the data on all
clients.

Both of these challenges can be overcome if we can differentially privately compute the correlation between
two columns that are spread across all clients. Further, the total number of such computations must be
carefully controlled to limit the amount of noise added. This idea leads to our first version of SPriFed-OMP,
which focuses on computing the correlations in a DP-FL manner. The server maintains the estimated model
parameter α̂ and is never released to the clients. (In contrast, the second version of SPriFed-OMP, which will
be presented later, will release the privatized model parameter to the clients.)

4Note that we do not specifically assume that the clients are homogeneous. Even if the clients are heterogeneous, as long as
the RIP assumption holds, our analytical results in the paper will hold.
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Differentially-Privately and Distributed Computation of Correlation : Specifically, consider two
columns of data za

i and zb
i spread across all clients i P t1, ..., nu. We now develop a mechanism so that the

server can compute the sum
řn

i“1 za
i zb

i . For privacy, though, each client cannot disclose za
i zb

i directly. We
can add noise directly to the client, which will lead to a noise level that is too high. In contrast, below, we
use an approach that requires lower noise.

NoisySMPC : We use the NoisySMPC mechanism (Algorithm 1) that combines SMPC (Bonawitz et al.,
2017) with a much lower level of noise to ensure DP. This algorithm, which is distributed and satisfies
DP, forms a core component of our proposed SPriFed-OMP algorithm. To achieve DDP (distributed and
differentially private), NoisySMPC adds two levels of randomness. First, NoisySMPC modifies each client’s
contribution as f̃pxi, yiq “ fpxi, yiq ` ηi where xi, yi is the ith client’s data-response pair and f computes
a statistic such as the correlation between the client’s data and response. The per-client noise ηi is added
so that the total noise ηsum “

řn
i“1 ηi at the server is sufficient to differentially privatize the sum of client

outputs. Second, NoisySMPC adds fpza
i , zb

i q across all clients through SMPC, which further protects the
privacy of individual clients. This underlying SMPC mechanism allows the clients to sum their contributions
f̃ without disclosing any individual values. Examples of such SMPC mechanisms can be pair-wise client key
sharing as described in (Bonawitz et al., 2017) or the distributed discrete Gaussian (Kairouz et al., 2021).
We refer the reader to the above literature for further details regarding SMPC and related mechanisms.
NoisySMPC adds significantly lower variance noise to the sum (reduced by a factor of n), compared to
privatizing each client’s output individually, as shown in line 11 of the Algorithm 1).

Private OMP: We are now ready to present the complete SPriFed-OMP algorithm in the DP-FL setting.
Algorithm 3 contains the pseudocode. Recall that, for each step in OMP, we compute, for all features,
the correlation of the feature column and the residual. For the first step, the residual is set to the model
response, and thus, the computation can be denoted by XT y. The lines 4 ´ 6 perform this computation
privately using the NoisySMPC Algorithm 1. This noisy correlation selects the feature with the highest
absolute correlation as part of the predicted basis (line 8). We then subtract the correlation contributed
by the newly contributed feature l˚ from the previous residual to obtain the new residual. Mathematically,
we represent this correlation contribution as βl˚ pβl˚,l˚ q

´1
γl˚ “ XT Xl˚ pXT

l˚Xl˚ q
´1

XT
l˚y where βl˚ “

XT Xl˚ , βl˚,l˚ “ pXT
l˚Xl˚ q, γl˚ “ XT

l˚y. Note that this computation computes the correlation between the
new column l˚ and other columns. These correlations can be computed via the NoisySMPC mechanism. We
represent these combined computations on lines 10 ´ 18. Note that after a feature is chosen, its associated
correlation computation must only be done twice via NoisySMPC. We first privatize correlations over all
un-selected features (order

?
p ´ l where l are the number of features already chosen). From amongst these

correlations, we choose the correlation with the highest value. Once the highest correlated feature is identified,
we add noise to this correlation with a much lower noise value (of order ∫ where s is the sparsity of the
model). Thus, we can significantly reduce the noise impact by privatizing the highest correlation twice.

Remark: We notice that, to privatize the p-dimensional correlations (lines 5 and 11 ), we cannot reduce the
variance of DP noise below Oppq (see the Gaussian mechanism from Dwork et al. (2014)). Thus, each time
we compute the p-dimensional correlations, we are required to add noise of magnitude Op

?
pq. However, we

only need to do so finitely many times (i.e., s times), thus requiring a finite privacy budget. Further, thanks
to NoisySMPC, we can get away with adding a significantly smaller amount of noise (lines 14-17 ).

Further, we note that for our method, we need to compute a maximum of pps ` 1q ` 2s2 private correlations.
In DP-SGD, we instead need to compute pT private correlations, where the number of iterations T is
significantly higher than s and often around the order of n. Furthermore, in our proposed algorithm, we
require order-p variance noise only for recovering the basis while order-s variance noise is used to compute
the model parameter on these bases. DP-SGD on the other hand requires order-p variance noise throughout
for all T iterations. Thus, the noise required for our method is much lower in terms of the number of private
correlation computations and the model parameter computation. Therefore, we expect to recover a model
with significantly higher accuracy.

Enhancement 1: Adding lower noise to selected features

While the above idea of privatize OMP may seem straightforward, there is a key step in Line 14 which
greatly enhances the performance of SPriFed-OMP. Note that in lines 5 and 11 of Algorithm 3, we already
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privatize the p dimensional artifacts XT y and XT Xl˚ respectively with noise of variance pσ2
1 . Although

we could have directly use such privatized values in estimating α, the resulting error will be high. Instead,
in line 14, we re-privatize the private model with much lower noise of variance sσ2

2 . We have found that
this re-privatization step can significantly enhance the performance of our proposed algorithm, ensuring its
sparse basis recovery success. Please see the numerical results in Section 7 for details. Intuitively, although
we re-privatize the same features/artifacts twice, since, we add lower noise in the second time, the noise in α̃
estimate (refer line (15) in Algorithm 3) is of order only depending on s. In contrast, if we do not utilize this
modification, then the order of noise in both β and α̃ will be Op

?
pq. Since these estimates will be used in

later steps to identify the next basis, without re-privatization the higher noise will disrupt the correlation
computation, leading to stricter requirements on the sample size.

3.1 The SPriFed-OMP-GRAD Algorithm

We now present the second version of private OMP with our second enhancement in Algorithm 4 that further
enhances the performance of Algorithm 3.

Enhancement 2: Re-visiting SPriFed-OMP from the gradient perspective

In line 15 of Algorithm 3, we compute the private correlation (essentially the gradient) at the lth step given
by, γ´

0 ´ ββSAγSA “ pγ´
0 q

t
` ηγ0 ´ pβt ` ηβqα̃ where pγ´

0 q
t
, βt represent the true (non-noisy correlations),

ηγ0 , ηβ represent the corresponding noise values and α̃p“ βSAγSA q represents the privatized linear model.
We notice that since we are already privatizing the correlations required in the computation of α̃, we are
naturally inclined also to privatize pγ´

0 q
t and βt similarly. Thus, in our first approach of Algorithm 3, all

clients collaboratively compute correlations, and then the server computes the final private model and the
private gradient. However, our second approach improves this correlation computation by first computing
the L2 sensitivity (Definition A.2) of the gradient calculated using the private model (or mathematically,
pγ´

0 q
t

´ βtα̃) and then adding the corresponding DP noise to the entire correlation rather than separately
privatizing each correlation. In this second approach, given the model, each client computes the gradient on
its own device. Collaboratively, all clients and the server then compute the aggregated gradient. However,
the server still handles the model computation with the noisy correlation method. That way, the server can
share the private model with individual clients without sacrificing privacy. Later in the next section and the
experimental section, we will also discuss a clipping-based version of the new algorithm, SPriFed-OMP-GRAD
(Algorithm 4) that leverages clipping to provide better empirical performance.

We now present the second major enhancement in our proposed method in Algorithm 4. We note that the
correlation computed in line 15 of Algorithm 3 is essentially the private gradient computed at the current
model value. In Algorithm 3, we first separately privatize correlation values and then combine them to obtain
the private gradient. On the other hand, in Algorithm 4, we let the server pass the private model to the
clients, and let the clients directly compute the residues and the local gradients (i.e., the gradient computed
on line 4 in Algorithm 4). Then, we aggregate the local gradients in a private manner. We expect that
Algorithm 4 will see a significant performance benefit due to the effect of clipping. Note that clipping can
control the sensitivity of individual data items, and thus has a directly impact on the magnitude of DP
noise needed. Since, gradients typically reduce in magnitude as training proceeds, we can expect to clip the
gradients more aggressively without affecting performance. In contrast, the correlations in Algorithm 3 will
stay at large values during the entire training, which is not amenable to clipping. We report experimental
effects of clipping on gradients and correlation in section 7 to visualize their varying impact.

4 Privacy Analysis

This section includes the details for the privacy cost incurred by running Algorithms 3 and 4.

Since we need to account for the overall DP guarantee by composing multiple DP mechanisms, in this paper,
we will use Gaussian Differential Privacy (GDP) (Dong et al., 2019) (a variant of DP) for composition. In the
later part of this section, we will discuss the reason behind choosing GDP over other composition methods,
e.g., those based on Renyi DP, in more detail. Before stating the Gaussian mechanism, we first formally
define the L2-sensitivity of a function.
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Algorithm 1 NOISY-SMPC
1: Input Parameters: Vectors to be multiplied: Xk, Xj (or yq P Rn, Number of clients: n, Noise

Variance: σ2
0

2: Output: XT
k Xj ` η˚; η˚ „ N p0, σ2

0q

3: procedure NOISY-SMPC(Xk, Xj , n, σ0)
4: Server broadcasts noise variance σ2

0 to all clients
5: for client i P rns do
6: ηi „ N p0,

σ2
0

n )
7: Compute qi Ð Xk,iXj,i ` ηi

8: end for
9: // Vanilla SMPC

10: Compute qtotal Ð
řn

i“1 qi using SMPC (Bonawitz et al., 2017)
11: // The resulting private sum satisfies the following Ñ qtotal “

řn
i“1 Xk,i, Xj,i ` ηi “ XT

k Xj `
řn

i“1 ηi “ XT
k Xj ` η˚; η˚ „ N p0, n ¨

σ2
0

n qp“ N p0, σ2
0qq

12: Server obtains and returns qtotal to all clients
13: end procedure

Algorithm 2 PRIVATE-OLS
1: Input Parameters: Data: X “ tX1, X2, ..., Xpu P Rnˆp, where Xi is the ith feature. Response

Variable: y P Rn, Feature Set: SA, New Feature to be privatized: l˚, Privacy Parameter: σ2,
True Model Support Cardinality: s.

2: Output: Private Model: α̃ “ pXT
SA

XSA ` ηβSA
q´1pXT

SA
y ` η2q; ηβSA

and ηγSA
both have iid elements

with distribution N p0, σ2
2sq.

3: procedure PRIVATE-OLS(X, y, SA, l˚, σ2, s)
4: γSA rls Ð NOISY-SMPCpXl˚ , y, n, σ2

?
sq /* Note, that total private correlation over all previous

rounds is γSA “ XT
SA

y ` ηγSA
; ηγSA

P Rlˆ1 has iid elements from N p0, σ2
2sq */

5: for k “ 0 : l do
6: βSA rl, ks Ð NOISY-SMPCpXl˚ , Xk, n, σ2

?
sq

7: end for /* Note that, as βSA is symmetric, we have βSA rk, ls “ βSA rl, ks and thus total private
covariance is βSA fi {XT SAXSA ` ηβSA

; ηβSA
P Rsˆs has iid elements from N p0, σ2

2sq */
8: Return pβSA q

´1
γSA

9: end procedure

Definition 4.1 (L2 sensitivity of a function). Given a deterministic function f , consider all possible pairs of
neighboring datasets X and X

1 in the domain of f that differ on a single row. Then, we denote l2-sensitivity
of f as

∆2f fi max
X,X

1
Pdompfq

||fpXq ´ fpX
1

q||2

Thus, ∆2f records the maximum possible change in f due to a change in a single row. Often, each row
belongs to a different client, and thus, ∆2f will record the maximum change due to a change in a client or
due to the inclusion or removal of a client from the dataset. Below, we state the Gaussian mechanism from
Dong et al. (2019) required to achieve the GDP guarantee.
Lemma 1. [GDP mechanism (Theorem 2.7 from Dong et al. (2019))] Let f : Rnˆp Ñ Rp be some
function computed over the dataset X P Rnˆp. Then, the randomized Gaussian mechanism MpXq “ fpXq`η

is µ ´ GDP where η „ N p0, p∆2fq
2

µ2 Ipq and ∆2f is the L2- sensitivity of f (Definition A.2).

Reasons behind choosing GDP for privacy analysis: We choose GDP because GDP gives the optimal
privacy guarantees for compositions of Gaussian mechanisms. For example, GDP has been shown to produce
lower ϵ values when composed over a finite (possibly small) number of Gaussian mechanism steps T Dong

8
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Algorithm 3 SPriFed-OMP: Private Orthogonal Matching Pursuit
1: Input Parameters: Data: X “ tX1, X2, ..., Xpu P Rnˆp, where Xi is the ith feature. Response

Variable: y P Rn, Feature Set: Ω fi t1, 2, ..., pu, True Model Support Cardinality: s, GDP
Privacy Parameters: µp, µspµp ą µsq, Noise standard deviation: σ1 “ 1

µp
, σ2 “ 1

µs
.

2: Output: Predicted Support SA, Predicted sparse model α̂ over predicted support SA
3: Initialize: SA “ H, XSA “ 0̄, l “ 0
4: for k “ 0 : p ´ 1 do /* Server and Clients privately compute data-response correlation */
5: pγ´

0 qrks Ð NOISY-SMPCpXk, y, n, σ1
?

pq

6: end for /* Note that the total private correlation overall k is γ´
0 fi zXT y “ XT y ` ηγ ; ηγ P Rpˆ1 has

iid elements from N p0, σ2
1pq */

7: while |SA| ď s do
8: l˚ Ð arg maxjPΩ{SA

|pγ´
l qj | /* Server privately extracts new highest-correlated feature */

9: SA Ð SA Y l˚

10: for k “ 0 : p ´ 1 do /* Server and Clients privately compute data covariance for newly
extracted feature */

11: βrk, ls Ð NOISY-SMPCpXk, Xl˚ , n, σ1
?

pq

12: end for /* Note that, the total private covariance over all previous rounds is β “ {XT XSA fi

XT XSA ` ηβ; ηβ P Rpˆpl`1q has iid elements from N p0, σ2
1pq */

13: // Server privately updates residual with newly chosen feature
14: α̃ Ð PRIVATE-OLS(X, y, SA, l˚, σ2, s)
15: γ´

l Ð γ´
0 ´ βα̃

16: l “ l ` 1
17: end while
18: Return SA, α̂ Ð pβSA q

´1
γSA /* Server privately publishes sparse basis and model overall

extracted features */

Algorithm 4 SPriFed-OMP-GRAD: Private Orthogonal Matching Pursuit
1: Input Parameters: Data: X “ tX1, X2, ..., Xpu P Rnˆp, where Xi is the ith feature. Response

Variable: y P Rn, Feature Set: Ω fi t1, 2, ..., pu, True Model Support Cardinality: s, GDP
Privacy Parameters: µp, µspµp ą µsq, Noise standard deviation: σ1 “ 1

µp
, σ2 “ 1

µs
, Privacy

Constants: XM “ yM “ 1, BC “ 1 ` 2XM κε ` 2
?

sX2
M p

∥pα˚qSc
A

∥8

1´ζs`1
`

?
1`ζs`1κε

1´ζs`1
q (refer Lemma 5 and

Section 7 for further details about setting BC in practice).
2: while |SA| ď s do
3: for j “ 0 : p do
4: γ̃lrjs Ð NOISY-SMPCpXj , y ´ XSA α̃, n, σ1BC

?
pq

5: end for
6: l˚

Ð arg maxjPΩ{SA
|pγ̃lqj |

7: SA Ð SA Y l˚

8: // Server privately updates model with newly chosen feature
9: α̃ Ð PRIVATE-OLS(X, y, SA, l˚, σ2, s)

10: l “ l ` 1
11: end while

et al. (2019). This small-T regime is important for our work because our proposed algorithms aim to find
the correct basis with only a small number of iterations (proportional to the sparsity level s). Readers can
refer to Table 1 of Reference Liu et al. (2022) for an empirical comparison of various adaptive composition
mechanisms where GDP performs the best (i.e., produces the smallest ϵ values across varying values of δ)
compared to other composition mechanisms including Renyi DP, Advanced composition and naive DP. For
related results on the non-adaptive composition of Gaussian mechanisms see Theorem 8 in Balle & Wang
(2018)). Finally, we note that a single value can demonstrate GDP guarantees, and GDP can easily and
optimally be composed over multiple iterations via Corollary 3.3 in (Dong et al., 2019). Furthermore, we

9
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can convert between a µ ´ GDP guarantee and the pε, δq-DP guarantee losslessly via Corollary 2.13 in Dong
et al. (2019). However, we only need to convert µ-GDP to DP for our purpose. Below, we present both of
these lemmas.
Lemma 2. [Conversion from µ-GDP to pε, δq-DP] (Corollary 2.13 in Dong et al. (2019)) A
mechanism is pε, δpεqq-DP for all ε ě 0 and

δpεq “ Φp´
ε

µ
`

µ

2 q ´ eεΦp´
ε

µ
´

µ

2 q.

if it is µ-GDP. Here, Φ denotes the standard normal CDF.

Further, multiple mechanisms with µ-GDP into an overall GDP mechanism.
Lemma 3. Composition of µ-GDP (Corollary 3.3 in Dong et al. (2019)) The composition k-GDP
mechanisms, each of which is µi-GDP, i “ 1, ..., k is

b

řk
i“1 µ2

i -GDP.

In summary, leveraging GDP allows us to obtain better composition results, control the privacy leakage by a
single parameter, and losslessly convert between GDP and pε, δq-DP. For further details regarding GDP, we
refer the reader to Dong et al. (2019).

For our proposed Algorithm 3, we notice that we only need to differentially privatize the terms XT
j y and

XT Xj and their combinations. Thus, we use Lemma 4 to identify their L2-sensitivity (Definition A.2).
Lemma 4. Under Assumption 2, the L2-sensitivity (Definition A.2) of the terms XT

j y and XT Xj for any
j P SA as defined in Algorithm 3 are given by 2?

pXM yM “ Op
?

pq and 2?
pX2

M “ Op
?

pq respectively. Here,
X P Rnˆp and y P Rn.

