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ABSTRACT

There has been a large literature on neural architecture search, but most existing
work made use of heuristic rules that largely constrained the search flexibility.
In this paper, we first relax these manually designed constraints and enlarge the
search space to contain more than 10117 candidates. In the new space, most
existing differentiable search methods can fail dramatically. We then propose a
novel algorithm named Gradual One-Level Differentiable Neural Architecture
Search (GOLD-NAS) which introduces a variable resource constraint to one-level
optimization so that the weak operators are gradually pruned out from the super-
network. In standard image classification benchmarks, GOLD-NAS can find a
series of Pareto-optimal architectures within a single search procedure. Most of the
discovered architectures were never studied before, yet they achieve a nice tradeoff
between recognition accuracy and model complexity. GOLD-NAS also shows
generalization ability in extended search spaces with different candidate operators.

1 INTRODUCTION

With the rapid development of deep learning (LeCun et al., 2015), designing powerful neural networks
has been a major challenge for learning compact representations. As manually designed architectures
become more and more complex (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015; Szegedy
et al., 2015; He et al., 2016; Huang et al., 2017), researchers started to explore automatic design
approaches. The outcome is a new methodology named neural architecture search (NAS) that has
shown the potential of finding effective and/or efficient architectures that outperform human expertise.

NAS is often formulated by two aspects, namely, the search space and the search method. A good
search space offers sufficient capacity so that there exist some high-quality architectures (either
of high quality or of high efficiency) but they are difficult to discover by the manually defined
rules. Currently popular search spaces (Zoph et al., 2018; Liu et al., 2019; Howard et al., 2019)
are often composed of some repeatable cells, each of which is a relatively complex combination of
basic operators (e.g., convolution, pooling, etc.). The connectivity between these cells can be either
fixed (Liu et al., 2019; Howard et al., 2019) or changeable (Real et al., 2017; Xie & Yuille, 2017). A
search method should be able to explore the large search space efficiently, for which existing efforts
are categorized into two parts. For the individual search methods (Zoph & Le, 2017; Real et al.,
2017; Xie & Yuille, 2017) sample and evaluate architectures individually. They are often slow and
difficult to generalize across datasets, so later efforts have focused on reusing computation of similar
architectures (Cai et al., 2018; Luo et al., 2018). This path eventually leads to the weight-sharing
search methods (Pham et al., 2018; Liu et al., 2019; Chu et al., 2019a; Guo et al., 2019) that trains a
super-network (which contains all possible architectures) only once, after which the sampling and
evaluation become much quicker, possibly producing multiple architectures (Cai et al., 2020).

In this paper, we focus on a special type of weight-sharing search methods named differentiable
neural architecture search (e.g., DNAS (Shin et al., 2018), DARTS (Liu et al., 2019), etc.). The search
space is relaxed so that the architectural parameters can take continuous values and be optimized
together with the network weights using gradient descent. These methods enjoy high search efficiency
(e.g., the typical search cost on CIFAR10 is just a few hours, making DARTS one of the most popular
NAS algorithm now), but they suffers some major drawbacks, listed below.

• The search space of DARTS is highly constrained, e.g., all normal cells share the same
inner-architecture, each node receives exactly two inputs, and there is exactly one operator
on each preserved edge. These constraints are helpful for the stability of NAS, but they also
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shrink the accuracy gain brought by powerful search methods: with some heuristic designs
(e.g., two skip-connect operators in each cell (Chen et al., 2019)) or search tricks (e.g., early
termination (Liang et al., 2019)), even random search can achieve satisfying performance.
• DARTS requires bi-level optimization, i.e., a training phase to optimize the network weights

and a validation phase to update the architecture parameters. This mechanism brings
computational burden and, more importantly, considerable inaccuracy in gradient estimation
that can dramatically deteriorate the search procedure (Bi et al., 2019; Zela et al., 2020).
• DARTS removes weak operators and edges all at once after the super-network has been

optimized, but this step can risk a large discretization error especially when the weights of
the pruned operators are not guaranteed to be small.

To address these problems, we advocate for an enlarged search space which borrows the cell-based
design of DARTS but frees most of the heuristic constraints. In particular, all cells are allowed to have
different architectures, each edge can contain more than one operators, and each node can receive
input from an arbitrary number of its precedents. These modifications have increased the size of
search space from about 1018 to more than 10235. More importantly, we believe the reduction of
constraints will raise new challenges to the stability and advance the research of NAS methods.

In this complex space, bi-level optimization suffers from heavy computational burden as well as the
inaccuracy of gradient estimation (Bi et al., 2019). This urges us to apply one-level optimization
which is easier to get rid of the computational burdens. However, as shown in (Liu et al., 2019),
one-level optimization can run into dramatic failure which, according to our diagnosis, mainly owes
to the discretization error caused by removing the moderate operators. Motivated by this finding,
we present a novel framework which starts with a complete super-network and gradually prunes out
weak operators. During the search procedure, we avoid applying heuristic rules but rely on resource
constraints (e.g., FLOPs) to determine which operators should be eliminated. Our algorithm is
named GOLD-NAS which stands for Gradual One-Level Differentiable Neural Architecture Search.
Compared to prior NAS approaches, GOLD-NAS requires little human expertise (Li et al., 2019;
Chen & Hsieh, 2020; He et al., 2020) and is less prone of the optimization gap.

We perform experiments on CIFAR10 and ImageNet, two popular image classification benchmarks.
Within a small search cost (0.4 GPU-days on CIFAR10 and 1.3 GPU-days on ImageNet), GOLD-
NAS find a series of Pareto-optimal architectures that can fit into different hardware devices. In
particular, the found architectures achieve a 2.99 ± 0.05% error on CIFAR10 with merely 1.58M
parameters, and a 23.9% top-1 error on ImageNet under the mobile setting. Moreover, we have tested
a few extended search spaces and also obtained satisfying search results. These results pave the way
of searching in a much larger space which is very challenging for most prior work.

2 BUILDING GOLD-NAS ON CIFAR10

2.1 DATASET, SETTINGS, AND OVERVIEW

The CIFAR10 dataset (Krizhevsky & Hinton, 2009) is one of the most popular benchmarks for neural
architecture search. It has 50K training images and 10K testing images, uniformly distributed over
10 classes. Each image is RGB and has a resolution of 32× 32. We follow the convention to first
determine the optimal architecture and then re-train it for evaluation. The test set remains invisible in
both the search and re-training phases. Detailed settings are elaborated in Appendix B.1.

We start with defining an enlarged search space (Section 2.2) that discards most manual designs
and provides a better benchmark for NAS evaluation. Next, we demonstrate the need of one-level
optimization (Section 2.3) and analyze the difficulty of performing discretization in the new space
(Section 2.4). Finally, to solve the problem, we design a pruning algorithm (Section 2.5) that gradually
eliminates weak operators and/or edges with the regularization of resource efficiency.

2.2 BREAKING THE RULES: ENLARGING THE SEARCH SPACE

We first recall the cell-based super-network used in DARTS (Liu et al., 2019). It has a fixed number
(L) of cells. Each cell has two input signals from the previous two cells (denoted as x0 and x1),
and N − 2 inner nodes to store intermediate responses. For each i < j except for (i, j) = (0, 1),
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the output of the i-th node is sent to the j-th node via the edge of (i, j). Mathematically, we have
gi,j (xi) =

∑
o∈Oσ

(
αo
i,j

)
· o(xi) where xi is the output of the i-th node, O is a pre-defined set of

operators, and o(·) is an element in O. σ
(
αo
i,j

)
determines the weight of o(xi), which is set to be

σ
(
αo
i,j

)
= exp(αo

i,j)/
∑

o′∈O exp(αo′

i,j). The output of the j-th cell is the sum of all information flows
from the precursors, i.e., xj =

∑
i<j gi,j (xi), and the final output of the cell is the concatenation of

all non-input nodes, i.e., concat(x2,x3, . . . ,xN−1). In this way, the super-network is formulated into
a differentiable function, f(x)

.
= f(x;α,ω), where α and ω indicate the architectural parameters

and network weights, respectively.

DARTS (Liu et al., 2019) and its variants (Chen et al., 2019; Nayman et al., 2019; Xu et al., 2020a)
have relied on many manually designed rules to determine the final architecture. Examples include
each edge can only preserve one operator, each inner node can preserve two of its precursors, and
the architecture is shared by the same type (normal and reduction) of cells. These constraints are
helpful for the stability of the search process, but they limit the flexibility of architecture search, e.g.,
the low-level layers and high-level layers must have the same topological complexity which is no
reason to be the optimal solution. A prior work (Bi et al., 2019) delivered an important message that
the ability of NAS approaches is better evaluated in a more complex search space (in which very
few heuristic rules are used). Motivated by this, we release the heuristic constraints to offer higher
flexibility to the final architecture, namely, each edge can preserve an arbitrary number of operators
(they are directly summed into the output), each inner node can preserve an arbitrary number of
precedents, and all cell architectures are independent.

To fit the new space, we slightly modify the super-network so that σ
(
αo
i,j

)
is changed from the

softmax function to element-wise sigmoid, i.e., σ
(
αo
i,j

)
= exp(αo

i,j)/
(
1 + exp(αo

i,j)
)
. This offers

a more reasonable basis to the search algorithm since the enhancement of any operator does not
necessarily lead to the attenuation of all others (Chu et al., 2019b). Moreover, the independence of
all cells raises the need of optimizing the complete super-network (e.g., having 14 cells) during the
search procedure. To fit the limited GPU memory, we preserve no more than 4 operators, e.g., in
the smallest search space, S0, only skip-connect and sep-conv-3x3 are used, same as (Bi et al.,
2019; Zela et al., 2020). Note that with 2 or 4 active operators, the search space contains 3.1× 10117

or 9.6× 10235 architectures1, which is far more than the capacity of the original space with either
shared cells (1.1× 1018, (Liu et al., 2019)) or individual cells (1.9× 1093, (Bi et al., 2019)). Without
heuristic rules, exploring this enlarged space requires more powerful search methods.

2.3 WHY ONE-LEVEL OPTIMIZATION?

The goal of differentiable NAS is to solve the following optimization:

α? = arg min
α
L(ω?(α) ,α;Dtrain), s.t. ω?(α) = arg min

ω
L(ω,α;Dtrain), (1)

where L(ω,α;Dtrain) = E(x,y?)∈Dtrain
[CE(f(x) ,y?)] is the loss function computed in a specified

training dataset. There are mainly two methods for this purpose, known as one-level optimization
and bi-level (two-level) optimization, respectively. Starting with α0 and ω0, the initialization of α
and ω, one-level optimization involves updating α and ω simultaneously in each step:

ωt+1 ← ωt − ηω · ∇ωL(ωt,αt;Dtrain), αt+1 ← αt − ηα · ∇αL(ωt,αt;Dtrain). (2)

Note that, since the numbers of parameters in α and ω differ significantly (from tens to millions),
different learning rates (ηα and ηω) and potentially different optimizers can be used. Even in this
way, the algorithm is easily biased towards optimizing ω, leading to unsatisfying performance2. To
fix this issue, a practical way is to evaluate the performance with respect to α and ω in two separate
training sets, i.e., Dtrain = D1 ∪ D2. Hence, the goal of optimization becomes:

α? = arg min
α
L(ω?(α) ,α;D1), s.t. ω?(α) = arg min

ω
L(ω,α;D2), (3)

1This is the theoretical maximum. Under the resource constraints (Section 2.5), the final architecture is often
in a relatively small space, but the space is still much larger than the competitors. Please refer to Appendix A.1
for the calculation of the number of possible architectures.

2This is because of the imbalanced effect brought by optimizing α and ω, in which the latter is often more
effective. An intuitive example is to fix α as the status after random initialization and only optimize ω, which
can still leads to a high accuracy in the training data (it is not possible to achieve this goal by only optimizing α).
Obviously, this does not deliver any useful information to architecture design.
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and, correspondingly, bi-level optimization is used to update α and ω alternately:

ωt+1 ← ωt − ηω · ∇ωL(ωt,αt;D2), αt+1 ← αt − ηα · ∇αL(ωt+1,αt;D1). (4)

DARTS (Liu et al., 2019) tried both optimization methods and advocated for the superiority of bi-level
optimization. However, as pointed out in (Bi et al., 2019), bi-level optimization suffers considerable
inaccuracy of gradient estimation and the potential instability can increase with the complexity of the
search space. This drives us back to one-level optimization. Fortunately, we find that the failure of
one-level optimization can be easily prevented. Detailed analyses and experiments are provided in
Appendix A.2. Here, we deliver the key message that one-level optimization is made quite stable by
adding regularization (e.g., Cutout (DeVries & Taylor, 2017), AutoAugment (Cubuk et al., 2019),
etc.) to a small dataset (e.g., CIFAR10) or simply using a large dataset (e.g., ImageNet). So, we apply
one-level optimization to the enlarged search space throughout the remaining part of this paper.