Proof. The proof is available in the Appendix section C.

Lemma 5. Consider a design matrix X P Rnˆp satisfying RIP of order s ` 1 and RIC ζs`1. Now given the
correlation/gradient Cj (as computed in Line 7 of algorithm 4) for any j P rps, we show that the upper bound
on the L2 sensitivity of the expression is upper bounded by the following values,

∆2pCjq ď 1 ` 2XM κε ` 2
?

sX2
M p

∥pα˚qSc
A

∥8

1 ´ ζs`1
`

a

1 ` ζs`1κε

1 ´ ζs`1
q fi BC

when Assumptions 1 and 2 hold. Here, α˚ is the underlying ground-truth model, κε “
a

2 logp2n{pbqσε

and σε is the additive system error’s standard deviation. We also need to assume that ζs`1 ă 1?
s

and

n ą
6s2C1X5

M yM

?
2 logp2s{pbq

µ2
sp1´ζs`1q2 . The result holds with probability 1 ´ 3pb where pb is a small positive probability

value.

Proof. The proof is provided in the Appendix Section F.

Theorem 6. Algorithms 3 and 4 satisfies µ-GDP with µ “

b

s ¨ µ2
p ` 2s ¨ µ2

s, where µp, µs are privacy
constants as inputs to Algorithm 3.

Proof. The proof follows simply by Lemma 3. In our proposed algorithm, we use the µp-GDP (lines 5 and 11
in Algorithm 3 and line 4 in Algorithm 4) mechanism s times and the µs-GDP mechanism 2s times (lines 4
and 6 in algorithm 2). Thus, the result follows. Finally, using Lemma 2, we can obtain the corresponding
DP guarantee of Algorithm 3.

5 Accuracy of Private Orthogonal Matching Pursuit

This section will present our main result on the accuracy of sparse basis recovery. Theorem 7 states that the
proposed algorithm SPriFed-OMP (Algorithm 3) terminates in finite steps and can recover the true sparse
basis and the corresponding model w.h.p. as n Ñ 8 and when n “ Op

?
pq.
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Before we state our main results, we define the relevant constants. Let ζs`1 denote the RIC of X of
ps ` 1q-order. Let ν be a small positive constant, close to 1, that satisfies the inequality 1

1´ζs`1
ď p1 ` νζs`1q.

Next, we define κϵ “ σε

b

2 logp 2n
pb

q, κ1 “ κM2

a

logps{pbq{µs and κ2 “ κM2

a

logpp{pbq{µp. Recall that σε is
the standard deviation of the additive error in the system model presented in Section 2. Here, pb is a small
positive probability, eventually affecting the with-high-probability statement of Theorem 7. Further define
the constant κM2 as

κM2 “ 1 `
C1s3{2

nµsp1 ´ ζs`1q
,

where the constant C1 (which depends on pb) is chosen such that the following probability statement holds:
For a square matrix N with dimensions s ˆ s, where the elements follow an i.i.d. distribution of N p0, 1q, its
largest eigenvalue is no greater than C1

?
s with probability 1 ´ pb, i.e.,

Pr
´

||N ||2 ą C1
?

s
¯

ď pb

By these choices (which will be used in our proof in the technical report), each constant bound the corresponding
random variable with probability 1 ´ pb. Finally, we denote the true basis of the underlying model by S˚.
Theorem 7. [Sparse recovery of SPriFed-OMP] Under the provided system model (Section 2) and
Assumptions 1 and 2, suppose that the following conditions holds:

1. Sample size: n ě maxt4?
psκ1, 16s5{2κ2,

4
?

logpp´sq
?

p

µp∥αS˚
∥2

u “ Opmaxt
s
?

p log p

µsµp
, s5{2

µs
uq

2. RIC of X of order-s ` 1: ζs`1 ď 1
4p1`

?
sq

3. κϵ : κϵ ď
minjPS˚

|αj |

16p
?

s`1qp1`νζs`1q

Then, the SPriFed-OMP algorithm will correctly recover the true basis with probability 1 ´ 40ps ` 1q ¨ pb.

Remark (Intuition behind the assumptions for successful recovery in Theorem 7): If we ignore the log p term,
condition 1 only requires n “ Op

?
pq for sparse recovery. To the best of our knowledge, this is the first result

in the literature that both attains DP in an FL setting and attains sparse recovery when n is much smaller
than p. We note that condition 1 is stricter than typical OMP results in the non-private settings, where
n “ Oplog pq is sufficient. We believe the main reason for this difference is that we must simultaneously
ensure DP in the FL setting. As we discussed earlier when we present Algorithm 3, even in the first step for
computing the data-response correlation, Op

?
pq noise seems unavoidable (remark under Section 3). Thus, it

seems difficult to suppress the noise when n is smaller than ?
p.

Condition 2 is related to the strength of the RIP assumption. The RIC is an important attribute of the RIP.
The smaller the RIC, the closer X is to a unitary matrix, and thus, the corresponding condition 2 becomes
more demanding. Our condition 2 provides a simple upper bound for the RIC. As expected, we observe that,
with the increasing value of s, our RIC bound reduces, implying that sparse recovery gets more challenging
as the model cardinality increases. This intuition is in line with that in the non-private OMP literature.

Condition 3 on the additive error in the training data is also intuitive. If the minimum true-model column
norms are large enough (i.e., the signals due to true features are sufficiently strong), then we expect that the
impact of the additive error in the system will be minuscule. This is reflected by the term minjPS˚

|αj | in
the numerator. We also expect that model recovery gets more complex with rising model cardinality (i.e.,
rising s). Thus, the impact of the error in the training data will rise as reflected by the

?
s ` 1 term in the

denominator. Similar to Theorem 8, we can state the recovery guarantee of SPriFed-OMP-GRAD below.
Theorem 8. [Sparse Recovery of SPriFed-OMP-Grad] Under the provided system model (Section 2)
and Assumptions 1 and 2 suppose that the following conditions hold,
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1. Sample Size: n ě max
#

4p
?

s`1qp1`
?

spκα`1qq
?

pκ
1

p

µp∥αSc
A

∥2
,

4
?

logpp´sq
?

p

µp∥αS˚
∥2

+

“ Op
s
?

p log p

µp
q

2. RIC of X of order s ` 1: ζs`1 ď 1?
s`1

3. κε ă
minjPS˚

|αj |

6p1`νζs`1q3{2

´

?
s`1`

C1
?

sκ
1
s

?
1`ζs`1

nµs

¯

Then the SPriFed-OMP-GRAD algorithm will correctly recover the true basis with probability 1 ´ 8ps ` 1qpb.
Note that here, κα “

?
1`ζs`1p

?
1`ζs`1∥α˚∥`κεq

1´ζs`1
, κ

1

p “

b

2 logp
2p
pb

q, κ
1

s “

b

2 logp 2s
pb

q and BC “ 1 ` 2XM κε `

2
?

sX2
M p

∥pα˚qSc
A

∥8

1´ζs`1
`

?
1`ζs`1κε

1´ζs`1
q and pb is a small positive probability value similar to Theorem 7.

Remark (The utility-privacy trade-off) Although we do not explicitly mention privacy requirements in
Theorems 7 and 8, the results here directly depend on the privacy parameters such as µs and µp. Thus, we
can combine them with Theorem 6 to obtain the utility-privacy trade-off. Specifically, suppose that we wish
to re-write the conditions stated in Theorems 7 and 8 in terms of pϵ, δq-DP guarantees. We first pick µ, which
can be easily converted to pϵ, δq DP guarantees according to Lemma 2. Then, by assuming that µs “ µp ¨ ms,
where ms is a known constant factor, we obtain from Theorem 6 that µ “ µp

a

sp1 ` 2 ¨ m2
sq. We can thus

solve µp and µs as:

µp “ µ{
a

sp1 ` 2 ¨ m2
sq

µs “ µp ¨ ms.

These values can then be directly plugged into Theorems 7 and 8 to obtain the accuracy guarantees.

Remark (Benefits of Algorithm 4 over Algorithm 3: Readers can see that the conditions of Theorem 8 are
on the same order as that of Theorem 7. However, this is because we assume the DP noise magnitudes are
the same in both cases. In practice and as we discussed earlier, due to the decreasing magnitude of the
gradients, Algorithm 4 can benefit from more aggressive clipping and lower DP noise magnitude. We will
present numerical results to demonstrate the benefits of these enhancement in Section 7.

Based on our main Theorems 7 and 8, next, we provide results on the parameter estimation error and
empirical risk. Both of these results are optimal as they are in the same order as several previous results for
both the parameter estimation error (Meinshausen & Yu, 2009; Wasserman & Roeder, 2009) and the empirical
risk analysis (Kifer et al., 2012; Bassily et al., 2014) even under the assumption that they have already known
the correct basis before-hand. In particular, these error bounds depend on s but are independent of the
dimension p since we have already identified the correct sparse basis as in Theorems 7 and 8.
Theorem 9. [Estimation Error of SPriFed-OMP and SPriFed-OMP-Grad] Under the same system
model and assumptions as Theorem 7, with a high probability of 1 ´ pb, the estimation error satisfies,

∆α fi ||α̂ ´ αS˚
||2

ď
p1 ´ ζs`1q

a

2s logp2s{pbqqσεXM
?

n
`

s
b

2 logp 2s
pb

q

nµsp1 ´ ζs`1q

`
s3{2κM

b

2 logp 2s2

pb
q

µsnp1 ´ ζs`1q2

´

p1 ` ζs`1q||αS˚
||2

`
a

1 ` ζs`1κϵ `

?
s
b

2 logp 2s
pb

q

µsn

¯

“ O
´

max
#

c

s logpsq

n
,

s3{2
a

logpsq

nµs

+

¯
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where α̂ is the predicted model from the SPriFed-OMP algorithm, αS˚
is the true ground-truth model, ζs`1

is the RIC constant for the matrix X and µs is as defined in Algorithm 3. Our result holds with a high
probability of 1 ´ 4pb.

Proof: The proof is omitted due to page limits.
Theorem 10. [Risk Analysis of SPriFed-OMP] Under the same system model and assumptions as
Theorem 7, with probability 1 ´ 4pb the risk ∆R from algorithm SPriFed-OMP is bounded by,

∆R fi Rpα̂; X, y, nq

“
1
n

n
ÿ

i“1

´

pxiα̂ ´ yiq
2 ´ pxiαS˚

´ yiq
2
¯

ď 2
´ p1 ` ζs`1qs

b

2 logp 2s
pb

q

µsnp1 ´ ζs`1q

¯2

` 2
´

p1 ` ζs`1q
a

2ns logp2s{pbqqσεXM

np1 ´ ζs`1q

¯2

` 2
´s3{2κM

b

2 logp 2s2

pb
q

µsnp1 ´ ζs`1q2

´

p1 ` ζs`1q||αS˚
||2

`
a

1 ` ζs`1κϵ `

?
s
b

2 logp 2s
pb

q

µsn

¯¯2

“ O
´

max
#

s logpsq

n
,

s3 logpsq

n2µ2
s

+

¯

where α̂ is the predicted model from the SPriFed-OMP algorithm, αS˚
is the true ground-truth model, ζs`1 is

the RIC constant for the matrix X and µs is as defined is defined in Algorithm 3. X, y are the data matrix
and the label vector while n is the number of clients.

Proof: The proof is omitted due to page limits.

Remark (privacy parameters in Theorems 9 and 10 Results in Theorems 9 and 10 only depend on the µs

parameter and not µp privacy parameter as the privatized model in these results are outputted based on the
PRIVATE-OLS routine which only adds noise with a privacy parameter of µs (as the predicted bases are
already known).

6 Proof Sketch of Theorems 7 and 8

This section identifies the key steps required to prove Theorems 7 and 8. From Algorithms 3 and 4, we notice
that in the very first round, the server picks the feature with a maximum absolute data-response correlation
over the entire feature set. To ensure that we only pick features from the true feature set, we thus require
expression 1 below to hold.

min
jPS˚

|XT
j y ` ηγj | ě max

jRS˚

|XT
j y ` ηγj |. (1)

In other words, for correct basis recovery to occur in the first round, the minimum absolute feature correlation
over the true set should exceed the maximum absolute feature correlation over all the features not in this
true set. The strategy for proving 1 is to bound the randomness-inducing terms (i.e., noise terms) with
high probability. This high-probability event will also dictate the relationship between the sample size, the
restricted isometry constant, and the rest of the system constants. Using the restricted isometry property
over the dataset contributed by all clients, we can then show that the above inequality holds. The remaining
rounds are handled similarly over the updated residuals. The complete proof is available in the Appendix
sections E and F.
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Remark: Here, we re-iterate that both algorithms’ analyses have subtle but critical differences. In Algorithm 3,
the noise is added to column correlations (that are collaboratively computed by the clients), and then the
private model and the aggregate correlation between columns and the residual (i.e., the gradient) are
both computed by the server. In Algorithm 4, the clients first compute their individual gradients and then
collaboratively find the average private gradient. The server computes the private model similarly to in
Algorithm 3 but then shares this model with the individual clients. Here, the clients then recompute their
gradients for the next step. Algorithm 3 adds the noise to the correlations of the gradient, which are then
multiplied. On the other hand, in Algorithm 4, the bulk of the noise value is added outside of the correlations,
directly to the gradient.

Although our analysis idea is similar to several OMP proofs in the literature (such as Chen & Caramanis
(2012)), we have to redo the analysis because the way with which we add noise to the system (to ensure DP)
is completely different. Notably, Chen & Caramanis (2012) adds noise to the measurement matrix X, which
has several issues. First, it does not even protect the privacy of the response y. Second, the noise variance
is of the order-np, which is too high and likely leads to poor estimation accuracy. Indeed, the estimation
error bound (Corollary 8) in Chen & Caramanis (2012) is given by ||α˚ ´ α̂||2 “ Op

pσw`σ2
wq||α˚||2

?
s log p

n q,
where σw is the standard deviation of the noise matrix W T W such that W is the additive noise added to
the original matrix X. From their analysis, the term σw ` σ2

w “ Opp2q when σw is set to the DP-compliant
noise value. The above error bound, therefore, will be huge when p " n, negating its usefulness in the
high-dimensional regime. The experimental results in Chen & Caramanis (2012) assume small values of
σw, not at the level of Oppq needed for achieving DP. Third, Chen & Caramanis (2012) does not provide
a condition on the RIC. They assume that the matrix elements are subgaussian i.i.d.; thus, their model
implicitly determines the RIC constant in their results. In contrast, we allow an arbitrary design matrix
X (irrespective of the matrix’s data distribution) that satisfies an RIP condition. Thus, it is important to
quantify the condition of RIC to guarantee sparse recovery.

7 Empirical Results

In this section, we compare our proposed algorithm SPriFed-OMP with a version of the DP-SGD algorithm
(Abadi et al., 2016) that uses L1 regularization (Zhao & Yu, 2006). The first set of experiments is based
on a synthetic data set so that we can freely vary the sample size n, the model dimension p, and the model
sparsity s. Given p and n, we first generate X with i.i.d. elements, each of which is from N p0, 1q. Given the
model sparsity s, we then generate the non-zero coefficients of the model parameters α˚, each of which is
from the distribution N p2, 1q. We then add additive error with mean zero and standard deviation σϵ “ 0.001
to generate the response y. We then clip (to 1 or ´1) every element in X and y with magnitude greater
than 1 and then re-scale the whole matrix/vector appropriately to maintain their unit variance as required
by the RIP condition 1.

7.1 Warm-up Experiments: Intuition behind our proposed enhancements

Before moving on to the main experimental results, we revisit the enhancements noted in Section 3. Note
that both experiments below use the synthetic data setup above.

Importance of Enhancement 1: Adding lower noise to selected features

Here, we test the sparse basis recovery capabilities of Algorithm 3 on a synthetic toy dataset. We compare
Algorithm 3 with another modified version, where Enhancement 1 is removed, i.e., we directly use the artifacts
privatized by the higher order noise in lines 5 and 11 to estimate the private model. Thus, the private
model will now have noise of order Op

?
pq instead of Op

?
sq. In Table 1, we observe worse test MSE and

poor sparse basis recovery performance when enhancement 1 is removed. Thus, we conclude that we need to
re-privatize, i.e., add lower-order noise to the correlations/gradients computed on the chosen feature set to
obtain competitive sparse basis recovery in the DP-FL case.

Importance of Enhancement 2: Privatizing the gradient
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Samples Test MSE Number of samples recovered
SPriFed-OMP (low noise) SPriFed-OMP (high noise) SPriFed-OMP (low noise) SPriFed-OMP (high noise)

n “ 2000 0.83 335.84 1 0
n “ 4000 0.52 6.45 2.67 1.67
n “ 8000 0.35 0.77 7.67 5.67

Table 1: Enhancement 1 Performance Improvement: Comparison of Test MSE and basis recovery
performance for when Algorithm 3 runs with and without enhancement 1. The experiments are run over
3 randomized trials over the synthetic setup (above) with p “ 10000, s “ 10, and a privacy guarantee of
p5.74, 10´4q DP.

In this experiment, we look closely at the two kinds of artifacts released by Algorithms 3 and 4, i.e. the
correlations and gradients respectively. We measure the change in the artifacts’ value over iterations by
measuring and plotting the total l2 norm values for each artifact. To do so, we run a non-private version of
Algorithm 3 and plot the changing correlation norms and gradient l2 norms over multiple iterations. Here, in
each iteration we use the correlation value with respect to the current newly chosen feature j (referred in
Figure 1’s legend). We observe from Figure 1 that the gradient norm values decrease over time while most
of the correlation norms are constant. As expected from the way OMP is designed, only the value of the
correlation norm ∥XT

j y∥2 decreases over iterations since the newly chosen features have lower correlation
values than previous features. Thus, we conclude that we can employ more aggressive clipping in Algorithm 4
than in Algorithm 3. That is, for gradients, a lower clipping bound should work well, especially toward the
final rounds, while such lower clipping bounds will significantly affect the correlations irrespective of the
iteration.

Figure 1: Enhancement 2 Performance Intuition: Change in size of artifacts (correlations and gradient)
measured by their norm over multiple iterations.

7.2 Performance Comparison: Synthetic Data Sets

In the rest of the section, we will compare SPriFed-OMP with various baselines. We first discuss the
experimental setup and the baselines. In SPriFed-OMP (Algorithm 3), we set the parameter µp to be either
0.4 (for s “ 10) or 0.543 (for s “ 5) and set the parameter µs as 0.02. The cumulative privacy cost pϵ, δq for all
the experiments is set to at most p5.34, 10´4q (for DP) or equivalently 1.32 (GDP). Note that SPriFed-OMP
does not require hyperparameter tuning besides choosing the privacy parameters µs and µp. Since p " s, we
can easily tolerate µs much smaller than µp. Thus, the µp parameter will primarily dominate the privacy
cost.