It is worth noting that prior approaches also suggested one-level optimization (Li et al., 2019) or
mixed-level optimization (He et al., 2020). In comparison, our solution is more elegant by adding
regularization to ω and not involving any other requirements.

2.4 THE DIFFICULTY OF DISCRETIZATION

The main challenge that we encounter in the enlarged space is the difficulty of performing discretiza-
tion, i.e., determining the final architecture based on α. This is to require α in Eqn equation 1
to satisfy the condition that σ

(
αo
i,j

)
= exp(αo

i,j)/
(
1 + exp(αo

i,j)
)

is very close to 0 or 1, but this
constraint is difficult to be integrated into a regular optimization process like Eqn equation 2. The
solution of conventional approaches (Liu et al., 2019; Chen et al., 2019; Xu et al., 2020a; Zela et al.,
2020) is to perform hard pruning at the end of the search stage to eliminate weak operators from the
super-network, e.g., an operator is preserved if σ

(
αo
i,j

)
> 0.5.

This algorithm can lead to significant discretization error, since many of the pruned operators have
moderate weights, i.e., σ

(
αo
i,j

)
= exp(αo

i,j)/
(
1 + exp(αo

i,j)
)

is neither close to 0 nor 1. In this
scenario, directly removing these operators can lead to dramatic accuracy drop on the super-network.
Mathematically, this may push α (and also ω(α)) away from the current optimum, so that the
algorithm may need a long training process to arrive at another optimum, or never. The reason for
σ
(
αo
i,j

)
being moderate is straightforward: the new space allows an arbitrary number of operators to

be preserved on each edge, or more specifically, there is no internal mechanism for the operators to
compete with each other. Therefore, the best strategy to fit training data is to keep all the operators,
since almost all operators contribute more or less to the training accuracy, but this is of little use to
architecture search itself.

Motivated by this, we propose to add regularization to the process of super-network training so that
to penalize the architectures that use more computational resources. This mechanism is similar in
a few prior work that incorporated hardware constraints to the search algorithm (Cai et al., 2019;
Tan et al., 2019; Wu et al., 2019), but the goal of our method is to use the power of regularization to
suppress the weight of some operators so that they can be pruned. Note that the risk of discretization
error grows as the number and the strength (weights) of pruned operators. So, a safe choice is to
perform pruning multiple times, in each of which only the operators with sufficiently low weights
can be removed. We elaborate the details in the following subsection.

2.5 GRADUAL PRUNING WITH RESOURCE CONSTRAINTS

To satisfy the condition that the weights of pruned operators are sufficiently small, we design a
gradual pruning algorithm. The core idea is to start with a low regularization coefficient and increase
it gradually during the search procedure. Every time the coefficient becomes larger, there will be
some operators (those having higher redundancy) being suppressed to low weights. Pruning them
out causes little drop in training accuracy. This process continues till the super-network size goes
below a threshold. During the search process, The architectures that survive for sufficiently long are
recorded, which compose the set of Pareto-optimal architectures.

Throughout the remaining part, we set the regularization term as the expected FLOPs of the super-
network, and this framework can be generalized to other kinds of constraints (e.g., network la-
tency (Wu et al., 2019; Tan et al., 2019; Xu et al., 2020b)). Conceptually, adding resource constraints
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Algorithm 1: Gradual One-Level Differentiable Neural Architecture Search (GOLD-NAS)
Input : Search space S, dataset Dtrain, balancing coefficient µ, minimal FLOPs constraints

FLOPsmin, learning rates ηω , ηα, pruning hyper-parameters n0, λ0, c0, ξmax, ξmin, t0;
Output : A set of pareto-optimal architectural parameters A;

1 Initialize ωcurr and αcurr as random noise, A ← ∅, λ← 0, ∆λ← λ0, t← 0;
2 repeat
3 Update ωcurr and αcurr using Eqn equation 2 for one epoch;
4 Let E be the set of active operators, and Emin be the n0 operators in E with minimal weights;
5 Prune operators in Emin with weight smaller than ξmax, and operators in E with weight

smaller than ξmin, let npruned be the number of pruned operators;
6 if npruned < n0 then ∆λ← c0∆λ, λ← λ+ ∆λ else ∆λ← λ0, λ← λ/c0;
7 if npruned = 0 then t← t+ 1 else t← 0;
8 if t > t0 then A ← A∪ {αcurr}, t← 0;
9 until FLOPs(αcurr) 6 FLOPsmin;

Return : A.

requires a slight modification to the objective function, Eqn equation 1. With FLOPs(α) denoting
the expected FLOPs under the architectural parameter ofα, the overall optimization goal is to achieve
a tradeoff between accuracy and efficiency. We have carefully designed the calculation of FLOPs(α),
described in Appendix A.3, so that (i) the result strictly equals to the evaluation of the thop library,
and (ii) FLOPs(α) is differentiable to α.

The top-level design of gradual pruning is to facilitate the competition between accuracy and resource
efficiency. For this purpose, we modify the original objective function to incorporate the FLOPs con-
straint, i.e., L(ω,α) = E(x,y?)∈Dtrain

[CE(f(x) ,y?)] + λ ·
(
FLOPs(α) + µ · FLOPs(α)

)
, where

the two coefficients, λ and µ, play different roles. λ starts with 0 and vibrates during the search
procedure to smooth the pruning process, resulting in a Pareto front that contains a series of optimal
architectures with different computational costs. µ balances between FLOPs(α) and FLOPs(α),
the expected and uniform versions of FLOPs calculation (see Appendix A.3). In brief, FLOPs(α)
adds lower penalty to the operators with smaller computational costs, but FLOPs(α) adds a fixed
weight to all operators. Hence, a larger µ favors pruning more convolutions and often pushes the
architecture towards higher computational efficiency. In other words, one can tune the value of µ to
achieve different Pareto fronts (see the experiments results in the next subsection).

The overall search procedure is summarized in Algorithm 1. At the beginning, λ is set to be 0 and the
training procedure focuses on improving accuracy. As the optimization continues, λ gradually goes
up and forces the network to reduce the weight on the operators that have fewer contribution. In each
pruning round, there is an expected number of operators to be pruned. If this amount is not achieved, λ
continues to increase, otherwise it is reduced. If no operators are pruned for a few consecutive epochs,
the current architecture is considered Pareto-optimal and added to the output set. Our algorithm
is named GOLD-NAS, which indicates its most important properties: Gradual, One-Level, and
Differentiable. We emphasize that it is the gradual pruning strategy that alleviates the discretization
error and enables the algorithm to benefit from the flexibility of one-level optimization and the
efficiency of differentiable search.

2.6 SEARCH RESULTS AND COMPARISON TO PRIOR WORK

We start with defining 6 search spaces, S0–S5. Among them, S0 has 2 active operators and all
others have 4. The detailed configurations are shown in Table 2. We test these search spaces to
validate the ability of GOLD-NAS in adjusting to various environments, e.g., skip-connect and
sep-conv-3x3 dominate in most DARTS-based architectures, but one of them is missing in S2–S4,
raising challenges to use other operators for replacement. GOLD-NAS works well in most scenarios.

We start with S0. A notable benefit of GOLD-NAS is to obtain a set of Pareto-optimal architectures
within one search procedure (on CIFAR10, around 10 hours on a single NVIDIA Tesla V100 card).
We use two sparsity coefficients, µ = 1 and µ = 0, and obtain six architectures for each, with FLOPs
varying from 245M to 546M. The intermediate results of the search procedure (e.g., how the values
of λ and

{
σ
(
αo
i,j

)}
change with epochs) are shown in Appendix B.2. We re-train each architecture
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three times, and the results are shown in Table 1. One can observe the tradeoff between accuracy
and efficiency. In particular, the GOLD-NAS-A architecture, with only 1.58M parameters and 245M
FLOPs, achieves a 2.99% error on the CIFAR10 test set. To the best of our knowledge, it contains
fewer parameters than any published models that beat the 3%-error mark.

Space Active Operators Capacity
S0 skip-connect, sep-conv-3x3 3.1× 10117

S1
skip-connect, max-pool-3x3,

9.6× 10235sep-conv-3x3, dil-conv-3x3

S2
avg-pool-3x3, max-pool-3x3,

9.6× 10235sep-conv-3x3, dil-conv-3x3

S3
skip-connect, max-pool-3x3,

9.6× 10235dil-conv-3x3, dil-conv-5x5

S4
skip-connect, max-pool-3x3,

9.6× 10235sep-conv-5x5, dil-conv-3x3

S5
skip-connect, avg-pool-3x3,

9.6× 10235sep-conv-3x3, dil-conv-5x5
Table 2: The detailed configurations of six search
spaces with different sets of active operators. S0
is contains two operators thought to be most use-
ful, while skip-connect is missing in S2 and sep-
conv-3x3 missing in S3 and S4.
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Figure 1: The accuracy-complexity trade-
off of differentiable NAS methods. GOLD-
NAS achieves better Pareto-fronts compared
to other methods.

We visualize the first and last architectures obtained from µ = 0 and µ = 1 in Figure 2, and complete
results are provided in Appendix B.3. Moreover, compared to the architectures found in the original
DARTS space, our algorithm allows the resource to be flexibly assigned to different stages (e.g., the
cells close to the output does not need much resource), and this is the reason for being more efficient.
From this perspective, the enlarged search space creates more opportunities for the NAS approach,
yet it is the stability of GOLD-NAS that eases the exploration in this space without heuristic rules.

We compare the search results in S0 to the state-of-the-arts in Table 1. Besides the competitive
performance, we claim three major advantages. First, GOLD-NAS is faster, easier to implement,
and more stable than most DARTS-based methods. This is mainly because bi-level optimization

Architecture Test Err. (%) Params Search Cost FLOPs
#1 #2 #3 average (M) (GPU-days) (M)

DenseNet-BC (Huang et al., 2017) 3.46 25.6 - -
ENAS (Pham et al., 2018) 2.89 4.6 0.5 626
NASNet-A (Zoph et al., 2018) 2.65 3.3 1800 605
AmoebaNet-B (Real et al., 2019) 2.55±0.05 2.8 3150 490
SNAS (moderate) (Xie et al., 2018) 2.85±0.02 2.8 1.5 441
DARTS (1st-order) (Liu et al., 2019) 3.00±0.14 3.3 0.4 -
DARTS (2nd-order) (Liu et al., 2019) 2.76±0.09 3.3 1.0 528
P-DARTS (Chen et al., 2019) 2.50 3.4 0.3 532
PC-DARTS (Xu et al., 2020a) 2.57±0.07 3.6 0.1 557
GOLD-NAS-S0-A

µ = 1

2.93 3.02 3.01 2.99±0.05 1.58 0.4 245
GOLD-NAS-S0-B 2.97 2.85 3.08 2.97±0.12 1.72 0.4 267
GOLD-NAS-S0-C 2.94 2.97 2.97 2.96±0.02 1.76 0.4 287
GOLD-NAS-S0-D 2.89 2.98 2.84 2.90±0.07 1.89 0.4 308
GOLD-NAS-S0-E 2.75 2.86 2.89 2.83±0.07 1.99 0.4 334
GOLD-NAS-S0-F 2.77 2.79 2.86 2.81±0.05 2.08 0.4 355
GOLD-NAS-S0-G

µ = 0

2.73 2.84 2.67 2.75±0.09 2.22 1.1 376
GOLD-NAS-S0-H 2.71 2.76 2.62 2.70±0.07 2.51 1.1 402
GOLD-NAS-S0-I 2.52 2.72 2.60 2.61±0.10 2.85 1.1 445
GOLD-NAS-S0-J 2.53 2.67 2.60 2.60±0.07 3.01 1.1 459
GOLD-NAS-S0-K 2.67 2.40 2.65 2.57±0.15 3.30 1.1 508
GOLD-NAS-S0-L 2.57 2.58 2.44 2.53±0.08 3.67 1.1 546