The first baseline DP-SGD is implemented to minimize the L1-regularized mean square error. After the
algorithm is terminated, we pick the top-s elements and leverage those to compute the final model and the
test MSE. One requirement for DP-SGD is that we also need to choose the hyper-parameters, which are the
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(a) fix s “ 5, n “ 2000, vary p (b) fix s “ 5, p “ 2500, vary n

Figure 2: Test MSE is shown for both SPriFed-OMP and DP-SGD for privacy parameters p4.94, 10´4q.
Figure (a) fixes the sample size and varies the model dimensions; Figure (b) fixes the model dimensions and
varies the sample size. Measurements averaged over 3 randomized simulation runs.

(a) fix s “ 5, p “ 2500, vary n (Synthetic Data) (b) fix s “ 5, p “ 10000, vary n (Synthetic Data)

Figure 3: The number of basis correctly recovered by SPriFed-OMP for privacy parameters p4.94, 10´4q. We
choose s “ 5. Figure (a) demonstrates basis recovery for model sparsity p “ 2500 over varying sample sizes.
Figure (b) demonstrates basis recovery for model sparsity p “ 10000 over varying sample sizes. Measurements
averaged over 3 randomized simulation runs.

coefficient for the L1-regularization term and the learning rate. Although hyper-parameter tuning may incur
an additional privacy cost for DP-SGD, here, to benefit DP-SGD, we perform the hyper-parameter tuning
non-privately using the Optuna library(Akiba et al., 2019). To maintain a standardized notion of privacy
definition, we also study the composed privacy cost of DP-SGD using GDP. In particular, for achieving GDP
in DP-SGD, we set the privacy parameter µDP ´SGD as either 0.4 (when s “ 10) or 0.543 (when s “ 5).
µDP ´SGD matches the µp parameter from SPriFed-OMP, which is also being used to privatize p-dimensional
vectors. DP-SGD stops training when the overall privacy budget matches that of SPriFed-OMP.5

The second baseline DP-GCD is based on a modified DP-FL compatible version of the algorithm presented in
Mangold et al. (2023). Algorithm 1 in Mangold et al. (2023) primarily follows from the Gradient Coordinate
Descent (GCD) algorithm. Like DP-SGD, although DP-GCD does not provide performance guarantees
on sparse basis recovery, it remains a natural algorithm when used along with l1-regularization objectives.

5Although µ-GDP alone provides an intuitive privacy definition, for completeness, we also convert the final µ-GDP privacy
parameter to the approximate DP parameters using the AutoDP Python library (Wang, 2023).
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(a) fix s “ 10, p “ 2500, vary n (Syn-
thetic Data)

(b) fix s “ 10, p “ 10000, vary n
(Synthetic Data)

(c) fix s “ 10, vary p and n (Synthetic
Data)

Figure 4: The number of basis correctly recovered by SPriFed-OMP for privacy parameters p5.34, 10´4q. We
choose s “ 10, and figures (a) and (b) have an additive error with standard deviation σε “ 0.001. Figure (a)
demonstrates basis recovery for model sparsity p “ 2500 over varying sample sizes. Figure (b) demonstrates
basis recovery for model sparsity p “ 10000 over varying sample sizes. Figure (c) varies p “ 20000 and
p “ 40000 while increasing the system model’s additive error’s standard deviation to σε “ 0.1. Measurements
averaged over 3 randomized simulation runs.

However, DP-GCD in Mangold et al. (2023) considered DP only in the server setting but not the DP-FL
setting as in this paper. Thus, we make an effort to compare with it by first converting it to a DP-FL
compatible version. We first present our converted DP-GCD algorithm (Algorithm 5). Here, in each iteration,
the maximum gradient is picked privately in lines 5-8, and the model takes a step in only the direction of this
chosen gradient element in lines 10-11. Such gradient-based optimization steps are repeated until the model
converges or the privacy budget is exhausted.

In our modified version presented in Algorithm 5, we also include two enhancements to the DP-GCD
algorithm from Mangold et al. (2023). First, we convert DP-GCD to be DP-FL compatible by leveraging
the NOISY-SMPC mechanism while identifying the feature with the maximum gradient (lines 5-8 ). We
further ensure that much lower noise is added while following the gradient-based approach in DP-GCD by
separately re-privatizing (in line 10 ) the feature gradient chosen via the maximum gradient mechanism. Thus,
in summary, our proposed modification of DP-GCD (Algorithm 5) significantly enhances the private version
in Mangold et al. (2023) by making it DP-FL compatible while also ensuring that it has traits suitable for
sparse basis recovery. Similar to DP-SGD, we again perform hyper-parameter tuning non-privately using the
Optuna library (Akiba et al., 2019). For both DP-SGD and DP-GCD, we do not include the cost of tuning
these hyperparameters in the privacy cost, and hence, the results we report below are more optimistic for
these two algorithms. Below we discuss our empirical findings.

Fix n, Change p: In Fig. 2(a), we fix s “ 5 and n “ 2000 and vary p P t2500, 4000, 6000, 8000, 10000u.
With rising p, we observe that the test MSE loss increases much more dramatically for DP-SGD (note the
logarithmic y-axis) than SPriFed-OMP. In fact, SPriFed-OMP’s performance is almost constant as p varies
since its empirical risk (Theorem 10) is mostly dependent on s. Further, although not shown in the figure,
SPriFed-OMP extracts most of the basis elements pě 3q even when p “ 10000. Finally, even though the
sample size can be quite small in comparison to the model dimension, we obtain highly accurate models
for SPriFed-OMP with test MSE close to zero, which is in line with our theory (see Theorems 9 and 10).
Similarly, even though DP-GCD performs better than DP-SGD in terms of test MSE (thanks to the lower
noise that our enhanced DP-GCD algorithm adds), its test MSE is still much worse than SPriFed-OMP. We
will discuss this limitation of DP-SGD in the latter part of this section.

Fix p, Change n: In Fig. 2(b), we set s “ 5 and p “ 2500 and vary n P t400, 800, 1200, 1600, 2000u. We
observe that when p " n, the performance of all algorithms is impacted. However, increasing the sample
size improves performance more dramatically for SPriFed-OMP and SPriFed-OMP-GRAD (again, note the
logarithmic scale on the y-axis). Notably, SPriFed-OMP and SPriFed-OMP-GRAD significantly outperform
DP-SGD and DP-GCD for all choices of n. We specifically note that the test loss for both versions of
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Algorithm 5 Enhanced DP-GCD (DP-FL)

1: Input Parameters: Data: X “ tX1, X2, ..., Xpu P Rnˆp where Xi is the ith feature, Response:
y P Rn, Learning Step Size: γ, Total Steps: T , Privacy Parameters: σ1 “ 1

µp
, Initialize Model:

α̃ “ 0̄, Initialize Basis: S “ H, Gradient Bound: C (true bound over all gradients or bound achieved
via gradient clipping).

2: Output: Predicted Sparse Model α̃, Predicted Sparse Basis §
3: procedure DP-GCD(X, y, n, T )
4: for t “ 1 : T do
5: for j “ 0 : p do
6: gj Ð NOISY-SMPCpXj , y ´ XSA α̃, n, σ1C

?
pq

7: end for
8: j˚ Ð arg maxj |gj |

9: S Ð S Y tj˚u

10: g
1

j˚ Ð NOISY-SMPCpXj˚ , y ´ XSA α̃, n, σ1Cq

11: α̃rj˚s “ α̃rj˚s ´ γg
1

j˚

12: end for
13: Return α̃, S
14: end procedure

SPriFed-OMP gets very close to zero (as n increases), which matches our theoretical results (Theorems 9 and
10).

Fix s, Change p and n: In Figs. 3 and 4, we report the number of non-zero basis in α˚ that are correctly
recovered by the proposed algorithms. We show two plots, Fig. 3 for s “ 5 and Fig. 4 for s “ 10. The sample
sizes are varied over t500, 1000, 2000, 4000, 8000u and the model dimensions are varied over t2500, 100000u for
both s “ 5 and s “ 10. Additionally, we also vary p over t20000, 400000u for the s “ 10 case. First, we can
see for correctly recovering majority of the sparse basis, the value of n increases much slower than p. Let us
examine more closely the cases when we vary s as either 5 or 10. We first look at the case when s “ 5. For
p “ 2500 by setting n “ 2000, we manage to recover 3` out of 5 basis elements with SPriFed-OMP-Grad.
It turns out that even when p is increased to 10000, using n “ 2000 is still sufficient to recover 3 out of 5
basis. When s “ 10, we consider the number of samples required to recover 7` out of 10 basis elements. For
p “ 2500, n “ 2000 suffices. But when p is increased 4 times to 10000, we only need n to be doubled to 4000.
Finally, when p is either 20000 or 40000, we only need n “ 8000 samples to recover the same number of basis
elements. In summary, we find that, as the model dimension and the model sparsity increase, the sample size
required for sparse recovery increases as well, which is consistent with our main results, Theorems 7 and
8. More interestingly, the value of n increases much slower than that of p. This aligns with our theoretical
result that n only needs to be order-?p.

Second, as seen while comparing Figures 4(a-b) with Figure 4(c), increasing the additive error variability
affects SPriFed-OMP the most, while both the gradient-based methods SPriFed-OMP-Grad and DP-GCD
are minimally affected. Note that the results shown in Figures 4(a-b) have system error standard deviation
of 0.001. Here, we can see that the performance of SPriFed-OMP is quite comparable to both SPriFed-
OMP-GRAD and DP-GCD. SPriFed-OMP even manages to outperform DP-GCD for the higher sample
size range. However, Figure 4(c) uses a standard deviation of 0.1. Here, the performance of SPriFed-OMP
dips significantly in comparison to both SPriFed-OMP-GRAD and DP-GCD. Thus, error variability affects
SPriFed-OMP more than the other methods. These results are in line with our theory (refer Theorems 7 and
8) that shows that SPriFed-OMP has stricter system error requirements compared to SPriFed-OMP-GRAD.

Let us now discuss the sparse basis recovery performance of the two baselines. Note that both DP-GCD
and DP-SGD converge to a private model by leveraging gradient-based optimization. However, DP-GCD
adds much lower noise than DP-SGD since, at each round, it only updates a single dimension rather than
all dimensions as done by DP-SGD. This explains why we see a better performance for DP-GCD than
DP-SGD. However, DP-GCD still adds significant noise to the model compared to both SPriFed-OMP
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and SPriFed-OMP-GRAD due to the following two reasons. First, due to its gradient-based optimization,
DP-GCD may take more than one step to optimize any given direction fully. In contrast, for each new basis,
SPriFed-OMP only collects new correlation values (or gradients) once. Thus, depending on the number of
steps taken, the amount of noise added by DP-GCD per dimension is often much higher. For instance, if
the same dimension is picked t times, then the noise added will be of t orders higher for DP-GCD than
the SPriFed-OMP class of methods. The remark in this section covers further details. Second, unlike
SPriFed-OMP and SPriFed-OMP-GRAD, DP-GCD does not compute the exact true value of the model
(using the OLS formula) in each round rather than choosing to add noise to the previously predicted model
continually and thus the noise added in previous rounds might affect the predicted model significantly. In
contrast, private OMP estimates the model parameters α directly using the OLS formula (Algorithm 2) based
on the re-privatized correlation values in Lines (14)) and (9) of Algorithms 3 and 4 respectively, which have
much lower noise. Thus, this noise accumulation effect is greatly reduced.

Remark (Significant difference of Test MSE between DP-SGD, DP-GCD and both flavors of SPriFed-OMP):
From Figures 2(a) and 2(b), we observe that the test MSE of SPriFed-OMP and DP-SGD are of different
orders (note the logarithmic scale on the y-axis). This difference is because, in SPriFed-OMP, we only
introduce noise with a variance of order-s to the final model. In contrast, DP-SGD adds noise of order-p
variance to all its model dimensions. Therefore, even though DP-SGD selects a subset of these dimensions
for the final model, the considerable noise significantly impacts the resulting model coefficients. As a result,
the test MSE for DP-SGD is much worse than the one we obtain from SPriFed-OMP. Once more, we note
that due to such a high noise variance, DP-SGD cannot recover any of the true basis in our experiments.
For the case of DP-GCD, the noise added to the model is of order s as well. However, DP-GCD follows a
gradient-based iterative approach where noise is added to the gradient. Then, this noise is passed to the
model based on the feature selected in that step, the learning rate, and the number of total steps taken.
Unlike DP-GCD, the SPriFed-OMP flavors add noise to the exact value of the true model based on the
currently selected features. Thus, overall, SPriFed-OMP only adds noise via the privacy mechanism. On the
other hand, DP-GCD adds a similar noise via the privacy mechanism while also including a bias term based
on the difference between the DP-GCD model and the optimal linear model for the chosen feature set.

Remark (Run-time trends of algorithms): To understand the general trend of computational time required
by each algorithm, we consider the sample case when n “ 2000, s “ 20, p “ 20000. Here we provide the
CPU time as measured by the time library in Python. We note that SPriFed-OMP takes 20.17 seconds,
SPriFed-OMP-Grad takes 26.38 seconds, DP-SGD takes 11.99 seconds, and DP-GCD takes 9.56 seconds. As
expected, the OMP algorithms take longer due to their separate computations for the sparse model in each
step. In particular, SPriFed-OMP-Grad takes the longest since it needs to compute the gradient separately
for each sample, sum them up in a DP-FL fashion (like DP-SGD and DP-SGD), and compute the sparse
models separately. Finally, DP-SGD takes a bit longer than DP-GCD since, in each step, it operates over all
possible features, while DP-GCD only runs on the feature with the maximum gradient. Note that we expect
when the number of clients is fewer, the gradient computations might be speedier. However, we will consider
optimizing these algorithms and exploring a lengthier ablation study as part of future work.

7.3 Performance Comparison: More Realistic Data Sets

In the second set of experiments, we test our proposed algorithms on the synthetic MADELON dataset from
the NIPS 2003 challenge (Guyon et al., 2004), a popular dataset used in the sparse recovery literature. The
original MADELON dataset has 20 true features, but only 5 of these are true raw features, and the remaining
15 are linear combinations of these raw features. Its total model dimension is p “ 500, with n “ 2000 training
samples. However, since we are only interested in the p ą n case, we randomly sub-sample 300 samples in
each trial. We run 5 randomized trials and report the average results. Here, we set µp “ 0.45, µs “ 0.09 for
SPriFed-OMP and µDP ´SGD “ 0.45 for DP-SGD. The corresponding DP guarantee is p8.38, 10´3q, and the
GDP guarantee is 1.72. For SPriFed-OMP, we clip the elements of X to 0.12 and elements of y to 0.36.
We clip the gradient elements to 1. As expected, DP-SGD performs the worst with a high Test MSE of
105.73. DP-GCD performs reasonably well with Test MSE of 1.23. Finally, SPriFed-OMP has a Test MSE of
1.55 while SPriFed-OMP-GRAD handily outperforms DP-GCD with a Test MSE of only 0.27. We attribute
the relatively better performance of DP-GCD for this data set to two reasons, (1) proper hyperparameter
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tuning of DP-GCD; thus, we expect that the performance of DP-GCD would be worse if the privacy cost
of hyperparameter tuning must also be accounted for; and (2) due to the synthetic nature of MADELON,
DP-GCD might perform well even when it does not pick the exact best features (since MADELON has 15
features that are linear combinations of the true 5 features).

In the third set of experiments, we show results on two real high-dimensional datasets from the repository
presented in Drysdale (2022). Here, we consider the high-dimensional datasets chop and gse1992. The chop
dataset contains 414 total samples with 3836 features, and gse1992 contains 124 samples with 15537 features.
Similar to MADELON, we sub-sample the dimensions of chop to be 2000 and that of gse1992 to be 500 in
each trial. The rest of the privacy setup is identical to MADELON. We present the results for these datasets
in Table 2. We note that both SPriFed-OMP and SPriFed-OMP-GRAD outperforms all other algorithms
over both datasets with SPriFed-OMP-GRAD providing the best utility. As previously noted in the remark
above, we attribute the success of both versions of SPriFed-OMP to their ability to add significantly lower
order noise to the true model value while leveraging the true value of the model using the ordinary least
squares formula. Note that DP-GCD also adds lower-order noise to the model. However, unlike both flavors
of SPriFed-OMP, DP-GCD does not add noise to the exact value of the true model, instead relying on a
gradient-based approach that iteratively adds noise to the gradient. The gradient-based noise is then passed
to the model value based on the feature selected and the learning rate.

Algorithm chop gse1992
SPriFed-OMP 0.101 1.90

SPriFed-OMP-GRAD 0.154 1.15
DP-GCD 18.79 525.60
DP-SGD 546.76 988.72

Table 2: Test MSE Performance: We observe that without model/basis selection, both DP-SGD and
DP-GCD are required to add substantial noise in the models, leading to much higher Test MSE than both
SPriFed-OMP and SPriFed-OMP-GRAD. However, both SPriFed-OMP and SPriFed-OMP-GRAD enjoy
close to optimal test MSE.

7.4 Ablation study of privacy-utility trade-off

To understand the impact of the privacy parameters on the algorithm’s performance, we next study the test
error and the number of bases recovered for both SPriFed-OMP and SPriFed-OMP-Grad, as we vary the net
epsilon value. We first consider the synthetic datasets of Section 7.2 for the case of n “ 2000, s “ 5, and p “

10000. Both algorithms are run for 3 random seeds. The value of µp is varied over r0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1s,
which in turn affects the final ϵ value. Note that µs “ 0.09 is constant since it does not greatly affect the net
ϵ value. In Fig. 5(a) and (b), we plot both algorithms’ test MSE and the basis recovery capabilities vs ϵ. We
can observe that, as ϵ increases, the performance of both algorithms improves (i.e., the test MSE decreases,
and the number of correctly recovered bases increases). Both algorithms generally reach constant performance
for any epsilon larger than 5 (which is around the value chosen in our results reported in Section 7.3).

We then perform a similar study of privacy-utility trade-off on the realistic chop dataset. We consider the
following setup where µp is again varied over r0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 1s to adjust the net privacy budget. We
run both algorithms over 7 random seeds and set the clipping bound for elements of X, y to be 0.5. µs “ 0.15.
Since we do not know the underlying basis for the chop dataset, we simply report the Test MSE error in
Fig. 5c. We can see that as ϵ increases, the error generally tends to lower. However, we observe that the error
dips the most from ϵ P r6, 12s. Thus, we pick ϵ « 8, which gives a reasonable privacy-utility trade-off for a
ϵ ă 10.