Table 1: Comparison to state-of-the-art NAS methods on CIFAR10. The architectures A–F are the
Pareto-optimal obtained from a single search procedure (µ = 1, better efficiency), and G–L from
another procedure (µ = 0). The search cost is for all six architectures sharing the same µ. Each
searched architecture is re-trained three times individually.
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Input

Output

(a) GOLD-NAS-S0-A, 1.58M, 2.99% error

Input Output

(b) GOLD-NAS-S0-G, 2.22M, 2.75% error

Input

Output

(c) GOLD-NAS-S0-F, 2.08M, 2.81% error

Input

Output

(d) GOLD-NAS-S0-L, 3.67M, 2.53% error

Figure 2: The first (with the highest efficiency) and last (with the highest accuracy) architectures
found by two search procedures with µ = 1 (left) and µ = 0 (right). The red thin, blue thick, and
black dashed arrows indicate skip-connect, sep-conv-3x3, and concatenation, respectively. This
figure is best viewed in a colored and zoomed-in document.

requires strict mathematical conditions (ω needs to be optimal when α gets updated, which is almost
impossible to guarantee (Liu et al., 2019)), yet the second-order gradient is very difficult to be
accurately estimated (Bi et al., 2019). In comparison, GOLD-NAS is built on one-level optimization
and avoids these burdens. Meanwhile, some useful/efficient optimization methods (e.g., partial
channel connection (Xu et al., 2020a)) can be incorporated into GOLD-NAS towards better search
performance. Second, GOLD-NAS achieves better tradeoff between accuracy and efficiency, as
shown in Figure 1. This mainly owes to its flexibility of assigning computational resources. Third,
GOLD-NAS finds a set of Pareto-optimal architectures within one search procedure. This is
more efficient than existing methods that achieved the same goal running individual search procedures
with different constraints (Xie et al., 2018) or coefficients (Xu et al., 2020b).

GOLD-NAS also works well in other search spaces, S1–S5. We plot the Pareto fronts of S1, S2,
and S4 in Figure 1, and provide all detailed numbers and searched architectures in Appendix B.4.
These results indicate that GOLD-NAS easily transfers to different scenarios even when some critical
operators such as skip-connect and sep-conv-3x3 are missing. In particular, in S1, GOLD-NAS
achieves the 3%-error mark with 1.44M parameters, even lower than that in S0. That being said,
GOLD-NAS takes advantage of the seemingly weak operators to arrive at a better accuracy-complexity
tradeoff. Provided larger GPU memory, GOLD-NAS has the potential of exploring complex search
spaces, possibly with little knowledge that which operators are better.

Last but not least, we investigate the performance of random search. Following prior work (Li
& Talwalkar, 2019; Liu et al., 2019), we individually sample 24 valid architectures from S0 and
evaluate the performance in a 100-epoch validation process (for technical details, please refer to
Appendix B.5). The best architecture is taken into a standard re-training process. We perform
random search three times and report an average error of 3.31 ± 0.50%, number of parameters of
2.30± 0.49M, and FLOPs of 368± 73M. This is far behind the Pareto front by GOLD-NAS. The
random search experiments in S1–S5 report the same conclusion (see Appendix B.5).

3 GENERALIZING GOLD-NAS TO IMAGENET

To reveal the generalization ability, we evaluate GOLD-NAS on the ImageNet-1K (ILSVRC2012)
dataset (Deng et al., 2009; Russakovsky et al., 2015), which contains 1.3M training and 50K testing
images. Following (Xu et al., 2020a), we both transfer the searched architectures from CIFAR and
directly search for architectures on ImageNet. The search space remains unchanged as in CIFAR10,
but three convolution layers of a stride of 2 are inserted between the input image and the first cell,
down-sampling the image size from 224× 224 to 28× 28. Other hyper-parameter settings are mostly
borrowed from (Xu et al., 2020a), as described in Appendix C.1.

A common protocol of ImageNet-1K is to compete under the mobile setting, i.e., the FLOPs of the
searched architecture does not exceed 600M. We perform three individual search procedures with the
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basic channel number being 44, 46, and 48, respectively. We set µ = 0 to achieve higher accuracy.
From each Pareto front, we take the architecture that has the largest (but smaller than 600M) FLOPs
for re-training. The three architectures with basic channels numbers of 44, 46 and 48 are assigned
with code of X–Z, respectively. We also transplant a smaller architecture (around 500M FLOPs)
found in the 44-channel search process to (590M FLOPs) by increasing the channel number from 44
to 48 – we denote this architecture as GOLD-NAS-Z-tr.

Results are summarized in Table 3. GOLD-NAS shows competitive performance among state-of-
the-arts. In particular, the transferred GOLD-NAS-I reports a top-1 error of 24.7%, and the directly
searched GOLD-NAS-Z reports 24.0%. Interestingly, GOLD-NAS-Z-tr reports 23.9%, showing
that a longer pruning procedure often leads to higher resource efficiency. Also, GOLD-NAS enjoys
smaller search costs, e.g., the cost of GOLD-NAS-Z (1.7 GPU-days) is more than 2× faster than
prior direct search methods (Cai et al., 2019; Xu et al., 2020a).

The searched architectures on ImageNet are shown in Figure 3. GOLD-NAS tends to increase the
portion of sep-conv-3x3, the parameterized operator, in the middle and late stages (close to output)
of the network. This leads to an increase of parameters compared to the architectures found in the
original space. This implies that GOLD-NAS assigns computational resource to different network
stages more flexibly, which mainly owes to the enlarged search space and the stable search algorithm.