Remark (Sub-sampling with DP-FL): We recognize that under a DP-FL setting, sub-sampling is beneficial in
reducing per-round communication costs and amplifying privacy. However, the benefit of sub-sampling in the
n ! p regime that we focus on in this paper has not been thoroughly studied, which could be an interesting
direction for future work.
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(a) Basis Recovery-privacy trade-off
(Synthetic Data)

(b) Error-privacy trade-off (Synthetic
Data)

(c) Error-privacy trade-off (Chop
Dataset Drysdale (2022))

Figure 5: Ablation study for finding privacy-utility trade-off. We look at the impact of choosing varying
privacy parameters on the accuracy of the proposed algorithms. Figures (a) and (b) study the basis recovery,
and Test MSE values varied over changing values of the overall privacy budget ϵ, respectively, for the synthetic
data with n “ 2000, s “ 5, p “ 10000. Figure (c) provides the Test MSE of the chop dataset again varied over
the net privacy budget ϵ. ϵ is implicitly modified by adjusting the privacy parameter µp.

8 Conclusion

In this work, we propose two new private sparse basis recovery algorithms called SPriFed-OMP and SPriFed-
OMP-GRAD for the DP-FL setting based on the Orthogonal Matching Pursuit (OMP) algorithm. Specifically,
we prove analytically that both algorithms can recover the sparse basis in a finite number of steps. Further, we
bound the privacy cost while leveraging the obtained low-dimensional model to obtain dimension-free model
estimation error and empirical risk. Here, SPriFed-OMP is our first attempt at leveraging OMP for sparse
basis recovery in the DP-FL setting. In contrast, SPriFed-OMP-GRAD improves upon SPriFed-OMP (both
analytically and empirically) by requiring a simpler DP-FL mechanism, fewer samples, and a less complicated
analysis. To the best of our knowledge, these are the first DP-FL algorithms that successfully manage sparse
recovery under the RIP assumption while only requiring n “ Op

?
pq samples. Our experimental results

on both synthetic and real datasets strongly corroborate our theoretical analysis. For future work, we will
explore DP-FL algorithms that can perform sparse recovery even without the RIP assumption.

9 Acknowledgement

This work has been partially supported by NSF grants CNS-2113893 and CNS-2225950.

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.

Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pp. 308–318, 2016.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Hilal Asi, Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimization: Optimal
rates in l1 geometry. In International Conference on Machine Learning, pp. 393–403. PMLR, 2021.

Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy: Analytical
calibration and optimal denoising. In International Conference on Machine Learning, pp. 394–403. PMLR,
2018.

21



Published in Transactions on Machine Learning Research (06/2024)

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient algorithms
and tight error bounds. In 2014 IEEE 55th annual symposium on foundations of computer science, pp.
464–473. IEEE, 2014.

Raef Bassily, Cristóbal Guzmán, and Anupama Nandi. Non-euclidean differentially private stochastic convex
optimization. In Conference on Learning Theory, pp. 474–499. PMLR, 2021.

Alexandre Belloni, Victor Chernozhukov, and Christian Hansen. High-dimensional methods and inference on
structural and treatment effects. Journal of Economic Perspectives, 28(2):29–50, 2014.

Christopher M Bishop et al. Neural networks for pattern recognition. Oxford university press, 1995.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar Patel,
Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-preserving machine
learning. In proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1175–1191, 2017.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory
of independence. Oxford university press, 2013.

Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions, and lower
bounds. In Theory of Cryptography Conference, pp. 635–658. Springer, 2016.

Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE transactions on information
theory, 51(12):4203–4215, 2005.

Yudong Chen and Constantine Caramanis. Orthogonal matching pursuit with noisy and missing data: Low
and high dimensional results. arXiv preprint arXiv:1206.0823, 2012.

Robert Clarke, Habtom W Ressom, Antai Wang, Jianhua Xuan, Minetta C Liu, Edmund A Gehan, and
Yue Wang. The properties of high-dimensional data spaces: implications for exploring gene and protein
expression data. Nature reviews cancer, 8(1):37–49, 2008.

Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. arXiv preprint arXiv:1905.02383,
2019.

Erik Drysdale. SurvSet: An open-source time-to-event dataset repository. arXiv preprint arXiv:2203.03094,
2022.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Found. Trends Theor.
Comput. Sci., 9(3-4):211–407, 2014.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. 2004.

Jianqing Fan, Jinchi Lv, and Lei Qi. Sparse high-dimensional models in economics. Annu. Rev. Econ., 3(1):
291–317, 2011.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-how easy
is it to break privacy in federated learning? Advances in Neural Information Processing Systems, 33:
16937–16947, 2020.

Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and Gideon Dror. Result analysis of the nips 2003 feature selection
challenge. Advances in neural information processing systems, 17, 2004.

Lijie Hu, Shuo Ni, Hanshen Xiao, and Di Wang. High dimensional differentially private stochastic optimization
with heavy-tailed data. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, pp. 227–236, 2022.

Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. Evaluating gradient inversion attacks
and defenses in federated learning. Advances in Neural Information Processing Systems, 34:7232–7241,
2021.

22



Published in Transactions on Machine Learning Research (06/2024)

Ali Jalali, Christopher Johnson, and Pradeep Ravikumar. On learning discrete graphical models using greedy
methods. Advances in Neural Information Processing Systems, 24, 2011.

Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differential privacy. In
International conference on machine learning, pp. 1376–1385. PMLR, 2015.

Peter Kairouz, Ziyu Liu, and Thomas Steinke. The distributed discrete gaussian mechanism for federated
learning with secure aggregation. In International Conference on Machine Learning, pp. 5201–5212. PMLR,
2021.

Daniel Kifer, Adam Smith, and Abhradeep Thakurta. Private convex empirical risk minimization and
high-dimensional regression. In Conference on Learning Theory, pp. 25–1. JMLR Workshop and Conference
Proceedings, 2012.

Yulan Liang and Arpad Kelemen. Statistical advances and challenges for analyzing correlated high dimensional
snp data in genomic study for complex diseases. 2008.

Yi Liu, Ke Sun, Bei Jiang, and Linglong Kong. Identification, amplification and measurement: A bridge to
gaussian differential privacy. Advances in Neural Information Processing Systems, 35:11410–11422, 2022.

Paul Mangold, Aurélien Bellet, Joseph Salmon, and Marc Tommasi. High-dimensional private empirical risk
minimization by greedy coordinate descent. In International Conference on Artificial Intelligence and
Statistics, pp. 4894–4916. PMLR, 2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pp.
1273–1282. PMLR, 2017.

Nicolai Meinshausen. Relaxed lasso. Computational Statistics & Data Analysis, 52(1):374–393, 2007.

Nicolai Meinshausen and Bin Yu. Lasso-type recovery of sparse representations for high-dimensional data.
2009.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations symposium (CSF),
pp. 263–275. IEEE, 2017.

Deanna Needell and Joel A Tropp. Cosamp: Iterative signal recovery from incomplete and inaccurate samples.
Applied and computational harmonic analysis, 26(3):301–321, 2009.

Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical University of
Denmark, 7(15):510, 2008.

Mark Rudelson and Roman Vershynin. The littlewood–offord problem and invertibility of random matrices.
Advances in Mathematics, 218(2):600–633, 2008.

Kunal Talwar, Abhradeep Guha Thakurta, and Li Zhang. Nearly optimal private lasso. Advances in Neural
Information Processing Systems, 28, 2015.

Abhradeep Guha Thakurta and Adam Smith. Differentially private feature selection via stability arguments,
and the robustness of the lasso. In Conference on Learning Theory, pp. 819–850. PMLR, 2013.

Joel Tropp, Anna C Gilbert, et al. Signal recovery from partial information via orthogonal matching pursuit.
IEEE Trans. Inform. Theory, 53(12):4655–4666, 2007.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science, volume 47.
Cambridge university press, 2018.

23



Published in Transactions on Machine Learning Research (06/2024)

Di Wang and Jinhui Xu. On sparse linear regression in the local differential privacy model. In International
Conference on Machine Learning, pp. 6628–6637. PMLR, 2019.

Lingxiao Wang and Quanquan Gu. Differentially private iterative gradient hard thresholding for sparse
learning. In 28th International Joint Conference on Artificial Intelligence, 2019.

Yu-Xiang Wang. autodp: A flexible and easy-to-use package for differential privacy. https://github.com/
yuxiangw/autodp, 2023.

Larry Wasserman and Kathryn Roeder. High dimensional variable selection. Annals of statistics, 37(5A):
2178, 2009.

Tong Zhang. On the consistency of feature selection using greedy least squares regression. Journal of Machine
Learning Research, 10(3), 2009.

Tong Zhang. Adaptive forward-backward greedy algorithm for learning sparse representations. IEEE
transactions on information theory, 57(7):4689–4708, 2011.

Peng Zhao and Bin Yu. On model selection consistency of lasso. The Journal of Machine Learning Research,
7:2541–2563, 2006.

A Differential Privacy

Differential privacy was introduced to privatize changes caused by individual clients (Dwork et al., 2014).
For a given function, differential privacy obscures the maximum possible change in the function’s output
due to the inclusion or removal of a single client’s data. Here, obscuring is allowed by introducing noise
and, thus, a form of deniability in the function’s output. Deniability allows an individual client to deny its
presence in the dataset and disallows an adversary from linking the client or its data to a non-privatized
record. Differential privacy is significantly stronger than previous anonymization methods as it works even in
the worst-case scenario when the entire dataset is publicly released except for a single client’s data. Here, we
look at the precise mathematical definition of differential privacy, simple techniques to introduce privacy, and
its additional properties.
Definition A.1. [Approximate Differential Privacy] For any two neighboring datasets X, X 1 Ď S
differing over a single sample, we say that the randomized mechanism M : S Ñ R is pϵ, δq differentially
private if,

PrrMpXq P Rs ď eϵ ¨ PrrMpX
1

q P Rs ` δ

Definition A.2 (L2 sensitivity of a function). Given a deterministic function f , consider all possible pairs
of conformable neighboring datasets in the domain of f differing on a single row. Then we denote f ’s L2
sensitivity as

∆2f :“ max
x,xPdompfq,||x

||fpxq ´ fpx1q||2

Thus, ∆2f records the maximum possible change in f due to a change in a single row. Often each row
belongs to a different client and thus, ∆2f will record the maximum change due to a change in a client or the
inclusion or removal of a client from the dataset.

We can achieve differential privacy by the Laplacian, Exponential, and Gaussian mechanisms (Dwork et al.,
2014). Here, we use the Gaussian mechanism as it performs better for multi-step (or composed) privacy
algorithms. In particular, we leverage the Gaussian Differential Privacy (GDP) composition method for
optimally tracking the privacy loss over multiple steps (Dong et al., 2019). Although, other composition
methods such as advanced composition (Kairouz et al., 2015), Renyi DP (Mironov, 2017), and concentrated
DP (Bun & Steinke, 2016) exist, we chose GDP for its superior composition performance for Gaussian
mechanisms. For completeness, we state the connection between the Gaussian mechanism and the GDP
privacy constant.

24

https://github.com/yuxiangw/autodp
https://github.com/yuxiangw/autodp


Published in Transactions on Machine Learning Research (06/2024)

Lemma 11. [GDP Gaussian mechanism (Theorem 2.7 from (Dong et al., 2019))] Let statistic fp¨q be
computed over the dataset X. Then, the randomized Gaussian mechanism MpXq “ fpXq ` η where
η „ N p0, ∆2f2

µ2 q is µ ´ GDP .
Lemma 12. [Restated Theorem 2.7 from Dong et al. (2019)] Let statistic fp¨q be computed over the dataset
X. Then, the randomized Gaussian mechanism MpXq “ fpXq ` η where η „ N p0, ∆2f2

µ2 q is µ ´ GDP .

An important property of DP, known as post-processing maintains that no amount of processing on a
differentially private system will cause the new output to leak any more information than the unprocessed
input. This is expressed clearly in Lemma 13.
Lemma 13 (Differential Privacy Post-Processing). Consider a randomized mechanism M that is pε, δq

differentially private. Now, let Mpost be another randomized mechanism that can be applied to the output of
M . Then, we state that the output of the combination of MpostpMp¨qq function group has at least differential
privacy guarantee of pε, δq or higher.

B Compressed Sensing Theory

Let Ω “ t1, 2, ..., pu be the overall feature index set and the support S Ď Ω of β˚ be defined such that,
S “ ti|i P Ω, β˚

i ‰ 0u. By definition, |S| ď s (where s is the sparsity index of the dataset). For a vector
v P Rp, let us define vW as the restriction of v to the indices in W where W Ď Ω. Similarly, for a matrix
Q P Rnˆp let us define the sub-matrix QW P Rnˆ|W | s.t. it only contains columns indexed by W pĎ Ωq.
Our primary assumption for the data matrix follows the Restricted Isometry Property (RIP) as detailed in
Assumption 1.

Intuitively, assumption 1 for X, a matrix satisfying RIP of order K states that the eigenvalues for all
K-dimensional (or smaller) sub-matrices derived from X, lie in a tight interval around 1. Interestingly, the
assumption holds for several popular sub-Gaussian random matrices. Construction of such random RIP
matrices is detailed in Theorem 5.65 from Vershynin (2010). We note that although we use the random
matrix construction as a reference for our primary analysis, we only require a matrix (even deterministic)
normalized by

?
n that satisfies the RIP condition and and it should contain (probably) bounded values.

Further details are omitted due to page limits.
Lemma 14. [Construction of Random Matrices satisfying RIP] (Theorem 5.65 from Vershynin
(2010)) Let A P Rnˆp be a subgaussian random matrix with independent and isotropic rows. Then the
normalized matrix A?

n
satisfies the following for every sparsity level 1 ď k ď p and every number δ P p0, 1q,

ifn ě
Ck logp

ep
k q

δ2 Ñ δkp
A

?
n

q ď δ

with a probability at least 1 ´ 2e´cδ2n. Here, C “ CK , c “ cK ą 0 depend only on the subgaussian norm
K “ maxi ||Ai||Ψ2 of the rows of A. Here, k is the RIP order, and δkp¨q is the RIC. The exact construction
is demonstrated below.

One instance of such a random matrix satisfying RIP, X P Rnˆp, can be constructed with the following steps,

1. For a given row v in X, independently sample the row’s elements from a sub-Gaussian distribution
s.t. each row is isotropic. v P Rp is an isotropic vector if ErvvT s “ I.

2. The standard normal distribution satisfies the isotropic property. Therefore, assume Xij „

N p0, 1q, for all i P rns, j P rps. We note that alternative distributions as detailed in Vershynin
(2010) also satisfy the isotropy property.

3. Normalize X Ñ X?
n

.

Given an RIP satisfying matrix X P Rnˆp satisfying RIP of order s with an RIC of constant ζs, we note some
useful properties (Lemmas 15-18) derived from the RIP condition ((Candes & Tao, 2005)).
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Consider the set of vectors W :“ tw P Rp | ||w||0 ď su. The support for vectors in W is S. For a vector
w P W and by RIP and using ||XSwS ||2 “ ||Xw||2,

p1 ´ ζsq||w||22 ď ||XSwS ||22 ď p1 ` ζsq||w||22

Ñ p1 ´ ζsq||w||22 ď ||Xw||22 ď p1 ` ζsq||w||22

Ñ p1 ´ ζsq ď
wT XT Xw

wT w
ď p1 ` ζsq (2)

Thus, the following bound immediately follows,

p1 ´ ζsq ď σminpXT
S XSq, σmaxpXT

S XSq ď p1 ` ζsq

Lemma 15. [Monotonocity of the Isometric Constant] If a measurement matrix X P Rnˆp satisfies
RIP of orders K1 and K2 s.t. K1 ď K2 then their corresponding RICs follow the same order i.e., ζK1 ď ζK2 .
Lemma 16. [Direct RIP Consequences] Let S Ď Ω be the support of the true model β˚. If ζs ă 1; s “ |S|

then we can show that for the measurement matrix X satisfying RIP with order s and for any w P Rs,

p1 ´ ζsq||w||2 ď ||XT
S XSw||2 ď p1 ` ζsq||w||2

1
1 ` ζs

||w||2 ď ||pXT
S XSq´1w||2 ď

1
1 ´ ζs

||w||2

Lemma 17. [RIP: Near Orthogonality] Let S1, S2 Ď Ωs.t., S1 X S2 “ H. If ζ|S1|`|S2| ă 1 and S1 Y S2 “ S

then for the measurement matrix X satisfying RIP of order s and for u P R|S2| we have

||XT
S1

XS2u||2 ď ζ|S1|`|S2|||u||2

Lemma 18. Let S Ď Ω be the support of β˚ (our ground truth model parameter). If ζs ă 1; s “ |S| then we
can show for the measurement matrix X satisfying RIP with order s and for any w P Rn.

||XT
S w||2 ď

a

1 ` ζs||w||2

C Useful Results for Privacy Analysis

Proof of Lemma 4 Consider two neighboring input-output pairs X, y and X
1

, y
1 such that the pairs differ

in a single sample at row k. We approach this proof by first considering the sensitivity of the jth column
(Xj) and then computing the combined sensitivity of the p columns.

∆2pXjyjq “ max
kPrns

||pX
1

jqT y
1

´ XT
j y||2

ď 2 max
kPrns

||Xjkyk||2

ď 2 max
kPrns

Xjkyj ď XM yM

Ñ ∆2pXT yq ď 2?
pXM yM “ Op

?
pq

Similarly, let us consider the sensitivity of XT XSA ,

∆2pXT Xjq “ max
kPrns

||pX
1

qT X
1

i ´ XT Xi||2

ď 2 max
kPrns

p||rXlkXjkslPrps||2q

ď 2?
pX2

M

Ñ ∆2pXT XSA q ď 2X2
M

?
ps “ Op

?
psq
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D Useful Results for optimality of SPriFed-OMP

Lemma 19. Consider the term M “ rI ` NA´1s´1v where N :“
ηβSA,SA

n , A :“ p
XT

SA
XSA

n q´1, v is any
conformable vector and n is the sample size. The remaining terms have been borrowed from Algorithm 3.
Note that each element in ηβSA,SA

has a distribution of N p0, p{µ2
pq. We show that

||M ||2 ď κM ||v||2; κM “
1

1 `
εη

?
sκs

np1´ζs`1q

Here, εη is chosen as per the lower bound of the smallest singular value of the random matrix XSA (by
Theorem 1.2 from Rudelson & Vershynin (2008)), n “

?
psκn from assumptions in Theorem 7 and so we

have that each row in
ηβSA,SA

n has the distribution „ 1
pn{

?
sκsq

N p0, 1q.

Proof:

||M ||2 “ ||rI ` NA´1s´1v||2

p1q

ď
||v||2

σminrI ` NA´1s

p2q
“

||v||2

1 ` σminrNA´1s

p3q

ď
||v||2

1 ` σminrN sσminrA´1s

p4q

ď
||v||2

1 `
sεηκs

n
?

s
p1{σmaxrAsq

p5q

ď
||v||2

1 `
?

sεηκs

np1`ζs`1q

Here (1) follows from Lemma 30 and since σmaxrK´1s “ 1
σminrKs

. (2) is true since ||kI ` K||2 “ k ` ||K||2
where I is the identity matrix and K is some conformable matrix. Furthermore, with high probability, the
minimum eigenvalue of the random Gaussian matrix is lower bounded by a positive value. This statement is
true by Theorem 1.2 from Rudelson & Vershynin (2008) since here each row of ηβSA,SA

has the distribution
„ sκsN p0, Isq. Thus the random Gaussian matrix is positive definite w.h.p. Therefore, we have statement (3)
since σminrABs ě σminrAs ¨ σminrBs where A, B are conformable Hermitian matrices. (4) holds subsequently
from Theorem 1.2 from Rudelson & Vershynin (2008) by considering the random matrix n ¨ N with entries
from the distribution sκsN p0, Is2 q. (5) is based on the bounds of the eigenvalues of a RIP matrix K with
RIC ζs`1 and order s ` 1.
Lemma 20. Consider the term M2 “ I´pI`NA´1q´1NA´1. We show that ||M2||2 is upper bounded by κM2

where N “
ηβSA,SA

n and A “
XT

SA
XSA

n (as terms represented in Algorithm 3). Here, κM2 “ 1 ´
κM1 εη

?
sκs

p1`ζs`1qn

and κM1 “
||v||2

1`
C1s3{2κs

np1´ζs`1q

“ κM1 ||v||2. Furthermore, ||M1|| “ ||pI ` NA´1qv||2 is upper bounded by κM1 . Here,

εη, C1 depend (polynomially) on the sub-Gaussian moment bounds of N p0, 1q (Rudelson & Vershynin, 2008).

Proof:

||M2||2 “ ||I ´ pI ` NA´1q´1NA´1||2

p1q
“ 1 ´ ||pI ` NA´1q´1NA´1||2

p2q

ď 1 ´ κM1 ||NA´1||2

p3q

ď 1 ´
κM1εηsκs

n
?

s
||A´1||2
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p4q

ď 1 ´
κM1εη

?
sκs

np1 ` ζs`1q

Here statement (1) follows by ||kI ´ K||2 “ k ´ ||K||2 where I is the identity matrix and K is a conformable
matrix. (2) is based on identifying a lower bound for M1 (below). (3) employs theorem 1.2 from Rudelson
& Vershynin (2008) where the rows in n ¨ N have distribution of sκsN p0, Isq. (4) uses the bound on the
eigen-values of the RIP matrix A. To compute the lower bound for ||N || we consider some conformable vector
v,

||M1||2 “ ||pI ` NA´1q´1v||2

p1q

ě σminppI ` NA´1q´1q||v||2

p2q

ě
||v||2

σmaxpI ` NA´1q

p3q
“

||v||2

1 ` σmaxpNA´1q

p4q

ě
||v||2

1 ` σmaxpNqσmaxpA´1qq

p5q

ě
||v||2

1 `
C1

?
ssκs

pnqp1´ζs`1q

p6q
“

||v||2

1 ` C1s3{2κs

np1´ζs`1q

“ κM1 ||v||2

(1)-(4) follow from simple matrix manipulations, (5) is based on Theorem 2.4 from (Rudelson & Vershynin,
2008) for matrix n ¨ N with values distributed as sκsN p0, 1q and (6) is based on bounds on eigenvalues of
matrix A´1.

Lemma 21. We show that the terms 2-norm of the terms L1 “
XT

SA
pXSc

A
αc

S˚
`ϵq

n and L2 “
XT

SA
y

n required in
our analysis are upper-bounded as expressed below. Essentially, L1 considers the value of y after multiplying
it by the projection matrix that removes certain columns of XSA (due to orthogonality between these columns
and the projection matrix).

||L1||2 ď ζs`1||αc
S˚

||2 `
a

1 ` ζs`1κϵ

||L2||2 ď
a

1 ` ζs`1 ¨

´

||αS˚
||2 `

a

1 ` ζs`1κϵ

¯

Proof: Consider the analysis for L1,

||L1||2 “ ||
XT

SA
pXSc

A
αc

S˚
` ϵq

n
||2

p1q

ď ||
XT

SA
XSc

A
αc

S˚

n
||2 ` ||

XT
SA

e

n
||2

p2q

ď pζs`1q||αc
S˚

||2 `
a

1 ` ζs`1κϵ

(1) follows by the triangle inequality and the RIP definition for matrices XT
SA

{
?

n, XS˚
{
?

n respectively. By
the L2-L8 inequality we further have ||x||2 ď

?
d||x||8 where x P Rd. Clearly, with Lemma 36 we then have

||e||2 ď
?

nκϵ w.h.p.. where κϵ “ σϵ

a

2 log 2{p0 where ei „ N p0, σ2
ϵ q and p0 is determined by our probability

requirements. Now, for L2,

||L2||2 “ ||
XT

SA
y

n
||2
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“ ||
XT

SA
pXS˚

αS˚
` ϵq

n
||2

p1q

ď ||
XT

SA
XS˚

αS˚

n
`

XT
SA

e

n
||2

p2q

ď p1 ` ζs`1q||αS˚
||2 `

a

1 ` ζs`1κϵ

(1) follows since y “ XS˚
αS˚

` ϵ. (2) follows by RIP definition and Lemma 18 for the first term and
Lemmas 36,18 for the error term.

D.1 Bounding the noise terms in SPriFed-OMP

Lemma 22. [Bound small inverse term] We show that for a small value 0 ă t ă 1, 1
1´t ď 1 ` νt if

ν “ 1
1´Bt

where Bt is an upper bound of t. Furthermore, ν P p1, 2q.

Proof: Suppose, we assume that 1
1´t ď 1 ` νt holds. Then, we can write the inequality simply,

0 ď pν ´ 1qt ´ νt2

Ñ t ď
ν ´ 1

ν

Setting, Bt “ ν´1
ν , we obtain ν “ 1

1´Bt
. We note, that for the second statement to hold, we require that

ν ´ 1 ą 0 and for ν ě 2 the statement holds trivially.

D.1.1 Note on the difference between the basis columns and the non-basis columns

We present the analysis for noise terms when only a single feature j is picked each time (Lemmas 23-27).
However, we note that the same result holds when we pick the set Sc

A instead of j alone. This is true since
the total cardinality of the first matrix (either for the noise or signal matrix) is less than s ` 1. Therefore,
results from RIP and other singular value bounds apply to this case as well. This is particularly important
for true basis columns. However, for the non-basis columns, this is not useful as the total cardinality of the
non-basis set and the SPriFed-OMP selected feature set will easily exceed s (closer to p).
Lemma 23. The noise terms

||ηj
1|| “ ||XT

j XSA pXT
SA

XSA q´1

¨ rI`ηβSA,SA
pXT

SA
XSA q´1s´1; j P S˚

||pηj
1q

1

|| “ ||XT
j XSA pXT

SA
XSA q´1

¨ rI`ηβSA,SA
pXT

SA
XSA q´1s´1; j R S˚

(Theorem 7) are upper-bounded such that,

||pηj
1q

1

||2 ď s2ζs`1κs

d

2 logp
s2

pb
qp1 ` νζs`1q2κM

¨ p
a

1 ` ζs`1||αS˚
||2 ` κϵq

||ηj
1||2 ď s2κs

d

2 logp
s2

pb
qp1 ` νζs`1q3κM

¨ p
a

1 ` ζs`1||αS˚
||2 ` κϵq

Here, terms are borrowed from Theorem 7, Lemma 19) and pb is base failure probability defined in Lemma 36.

Proof: We provide the proof for the ||pηj
1q

1

||2 term. However, proving the inequality for the ||ηj
1||2 is

straightforward.

||pηj
1q

1

||2 “ ||XT
j XSA pXT

SA
XSA q´1rI ` ηβSA,SA

pXT
SA

XSA q´1s´1
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¨ ηβSA,SA
pXT

SA
XSA q´1XT

SA
y||2

“ n||
XT

Sc
A

XSA

n
p
XT

SA
XSA

n
q´1

¨ rI `
ηβSA,SA

n
p
XT

SA
XSA

n
q´1s´1

¨
ηβSA,SA

n
p
XT

SA
XSA

n
q´1 XT

SA
y

n
||2

p1q

ď n
ζs`1

p1 ´ ζs`1q2 ||M ||2||
ηβSA,SA

n
||2L1

p2q

ď nζs`1||
ηβSA,SA

n
||2p1 ` νζs`1q2κM

¨ p
a

1 ` ζs`1||αS˚
||2 ` κϵq

p3q

ď s2ζs`1κs

d

2 logp
s2

pb
qp1 ` νζs`1q2κM

¨ p
a

1 ` ζs`1||αS˚
||2 ` κϵq

Here, (1) follows from Lemma 17, for matrices XT
j?
n

and XSA?
n

and bounded eigenvalues for ||p
XT

SA
XSA

n q´1||2.
The middle and last terms are handled by Lemmas 20 and 21 respectively. In (2), we replace the bounds for
the terms M, L1 using Lemmas 20 and 21 respectively. We replace the denominator by using the bound in
Lemma 22. Finally, (3) follows from simply noticing that each element in ηβSA,SA

has distribution N p0, s2κ2
sq,

L2 ´ L8 inequality and lemma 36. The bound for the noise term holds with probability close to 1 of the
form pb “ 1 ´ k1e´k2 « 1 where k1, k2 are positive constants.
Lemma 24. The noise terms

||ηj
31||2 “ n||

XT
j XSA

n
p
XT

SA
XSA

n
q´1

˜

I ´ rI `
ηβSA,SA

n
p
XT

SA
XSA

n
q´1s´1

¨
ηβSA,SA

n
p
XT

SA
XSA

n
q´1

¸

ηγSA

n
||2; j P S˚

||pηj
31q

1

||2 “ n||
XT

j XSA

n
p
XT

SA
XSA

n
q´1

˜

I ´ rI `
ηβSA,SA

n

¨ p
XT

SA
XSA

n
q´1s´1

¨
ηβSA,SA

n
p
XT

SA
XSA

n
q´1

¸

ηγSA

n
||2; j R S˚

is shown to be upper bounded such that,

||pηj
31q

1

||2 ď sκsζs`1

c

2 logp
2s

pb
qp1 ` νζs`1qκM2

||ηj
31||2 ď sκs

c

2 logp
2s

pb
qp1 ` νζs`1q2κM2

The terms follow the notation in Algorithm 3, Theorem 7, Lemmas 22, 20. pb is the base failure probability
defined in Lemma 36.

Proof: We first demonstrate the proof for the case when j R S˚. The proof for the j P S˚ case follows simply
by replacing the first inequality involving the term XT

j XSA .

||pηj
31q

1

||2 “ n||
XT

j XSA

n
p
XT

SA
XSA

n
q´1

˜

I ´ rI `
ηβSA,SA

n
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¨ p
XT

SA
XSA

n
q´1s´1

¨
ηβSA,SA

n
p
XT

SA
XSA

n
q´1

¸

ηγSA

n
||2

p1q

ď
nζs`1

p1 ´ ζs`1q
||M2||2||

ηγSA

n
||2

p2q

ď
npζs`1qκM2

p1 ´ ζs`1q
||

ηγSA

n
||2

p3q

ď

sκs

b

2 logp 2s
pb

qζs`1κM2

p1 ´ ζs`1q

p4q

ď sκsζs`1

c

2 logp
2s

pb
qp1 ` νζs`1qκM2

Here, (1) follows from RIP properties in Lemmas 16-17 (since j R SAq and M2 is defined in Lemma 20.
(2) follows from the bound in Lemma 20. (3) follows from Lemma 36, L2-L8 inequality and the Gaussian
Mechanism for differential privacy. Here, pηγSA

qj „ N p0, κ2
ssq. And κs is defined in Algorithm 3. (4) is a

direct application of Lemma 22.

Lemma 25. The noise terms ||ηj
32||2, ||pηj

32q
1

||2 which both have the form n||
ηβj,SA

n p
XT

SA
XSA

n q´1
´

I ´ rI `

ηβSA,SA
n p

XT
SA

XSA
n q´1s´1 ηβSA,SA

n p
XT

SA
XSA

n q´1
¯

XT
SA

y

n ||2 for sets j P S˚ and j R S˚ respectively are both upper

bounded by ?
psκp

b

2 logp
2p
pb

qκM2

´

a

1 ` ζs`1||αS˚
||2 ` κϵ

¯

p1 ` νζs`1qq. The notation is borrowed from
Algorithm 3 and Theorem 7, Lemmas 22, 20. pb is the base failure probability defined in Lemma 36.

||ηj
32||2 “ n||

ηβj,SA

n
p
XT

SA
XSA

n
q´1

´

I ´ rI `
ηβSA,SA

n

¨ p
XT

SA
XSA

n
q´1s´1

¨
ηβSA,SA

n
p
XT

SA
XSA

n
q´1

¯XT
SA

y

n
||2

p1q

ď n||
ηβj,SA

n
||2

||M2||2||L2||2

1 ´ ζs`1

p2q

ď n||
ηβj,SA

n
||2

κM2

´

a

1 ` ζs`1||αS˚
||2 ` κϵ

¯

1 ´ ζs`1
p3q

ď n||
ηβj,SA

n
||2κM2

´

a

1 ` ζs`1||αS˚
||2 ` κϵ

¯

¨ p1 ` νζs`1qq

p4q

ď n
?

s||
ηβj,SA

n
||8κM2

´

a

1 ` ζs`1||αS˚
||2 ` κϵ

¯

¨ p1 ` νζs`1qq

p5q

ď
?

psκp

c

2 logp
2p

pb
qκM2

´

a

1 ` ζs`1||αS˚
||2 ` κϵ

¯

¨ p1 ` νζs`1qq

Statement (1) follows by substituting for the middle and last term (from Lemmas 20, 21 resp.), separating
the noise vector and bounding the singular values of XT

SA
XSA

n q´1. (2) follows by bounds in Lemmas 20, 21.
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(3) is a direct application of inverting the denominator term with Lemma 22. (4) uses the L2 ´ L8 inequality.
The final statement uses Lemma 36, distribution of the noise matrix and bounds it for the appropriate set
and failure probability as shown in Lemma 36.
Lemma 26. The noise terms ||ηj

33||2, ||pηj
33q

1

||2 over sets j P S˚ and j R S˚ respectively both have the form

n||
ηβj,SA

n
p
XT

SA
XSA

n
q´1

´

I ´ rI `
ηβSA,SA

n
p
XT

SA
XSA

n
q´1s´1

¨
ηβSA,SA

n
p
XT

SA
XSA

n
q´1

¯ηγSA

n
||2

are both upper bounded by 2κM2 p1 ` νζs`1q
sκsκp

κn

b

logp
2p
pb

q logp 2s
pb

q. The notation follows from Algorithm 3
and Theorem 7, Lemmas 22, 20. pb is the base failure probability defined in Lemma 36.

||ηj
33||2 “ n||

ηβj,SA

n
p
XT

SA
XSA

n
q´1

´

I ´ rI `
ηβSA,SA

n
p
XT

SA
XSA

n
q´1s´1

¯

¨
ηβSA,SA

n
p
XT

SA
XSA

n
q´1

¯ηγSA

n
||2

p1q

ď n
||M2||2

1 ´ ζs`1
||

ηβj,SA

n
||2||

ηγSA

n
||2

p2q

ď nκM2 p1 ` νζs`1q
?

s||
ηβj,SA

n
||8

?
s||

ηγSA

n
||8

p3q

ď κM2 p1 ` νζs`1q

?
pss

n
κsκp2

c

logp
2p

pb
q logp

2s

pb
q

p4q
“ 2κM2 p1 ` νζs`1q

sκsκp

κn

c

logp
2p

pb
q logp

2s

pb
q

Statement (1) follows from bounding the eigenvalues of XT
SA

XSAnq´1, substituting the value of the middle
term as M2 (from Lemma 20) and separating the noise 2-norms. (2) leverages the L2 ´ L8 inequality for
the noise 2-norms, bounds M2 with Lemma 20 and inverts the denominator with the simple Lemma 22.
(3) follows from noting the variances of the noise matrices as being proportional to p and s and using the
maximum concentration bound (Lemma 36) to pick an appropriate value. κs and κp are picked by the privacy
mechanism in Algorithm 3. Depending on the set we are maximizing over for j we can pick d “ s (basis
columns) or d “ p ´ s (non-basis columns). pb is some appropriate base probability that is generally quite
small. (4) follows by substituting n “

?
psκn.

Lemma 27. The noise term ||
ηj

2
n ||2 “ ||

pη
γ

´
0

qj

n ||2 is upper bounded by
b

2 logp
2p
pb

qκp
?

sκn
. Given, j P T, d “ |T | and

pb is some base probability that is quite small.

Proof:

||
ηj

2
n

||2 “ ||
pηγ´

0
qj

n
||2 ď

?
p

n
κp

c

2 logp
2p

pb
q “

b

2 logp
2p
pb

qκp
?

sκn

where the last inequality holds because of Lemma 36 and since pηγ´
0

qj „ N p0, κ2
ppq where κp is picked by the

privacy mechanism in Algorithm 3.

E Proof of Main Theorem 7

We will use induction to prove our main result as noted in section 6.

Step 1: We show that we pick the correct basis in step 1 with high probability (w.h.p.). Here, the correct
basis implies that we choose the column index belonging to S˚. First step from Algorithm 3 is written as
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j Ð argmaxjPΩ|pγ´
0 qj |. Our strategy is to find the maximum correlation’s lower and upper bound under the

assumptions j P S˚ and j R S˚, respectively. Denote these correlations C and C
1 respectively and let their

lower bound and upper bound be C˚ and C
1

˚ respectively. If C
1

˚ ă C˚ then the correct basis (from S˚) is
chosen at each step. This statement is true since C

1

˚ ă C˚ implies that the upper bound of the maximum
correlation of non-support columns is smaller than the lower bound of the maximum correlation support
columns. Thus, we first attempt to find the values C˚, C

1

˚ so as to equate the inequality above.