Architecture Test Err. (%) Params ×+ Search Cost
top-1 top-5 (M) (M) (GPU-days)

Inception-v1 (Szegedy et al., 2015) 30.2 10.1 6.6 1448 -
MobileNet (Howard et al., 2017) 29.4 10.5 4.2 569 -
ShuffleNet 2× (v2) (Ma et al., 2018) 25.1 - ∼5 591 -
NASNet-A (Zoph et al., 2018) 26.0 8.4 5.3 564 1800
MnasNet-92 (Tan et al., 2019) 25.2 8.0 4.4 388 -
AmoebaNet-C (Real et al., 2019) 24.3 7.6 6.4 570 3150
SNAS (mild) (Xie et al., 2018) 27.3 9.2 4.3 522 1.5
ProxylessNAS‡ (Cai et al., 2019) 24.9 7.5 7.1 465 8.3
DARTS (Liu et al., 2019) 26.7 8.7 4.7 574 4.0
P-DARTS (Chen et al., 2019) 24.4 7.4 4.9 557 0.3
PC-DARTS (Xu et al., 2020a)‡ 24.2 7.3 5.3 597 3.8
GOLD-NAS-S0-I 24.7 7.4 5.4 586 1.1
GOLD-NAS-S0-X‡ 24.3 7.3 6.4 585 2.5
GOLD-NAS-S0-Y‡ 24.3 7.5 6.4 578 2.1
GOLD-NAS-S0-Z‡ 24.0 7.3 6.3 585 1.7
GOLD-NAS-S0-Z-tr‡ 23.9 7.3 6.4 590 1.7

Table 3: Comparison with state-of-the-arts on ImageNet-1K, un-
der the mobile setting. ‡: these architectures are searched on
ImageNet, while others searched on CIFAR10.

Input

Output

(a) GOLD-NAS-X

Input

Output

(b) GOLD-NAS-Z

Input

Output

(c) GOLD-NAS-Z-tr

Figure 3: Three architectures
found on ImageNet. The red
thin, blue thick, and black
dashed arrows indicate skip-
connect, sep-conv-3x3, and
concatenation, respectively.
This figure is best viewed in
color and by zooming in.

4 CONCLUSIONS

In this paper, we present a novel algorithm named GOLD-NAS (Gradual One-Level Differentiable
Neural Architecture Search). Starting with the need of exploring a more challenging search space,
we make use of one-level differentiable optimization and reveal the main reason for the failure lies
in the discretization error. To alleviate it, we propose a gradual pruning procedure in which the
resource usage plays the role of regularization that increases with time. GOLD-NAS is able to find a
set of Pareto-optimal architectures with one search procedure. The search results on CIFAR10 and
ImageNet demonstrate that GOLD-NAS achieves a nice tradeoff between accuracy and efficiency.

Our work delivers some new information to the NAS community. First, we encourage the researchers
to avoid manually designed rules. This often leads to a larger search space yet very different
architectures to be found – provided with stable search methods, these newly discovered architectures
can be more efficient. Second and more importantly, reducing the optimization gap brings benefit
to NAS. GOLD-NAS alleviates discretization error, one specific type of optimization gap, but it is
imperfect as it still requires network reshape and re-training. We are looking forward to extending
GOLD-NAS into a completely end-to-end search method that can incorporate various types of
hardware constraints. This is an important future research direction.
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A DETAILS OF THE SEARCH ALGORITHM

A.1 HOW MANY ARCHITECTURES ARE THERE IN THE SEARCH SPACES?

In the basic search space, S0, each cell (either normal or reduction) is individually determined. In each
cell, there are 4 intermediate nodes, each of which can receive inputs from its precedents. In each edge,
there are two possible operators, sep-conv-3x3 and skip-connect. To guarantee validity, each node
must have at least one preserved operator (on any edge). This means that the n-th node (n = 2, 3, 4, 5)
contributes 22n − 1 possibilities because each of the 2n operators can be on or off, but the situation
that all operators are off is invalid. Therefore, there are

(
24 − 1

) (
26 − 1

) (
28 − 1

) (
210 − 1

)
≈

2.5× 108 combinations for each cell. There are 14 or 20 cells, according to the definition of
DARTS. If 14 cells are used, the total number of architectures in the search space is

(
2.5× 108

)14 ≈
3.1× 10117; if 20 cells are used, the number becomes

(
2.5× 108

)20 ≈ 6.9× 10167.

For S1–S5, there are 4 active operators, so there are
(
44 − 1

) (
46 − 1

) (
48 − 1

) (
410 − 1

)
≈

7.1× 1016 combinations for each cell. If 14 cells are used, the the total number of architectures in
the search space is

(
7.1× 1016

)14 ≈ 9.6× 10235. Of course, under a specific FLOPs constraint, the
number of architectures is much smaller than this number, but our space is still much more complex
than the original one – this is a side factor that we can find a series of Pareto-optimal architectures in
one search procedure.

A.2 ONE-LEVEL SEARCH IN THE ORIGINAL SEARCH SPACE

DARTS reported that one-level optimization failed dramatically in the original search space, i.e.,
the test error is 3.56% on CIFAR10, which is even inferior to random search (3.29± 0.15%). We
reproduced one-level optimization and reported a similar error rate of 3.54%.

We find that the failure is mostly caused by the over-fitting issue, as we have explained in the main
article: the number of network weights is much larger than the number of architectural parameters,
so optimizing the former is more effective but delivers no information to architecture search. To
alleviate this issue, we add data augmentation to the original one-level optimization (only in the
search phase, the re-training phase is unchanged at all). With merely this simple modification, the
one-level searched architecture reports an error rate of 2.80 ± 0.06%, which is comparable to the
second-order optimization of DARTS and outperforms the first-order optimization of DARTS – note
that both first-order and second-order optimization needs bi-level optimization. This verifies the
potential of one-level optimization – more importantly, one-level optimization gets rid of the burden
of inaccurate gradient estimation of bi-level optimization.

A.3 CALCULATION OF THE FLOPS FUNCTION

We first elaborate the ideology of designing the function. For a specific operator o, its FLOPs is
easily measured by some mathematical calculation and written as a function of FLOPs(o). When
we consider the architectural parameter α in a differentiable search procedure, we should notice
that the FLOPs term, FLOPs(α), reflects the expectation of the FLOPs of the current architecture
(parameterized by α). The calculation of FLOPs(α) should consider three key points. For each
individual operator o with an architectural parameter of α, (i) its expected FLOPs should increase
with α, in particular, σ(α); (ii) to remove an operator from an edge, the average σ(α) value in the
edge should be considered; (iii) as σ(α) goes towards 1, the penalty that it receives should increase
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slower – this is to facilitate a concentration of weights. Considering the above condition, we design
the FLOPs function as follows:

FLOPs(α) =
∑
o

ln
(

1 + σ(αo) /σ(α)
)
· FLOPs(o), (5)

where the design of ln(1 + ·) is to guarantee convexity, and we believe this form is not the optimal
choice. The uniform version of FLOPs(α), FLOPs(α), is computed via setting FLOPs(o) of all
operators to be identical, so that the search algorithm mainly focuses on the impact of each operator on
the classification error. That is to say, FLOPs(α) suppresses the operator with the least contribution
to the classification task while FLOPs(α) tends to suppress the most expensive operator first.

In practice, we use the thop library to calculate the terms of FLOPs(o). Let C be the number of
input and output channels, and W and H be the width and height of the output. Then, the FLOPs of
a skip-connect operator is 0 if the stride is 1 and FLOPs(o) = C2HW if the stride is 2, and the
FLOPs of a sep-conv-3x3 operator is FLOPs(o) = 2×

(
C2HW + 9× CHW

)
(note that there

are two cascaded convolutions in this operator).

B ADDITIONAL INFORMATION OF CIFAR10 EXPERIMENTS

B.1 HYPER-PARAMETER SETTINGS

First of all, we tried both 14-cell and 20-cell settings for the entire network, and found that they
produced similar performance but the 14-cell setting is more efficient, so we keep this setting
throughout the remaining part of this paper.

We use 14 cells for both search and re-train procedure, and the initial channels before the first cell
is set to be 36. During the search procedure, all the architectural parameters are initialized to zero.
The batch size is set to be 96. An SGD optimizer with a momentum of 0.9 is used to update the
architectural parameters, α, and the learning rate ηα is set to be 1. Another SGD optimizer is used to
update the network parameters, and the only difference is that the learning rate ηω is set to be 0.01.
The pruning pace n0 is set to be 4, and it could be either increased to accelerate the search process
(faster but less accurate) or decreased to smooth the search process (slower but more accurate). The
pruning thresholds ξmax and ξmin are set to be 0.05 and 0.01. c0 is set to be 2 for simplicity, and
similar to n0, it can be adjusted to change the pace of the pruning process. λ0 is set to be 1× 10−5,
which is chosen to make the two terms of loss function comparable to each other. t0 is set to be 3,
and it can be increased to improve the stability of the Pareto-optimal architectures or decreased to
obtain a larger number of Pareto-optimal architectures. FLOPsmin is set to be 240M for µ = 1 and
360M for µ = 0: this parameter is not very important because we can terminate the search process at
anywhere we want. AutoAugment is applied in the search procedure to avoid over-fitting (i.e., the
network is easily biased towards tuning ω than α, see Appendix A.2), but we do not use it during the
re-training process for the fair comparison against existing approaches.
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Figure 4: Visualization of two search pro-
cedures on CIFAR10 with η = 0 (blue) and
η = 1 (red), respectively. λ zigzags from
0 to a large value, and the FLOPs of the
super-network goes down.

The re-training process remains the same as the con-
vention. Each Pareto-optimal architecture is trained
for 600 epochs with a batch size of 96. We use SGD
optimizer with a momentum of 0.9, and the correspond-
ing learning rate is initialized to 0.025 and annealed
to zero following a cosine schedule. We use cutout,
path Dropout with a probability of 0.2, and an auxiliary
tower with a weight of 0.4 during the training process.
The training process takes 0.3 to 1.2 days on a single
NVIDIA Tesla-V100 GPU, according to the complexity
(FLOPs) of each search architecture.

B.2 ANALYSIS ON THE SEARCH PROCEDURE

In Figure 4, we visualize the search procedures on
CIFAR10 using the hyper-parameters of η = 0 and
η = 1. We can observe that, as the search procedure
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GOLD-NAS-S0-G, 2.22M, 2.75% error
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GOLD-NAS-S0-H, 2.51M, 2.70% error

Input

Output

GOLD-NAS-S0-C, 1.76M, 2.96% error

Input
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GOLD-NAS-S0-I, 2.85M, 2.61% error

Input

Output

GOLD-NAS-S0-D, 1.89M, 2.90% error

Input

Output

GOLD-NAS-S0-J, 3.01M, 2.60% error

Input

Output

GOLD-NAS-S0-E, 1.99M, 2.83% error

Input
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GOLD-NAS-S0-K, 3.30M, 2.57% error

Input

Output

GOLD-NAS-S0-F, 2.08M, 2.81% error

Input

Output

GOLD-NAS-S0-L, 3.67M, 2.53% error

Figure 5: All architectures searched on CIFAR10 during two pruning procedures, η = 1 on the
left side, η = 0 on the right side. The red thin, blue thick, and black dashed arrows indicate skip-
connect, sep-conv-3x3, and concatenation, respectively. This figure is best viewed in a colored
and zoomed-in document.

goes, weak operators are pruned out from the super-
network and the FLOPs of the network gradually goes down. With η = 1, the rate of pruning is
much faster. More interestingly, λ, the balancing coefficient, zigzags from a small value to a large
value. In each period, λ first goes up to force some operators to have lower weights (during this
process, nothing is pruned and the architecture remains unchanged), and then goes down as pruning
takes effect to eliminate the weak operators. Each local maximum (just before the pruning stage)
corresponds to a Pareto-optimal architecture.

B.3 VISUALIZATION OF THE SEARCHED ARCHITECTURES

We show all searched architectures in S0, on CIFAR10, in Figure 5.

B.4 DETAILED RESULTS OF EXTENDED SEARCH SPACES

The detailed search results on S1–S5 are shown in Table 4. The searched architectures are visualized
in Figure 6. Below, we briefly analyze the results in different search spaces.
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Architecture Test Err. (%) Params Search Cost
#1 #2 #3 average (M) (GPU-days)

Random search baseline 3.34 3.15 3.27 3.25±0.10 1.83 4.0
GOLD-NAS-S1-A

µ = 0

3.24 3.05 3.25 3.18±0.11 1.25 1.7
GOLD-NAS-S1-B 2.98 3.00 3.14 3.04±0.09 1.38 1.7
GOLD-NAS-S1-C 2.85 2.80 3.03 2.89±0.12 1.44 1.7
GOLD-NAS-S1-D 2.82 2.93 2.87 2.87±0.06 1.70 1.7
Random search baseline 3.22 3.44 3.42 3.36±0.12 2.02 4.0
GOLD-NAS-S2-A