Thus, the lower bound of the maximum correlation of support columns is given by,

C “ max
jPS˚

|pγ´
0 qj |

“ max
jPS˚

|XT
j y ` η

pγ´
0 qj

|

ě
||XT

S˚
y ` η

pγ´
0 qj

||2
?

s
(by L2, L8 ineq.)

ě
||XT

S˚
y||2

?
s

´ max
jPS˚

|η
pγ´

0 qj
| (by reverse triangle inequality)

Suppose events E1, E2, ..., Es each occur w.p. p1 ´ paq. Event Ek, k P rss indicates that |η
pγ´

0 qk
| ď Ba for

some Ba ą 0. This could be rewritten as PrrEks “ Prr|η
pγ´

0 qk
| ď Bas “ 1 ´ pa. Invoking Lemma 32 and

since |η
pγ´

0 qk
| „ N p0, σ2

0q we can write pa fi 2e
´

Ba
2σ2

0 Ñ Ba “ σ0

b

2logp 2
pa

q “

b

2logp 2
pa

q
κp

ϵstep

?
p “ κa ¨

?
p

where κa “

b

2logp 2
pa

q
κp

ϵstep
. To bound the maximum of the noise terms, we require that all events Ek, k P rss

hold simultaneously. By the union bound (Lemma 33), PrrmaxkPS˚
|η

pγ´
0 qk

| ą Bas “ PrrYkPS˚
Ec

ks ď
ř

kPS˚

PrrEc
ks “ s ¨ pa. Therefore, PrrmaxkPS˚

|η
pγ´

0 qk
| ď Bas ě 1 ´ s ¨ pa. And so w.p. 1 ´ s ¨ pa we can say

that,

C ě
||XT

S˚
y||2

?
s

´ κa
?

p

“
||XT

S˚
XS˚

αS˚
` XT

S˚
e||2

?
s

´ κa
?

p

p1q

ě
||XT

S˚
XS˚

αS˚
||

?
s

´
||XT

S˚
e||2

?
s

´ κa
?

p

“
n||

XT
S˚

XS˚

n αS˚
||

?
s

´
||XT

S˚
e||2

?
s

´ κa
?

p

(1) follows by the reverse-triangle inequality. We know that by construction X{
?

n has isotropic, sub-gaussian,
independent rows and thus satisfies RIP of order s ` 1 (14). Thus, by Lemma 16,

C ě
np1 ´ ζs`1q||αS˚

||2
?

s
´

?
n

||
XT

S˚?
n

e||2
?

s
´ κa

?
p

From Lemma 18 and since X?
n

satisfies and RIP of order s ` 1 we observe that, ||
XT

S˚?
n

e||2 ď
a

1 ` ζs`1||e||2 ď
a

p1 ` ζs`1qn||e||8. Combining these two results, we have,

C ě
np1 ´ ζs`1q||αS˚

||2
?

s
´

n
a

p1 ` ζs`1q||e||8
?

s
´ κa

?
p

Consider the events B1, B2, ..., Bn s.t. PrrBis “ Prr|ei| ď Bbs ě p1 ´ peq, i P rns (for some probability
pe P r0, 1s. Comparing the expression with Lemma 32 and noting that e „ N p0, σ2

ϵ q we observe that
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Be “ σϵ

b

2logp 2
pe

q “ κϵ. We bound the probability of event B with the union bound s.t., PrrBs “

PrrmaxiPrns |ei| ď Bes. Therefore, PrrBcs ď
ř

iPrns PrrBc
i s ď n ¨ pe. Thus, PrrBs ě 1 ´ npe. Thus, w.p.

1 ´ npe event B occurs and thus,

C ě
np1 ´ ζs`1q||αS˚

||2
?

s
´ nκϵ

a

p1 ` ζs`1q
?

s
´ κa

?
p “ C˚

Next, we identify the expression for C
1

˚. For any j R S˚ let us upper bound |pγ´
0 qj |,

C
1

“ max
jRS˚

|pγ´
0 qj |

“ max
jRS˚

|XT
j y ` η

pγ´
0 qj

|

“ max
jRS˚

|XT
j XS˚

αS˚
` XT

j e ` η
pγ´

0 qj
|

p1q

ď ||XT
j XS˚

αS˚
||2 ` ||XT

j e||2 ` max
jRS˚

|η
pγ´

0 qj
|

ď n||
XT

j XS˚

n
αS˚

||2 `
?

n||
XT

j
?

n
e||2 ` max

jRS˚

|ηpγ
´
0 qj |

(1) follows by the L2-L8 inequality. Considering event B again, we have that PrrBs “ PrrmaxiPrns |ei| ď Bes

and B occurs w.p. 1 ´ npe.

Further, consider events Ck, k R S˚s.t., PrrCks “ Prr|ηpγ
´
0 qk| ď Bcs ě p1 ´ pcq. To bound the maximum

of the noise terms, we need all Ck, k P rp ´ ss events to hold. By Lemma 33, PrrmaxkRS˚
|η

pγ´
0 qk

| ą Bcs “

PrrYkPS˚
Cc

ks ď
ř

kPS˚

PrrCc
ks “ pp ´ sq ¨ pc. Therefore, PrrmaxkRS˚

|η
pγ´

0 qk
| ď Bcs ě 1 ´ pp ´ sq ¨ pc. By

Lemma 32, Bc “ σ0

b

2logp 2
pc

q “

b

2logp 2
pc

q
κp

ϵstep

?
p “ κc ¨

?
p.

Combined with the RIP Lemmas 16, 18 for any j R S˚, we get the upper bound,

C
1

ď nζs`1||αS˚
||2 ` n

a

1 ` ζs`1κϵ ` κc
?

p “ C
1

˚

Note that by the union bound (Lemma 33), events A, B, C hold w.p. at least 1 ´ spa ´ 2npe ´ pp ´ sqpc. Let
pa fi

p0
4s , pe fi

p0
4n , pc fi

p0
4pp´sq

.

With probability 1 ´ p0 the bounds, C˚, C
1

˚ hold. Let us identify the conditions for C
1

˚ ă C˚.

n||αS˚
||2

?
s

ă nζs`1||αS˚
||2p1 `

1
?

s
q

` n
a

1 ` ζs`1κϵp1 `
1

?
s

q ` pκa ` κcq
?

p

Thus, put together we obtain the following condition on the RIC, ζs`1,

ζs`1 ă
n||αS˚

||2 ´ n
a

1 ` ζs`1κϵp1 `
?

sq ´ pκa ` κcq
?

ps

n||αS˚
||2p

?
s ` 1q

ă
n||αS˚

||2 ´
?

2p1 `
?

sqnκϵ ´ pκa ` κcq
?

ps

n||αS˚
||2p

?
s ` 1q

where the last line follows from the fact that ζs`1 ă 1. Suppose, we can bound
?

2p1`
?

sqnκϵ `pκa `κcq
?

p ď
n||αS˚

||2

2 that would give us ζs`1 ă
n||αS˚

||2

2n||αS˚
||2p

?
s`1q

“ 1
2p

?
s`1q

. It remains to characterize the condition for
?

2p1 `
?

sqnκϵ ` pκa ` κcq
?

p ď
n||αS˚

||2

2 to hold. Thus, we only need,

n ě
2
?

2p1 `
?

sqnκϵ

||αS˚
||2

`
2pκa ` κcq

?
p

||αS˚
||2
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Ñ np1 ´
2

?
2p1 `

?
sqκϵ

||αS˚
||2

q ě
2pκa ` κcq

?
p

||αS˚
||2

Ñ n ě
2pκa ` κcq

||αS˚
||2 ´ 2

?
2p1 `

?
sqκϵ

?
p

Note, κc “

b

2logp
8pp´sq

p0
q

κp

ϵstep
and so n “ Ωp

?
p logppq

||αS˚
||2

q. We also require that ||αS˚
||2 ´ 2

?
2p1 `

?
sqκϵ ą 0

which is generally applicable since κϵ (dependent on σϵ) is generally smaller or comparable to 1.

Step (l+1): By induction, C
1

˚ ă C˚ holds for all steps from 1 to l. We now prove the same for the pl`1qth step.

Case A: Analysis for when chosen column j P Sc
A Let us determine a lower bound for the

correlation for when the column chosen belongs to the true basis,

C “ max
jPS˚

|pγ´
l qj |

“ max
jPS˚

|pγ´
0 ´ βpβSA q´1γSA |

“ max
jPS˚

|pXT
j y ` η

pγ´
0 qj

q

´ pXT
j XSA ` ηβj,SA

qpXT
SA

XSA ` ηβSA,SA
q´1

¨ pXT
SA

y ` ηγSA
q|

We now separate the signal and noise terms in order to analyze them further. Consider the following expression
to relate the true (i.e., non-private) signal- Sj

true, the privatized version of the signal Sj
priv for the jth and

the various noise values (denoted by the η terms) for the jth dimension where j P t1, ..., pu.

Sj
priv fi pXT

j y ` η
pγ´

0 qj
q

´ pXT
j XSA ` ηβj,SA

qpXT
SA

XSA ` ηβSA,SA
q´1

¨ pXT
SA

y ` ηγSA
q

“ XT
j y ´ XT

j XSA pXT
SA

XSA ` ηβSA,SA
q´1XT

SA
y

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

Sj
noisy

´ pXT
j XSA qpXT

SA
XSA ` ηβSA,SA

q´1pηγSA
q

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

ηj
31

´ pηβj,SA
qpXT

SA
XSA ` ηβSA,SA

q´1pXT
SA

yq
looooooooooooooooooooooooomooooooooooooooooooooooooon

ηj
32

´ pηβj,SA
qpXT

SA
XSA ` ηβSA,SA

q´1pηγSA
q

looooooooooooooooooooooooomooooooooooooooooooooooooon

` η
pγ´

0 qj
loomoon

ηj
2

We apply the Woodbury Identity-Kailath Variant (Eqn.31) to each expression marked by an asterisk to
obtain the following simplifications,

Sj
noisy

˚
“ XT

j y ´ XT
j XSA pXT

SA
XSA q´1XT

SA
y

loooooooooooooooooooooomoooooooooooooooooooooon

Sj
true

´ XT
j XSA pXT

SA
XSA q´1M1ηβSA,SA

pXT
SA

XSA q´1XT
SA

y
loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

ηj
1
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ηj
31

˚
“ XT

j XSA pXT
SA

XSA q´1M2ηγSA

ηj
32

˚
“ ηβj,SA

pXT
SA

XSA q´1M2L2

ηj
33

˚
“ ηβj,SA

pXT
SA

XSA q´1M2ηγSA

Here, M1 “ rI ` ηβSA,SA
pXT

SA
XSA q´1s´1, M2 “

´

I ´ rI ` ηβSA,SA
pXT

SA
XSA q´1s´1 ¨ ηβSA,SA

pXT
SA

XSA q´1
¯

and L2 “ XT
SA

y.

We look at the correlation values for the true support columns and non-support columns. Let us suppose the
lower bound and upper bound for C, C

1 (defined below) are C˚ and C
1

˚ respectively. We wish to identify the
expressions for C˚, C

1

˚ and compare their values C
1

˚ ă C˚ so that we always pick the column from the true
basis (steps follows similarly to Step 1). For j P S˚ we have,

Cj “ |Sj
true ` ηj

1 ` ηj
2 ` ηj

31 ` ηj
32 ` ηj

33|

ě
1

?
s

||Strue||2 ´ ||η1||8 ´ ||η2||8

´ ||η31||8 ´ ||η32||8 ´ ||η33||8

Similarly, when j R S˚ we have,

C
1

j “ |pS
1

trueqj ` pηj
1q

1

` pηj
2q

1

` pηj
31q

1

` pηj
32q

1

` pηj
33q

1

|

ď ||pS
1

trueqj ||2

` ||pη
1

1qj ||2 ` ||pη
1

2qj ||2 ` ||pη
1

31qj ||2 ` ||pη
1

32qj ||2 ` ||pη
1

33qj ||2

where we leverage the L2-L8 inequality, the triangle inequality, and the fact that each term Sj
true, ηj

1, ηj
2, ηj

3
is 1-dimensional and thus their L2, L8 norms are the same.

We now bound the signal values,

||Strue||2 “ ||XT
Sc

A
rI ´ PSsy||2

“ ||XT
Sc

A
rI ´ PSspXS˚

αS˚
` ϵq||2

p1q
“ ||XT

Sc
A

pXSc
A

αSc
A

` ϵq||2

“ n||
XT

Sc
A

pXT
Sc

A
αSc

A
` ϵq

n

´
XT

Sc
A

XSA

n
p
XT

SA
XSA

n
q´1 XT

SA
pXSc

A
αSc

A
` ϵq

n
||2

p2q

ě n
´

||
XT

Sc
A

XSc
A

αSc
A

n
||2 ´ ||

XT
Sc

A
e

n
||2

´ ||
XT

Sc
A

XSA

n
p
XT

SA
XSA

n
q´1 XT

SA
rXSc

A
αSc

A
` ϵs

n
||2

¯

p3q

ě np1 ´ ζs`1q||αSc
A

||2 ´ n
a

1 ` ζs`1κϵ ´
nζs`1

1 ´ ζs`1
||L1||2

p4q

ě np1 ´ ζs`1q||αSc
A

||2 ´ n
a

1 ` ζs`1κϵ

´
nζs`1

p1 ´ ζs`1q
rζs`1||αSc

A
||2 `

a

1 ` ζs`1κϵs

p5q

ě np1 ´ ζs`1q||αSc
A

||2 ´ n
a

1 ` νζs`1κϵ

´ nζs`1p1 ` νζs`1qrζs`1||αSc
A

||2 `
a

1 ` νζs`1κϵs

We observe (1) since the projection matrix nullifies the impact of the columns already picked by OMP. (2)
follows from the reverse triangle inequality and by definition of y. (3) follows from Lemma 18 and 36 for the
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first and second terms and Lemma 17, eigen-value bounds for the third term. (4) follows from Lemma 21.
(5) follows by Lemma 22.

Case B: Analysis for when chosen column j P Sc
˚ Let us determine an upper bound for the correlation

when the column chosen does not belong to the true basis. These columns are also referred to as non-basis
columns. For the non-basis columns, we consider a single column each time. By definition, the non-basis
columns are separate and thus disjoint from the true basis set, and thus XSc

˚
is independent of XS˚

. Consider
any j P Sc

˚;

|Sj
1

true| “ ||XT
j rI ´ PSspXS˚

αS˚
` ϵq||2

p1q

ď n||
XT

j XSc
A

αSc
A

n
||2 ` n||

XT
j e

n
||2

` n||
XT

j XSA

n
p
XT

SA
XSA

n
q´1 XT

SA
rXSc

A
αSc

A
` ϵs

n
||2

p2q

ď nζs`1||αSc
A

||2 ` n
a

1 ` ζs`1κϵ

`
nζs`1

1 ´ ζs`1
rζs`1||αSc

A
|| `

a

1 ` ζs`1κϵs

p3q

ď nζs`1||αSc
A

||2 ` n
a

1 ` νζs`1κϵ

` nζs`1p1 ` νζs`1qrζs`1||αSc
A

|| `
a

1 ` νζs`1κϵs

(1) follows from the triangle inequality and since a 1-dimensional value a has ||a||8 “ ||a||2. We have reduced
columns in (1) for the measurement matrix due to the projection matrix I ´ PS . (2) follows steps identical to
||Strue||2 except for the first term. The first term uses the approximate orthogonality property (Lemma 17)
due to the Restricted Isometry. By the union bound over all j R S˚ we can conclude that the ||Sj

1

true||8

is upper bounded. (3) holds due to Lemma 22. We bound the remaining noise terms in the Appendix
section D.1.

A note about the probabilistic concentration bounds: We re-use common concentration bounds for
bounding the values of maximal noise contributions across matrices and vectors. Since keeping track of such
values is non-trivial we note that, the number of dimensions p and the stopping point s of our algorithm are
both finite. Thus, given that we have several highly probable bounds with the form 1 ´ k1ek2 where both
k1, k2 are positive numbers. Thus, the overall probability bound for our result will hold with a similar form
as well mainly because our iterations are finite and small (s)

Combination of Case A and Case B: Therefore, now, we can begin combining the two bounds for this
induction. Or more appropriately we compare the lower bound and upper bounds of the correlations for the
columns picked from the true basis and the non-basis sets respectively. We have C

1

˚ ă C˚. By combining the
maximum values for any columns we can compare maxjRS˚

C
1

j ă maxjPS˚
Cj and substituting these terms

we obtain,

1
?

s
||Strue||2

ě||S
1

true||2 `

´

||ηj
1||2 ` ||pηj

1q
1

||2

¯

`

´

||ηj
2||2 ` ||pηj

2q
1

||2

¯

`

´

||ηj
31||2 ` ||pηj

31q
1

||2

¯

`

´

||ηj
32||2 ` ||pηj

32q
1

||2

¯

`

´

||ηj
33||2 ` ||pηj

33q
1

||2

¯

We simplify by substituting the noise bounds derived in previous Lemmas 23, 27, 24, 25, 26 as well as the
signal norms ||Strue||2 and ||S

1

true||2.
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n||αc
SA

||2 ě np
?

s ` 1qζs`1||αc
SA

||2

` np
?

s ` 1q
a

1 ` νζs`1κϵ

` np
?

s ` 1qζ2
s`1p1 ` νζs`1q||αc

SA
||2

` np
?

s ` 1qζs`1p1 ` νζs`1q3{2κϵ

` s5{2κ1p1 ` νζs`1q5{2p1 ` pν ` 1qζs`1q||αc
SA

||2

` s5{2κ1p1 ` νζs`1q2p1 ` pν ` 1qζs`1qκϵ

` s3{2κ31p1 ` νζs`1qp1 ` pν ` 1qζs`1q

` 2?
psκ32p1 ` νζs`1q3{2||αc

SA
||2

` 2?
psκ32p1 ` νζs`1qκϵ

` 4
?

ps2

n
κ33p1 ` νζs`1q

` 2
?

ps

n
κ2

where,

κ1 “ κsκM2

d

2 logp
2s2

pb
q

κ31 “ κsκM2

c

2 logp
2s

pb
q,

κ32 “ κpκM2

d

2 logp
2pp ´ sq

pb
q,

κ33 “
2κM2sκsκp

κn

d

2 logp
2s

pb
q logp

2pp ´ sq

pb
,

κ2 “ κp

d

2 logp
2pp ´ sq

pb
q

and pb is the failure probability used in the Lemma 36.