µ = 0

3.26 3.08 3.11 3.15±0.10 1.30 1.7
GOLD-NAS-S2-B 3.07 3.24 3.14 3.15±0.09 1.44 1.7
GOLD-NAS-S2-C 3.03 2.89 2.77 2.90±0.13 1.70 1.7
GOLD-NAS-S2-D 2.69 2.61 2.79 2.70±0.09 2.13 1.7
Random search baseline 3.73 3.76 3.94 3.81±0.11 1.53 4.0
GOLD-NAS-S3-A

µ = 0
3.28 3.42 3.56 3.42±0.14 1.43 1.7

GOLD-NAS-S3-B 3.22 3.32 3.34 3.29±0.06 1.76 1.7
GOLD-NAS-S3-C 3.24 3.43 3.18 3.28±0.13 1.85 1.7
Random search baseline 3.36 3.26 3.25 3.29±0.06 2.11 4.0
GOLD-NAS-S4-A

µ = 0
3.06 2.84 3.01 2.97±0.12 1.45 1.7

GOLD-NAS-S4-B 2.87 2.98 3.01 2.95±0.07 1.56 1.7
GOLD-NAS-S4-C 2.86 2.78 2.84 2.83±0.04 2.04 1.7
Random search baseline 3.26 3.50 3.16 3.31±0.17 2.55 4.0
GOLD-NAS-S5-A

µ = 0

3.07 3.05 2.99 3.04±0.04 1.50 1.7
GOLD-NAS-S5-B 2.98 3.00 2.96 2.98±0.02 1.84 1.7
GOLD-NAS-S5-C 2.79 2.74 2.97 2.83±0.12 2.10 1.7
GOLD-NAS-S5-D 2.74 2.77 2.78 2.76±0.02 2.77 1.7
GOLD-NAS-S5-E 2.72 2.71 2.66 2.70±0.03 2.88 1.7
GOLD-NAS-S5-F 2.62 2.70 2.68 2.67±0.04 3.38 1.7

Table 4: Results of five extended search spaces. We have used a fixed rule to choose representa-
tive architectures, so the numbers of architectures may vary among different search spaces and/or
procedures.

• S0 is the basic search space with skip-connect and sep-conv-3x3 which are believed to
be the most useful operators. This space has already achieved a good accuracy-complexity
tradeoff.
• S1 adds max-pool-3x3 and dil-conv-3x3, the two most useful operators not contained in
S0. As expected, although the new operators do not appear very often, having these ‘new
functions’ can arrive at a better tradeoff, e.g., the architecture with 1.44M parameters reports
a 2.89% error on CIFAR10, better than the 1.58M-parameter, 2.99%-error architecture
found in S0.
• S5 adds avg-pool-3x3 and dil-conv-5x5 to S0. These two operators rarely appear in

previous search results, implying that they are less efficient. Consequently, S5 reports
slightly worse performance than that of S0, indicating that GOLD-NAS may be impacted by
the weak operators (e.g., not able to prune them all so that the performance is at least on par
with S0). This is important for future improvement.
• S2 is a search space without skip-connect, and two pooling operators max-pool-3x3 and

avg-pool-3x3, are present as non-parameterized operators. The search performance is
slightly worse than other search spaces, indicating that skip-connect, offering the ability of
direct copy, seems the most important. The pooling operators suffers information loss and
thus are not as efficient as skip-connect.
• S3 and S4 do not contain sep-conv-3x3, the critical parameterized operator that makes

up most search results. The key is to use other parameterized operators for replacement.
Interestingly, GOLD-NAS produces satisfying results in S4 (comparable to that in S0),
implying the usefulness of sep-conv-5x5. On the other hand, the results are worse in S3
with two dilated convolutions, arguably because dilated convolutions are equipped with
large receptive fields and thus are not friendly to the CIFAR10 dataset.
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Figure 6: All architectures searched on CIFAR10 in S1–S5. The red thin, blue thick, and black dashed
arrows indicate skip-connect, sep-conv-3x3, and concatenation, respectively. Other operators are
presented using solid arrows: bright orange for max-pool-3x3, light blue for sep-conv-5x5, dark
orange for avg-pool-3x3, bright purple for dil-conv-3x3, dark purple (magenta) for dil-conv-5x5.

B.5 DETAILS OF RANDOM SEARCH EXPERIMENTS

To produce the random search baseline, we randomly prune out operators from the super-network
until the architecture fits the hardware constraint (e.g., FLOPs). It is possible that the architecture
becomes invalid during the random pruning process, and we discard such architectures. Each random
search process collects 24 architectures and we train each of them for 100 epochs and pick up the
best one for an entire 600-epoch re-training. As reported in the paper, we perform random search in
S0 three times and the best architecture reports an average accuracy of 3.31± 0.50%.
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Figure 7: All architectures searched on ImageNet. The red thin, blue thick, and black dashed arrows
indicate skip-connect, sep-conv-3x3, and concatenation, respectively. This figure is best viewed
in a colored and zoomed-in document.

We have also performed random search on S1–S5 and the results are summarized in Table 4. Com-
pared to the architectures found by GOLD-NAS with approximately the same amount of parameters,
the best architectures obtained by random search suffer a ∼ 0.5% deficit in all search spaces. This
aligns with the conclusion in S0 that GOLD-NAS can find more efficient computational models.

C ADDITIONAL INFORMATION OF IMAGENET EXPERIMENTS

C.1 HYPER-PARAMETER SETTINGS

Following FBNet (Wu et al., 2019) and PC-DARTS (Xu et al., 2020a), we randomly sample 100
classes from the original 1,000 classes of ImageNet to reduce the search cost. We do not AutoAugment
during the search procedure as the training set is sufficiently large to avoid over-fitting. Other super-
parameters are kept unchanged as the CIFAR10 experiments except for FLOPsmin, which is set to
be 500M for the ImageNet experiments.

During the re-training process, the total number of epochs is set to be 250. The batch size is set to be
1,024 (eight cards). We use an SGD optimizer with an initial learning rate of 0.5 (decayed linearly
after each epoch till 0), a momentum of 0.9 and a weight decay of 3 × 10−5. The search process
takes around 3 days on eight NVIDIA Telsa-V100 GPUs.

C.2 HYPER-PARAMETER SETTINGS

We show all searched architectures on ImageNet in Figure 7. Besides GOLD-NAS-S0-Y, other three
architectures have been displayed in Section 3
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