To identify bounds on the various terms in our system model, we allocate the left-hand side budget of
n||αc

SA
||2{2 appropriately. Therefore, we obtain, the bound on n,

n||αc
SA

||2

2 ě 2?
psκ32p1 ` νζs`1q3{2||αc

SA
||2

Ñn ě 4?
psκ32p1 ` νζs`1q3{2 “ Op

?
pq (3)

Similarly, we can obtain a bound on the RIC, ζs`1, by allocating the budget of n||αc
SA

||2{4

n||αc
SA

||2

4 ě np
?

s ` 1qζs`1||αc
SA

||2

Ñζs`1 ď
1

4p
?

s ` 1q
(4)

Now, the κε terms can be combined such that,

κε

´

2?
psκ32p1 ` νζs`1q ` np

?
s ` 1qp1 ` νζs`1q
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` np
?

s ` 1qζs`1p1 ` νζs`1q3{2

` s5{2κ1p1 ` νζs`1q2p1 ` pν ` 1qζs`1q

¯

ďκϵ

´ n

2
a

1 ` νζs`1
` np

?
s ` 1qp1 ` νζs`1q

`
np1 ` νζs`1q3{2

8
` s5{2κ1p1 ` νζs`1q2p1 ` pν ` 1qζs`1q

¯

Here, these inequalities arise from the first two bounds on ?
p and the RIC ζs`1 (Eqns. 3 and 4). Clearly, the

dominating term should be np
?

s ` 1qp1 ` νζs`1q as long as,

s5{2κ1p1 ` νζs`1qp1 ` pν ` 1qζs`1q ď np
?

s ` 1q

Ñn ě
s5{2κ1p1 ` νζs`1qp1 ` pν ` 1qζs`1q

?
s ` 1 (5)

Thus, the κϵ bound can be obtained by assuming that,

4κϵnp
?

s ` 1qp1 ` νζs`1q ď
1
16n||αc

SA
||2

Ñκϵ ď
||αc

SA
||2

16p
?

s ` 1qp1 ` νζs`1q
(6)

From the remaining terms which are independent of both p and n, we pick the dominant term to obtain
another bound on n in terms of s,

2s5{2κ1p1 ` νζs`1q5{2p1 ` pν ` 1qζs`1q||αc
SA

||2 ď
n||αc

SA
||2

8
Ñn ě 16s5{2κ1p1 ` νζs`1q5{2p1 ` pν ` 1qζs`1q (7)

We can see that the remaining terms are extremely small and can be easily bounded by the remaining budget.

F Proof of Main Theorem 8

Before proving the convergence result in Theorem 8, we will include some additional results required by
our analysis. First, we calculate the upper bound on the l2 differential privacy sensitivity of the maximum
absolute correlation in Lemma 28.
Lemma 28. Consider a design matrix X P Rnˆp satisfying RIP of order s ` 1 and with RIC ζs`1. Now
given the correlation/gradient Cj (as computed in Line 4 of algorithm 4) for any j P rps, we show that the L2
sensitivity of Cj is upper bounded by the following values,

∆2pCjq ď 1 ` 2XM κε ` 2
?

sX2
M p

∥pα˚qSc
A

∥8

1 ´ ζs`1
`

a

1 ` ζs`1κε

1 ´ ζs`1
q fi BC

where α˚ is the underlying ground-truth model, κε “
a

2 logp2n{pbqσε and σε is the additive system error’s

standard deviation. We also need to assume that ζs`1 ă 1?
s

and n ą
6s2C1X5

M yM

?
2 logp2s{pbq

µ2
sp1´ζs`1q2 . Here, the result

holds with probability 1 ´ 3pb.

Proof. Consider arbitrary adjacent datasets X, X
1

P Rnˆp such that they differ in only their kth record/row.
At any iteration of Line 4 in Algorithm 4, the set SA of basis identified until now has been fixed. Furthermore,
we note that the private model received from the server before the current iteration is also fixed. Denote this
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model by α`ηα where α is based on the currently predicted feature set SA and ηα denotes the privacy-related
noise added to the model using the NOISY-SMPC algorithm (Algorithm 1). Note, here we refer to the model
as fixed due to the differential privacy post-processing wherein the model has already been privatized, and
thus, future processing will not affect its privacy. In comparison with standardized private methods, we could
consider this equivalent to using the same private model while computing gradient sensitivity in DP-SGD
under FL constraints. Thus, the l2 sensitivity of the correlation of the jth column (denoted as Cj) can be
computed as such,

∆2pCjq “ max
kPrns

∥XT
j y ´ pX

1

qT
j y

1

` XT
j XSA pα ` ηαq ´ pX

1

qT
j X

1

SA
pα ` ηαq∥2

“ max
kPrns

∥XT
j pXS˚

α˚ ` ε ´ XSAαSA q ´ ppX
1

qT
j pX

1

S˚
α˚ ` ε ´ X

1

SA
αSA qq∥ ` ∥∆Aηα∥

“ max
kPrns

∥pXjk ´ X
1

jkqεk∥ ` ∥pXT
j XSA ´ pX

1

qT
j X

1

SA
qppα˚qSA ´ αq∥

` ∥pXT
j XSc

A
´ pX

1

qT
j X

1

Sc
A

qpα˚qSc
A

∥ ` ∥∆Aηα∥

ď 2XM κε `
`

∥∆Acpα˚qSc
A

∥ ` ∥∆Appα˚qSA ´ αq∥
˘

` ∥∆Aηα∥

Here, A “ XT
j XSA , ∆A “ ´XjkXSA,k ` X

1

jkX
1

SA,k, ∆Ac “ ´XjkXSc
A,k ` X

1

jkX
1

Sc
A,k α “ pXT

SA
XSA q´1XT

SA
y

and κε “
a

2 logp2n{pbqσε where pb is a small positive probability. We also see that

∥∆Aα∥2 “ ∥XjkXSA,k ` X
1

jkX
1

SA,kqα∥

ď XM p∥XSA,kα∥2 ` ∥X
1

SA,kα∥2q

ď
?

sXM p∥XSA,kα∥8 ` ∥X
1

SA,kα∥8q

ď 2
?

sX2
M ∥α∥8

Similar results can be derived for other terms in the expression for the correlation bound. Thus, we simplify
the correlation bound such that,

∆2pCjq ď 2XM κε ` 2
?

sX2
M p∥pα˚qSc

A
∥8 ` ∥ηα∥8 ` ∥pα˚qSA ´ αq∥8q

Now, suppose without loss of generality, suppose α is developed on matrix X and feature set SA then we
have,

α “ pXT
SA

XSA q´1XT
SA

y

“ pXT
SA

XSA q´1XT
SA

pXSA pα˚qSA ` XSc
A

pα˚qSc
A

` εq

“ pα˚qSA ` pXT
SA

XSA q´1XT
SA

pXSc
A

pα˚qSc
A

` εq

Ñ∥α ´ pα˚qSA∥2 ď
ζs`1∥pα˚qSc

A
∥2

1 ´ ζs`1
`

a

1 ` ζs`1κε

1 ´ ζs`1

Here, the final set of inequalities follows from the inequalities (1)-(10) below.

Furthermore, we consider the value of ηα, which denotes the noise added to the model via the NOISY-SMPC
mechanism using noisy correlations. We can compute this exact value using the Kailath (Woodbury Variant)
(Eqn. 31), and the value is defined as follows,

ηα “ pXT
SA

XSA q´1
´

ηγSA
´ ηβSA

pI ` pXT
SA

XSA q´1ηβSA
q´1pXT

SA
XSA q´1pXT

SA
y ` ηγSA

q

¯

We now note the following l2 bounds,

max
kPrns

∥∆A∥2
p1q

ď 2
?

sX2
M

max
kPrns

∥XT
j y ´ pX

1

qT
j y

1

∥
p2q

ď 2XM yM
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∥
XT

SA
y

n
∥

p3q

ď
?

sXM yM

∥α∥ “ ∥pXT
SA

XSA q´1XT
SA

y∥ “ ∥pXT
SA

XSA q´1XT
SA

pXS˚
α˚ ` εq∥

p4q

ď
1 ` ζs`1

1 ´ ζs`1
∥α˚∥ `

a

1 ` ζs`1

1 ´ ζs`1
κε

fi κα

∥p
XT

SA
XSA

n
q´1∥

p5q

ď
1

1 ´ ζs`1

∥ηγSA
∥

p6q

ď

a

2s logp2s{pbqXM yM

µs

∥ηβSA
∥

p7q

ď
sC1X2

M

µs

∥pI ` pXT
SA

XSA q´1ηβSA
q´1∥

p8q

ď 1

∥
XT

SA
XSA

n
∥

p9q

ď 1 ` ζs`1

∥XT
P XQ

n
∥

p10q

ď ζs`1

Here, inequalities (1)-(3) follow from the boundedness requirement on elements of X, y. Inequalities (4)-(5)
follows from the RIP condition on X{

?
n matrix. Specifically, in (4), κε “

a

2 logp2n{pbqσε generated from

Lemma 36. Inequality (6) follows from Lemma 36 where elements in ηγSA
have distribution N p0,

?
2s logp2s{pbq

µs
q.

Inequality (7) follows by noting the inequality of largest singular value inequality for a random matrix inequality
from Rudelson & Vershynin (2008) where the elements in ηβSA

are from distribution N p0,
?

s
µs

q. (8) follows
from Lemma 19. (9) follows from the RIP property of X{

?
n. Combining inequalities above, we can find the

bound on ∥ηα∥,

∥ηα∥ ď

a

2s logp2s{pbqXM yM

nµsp1 ´ ζs`1q
`

sC1X2
M

µsp1 ´ ζs`1q2 ¨ p

a

2s logp2s{pbqXM yM

nµs
`

?
sXM yM

n
q

“

a

2s logp2s{pbqXM yM

nµsp1 ´ ζs`1q
`

s3{2C1X3
M yM

nµsp1 ´ ζs`1q2 p

a

2 logp2s{pbq

µs
` 1q

where this bound holds with probability 1 ´ 2pb and pb is a small positive probability. We quickly note that
given the n (sample size) in the denominator, then we can say that ∥∆Aηα∥ ď 1 if n ą

6s2C1X5
M yM

?
2 logp2s{pbq

µ2
sp1´ζs`1q2 .

We now continue finding the upper bound of ∆2pCjq using the inequalities computed above,

∆2pCjq ď 1 ` 2XM κε ` 2
?

sX2
M p∥pα˚qSc

A
∥8 `

ζs`1∥pα˚qSc
A

∥2

1 ´ ζs`1
`

a

1 ` ζs`1κε

1 ´ ζs`1
q

“ 1 ` 2XM κε ` 2
?

sX2
M p

∥pα˚qSc
A

∥8

1 ´ ζs`1
`

a

1 ` ζs`1κε

1 ´ ζs`1
q

“ 1 ` 2XM κε ` 2
?

sX2
M κ

1

α

fi BC

where we assume that ζs`1 ă 1?
s

and κ
1

α “ p
∥pα˚qSc

A
∥8

1´ζs`1
`

?
1`ζs`1κε

1´ζs`1
q.

F.1 Performance of Algorithm 4

Here, similar to main theorem 7, we will demonstrate that Algorithm 4 can recover the correct basis w.h.p.
Again, we will use induction to prove our result. We note from our proof sketch that the first induction step
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for both the current theorem and main theorem 7 are the same (since the correlation and the gradient have
the same value for linear regression model. Thus, we can immediately proceed to prove the induction step.
Before proceeding, we restate the preliminary steps of the induction.

Step 1: Here, we show that in the first step of the algorithm involving picking the feature with the highest
absolute correlation, we will pick the correct feature (i.e., the one from the true basis set). Similar to
Theorem 7, we find a condition on the sample size such that the lower bound of the maximum absolute
correlation of the true feature set is greater than the upper bound of the maximum absolute correlation of
the wrong feature set w.h.p. Thus, we need to find the conditions that ensure C˚ ą C

1

˚ where C˚ and C
1

˚ are
lower and upper bounds of C and C

1 respectively. Here,

C “ max
jPS˚

|XT
j y ` η

pγ´
0 qj

|

C
1

“ max
jRS˚

|XT
j y ` η

pγ´
0 qj

|

and the rest of the notation follows from Algorithms 4 and 3. Note that the proof follows exactly as
Theorem 7’s step 1 and the sample size condition remains the same.

Step (l+1): By induction, C˚ ą C
1

˚ holds for all steps from 1 to l. We will now show that a similar result
holds for the pl ` 1qth step for Algorithm 4.

We first note the private correlation value is,

Cj “ XT
j y ´ XT

j XSA pXT
SA

XSA ` ηβSA,SA
q´1pXT

SA
y ` ηγSA

q ` ηCj

“ XT
j y ´ XT

j XSA

´

pXT
SA

XSA q´1 ´ pXT
SA

XSA q´1pI ` ηβSA,SA
pXT

SA
XSA q´1q´1ηβSA,SA

pXT
SA

XSA q´1
¯

pXT
SA

y ` ηγSA
q

` ηCj

“ XT
j y ´ XT

j XSA pXT
SA

XSA q´1XT
SA

y ´ XT
j XSA pXT

SA
XSA q´1ηγSA

` ηCj

´ XT
j XSA pXT

SA
XSA q´1pI ` ηβSA,SA

pXT
SA

XSA q´1q´1ηβSA,SA
pXT

SA
XSA q´1pXT

SA
y ` ηγSA

q

where ηCj
„ N p0, σ2

Cq, σC “
?

pBC

µp
, BC “ κ

1

α

?
s ` 2XM yM and ηγSA

„ N p0, s
µ2

s
Isq and ηβSA,SA

„

N p0, s
µ2

s
Isq. Note that the first term is the true correlation and can be re-written as XT

j pI ´ P qXT
SA

y where
P “ XSA pXSAXSA q´1XT

SA
is the projection matrix.

Case A: Analysis for when chosen column j P Sc
A (true feature set except for features already

chosen):

First, we will find a lower bound for the maximum correlation/gradient when the features are chosen from
the true set (except for the features already chosen),

∥Cj∥8 ě
1

?
s

∥Cj∥2

p1q

ě
1

?
s

´

∥XT
Sc

A
pI ´ P qy∥2 ´ ∥XT

Sc
A

XSA pXT
SA

XSA q´1ηγSA
∥2 ´ ∥ηCj

∥2

´ ∥XT
Sc

A
XSA pXT

SA
XSA q´1pI ` ηβSA,SA

pXT
SA

XSA q´1qηβSA,SA
pXT

SA
XSA q´1pXT

SA
y ` ηγSA

q∥2

¯

p2q

ě
1

?
s

∥XT
Sc

A
pI ´ P qy∥2 ´

1
?

s
∥XT

Sc
A

XSA pXT
SA

XSA q´1ηγSA
∥2 ´ ∥ηCj

∥8

´
1

?
s

∥XT
Sc

A
XSA pXT

SA
XSA q´1pI ` ηβSA,SA

pXT
SA

XSA q´1q´1ηβSA,SA
pXT

SA
XSA q´1pXT

SA
y ` ηγSA

q∥2

p3q

ě
np1 ´ ζs`1q∥αSc

A
∥2

?
s

´
1

?
s

∥XT
Sc

A
ε∥2 ´

1
?

s
∥XT

Sc
A

XSA pXT
SA

XSA q´1XT
SA

pXSc
A

αSc
A

` εq∥2

´
ζs`1

?
sp1 ´ ζs`1q

∥ηγSA
∥2 ´

?
pBCκp

µp
´

ζs`1
?

sp1 ´ ζs`1q2 ∥ηβSA,SA
pXT

SA
y ` ηγSA

q∥2
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p4q

ě
np1 ´ ζs`1q∥αSc

A
∥2

?
s

´
nζ2

s`1∥αSc
A

∥2
?

sp1 ´ ζs`1q
´

∥XT
Sc

A
ε∥2

?
s

´
ζs`1∥XT

SA
ε∥2

?
sp1 ´ ζs`1q

´
ζs`1

?
sp1 ´ ζs`1q

∥ηγSA
∥2 ´

?
pBCκp

µp
´

ζs`1
?

sp1 ´ ζs`1q2 ∥ηβSA,SA
pXT

SA
y ` ηγSA

q∥2

p5q

ě
np1 ´ ζs`1q∥αSc

A
∥2

?
s

´
nζ2

s`1∥αSc
A

∥2
?

sp1 ´ ζs`1q
´

1
?

s
np

a

1 ` ζs`1qκε

´

1 `
ζs`1

1 ´ ζs`1

¯

´
2XM yM κsζs`1

µsp1 ´ ζs`1q
´

?
pBCκp

µp
´

ζs`1C1
?

sκs

µs

?
sp1 ´ ζs`1q2

´

p1 ` ζs`1q∥αS˚
∥2 ` κε `

2XM yM κs

µs

¯

p6q
“

np1 ´ ζs`1q∥αSc
A

∥2
?

s
´

nζ2
s`1∥αSc

A
∥2

?
sp1 ´ ζs`1q

´
np

a

1 ` ζs`1qκε
?

sp1 ´ ζs`1q

´
2XM yM κsζs`1

µsp1 ´ ζs`1q
´

?
pBCκp

µp
´

ζs`1C1κs

µsp1 ´ ζs`1q2

´

p1 ` ζs`1q∥αS˚
∥2 ` κε `

2XM yM κs

µs

¯

(1) follows by reverse triangle inequality. (2) holds due to the l2-l8 inequality. (3)-(4) follow from the RIP
properties of X{

?
n as described in the inequalities in the proof of Lemma 28 alongside the Lemma 36

where κ
1

p “

b

2 logp
2p
pb

q where pb is a small positive failure probability. (5) follows from Lemma 36 where

κ
1

s “

b

2 logp 2s
pb

q and Theorem 2.4 (upper bound on largest singular value of random matrix) from Rudelson
& Vershynin (2008).

Case B: Analysis for when chosen column j R Sc
˚:

We now compute the upper bound on the correlations of the features not in the true set,

∥Cj∥8 ď ∥Cj∥2

ď ∥XT
j pI ´ P qy∥2 ` ∥XT

j XSA pXT
SA

XSA q´1ηγSA
∥2 ` ∥ηCj

∥2

´ ∥XT
j XSA pXT

SA
XSA q´1pI ` ηβSA,SA

pXT
SA

XSA q´1qηβSA,SA
pXT

SA
XSA q´1pXT

SA
y ` ηγSA

q∥2

¯

p1q

ď ∥XT
j pXSc

AαSc
A

` εq∥2 ` ∥XT
j XSA pXT

SA
XSA q´1XT

SA
pXSc

AαSc
A

` εq∥ `
2

?
sXM yM κsζs`1

µsp1 ´ ζs`1q
`

?
pBCκp

µp

`
ζs`1C1

?
sκs

µsp1 ´ ζs`1q2

´

p1 ` ζs`1q∥αS˚
∥2 ` κε `

2XM yM κs

µs

¯

p2q

ď
nζs`1∥αSc

A
∥2 ` n

a

1 ` ζs`1κε

1 ´ ζs`1
`

2
?

sXM yM κsζs`1

µsp1 ´ ζs`1q
`

?
pBCκp

µp

`
ζs`1C1

?
sκs

µsp1 ´ ζs`1q2

´

p1 ` ζs`1q∥αS˚
∥2 ` κε `

2XM yM κs

µs

¯

(1)-(2) follow the same inequalities as the one developed in case A.

Combining Case A and Case B: We compare the upper bound of Case B with the lower bound of Case
A to find the conditions on the system parameters and mainly the sample size.

n∥αSc
A

∥2 ě nζs`1∥αSc
A

∥2

´

1 `

?
s

1 ´ ζs`1

¯

` p
?

s ` 1q

˜

np
a

1 ` ζs`1qκε

1 ´ ζs`1
`

2
?

sXM yM κsζs`1

µsp1 ´ ζs`1q
`

?
pBCκp

µp

`
ζs`1C1

?
sκs

µsp1 ´ ζs`1q2

´

p1 ` ζs`1q∥αS˚
∥2 ` κε `

2XM yM κs

µs

¯

¸

We now compare specific terms so as to maintain the inequality above and set ζs`1 ă 1?
s`1
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n∥αSc
A

∥2

2 ą
p
?

s ` 1q
?

pBcκp

µp

n∥αSc
A

∥2

6 ą κεp1 ` νζs`1q3{2
´

np
?

s ` 1q `
C1

?
sκs

a

1 ` ζs`1

µs

¯

ą p
?

s ` 1qκε

´n
a

1 ` ζs`1

1 ´ ζs`1
`

ζs`1C1
?

sκs

µsp1 ´ ζs`1q2

¯

n∥αSc
A

∥2

6 ą
2

?
sXM yM κs

µsp1 ´ ζs`1q
ą

2
?

sp
?

s ` 1qXM yM κsζs`1

µsp1 ´ ζs`1q

n∥αSc
A

∥2

6 ą
C1

?
sκs

µsp1 ´ ζs`1q2

´

p1 ` ζs`1q∥αS˚
∥2 `

2XM yM κs

µs

¯

ą
ζs`1p

?
s ` 1qC1

?
sκs

µsp1 ´ ζs`1q2

´

p1 ` ζs`1q∥αS˚
∥2 `

2XM yM κs

µs

¯

Simplifying these conditions, we obtain the following,

n ą
2p

?
s ` 1q

?
pBcκp

µp∥αSc
A

∥2
“

2p
?

s ` 1qp
?

sκ
1

α ` 2XM yM q
?

pκp

µp∥αSc
A

∥2

κε ă
∥αSc

A
∥2

6p1 ` νζs`1q3{2
´?

s ` 1 `
C1

?
sκs

?
1`ζs`1

nµs

¯

Note that here, we do not need to work with the remaining terms of order
?

s since we know n and ?
p are

much larger than
?

s.

G Proofs of Risk and Estimation Error for the SPriFed-OMP algorithm

Before we provide the risk and estimation error analyses we first state and derive a commonly referred to
result (Lemma 3 in Meinshausen & Yu (2009) and Lemma 3.1 in Wasserman & Roeder (2009)) regarding the
2-norm of the product XT

S˚
ϵ where XS˚

refers to the features coinciding with the true model indices and ϵ is
the model error as shown in Section 2.

Lemma 29. The 2-norm of the product XT
S˚

ϵ is upper bounded by
?

nsσXM p2 logp2s{pbqq1{4 with probability
1 ´ pb where pb is the base probability and the terms in the product are defined in Section 2.

Proof:

||XT
S˚

ϵ||2
p1q

ď
?

n

d

ÿ

jPS˚

Z2
j

p2q

ď
?

ns
c

max
jPS˚

Z2
j

p3q

ď
a

2ns logp2s{pbqqσϵXM

(1) sets Zj “ 1?
n

XT
j ϵ. (2) follows by definition of a maximum. Now, µpZjq “ 0 and V arpZjq “

1
n

řn
i“1 X2

ijσ2
ϵ ď X2

M σ2
ϵ as the absolute value of coordinates Xij is bounded by XM . Therefore, (3) fol-

lows by the Lemma 36 with probability 1 ´ pb.
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G.1 Proof of Estimation Error Theorem 9

From Theorem 7 we know given that if satisfy the theorem’s assumptions we can recover the true model
basis with high probability. We will function under this high probability event and assume that the predicted
basis SA is equal to S˚ while computing the estimation error. Thus, by SPriFed-OMP our estimation error
can be derived as below,

∆α :“ ||α̂ ´ αS˚
||2

“ ||pβS˚
q´1γS˚

´ αS˚
||2

“ ||pXT
S˚

XS˚
` ηβq´1pXT

S˚
y ` ηγS˚

q ´ αS˚
||2

p1q
“ ||pXT

S˚
XS˚

q´1pXT
S˚

y ` ηγS˚
q ´ αS˚

´ pXT
S˚

XS˚
q´1pI ` ηβpXT

S˚
XS˚

q´1q´1

ηβpXT
S˚

XS˚
q´1pXT

S˚
y ` ηγS˚

q||2

p2q
“ ||pXT

S˚
XS˚

q´1XT
S˚

ϵ ` pXT
S˚

XS˚
q´1ηγS˚

´ pXT
S˚

XS˚
q´1pI ` ηβpXT

S˚
XS˚

q´1q´1

¨ ηβpXT
S˚

XS˚
q´1pXT

S˚
y ` ηγS˚

q||2

p3q

ď ||p
XT

S˚
XS˚

n
q´1 XT

S˚
ϵ

n
|| ` ||p

XT
S˚

XS˚

n
q´1 ηγS˚

n
||2

` ||p
XT

S˚
XS˚

n
q´1pI `

ηβ

n
p
XT

S˚
XS˚

n
q´1q´1

¨
ηβ

n
p
XT

S˚
XS˚

n
q´1p

XT
S˚

y

n
`

ηγS˚

n
q||2

p4q

ď
p1 ´ ζs`1q

a

2ns logp2s{pbqqσϵXM

n
`

κss
b

2 logp 2s
pb

q

np1 ´ ζs`1q

`
κM

p1 ´ ζs`1q
||

ηβ

n
p
XT

S˚
XS˚

n
q´1p

XT
S˚

y

n
`

ηγS˚

n
q||2

p5q

ď
p1 ´ ζs`1q

a

2s logp2s{pbqqσϵXM
?

n
`

κss
b

2 logp 2s
pb

q

np1 ´ ζs`1q

`
κM

p1 ´ ζs`1q2 ¨
s3{2κs

b

2 logp 2s2

pb
q

n
||p

XT
S˚

y

n
`

ηγS˚

n
q||2

p6q

ď
p1 ´ ζs`1q

a

2s logp2s{pbqqσϵXM
?

n
`

κss
b

2 logp 2s
pb

q

np1 ´ ζs`1q

`
s3{2κsκM

b

2 logp 2s2

pb
q

np1 ´ ζs`1q2

´

p1 ` ζs`1q||αS˚
||2

`
a

1 ` ζs`1κϵ `

κs

?
s
b

2 logp 2s
pb

q

n

¯

“ O
´

c

s logpsq

n

¯

(1) follows by the Woodbury Identity (Eqn. 31). (2) follows since pXT
S˚

XS˚
q´1XT

S˚
y “ αS˚

` XT
S˚

ϵ as
y “ XS˚

αS˚
` ϵ. (3) follows by the triangle inequality and division and multiplication by n. (4) is based

on bounds on the eigenvalues of XT
S˚

XS˚
, the Lemma 19 as well as by the Gaussian concentration bounds

for the noise term ηγS˚
; ηγS˚

„ N p0, κ2
ssIsq with probability 1 ´ pb. Furthermore, the first term’s bound is

45



Published in Transactions on Machine Learning Research (06/2024)

derived by the Lemma 29 and it holds with probability 1 ´ pb. (5) follows from bounds on eigenvalues of
XT

S˚
XS˚

and the upper bound of square matrices’ maximum singular value (Theorem 2.4 from Rudelson &
Vershynin (2008) and the by the Gaussian concentration bounds for the term ηβ ; ηβ „ N p0, κ2

ss2Is2 q. (5)
also holds with probability 1 ´ pb. Assuming κϵ is reasonably small, we notice that if n ě s3{2||αS˚

||2 then
the estimation error will be dominated by the second term. The expression holds with 1 ´ 4pb as we use the
concentration inequality four times and combine these events via the union bound.

G.2 Proof of Risk Analysis Theorem 10

From Theorem 7 we again know given that if satisfy the theorem’s assumptions we can recover the true model
basis with high probability. We will function under this high probability event and assume that the predicted
basis SA is equal to S˚ while computing the estimation error. Thus, by SPriFed-OMP our estimation error
can be derived as below,

∆R :“ Rpα̂; X, y, nq

“
1
n

n
ÿ

i“1

´

pxiα̂ ´ yiq
2 ´ pxiαS˚

´ yiq
2
¯

p1q
“

1
n

´

||XS˚
α̂ ´ y||2 ´ ||XS˚

αS˚
´ y||2

¯

p2q
“

1
n

´

||XS˚
βS˚

q´1γS˚
´ y||2 ´ ||XS˚

αS˚
´ y||2

¯

p3q
“

1
n

´

||XS˚
pXT

S˚
XS˚

` ηβq´1pXT
S˚

y ` ηγS˚
q ´ y||2

´ ||XS˚
αS˚

´ y||2
¯

p4q
“

1
n

´

||XS˚
ppXT

S˚
XS˚

q´1qpXT
S˚

y ` ηγS˚
q

´ XS˚
pXT

S˚
XS˚

q´1pI ` ηβpXT
S˚

XS˚
q´1q´1

¨ ηβpXT
S˚

XS˚
q´1pXT

S˚
y ` ηγS˚

q ´ y||2

´ ||XS˚
αS˚

´ y||2
¯

p5q
“

1
n

´

||XS˚
ppXT

S˚
XS˚

q´1qpηγS˚
` XT

S˚
ϵq

´ XS˚
pXT

S˚
XS˚

q´1pI ` ηβpXT
S˚

XS˚
q´1q´1

ηβpXT
S˚

XS˚
q´1pXT

S˚
y ` ηγS˚

q||2
¯

p6q

ď ||
XS˚
?

n
p
XT

S˚
XS˚

n
q´1 pηγS˚

` XT
S˚

ϵq

n

´
XS˚
?

n
p
XT

S˚
XS˚

n
q´1pI `

ηβ

n
p
XT

S˚
XS˚

n
q´1q´1

ηβ

n
p
XT

S˚
XS˚

n
q´1p

XT
S˚

y

n
`

ηγS˚

n
q||22

p7q

ď 2||
XS˚
?

n
p
XT

S˚
XS˚

n
q´1 ηγS˚

n
||2

` 2||
XS˚
?

n
p
XT

S˚
XS˚

n
q´1 XT

S˚
ϵ

n
||2

` 2||
XS˚
?

n
p
XT

S˚
XS˚

n
q´1pI `

ηβ

n

¨ p
XT

S˚
XS˚

n
q´1q´1 ηβ

n
p
XT

S˚
XS˚

n
q´1p

XT
S˚

y

n
`

ηγS˚

n
q||22
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p8q

ď 2
´ p1 ` ζs`1qκss

b

2 logp 2s
pb

q

np1 ´ ζs`1q

¯2

` 2
´

p1 ` ζs`1q
a

2ns logp2s{pbqqσϵXM

np1 ´ ζs`1q

¯2

` 2
´s3{2κsκM

b

2 logp 2s2

pb
q

np1 ´ ζs`1q2

´

p1 ` ζs`1q||αS˚
||2

`
a

1 ` ζs`1κϵ `

κs

?
s
b

2 logp 2s
pb

q

n

¯¯2

“ O
´2s logpsqq

n

¯

(1)-(3) follow from definitions of risk and the output of SPriFed-OMP. (4) follows by the Woodbury expression
(Eqn. 31). (5) follows since αS˚

“ pXT
S˚

XS˚
q´1XT

S˚
y, XS˚

pXT
S˚

XS˚
q´1XT

S˚
“ y and y “ XS˚

αS˚
` ϵ. (6)

follows by including the n inside the squared norm. (7) follows since ||a ´ b||2 ď 2p||a||2 ` ||b||2q which follows
from Cauchy-Schwartz inequality. (7) The terms in (7) however are similar to the intermdiate term (3) from
Theorem 9 except for multiplication by XS˚

{
?

n and the squared l2 norm. Clearly by leveraging, the same
inequalities and the RIP definition we can obtain (8).

H Additional Results and Notation

H.1 Simple Matrix Properties

For a general matrix A P Rnˆp, we state some simple properties that normally hold irrespective of its
distributions. For a column index subset S, the pseudo-inverse of AS is given by A: “ pAT

S ASq´1AT
S .

Furthermore, we can easily identify the projection matrix for AS , that maps AS onto its orthogonal
components by, P K

S “ I ´ PS , where PS “ ASA:

S . A projection matrix PS has the properties P 2
S “ PS and

P T
S “ PS . Verifying these properties is straightforward by plugging in the value of PS in terms of AS .

The Singular Value Decomposition of A, is written as A “ UΣV T where, u P Rnˆn, Σ P

Rnˆp(diag. matrix), V P Rpˆp. U, V are unitary and UT U “ UUT “ I; V T V “ V V T “ I. Further-
more, the SVD of AT A is given by V pΣT ΣqV T “ V DV T , where D “ pΣT Σq. Thus, we can see that
AT AV “ V D and therefore, the matrix AT A shares the same eigenvalue and singular values.

Denote the maximum and minimum singular values of a matrix A by σmaxpAq and σminpAq, respectively.
Similarly, define the maximum and minimum eigenvalues of matrix A by σminpAq and λminpAq respectively.
Thus, λminpXT Xq “ σmaxpXT Xq “ σ2

maxpXq and λminpXT Xq “ σminpXT Xq “ σ2
minpXq. Finally, the ith

singular value and eigenvalue of the matrix A is given by σipAq and λipAq respectively.
Lemma 30. [Spectral Norm eigen-value bounds] Consider the matrix A P Rnˆp and vector w P Rp

then,

σminpAq||w||2 ď ||Aw||2 ď σmaxpAq||w||2

Lemma 31. [Woodbury Identity: Kailath Variant] (page 153 from Bishop et al. (1995), Petersen et al.
(2008)) For conformable matrices A, B, C we have the following expression for the inverse of matrix sum,

pA ` BCq´1 “ A´1 ´ A´1BpI ` CA´1Bq´1CA´1

Assuming, B “ I, C “ N we obtain Ñ

pA ` Nq´1 “ A´1 ´ A´1pI ` NA´1q´1NA´1

Assuming, B “ N, C “ I we obtain Ñ

pA ` Nq´1 “ A´1 ´ A´1NpI ` A´1Nq´1A´1
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H.2 Concentration bounds for Random Variables

We have previously seen in the differential privacy section, that we require that the matrix values or their
functional outputs be bounded. Therefore, here we consider some of the useful properties of random variables
that allows us to bound their contributions.
Lemma 32. [Concentration Inequality (Boucheron et al., 2013)] For Gaussian random variable x with
distribution N p0, σ2q we have,

Prr|x| ě ts ď 2e
´t2

2σ2 Ñ Prr|x| ă ts ą 1 ´ 2e
´t2

2σ2

Lemma 33. [Union Bound] The union bound states for any events E1, E2, ..., En we have,

PrpYn
i“1Eiq ď

n
ÿ

i“1
PrpEiq

Lemma 34. [Norm of matrix with subgaussian entries] (Theorem 4.3.5 from Vershynin (2018))

Consider matrix A P Rnˆp where its entries Ai,j are independent, mean zero, subgaussian random variables.
Then, for any t ą 0 we have,

||A||2 ď CKp
?

n `
?

p ` tq

with probability at least 1 ´ 2e´t2 and K “ maxi,j ||Ai,j ||Ψ2 ; i P rns, j P rps.
Lemma 35. [Lower Bound of Minimum Singular Value for a Random Matrix]: (Theorem 1.2
from Rudelson & Vershynin (2008)) Let z1, ..., zp be independent, centered real random variables with variance
at least 1 and sub-Gaussian moments bounded by B. Let A P Rpˆp matrix whose rows are independent copies
of the random vector pz1, ..., zpq. Then for every ε ě 0 Ñ

PrrσminpAq ď
ε

?
p

s ď Cε ` cp

where C ą 0, c P p0, 1q depend polynomially only on B.
Lemma 36. [Concentration of the maximum random variable] Suppose we have k random variables
xi; i P rks each with distribution N p0, σ2q. We provide an upper bound for the maximum of these k random
variables as following,

Prr
kmax

i“1
|xi| ď Bs ě 1 ´ pb

where B “ σ
a

2 logp2{p0q and pb is the total failure probability such that p0 “
pb

k .
Proof: Consider the events Ei s.t., |xi| ď B; i P rks and suppose Prr|xi| ě Bs ď p0. With Lemma 32 applied
to xi, we have,

Prr|xi| ě Bs ď 2e
´B2

2σ2

Prr|xi| ě σ

c

2 logp
2
p0

qs ď 2 expp´2 logp2{p0qσ2{2σ2q

ď 2 expp´ logp2{p0qq

ď p0

Then, with the union bound, we can consider the probability of the event E0 s.t. maxk
i“1 |xi| ď B. Then,

PrrEc
0s “ PrrYk

i“1|xi| ě Bs (where at least one value is larger than the bound). Then,

PrrEc
0s “ PrrYk

i“1|xi| ě Bs

ď

k
ÿ

i“1
Prr|xi| ě Bs
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“ k ¨ p0

Ñ PrrE0s “ 1 ´ PrrEc
0s “ 1 ´ k ¨ p0

The first inequality is due to Boole’s inequality. In particular, if we wish to bound our failure probabilities to
a fixed value pb then we can have p0 “

pb

k and thus our bound B “ σ
b

2 logp 2k
pb

q is achieved.
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